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Trust in the Lord with all your heart,
And lean not on your own understanding;

In all your ways acknowledge Him,
And He shall direct your paths.

Do not be wise in your own eyes;
Fear the Lord and depart from evil.

It will be health to your flesh,
And strength to your bones.

Honor the Lord with your possessions,
And with the firstfruits of all your increase;

So your barns will be filled with plenty,
And your vats will overflow with new wine.

Proverbs 3:5-10
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Abstract

Fiber reinforced composites are ideal lightweight materials. Particularly in
the automotive sector, fiber reinforced composites are increasingly used for
geometrical complex components. Depending on the complexity of the com-
ponent, different semi-finished products are suitable for forming into the final
preform. If dry semi-finished products with continuous fibers are used, such
as unidirectional noncrimp fabrics (UD-NCF), draping effects occur during
forming. These effects are relevant to structure mechanical properties and are
manifested in the variation of the fiber orientation, the local change of the fiber
volume content and in areas with fiber waviness. If these effects are not taken
into account in the design of components, the quality of the numerical pre-
diction decreases. To account for draping effects in structural simulation, the
relevant information can be taken from draping simulation. In a previous work,
a material model for forming UD-NCF semi-finished products was developed.
However, new material models are needed to capture the draping effects in the
structural simulation of consolidated components. The requirements for the
development of a material model are derived from the experimental observa-
tions. In an extensive experimental campaign, the impact of individual draping
effects on the material behavior is investigated. It is found that, in addition
to the generally known influence of fiber orientation, other material-specific
properties come to light. If large shear strains are applied, the fiber orientation
changes. Although the fiber orientation significantly influences the mechanical
properties, its change under shear has hardly been considered so far. Further-
more, it is shown that the initial transverse material axis is also subjected to
deformation. By considering only the change in fiber direction, while the
transverse material axis remains orthogonal, an incorrect failure mechanism
can be predicted. In this work, a suitable strain measure is presented, with
which the change of the material axes can be accounted. The comparison be-
tween experimental and numerical results shows a very good agreement with
respect to the deformation of each material axis. To consider the fiber volume
content, experimental investigations are carried out to determine the elastic
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Abstract

material parameters, as well as the different material strengths and material
nonlinearities for varying fiber volume contents. The elastic properties and
the strengths are modeled using analytical approaches. On the basis of tests, a
fiber volume content-dependent failure criterion for fiber failure and inter-fiber
failure is derived. It is shown that for inter-fiber failure, the material strengths
are influenced differently by the fiber volume content. The numerical predic-
tion, which considers fiber volume content, shows a very good agreement with
experimental results. Fiber waviness is considered as another draping effect.
Here, the most significant impact on the mechanical properties is observed. In
order to investigate the influence of fiber volume content and fiber waviness in
detail, microscopic scale modeling is performed. This method shows clearly
the influence of the matrix on the effective material properties of the compos-
ite and on the failure behavior. In another numerical study, the influence of
draping effects on component level is investigated. In particular, the influence
of the laminate lay-up becomes apparent when draping effects are taken into
account.

iv



Kurzfassung

Faserverbundwerkstoffe eignen sich als ideale Leichtbauwerkstoffe. Besonders
im Automobilsektor werden zunehmend Faserverbundwerkstoffe für geome-
trisch komplexe Bauteile verwendet. Je nach Bauteilkomplexität eignen sich
unterschiedliche Halbzeuge für die Umformung zur finalen Preform. Werden
trockene Halbzeuge, wie zum Beispiel UD-NCF verwendet, entstehen während
der Umformung strukturmechanisch relevante Drapiereffekte. Diese äußern
sich in der Variation der Faserorientierung, der lokalen Änderung des Faservo-
lumengehaltes und in Bereichen mit Faserwelligkeiten. Werden diese Effekte
bei der Auslegung von Bauteilen nicht berücksichtigt, sinkt die numerische
Prognosegüte. Für die Erfassung der Drapiereffekte in der Struktursimulation
können die Informationen aus der Drapiersimulation entnommen werden. In
einer vorangegangenen Arbeit wurde ein Materialmodell zur Umformung von
UD-NCF Halbzeugen entwickelt. Um jedoch die Drapiereffekte in der Struktur-
simulation zu erfassen, bedarf es neuer Materialmodelle. Die Anforderungen
an das zu entwickelnde Materialmodell leiten sich aus den experimentellen
Beobachtungen ab. In einer umfangreichen Versuchskampagne wurde der Ein-
fluss von einzelnen Drapiereffekten auf das Materialverhalten untersucht. So
zeigte sich, dass neben dem im Allgemeinen bekannten Einfluss der Faserorien-
tierung, weitere materialspezifische Eigenschaften zum Vorschein treten. Wird
eine Belastung aufgeprägt, ändert sich die Faserorientierung. Obwohl die Fa-
serorientierung maßgeblich die mechanischen Eigenschaften beeinflusst, wird
deren Änderung in der Modellierung kaum berücksichtigt. Darüber hinaus
zeigte sich, dass die initial transversale Materialachse ebenso einer Deforma-
tion unterliegt. Wird nur die Änderung der Faserorientierung berücksichtigt,
kann ein falscher Versagensmechanismus prognostiziert werden. Um die Ände-
rung der Materialachsen zu berücksichtigen, wird ein geeignetes Dehnungsmaß
vorgestellt. Der Vergleich zwischen experimentellen und numerischen Ergeb-
nissen zeigt eine sehr gute Übereinstimmung hinsichtlich der Deformation
der einzelnen Materialachsen. Zur Berücksichtigung des Faservolumengehal-
tes wurden experimentelle Untersuchungen zur Bestimmung der elastischen
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Kurzfassung

Materialparameter, sowie der unterschiedlichen Materialfestigkeiten und Ma-
terialnichtlinearitäten durchgeführt. Die Modellierung der elastischen Eigen-
schaften und der Festigkeiten erfolgt mithilfe von analytischen Ansätzen. Auf
Basis der Versuche konnte ein faservolumengehaltsabhängiges Versagenskri-
terium für Faserbruch und Zwischenfaserbruch eingeführt werden. Es zeigt
sich, dass für den Zwischenfaserbruch die Materialfestigkeiten unterschiedlich
vom Faservolumengehalt beeinflusst werden. Die numerische Vorhersage bei
Berücksichtigung des Faservolumengehaltes zeigt eine sehr gute Übereinstim-
mung mit experimentellen Ergebnissen. Als weiterer Drapiereffekt wird die
Faserwelligkeit berücksichtigt. Hier zeigt sich der signifikanteste Einfluss auf
die mechanischen Eigenschaften. Um den Einfluss des Faservolumengehal-
tes und der Faserwelligkeit im Detail zu untersuchen wurden Modellierungen
auf der mikroskopischen Skala durchgeführt. Hierbei zeigt sich deutlich der
Einfluss der Matrix auf die Materialeigenschaften des Verbundes und dessen
Versagensverhalten. In einer weiteren numerischen Studie wurde der Einfluss
von Drapiereffekten an einem Bauteil untersucht. Insbesondere tritt der Ein-
fluss des Laminataufbaus bei der Berücksichtigung von Drapiereffekten zum
Vorschein.
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1 Introduction

1.1 Motivation

Fiber composites are among the most common group of lightweight materials
found in nature. In particular, these are characterized by their excellent specific
material properties. Natural fiber composites, such as wood or bones, also have
the special property of adapting to the load condition. Animated by the advan-
tages of this natural group of materials, the development of fiber-reinforced
plastics (FRPs) has been strongly promoted in recent decades. Such material
systems are especially well suited to minimize the weight of future vehicles
over land, water, and air. The low density of continuous FRPs combined
with very good mechanical properties makes them ideal lightweight materials,
which are useful to reduce the weight of vehicles. This is important to achieve
the required reduction of CO2 emissions. Since the weight of a vehicle directly
determines its maximum range, minimizing vehicle weight can make an enor-
mous contribution to reduce CO2 emissions while increasing the operating
range. In particular, carbon fiber reinforced plastics (CFRP) have very good
mechanical potential. The use of CFRP is widespread, but the challenge is to
apply the load in the fiber direction as much as possible to achieve the highest
lightweight potential.

Besides careful design of components, which include the final geometry and
laminate layup, the mechanical properties are also determined by the manufac-
turing process. If a component is manufactured in an infiltration process (e.g.,
RTM process), the forming process precedes it. During the forming of the dry
semi-finished product, the fiber orientation and the distribution of the fiber bun-
dles in the later component is determined. There are different semi-finished
products that can be draped differently well. Among others, unidirectional
non-crimp fabrics (UD-NCF) offer a high degree of drapability. Compared
to other fabric types UD-NCF show very good mechanical properties in fiber
direction. The resulting fiber orientation after the forming determines the pre-
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1 Introduction

ferred load direction of the material and is therefore one of the most important
factors for component behavior. Likewise, fiber waviness can occur locally,
which significantly influences the material properties. After forming, the local
fiber volume content (FVC) is mainly defined by the areal weight of the fabric
for a given laminate thickness. To obtain a solid component the fabric needs
to be infiltrated. During the infiltration step the FVC can be changed, if the
cavity of the tool leads to a different laminate thickness than initially defined.
The FVC determines in particular the stiffness and strength of the resulting
laminate. The subsequent curing and cooling of the component may introduce
additional residual stresses to the component. The characteristics resulting
from the draping process, such as fiber orientation, fiber waviness and FVC,
are called draping effects.

In order to capture the entire manufacturing process numerically, the devel-
opment of appropriate methods for the individual process steps has been pur-
sued [1]. This virtual process chain is characterized by the fact that the infor-
mation from the individual process steps is passed on to the subsequent process
steps (cf. Figure 1.1). In addition, virtual design offers a decisive advantage
with regard to holistic component optimization. For the different load cases, an
optimal material and stress distribution can be achieved in the final component
by such optimization. On the one hand, this is achieved by a process-specific
optimization, on the other hand an optimization of the component geometry
can be achieved throughout the entire process chain.

Figure 1.1: Schematic representation of a continuous virtual process chain for an auto-
motive component
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1.1 Motivation

For the completeness of the process chain, new material models are needed
to calculate the structure mechanical behavior under consideration of draping
effects. Moreover, the models need to be able to process the information on
draping effects that result from the manufacturing process. Generally, a largely
homogeneous distribution of the material properties in the component is often
used in the state-of-the-art structure simulation. However, by using such an
approach the full potential of the composite part cannot be achieved. One
reason for using such a simplified approach is that the necessary information
is not available or that the effort, which is required to acquire them exper-
imentally, would be too high. On the other hand, if preimpregnated fibers
(so-called prepregs) are used, they have already a defined fiber direction and
FVC. Such materials limit the possible part complexity and dry fabrics with a
high drapeability need to be used. In contrast to prepregs, UD-NCFs undergo
a completely different deformation process and require reliable knowledge of
the deformed fabric to ensure component quality. Up to now, the large-scale
measurement of the fiber orientation can only be carried out on the surface
of the component. The distribution of the fiber orientation of the inner layers
is hardly known. Furthermore, only a homogenized distribution of the fiber
orientation can be experimentally determined. Additional information that
results from the deformation of the dry semi-finished product, such as the
local area weight (from which the resulting FVC is derived), occurring gaps
or waviness, are not available. Fortunately, the validated numerical draping
models can provide valuable information to describe the material behavior
of UD-NCFs [2–4]. From a structure mechanical point of view, even if the
fiber orientation distribution is available, its rotation with increasing load is
generally neglected. If a constant fiber orientation is used for the calculation,
the material nonlinearity that occurs can be incorrectly projected onto other
mechanisms. Under certain circumstances, completely different stress states
may be present in the material, leading to different material failures. Likewise,
due to lack of information regarding material failure at different fiber volume
contents, trade-offs in the quality of numerical prediction are often accepted.
In general, the systematic analysis of the material behavior with respect to
the FVC-dependent stiffnesses and strengths is lacking, especially for loads
that cause inter-fiber failure (IFF). When the waviness of unidirectional FRPs
is considered, most studies focus on the compressive failure of the material.
However, waviness under tension has just as much influence on stiffness and
strength. The impact of FVC on the failure of wavy areas has yet to be de-
termined. The lack of reliable experimental tests can be named as a possible
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reason for the current state of research. Although analytical and numerical ap-
proaches exist that describe the material behavior under draping effects, their
validation is still pending. If these approaches are not reliable, the foundation
for a holistic view of the virtual process chain cannot be laid.

1.2 Thesis Objectives

The present work is dedicated to consider draping effects resulting from the
forming of UD-NCFs. In particular, the draping effects relevant from a struc-
ture mechanical point of view are to be incorporated into the realistic modeling
of FRP components by using the virtual process chain. Therefore, the obtained
information from the draping process need to be transferred to the structure
mechanical model. The required methods for transferring the relevant data
are to be implemented. For the modeling of the material behavior, a material
model that takes into account the information on the draping effects is to be
developed. The input data that comes from draping simulation shall be pro-
cessed and provides an appropriate set of material parameters to model the
local distribution of draping effects. Based on this set of material parameters,
the linear and the nonlinear material behavior as well as the failure initiation
and the degradation of the material, need to be determined. The material
model shall also be used for component design. Accordingly, the material
behavior has to be homogenized and modeled on a macroscopic scale. Several
influencing factors, such as fiber rotation, FVC-dependent strengths for fiber
and inter-fiber failure, or the homogenized consideration of fiber waviness, are
to be implemented. Since the material model needs a set of basic material
parameters, corresponding material characterization experiments need to be
performed. For the validation of the developed material model, different stress
states have to be generated within experiments, which will then be remodeled
accordingly. Since not every structure mechanical impact of draping effects can
be considered experimentally, additional virtual material tests are necessary.
For this purpose, the material behavior must be observed on a microscopic
scale. Thus, the impact of FVC or fiber waviness, as well as the resulting
nonlinear material behavior and fracture can be analyzed in detail. The gen-
eral observations and conclusions are to be formed as recommendations for
material characterization to virtually evaluate composite parts.
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1.3 Layout of Thesis

1.3 Layout of Thesis

As a first point, the individual draping effects are investigated experimentally
in Chapter 2. The manufacturing of the coupons to determine the material
properties on the macro as well as on the micro-scale is described first. Since
the evaluation of the experiments requires new methods, the advanced method
to determine strains from digital image correlation, among others, is discussed.
For virtual material characterization, the material properties of the matrix are
determined. To model the composite on micro-scale, the geometric character-
istics of the fiber, such as the fiber diameter and its distribution, are obtained.
The coupon tests of the composite are carried out on both unidirectional and
angle-ply laminates. In addition to laminates with straight fibers, the experi-
mental results of tests with fiber waviness are investigated.

The modeling of the material behavior is a focus of this work and is thoroughly
described in Chapter 3. A general consideration of a suitable strain measure
for the resulting stress components comes first. To model the composite
material behavior on micro-scale, material models for the fiber and matrix are
presented subsequently. Both material models take into account the material-
specific nonlinearities, as well as failure initiation and damage evolution. The
macroscopic material model that considers the draping effects, is developed
based on the experimental observations. The nonlinearities resulting from the
fiber and matrix are incorporated into the material model. The composite-
specific material behavior, such as failure initiation and damage evolution,
is presented. Additionally, the dependency on FVC is incorporated into the
material model. Based on the developed model, an extension for areas with
waviness is presented.

The developed methods for gathering and mapping, in order to transfer the
information from the draping simulation to the structural simulation, are de-
scribed in Chapter 4. This is followed by the application and validation of the
developed material models in Chapter 5. First, the simulation results of the
micro-scale models are compared with experimental results. The issues that
are still open from experimental investigation, are addressed here. Second,
the developed macroscopic material model is used to perform a side-by-side
comparison of the numerical and experimental results. Here the prediction
accuracy of the developed material model is evaluated. Finally, the prediction
quality of the draping simulation is evaluated and the virtual process chain is
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used on an automotive component. Here the impact of the draping effects is
evaluated on a component level. Based on the gained knowledge, a general
evaluation of the draping effects and the most important material parameters,
which should be determined, are presented in Chapter 6. The thesis ends with
a summary and an outlook on possible further work in Chapter 7.
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2 Experimental Tests to Consider
the Influence of Draping Effects

2.1 Literature Review

The deformation of the fabric during the draping process contributes signifi-
cantly to the mechanical behavior of the consolidated component. To enable
the consideration of these effects in the design, reliable experimental results are
needed to reproduce these phenomena. Since the characteristics of the draping
effects are strongly dependent on the type of fabric used, the parameters such
as fiber orientation, fiber volume content, and the degree of fiber waviness,
are to be investigated. For the analysis of the individual effects, coupon tests
are suitable, which can reproduce a representative material behavior. For ex-
ample, the fiber angle can be systematically varied to analyze the influence
of fiber orientation on the mechanical material behavior. The experimental
results available in the literature so far focus only on one influencing parameter
(e.g., fiber orientation) whereas the others are considered constant or negligi-
ble. Since the fiber orientation plays a dominant role for fiber composites with
continuous fiber reinforcement, its influence has been extensively investigated
[5–11]. If a load is not applied exactly in the fiber direction or transverse to it,
fiber rotation occurs [10–15]. Previous experimental studies on fiber rotation
have mainly used angle-ply laminates, as these allow a simple correlation be-
tween fiber rotation and the resulting strain. It could be shown that neglecting
the fiber rotation leads to completely different stress states and thus makes
the interpretation of failure mechanisms more difficult [11, 16]. However, if
off-axis tests are carried out to determine the reorientation of the fibers, this is
more challenging due to the unbalanced laminate layout. Such laminate struc-
tures create a coupling between normal and shear distortions and thus a highly
inhomogeneous strain distribution in the sample. For a reliable analysis of
the change in fiber orientation, the deformation gradient 𝑭 should therefore be
used, as it provides all the necessary information. In literature such an analysis
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has not yet been performed. Likewise, only the change in fiber orientation is
analyzed, and the other material axes are always assumed to be perpendicular
to it. Therefore, an analysis of the rotation of initially perpendicular material
axes and the resulting stress distribution need to be investigated. This is espe-
cially important for the selection of a suitable material model for the reliable
design of fiber composite laminates.

In addition to the fiber orientation, the FVC is also considered to be an essential
factor for the resulting stiffness and strength of the composite. The experimen-
tal results available on this subject are mainly directed towards the resulting
stiffness [17–20]. For the stiffness in fiber direction 𝐸1 a parallel connection
of fiber and matrix can be assumed, which corresponds to a linear increase in
stiffness over the FVC. When determining 𝐸1 as a function of the FVC, a dis-
tinction must be made between different fiber materials. For example, carbon
fibers show an increase or decrease of the modulus with increasing load in fiber
direction [21–23], while glass fibers do not show such an effect. The slope of
the modulus is thus part of the FVC dependent modulus. This correlation is
rarely used so far in the design of continuous fiber reinforced laminates. The
transverse stiffness 𝐸2 and the in-plane shear stiffness 𝐺12 show a nonlinear
correlation between FVC and the resulting homogenized stiffness [17–19]. For
a complete description of the transversely isotropic material behavior, the in-
plane Poisson’s ratio 𝜈12 and the transverse shear modulus 𝐺23 over the FVC
are also required. Thereby 𝜈12 can be determined via a parallel connection
of fiber and matrix [17]. For the shear modulus 𝐺23 no experimental study
varying the FVC is known and has yet to be evaluated. The impact of the FVC
on strength has only been studied rarely so far. In general, a linear relationship
between FVC and tensile strength 𝑋T in fiber direction is assumed. As with
stiffness, this assumption is based on a parallel connection model and has been
experimentally confirmed [17]. In contrast, for the compressive strength 𝑋C in
fiber direction the distribution over the FVC is clearly nonlinear [24–26]. This
can be attributed to the fact that the fibers are never ideally straight, but can
contain undulations. These lead to a shear failure, including local buckling
and kinking, rather than fiber breakage as under tensile loading. Regardless
of the direction of loading, a trend towards higher strengths with increasing
FVC is discernible for fiber-dominant loading. For a reliable statement regard-
ing the dependence of the matrix-dominant strengths, such as the transverse
tensile strength 𝑌T, the transverse compressive strength 𝑌C and the in-plane
shear strength 𝑆12, at least three different FVCs must be investigated. There
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are only few experimental studies in the literature that investigate the matrix
dominant strengths as a function of the FVC [18, 27–29]. For example, there
is no uniform trend for the transverse tensile strength that can be derived from
the experimental tests. This can be attributed to the fact that the experimen-
tal results are dependent on the manufacturing process, the type of specimen
used (coupon or hoop wound), or the fiber-matrix interface. However, the
shear strength seems to be independent of the FVC [18]. This would reduce
the number of material parameters to be determined. Based on the work of
Brunbauer [28] the transverse compressive strength seems to increase with
increasing FVC. Furthermore, an attempt was made to draw conclusions of
the existing transverse compressive strength on the basis of angle-ply lami-
nates and a varying FVC [27]. An experimental validation on unidirectional
UD90◦ samples has not yet been carried out. If the uniaxial failure strengths
are known, the suitability of failure criteria can be evaluated with varying
FVC and, if necessary, their extension by the dependence on the FVC can be
considered.

In addition to fiber orientation and fiber volume content, fiber waviness is
another factor which influences the mechanical behavior of FRP laminates.
A pronounced waviness has an impact on the effective stiffness and strength
of the composite [27, 30–35]. Due to the fiber waviness the FVC changes
also locally [36]. According to the current state of the art, there are two
ways to characterize waviness. One describes the maximum angle deviation
𝜃max compared to the ideal fiber orientation [37], the other relates the present
amplitude 𝐴 to the wavelength 𝜆 [38]. Both possibilities can be converted
into each other. Since the influence of waviness significantly reduces the
buckling stability of UD0◦ laminates, the effective fiber compressive strength
𝑋C decreases [39]. When samples are loaded with a fiber waviness in tension,
the decrease in fiber tensile strength 𝑋T seems to be dependent on the fiber
material used. While FRP laminates with glass fibers at an amplitude to
wavelength ratio of 𝐴/𝜆 = 0.05 show a decrease of 18 % compared to UD0◦
reference samples [32], carbon fibers at 𝐴/𝜆 = 0.03 already show a decrease
of 35 % [27]. Loading a wavy area changes also the local fiber orientation.
Thus, this has a direct effect on the amplitude and wavelength. This fact has
already been considered in the modeling of waviness [33, 38, 40]. However,
an experimental analysis of this effect is still lacking, since the measuring
methods using extensiometers or strain gauges are not sufficient to determine
the fiber rotation.
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The material properties determined from coupon tests reflect the effective
properties of the laminate. In any case, the material response is determined
by the mechanical behavior of the individual components. Likewise, damage
mechanisms occur on the micro-scale, which determine the global material
behavior. For example, the strength of the matrix has an influence on the
resulting composite strength [18]. To analyze the influence of matrix and fiber
on the effective material properties, the corresponding material properties of
the individual constituents are required. The characterization of the fiber and
matrix properties is a major challenge, since these are subject to the size
effect with respect to strength [17, 41, 42]. The determined characteristics
of constituents can then be used to model the microscopic material behavior.
For example, plane and wavy samples with varying FVC can be analyzed in
detail. Likewise, individual material parameters, whose influence cannot be
determined experimentally, can be analyzed.

Since the measurement methods used to determine the deformation are essen-
tial for the analysis of the observed effects, a possibility of generating reliable
measurement results with a modified test setup is necessary. Digital image
correlation (DIC) is best suited for a detailed analysis of the deformation be-
havior, since here a full-field strain distribution can be determined. This is
especially important if the change of the fiber orientation has to be investi-
gated. There are several commercially DIC methods available. Nevertheless,
the extension or adaptation of these systems is not easily possible. There are
numerous open source codes available that allow a reliable DIC analysis [43–
46]. These tools also allow an individual adaptation to the given experimental
environment. Furthermore, it is possible to precisely analyze the loss of facets
during the measurement and make improvements to the algorithms. The use
of DIC methods for the analysis of fiber rotation has so far only been based on
the resulting strains [11]. This approach will be enhanced by the use of the
deformation gradient 𝑭 in order to perform in-depth experimental analyzes.

2.2 Manufacturing Coupons with Draping Effects
and Test Setup

In order to investigate the material behavior of fiber composites under the
presence of draping effects, representative samples are suitable. These samples
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can be taken from plane sheets and characterized experimentally. Draping
effects, such as varying local fiber orientation, local fiber volume content, and
existing fiber waviness, are examined more closely, as these have the most
impact on the mechanical properties. The focus is on the influence of draping
effects on stiffness, nonlinear material behavior, fiber rotation during loading,
the resulting composite strength, and the associated degradation after damage
initiation. Primarily, the material behavior of unidirectional and angle-ply
laminates will be investigated, since the findings can be transferred to other ply
orientation combinations. In this chapter the used materials, the manufacturing
process, the experimental test scope, and the corresponding test setup are
presented.

2.2.1 Materials and Manufacturing Process

Using continuous FRPs allow to achieve a very high lightweight potential.
Especially in combination with fabric types that allow a high degree of defor-
mation almost ideal lightweight component structures can be manufactured.
For this purpose a unidirectional non-crimp fabric is analyzed. The UD-NCF
fabric from Zoltek Panex 35 with an areal weight of 330 g m−2 is used for this
purpose. According to the manufacturer, the fabric is composed of 93 % carbon
fiber rovings, 3 % glass fiber rovings as a carrier material, 2 % polyester sewing
thread to tie the carbon fibers to the glass fiber rovings, and 2 % of pre-applied
binder to fix the layers in a preform. The rovings have a width of 5 mm and the
not compacted fabric has a thickness of 0.5 mm (see Appendix A.5). The rov-
ings are connected by a tricot loop type stitching which forms the characteristic
zigzag pattern on one side of the fabric. Further, the glass fiber rovings are
oriented perpendicular to the carbon fiber direction. Both sides of the fabric
are shown in Figure 2.1. As matrix system the Sika Biresin CR170 epoxy
resin with Biresin CH150-3 hardener is used. The equipment and machines
of the Fraunhofer ICT in Pfinztal are used to cut and to stack the individual
fabric plies to form the different laminates. Furthermore, the high pressure
RTM process at the Fraunhofer ICT is chosen to produce plates [48, 49]. The
dimensions of the plates are 900 × 550 mm2. To adjust the FVC, the thickness
of the plates and the number of laminate plies are varied. The thickness of the
consolidated plates is between 4 mm to 4.4 mm. In addition to the fiber com-
posite plates, pure resin plates are produced for mechanical characterization
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glass side zigzack stitch

Figure 2.1: Both sides of the Zoltek PX35 unidirectional non-crimp carbon fiber fab-
ric [47]

of the resin system. After the manufacture of the plates, composites and resin,
they are tempered in an oven according to the manufacturer’s specifications.
All process parameters are summarized in Table 2.1.

To analyze the impact of the FVC that results from different deformations
of the fabric and different fiber waviness ratios on the mechanical properties,
separate preforms are produced at the ILK in Dresden using specially developed

Table 2.1: Manufacturing parameters of the RTM-process

Process Parameter Value

Mix ratio by volume-resin:hardener 100:29
Resin temperature-resin/hardener ≈ 80 ◦C/≈ 30 ◦C
Mix head pressure-resin/hardener ≈ 120 bar/120 bar
Tool temperature ≈ 120 ◦C
Tool closing force 4000 kN to 5000 kN
Evacuation time 60 s
Resin flow rate 30 g s−1 to 100 g s−1

Curing time 10 min
Post cure 4 h @ 140 ◦C
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tools [50]. The same fabric and resin system as described before is used. The
plates contain six plies, while the FVC is adjusted by varying the laminate
thickness. The specimens that are used to characterize the strength with varying
fiber volume content and fiber waviness ratio have a thickness of 1.8 mm to
2.3 mm. As for the production of the plates at the Fraunhofer ICT, the plates are
also manufactured using the high-pressure RTM process in order to maintain
the comparability of the experimental results. A detailed description of the
manufacturing process is published by Kunze et al [47].

2.2.2 Laminates with Draping Effects and Experimental
Plan

For the experimental characterization of the basic mechanical properties of
unidirectional laminates, several material parameters have to be determined
to define the stiffness and strength. Different standards can be used for this
purpose. For example, tensile tests can be performed according to or based
on the DIN EN ISO 527-5 standard. From these tests the stiffness in fiber and
transverse direction 𝐸1 and 𝐸2, as well as the Poisson’s ratio 𝜈12, the fiber ten-
sile strength 𝑋T and the transverse tensile strength𝑌T can be determined. Many
standards (e.g., DIN EN ISO 14126 or ASTM D 6641) exist to perform com-
pression tests. The different fixtures of each standard provides a way to induce
force into the specimens and simultaneously minimize the buckling tendency.
In particular, the compressive strength in fiber direction 𝑋C and in transverse
direction 𝑌C can be determined from these tests. To determine the shear prop-
erties, there are standardized tests (DIN EN ISO 14129 or ASTM D 7078)
as well as new approaches with improved testing devices [51]. Although all
approaches provide very reliable results for the in-plane shear stiffness 𝐺12,
the determination of the shear strength 𝑆12 is more challenging. This difficulty
is due to the challenge of creating a homogeneous stress state in the sample,
in which the actual shear strength can be measured. For example, the deter-
mined shear strength according to the ASTM D 7078 standard represents a
lower bound, since the involved notch stress favors premature failure of the
composite. A complete description of the material properties requires also the
transversal isotropic shear stiffness𝐺23. For this purpose, Iosipescu shear tests
can be carried out [52]. Assuming an isotropic relationship between the trans-
verse modulus 𝐸2 and the shear modulus 𝐺23 in the transverse isotropic plane,
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2 Experimental Tests to Consider the Influence of Draping Effects

only the through-thickness Poisson’s ratio 𝜈23 needs to be determined to obtain
the shear modulus 𝐺23. Since 𝜈23 is defined as the negative ratio of the lami-
nate thickness strain 𝜀33 to the transverse strain 𝜀22, it can be determined from
tension or compression tests on UD90◦ laminates. The relationship between
𝐸2, 𝐺23 and 𝜈23 is defined by

𝐺23 =
𝐸2

2 (1 + 𝜈23) . (2.1)

In addition to the basic stiffnesses and strengths, other factors that influence the
material behavior must be taken into account. When carbon fibers are loaded
in fiber direction, the modulus increases under tensile stress and decreases
under compressive stress loads [21–23]. This has an impact on the composite
properties in fiber direction. The corresponding increase or decrease of the
modulus d𝐸1/d𝜀11 can be determined from tensile or compression tests on UD0◦
laminates. For this purpose, the secant modulus is plotted against the strain
and subsequently the slope of the secant modulus is determined. Since the
magnitude of the slope is very similar for both loading directions [21], this
material property can be determined more easily from tensile tests than from
compression tests. The nonlinear material behavior due to shear stress, 𝜎12 or
𝜎13, is assumed as a result of plastic deformation. As a result of the transverse
isotropy, the hardening due to plasticity can be assumed to be the same for
both 𝜎12 and 𝜎13 stresses. The resultant hardening curves for these shear
stresses can be obtained as a by-product of the shear strength tests. It is well
known that under transverse compressive loading of FRPs a fracture angle of
about 50◦ to the loading direction occurs [53]. If the stress state is rotated into
this action plane, a shear stress through the thickness (comparable to the 𝜎23
stress) occurs. The nonlinearity that occurs for transverse compression loads
can therefore be attributed to this shear stress. Since a combined stress state
is present here, the hardening curve cannot be directly extracted from UD90◦
compressive tests. However, depending on the used plasticity model this stress
state can be captured.

To analyze the impact of FVC on the stiffness and strength in the different
load directions, coupon samples with varying FVC are produced and tested.
The test results obtained serve as a requirement for the corresponding material
models, which take into account the fiber volume content dependent material
behavior. The FVC is adjusted in two ways: by the number of plies at a given
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2.2 Manufacturing Coupons with Draping Effects and Test Setup

laminate thickness and by the thickness of the laminate at a constant number
of plies. If the FVC influences the matrix-dominant strengths, this will have
an impact on the used failure criterion. It has been shown that off-axis coupon
tests can be used to generate combined stress states and thus provide support
points for a failure criterion in the (𝜎22, 𝜎12)-plane [54]. Therefore, off-axis
tensile and compression tests (OAT and OAC) are performed with varying
fiber orientation and varying FVC. The experimentally obtained stress values
𝜎OAT/OAC𝜃◦

22 and 𝜎OAT/OAC𝜃◦
12 at failure can be used to determine a FVC specific

inter-fiber failure envelope. In addition to the resulting stiffness and strength
as a function of the FVC, the hardening under a shear load is analyzed in order
to draw conclusions on the required modeling approach. Besides the FVC, the
stiffness and strength is significantly dependent on the existing waviness. If
a load is applied perpendicular to the fiber waviness, a combined stress state
is created that leads to a matrix dominant failure. A load parallel to the fiber
waviness, on the other hand, leads to reduced buckling stability in the case
of a compressive load and to a significant reduction in tensile strength in the
case of a tensile load [47]. Here the impact of the waviness on the effective
stiffness 𝐸x and the resulting strength is investigated at two different amplitude
to wavelength ratios.

In addition to the basic material properties, such as FVC and fiber waviness
as well as the resulting stiffnesses and strengths, a nonlinear material behavior
is created solely by the rotation of the material axes. The occurring fiber
rotation Δ𝜃 and the resulting angle 𝜃12 between the fiber direction and the
initial transverse direction is directly linked to the deformation of the material.
Therefore, off-axis and angle-ply laminates are tested and the resulting rotation
of the material axes is determined. The entire scope of the experiments is
summarized in Table 2.2. Additionally, the individual material parameters
obtained from each experiment are presented.

It should be noted that due to forming of the UD-NFC two other possible
deformation mechanisms have an impact on the local FVC [50]. By applying
a tension transverse to the roving bundles, the textile tends to develop gaps or
lower filament density. On the other hand, a shear deformation, as in a picture
frame, leads to a transverse compaction of the rovings. While gaps lead to a
lower FVC, the compaction of the rovings increases the FVC. By comparing
the resulting 𝐸2 and 𝐺12 stiffness values at the same FVC but different de-
formation approaches (adjusting the laminate thickness vs. applying tension
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2 Experimental Tests to Consider the Influence of Draping Effects

Table 2.2: Experimental plan and the resulting material parameters from each test series

Test series Number
of plies

Laminate
thickness

Fiber volume
content

Material
parameter

UD0◦* 6
1.80 mm
2.00 mm
2.25 mm

48 %
54 %
60 %

𝐸1, 𝜈12,
d𝐸1/d𝜀11,
𝑋T, 𝑋C

UD90◦* 6
1.80 mm
2.00 mm
2.25 mm

48 %
54 %
60 %

𝑌T, 𝑌C

UD90◦
12
12
14

4.30 mm
4.00 mm
4.00 mm

50 %
55 %
60 %

𝐸2, 𝜈23,
𝑌C

Double V-Notch
Rail shear* 6

1.80 mm
2.00 mm
2.25 mm

48 %
54 %
60 %

𝑆12

OAC/OAT 𝜃◦,
𝜃 ∈ {10, 20, 30, 45, 50, 75} 12 4.00 mm 55 %

𝜎OAT/OAC𝜃◦
22
𝜎OAT/OAC𝜃◦

12
𝐺12

OAC 𝜃◦,
𝜃 ∈ {30, 50}

12
14

4.30 mm
4.00 mm

50 %
60 %

𝜎OAC𝜃◦
22
𝜎OAC𝜃◦

12

OAT 𝜃◦,
𝜃 ∈ {30, 45, 75}

12
14

4.30 mm
4.00 mm

50 %
60 %

𝜎OAT𝜃◦
22
𝜎OAT𝜃◦

12
𝐺12

Angle-ply ±𝜃◦,
𝜃 ∈ {30, 40, 45, 50, 60, 75} 12 4.00 mm 55 % Δ𝜃, 𝜃12

𝐴/𝜆 ≈ 0.03*
𝐴/𝜆 ≈ 0.06* 6 2.00 mm 54 % 𝐸x, 𝑋T, 𝑋C

* test series are manufactured and tested at ILK in Dresden [47]

or shear to the fabric) no significant difference could be observed. However,
both deformation mechanisms have an impact on the inter-fiber failure re-
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2.2 Manufacturing Coupons with Draping Effects and Test Setup

lated strength values (𝑌T, 𝑌C and 𝑆12) of the composite [47]. As the resulting
strength values change the shape of the failure envelope, a deformation mode
specific adaptation of the material model can be performed to capture these
deformation mechanisms. Unfortunately, current draping models allow only
an evaluation of the in-plane fabric area weight change, rather than the volu-
metric ratio change, to predict the resulting FVC. Therefore, a clear difference
between the actual effect of the FVC and the impact of the fabric deformation
on the strength cannot be clearly differentiated. In order to predict the resulting
strength values further experimental tests are required and also more advanced
draping methods need to be developed [55–57].

2.2.3 Test Setup

All tests carried out at the KIT are performed on the testing machines of IAM-
WK. A Zwick universal testing machine with a 100 kN load cell is used. To
carry out the tests, the tensile and compression tests are provided with end-tabs
for better force introduction. A hydraulic fixture is used as clamping device for
the tensile tests. For compression tests the Hydraulic Composites Compression
Fixture (HCCF) is used. DIC is used to measure the deformation to determine
the local strain. For this purpose a speckle pattern is applied to the specimen
and the displacements of individual facets are recorded. The image acquisition
is performed from two perspectives: on the front side and sideways onto
the specimen (see Figure 2.2). The measurement of the SLR cameras must
be synchronized with the force measurement. Therefore, a separate testing

reflex cameras

laser pointer as trigger

specimen

F

C

I

H

⊗
G

Figure 2.2: Top view of the schematic representation of the test setup with two reflex
cameras and a laser pointer as trigger for synchronization
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2 Experimental Tests to Consider the Influence of Draping Effects

program is written, which triggers a laser pointer pointing at the specimen
and is recorded by both cameras when the test is started. A DIC algorithm is
further developed to process the video recording (see next section).

2.3 Development of Digital Image Correlation
Algorithm for Strain Measurement

The acquisition of the deformation of a sample using DIC is widely used
nowadays. If the deformation is known, the local strain can be determined.
The advantages are the full-field acquisition of the strain, the possibility to
directly compare the strains with numerical results and the robustness of the
system. There is a variety of commercially available measurement systems,
but these systems do not allow user defined modifications to prevent facet loss
during the measurement or any other adaptations. In addition, the experimental
effort increases if two sides of a sample have to be captured. For these
reasons, existing DIC algorithms [43, 45] have been further developed to
be able to determine the fiber rotation directly for each facet. The further
developed methods and algorithms have already been successfully used for the
measurement of hybrid material systems and dry and impregnated materials
[2, 58, 59]. The method to determine the resulting strain described in the
following is applied to all performed experiments.

2.3.1 Data Acquisition

After applying a speckle pattern to the two sides of the specimen, the specimen
is clamped in the testing machine and loaded to a specific pre-load. Each
camera records a video with a resolution of 1920 px× 1080 px@24 fps. When
the experiment is started, the laser pointer is switched off and marks a point in
time at which the DIC takes place. After recording, the videos are split into in-
dividual images and these are converted into gray scale images. Subsequently,
a region of interest is defined and individual tracking points in this region are
defined. The points define the center of the image section (so-called facet),
whose displacement is tracked. The size of the facet defines the area to be
tracked. Based on the coordinates of the center of the facet, the search area in
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2.3 Development of Digital Image Correlation Algorithm for Strain Measurement

the source image is also defined. This area is usually four times as large as the
facet itself. To determine the displacement of the facet in the search area, the
normxcorr2 function available in MATLAB is used, which performs a nor-
malized 2 -D cross-correlation. The offset is determined in the subpixel range
with an accuracy of 0.001 px. Basically, a correlation coefficient is calculated
for a cross-correlation that indicates the center of the facet to the search area.
The process is similar to a puzzle search: the overall picture is known, but the
position of each piece of the puzzle has yet to be found. The whole process
of image correlation is shown in Figure 2.3. After each processed image, the
displacement of each facet is calculated and stored. Thus, a link between the
position of each facet at the corresponding time is known. Based on each
center of a facet a mesh is generated. With the help of the shape function
for the corresponding mesh element, the deformation gradient 𝑭 is calculated.
This gradient is the starting point for the calculation of the resulting strain over
the analyzed element. Likewise, the local deformation of the fiber orientation
can be analyzed by utilizing the deformation gradient.

base image correlation step moved image

Figure 2.3: Digital image correlation process from the origin facet (initial position) over
the cross-correlation step to the actual facet (deformed position)

2.3.2 Data Export and Strain-Stress Synchronization

To compare the numerical and experimental results, the evaluated strains and
stresses must be the same in both cases. Since digital image correlation
provides a full-field strain distribution, but a scalar strain value for each time
stamp is needed, the strain field is averaged over the whole range. The choice
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2 Experimental Tests to Consider the Influence of Draping Effects

of the measuring range is decisive here, since this has a significant influence on
the resulting stiffness and the nonlinear behavior. To minimize measurement
errors, the range should be as large as possible and the strain distribution
as homogeneous as possible. Inhomogeneous strain distribution occurs for
unbalanced laminates, which correspond to OAT or OAC tests. In this case, it
is advisable to determine the effective longitudinal strain 𝜀xx from the side of
the sample.

Since the strain is measured optically, but the force is measured via load cell,
both measuring systems must be synchronized. In both systems the common
factor is the measuring time. Since the laser pointer, which is used in the test
setup, switches off at the beginning of the test, this determines the start of the
measuring time. The difference between strain and force measurement is 1/24 s,
which results from the frame rate of the video. In case of quasi-static tests,
which can last several minutes, the time difference between the two signals is
negligible. To detect the time when the laser pointer goes off, a comparison
of the current image with the next one is performed. Since the position of the
laser point can differ from experiment to experiment, either the position must
be redefined each time in the evaluation software or detected automatically in
a different way. Here a semi-automatic method is chosen and implemented.
As long as no load is applied to the sample and the laser pointer is active,
only a background image noise can exist between two consecutive frames. If
the two images are subtracted from each other pixel by pixel and the variance
of this difference is then formed, this quantity represents a measure of the
background noise. When the laser pointer switches off, the variance between
two images increases significantly (see Figure 2.4). This marks a point in time
when the user has to confirm that the laser pointer has gone off. If the start
point of the image correlation is known, the force signal can be interpolated to

time point 21.1461 s time point 21.1878 s time point 21.2295 s

variance
`X = 0.011

variance
`X = 5.765

Figure 2.4: Semiautomatic detection of the time point at which the laser pointer turns
off
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2.4 Material Parameters for Micro Structure Models

the individual frames. Afterwards, the whole data set is written out and can be
used for comparison or validation of the simulation results with experimental
results.

2.4 Material Parameters for Micro Structure
Models

Numerical micro-scale models can be used to analyze the damage mechanisms
of FRPs with present draping effects. Each constituent of the composite (fiber
and matrix) can be modeled separately. The nonlinear material behavior of
the composite as well as its failure and damage evolution can be analyzed in
detail. The use of microscopic models enables a basic understanding of the
material and the crack propagation within the rovings. Since the filaments
have a significantly higher stiffness than the matrix, they act like notches,
which trigger the failure initiation. In such case the strain in the matrix can be
increased by a factor of 20 [60]. Micro-scale models offer a simple possibility
to systematically analyze the fiber volume content as draping effect. In order to
model the material behavior of the individual constituents, the corresponding
material properties are required. To experimentally characterize the matrix,
a set of tensile and compression tests is performed. In order to consider
rate-dependent material behavior, the tests are carried out at different strain
rates. The mechanical properties of the fibers are more difficult to determine.
The stiffness and strength in fiber direction can be determined by single fiber
tensile tests [61–63]. Furthermore, mechanical properties of the fiber, such as
𝜈f

12, 𝐸
f
2, 𝐺

f
12 or 𝐺f

23, cannot directly be obtained from experiments. Therefore,
well-founded assumptions or using reverse engineering these can be obtained
from composite coupon tests.

2.4.1 Matrix Material Behavior

Epoxy matrix systems show a temperature, rate and size dependent material
behavior [64–66]. Likewise, nonlinear material behavior occurs due to plastic
deformation. Since the coupon tests with draping effects are all performed at
room temperature, the mechanical properties of the matrix are also determined
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2 Experimental Tests to Consider the Influence of Draping Effects

at room temperature. To keep the experimental effort low, three different strain
rates ( ¤𝜀 ∈ [1 × 10−4 s−1, 1 × 10−3 s−1, 1 × 10−1 s−1]) are chosen to determine
the rate-dependent material behavior. The dimensions of the specimens corre-
spond to the standard DIN EN ISO 527-2 for tensile tests on molded plastics.
For compression tests, test specimens with a width of 20 mm and a thickness
of 4 mm are tested on the HCCF test fixture with a free length of 15 mm. Since
the material behavior of the matrix is influenced by the size effect [64], it can be
faced by taking into account that the experimentally obtained strength values
represent the lower limit. For the use of micro-scale models this effect needs to
be kept in mind. The results of the experimental tests are shown in Figure 2.5.
For both loading directions the modulus is determined to 𝐸m = 2.8 GPa, which
is very close to the value provided by the manufacturer (cf. Appendix A.5).
The determined modulus is independent of the strain rates. As the matrix is
an isotropic material, the Poison’s ratio 𝜈m is additionally needed to define the
elastic behavior. By analyzing the results of 𝜈m a difference between tensile
and compressive tests can be observed. The Poison’s ratio yield to 𝜈m = 0.4
for tensile tests and is independent of the applied strain rate. On the other
hand, under compression loads the determined Poison’s ratio shows an in-
crease towards higher strain rates (𝜈m | ¤𝜀=1e−4 = 0.44, 𝜈m | ¤𝜀=1e−4 = 0.46, and
𝜈m | ¤𝜀=1e−4 = 0.47).
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Figure 2.5: Matrix test results under compressive (left) and tensile load (right) for three
different strain rates
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With increasing strain rate an impact on the nonlinear material behavior can
be observed. Here the determined tensile strengths of the matrix seem to
be independent of the actual strain rate. The tensile strength yields 𝑋T =
75 MPa. In contrast, the compressive strengths show a trend towards higher
values with increasing strain rate (𝑋C | ¤𝜀=1e−4 = 86 MPa, 𝑋C | ¤𝜀=1e−3 = 91 MPa
and 𝑋C | ¤𝜀=1e−1 = 105 MPa). The compression tests themselves tend to buckle
(cf. Figure 2.6). Thus, the stress maxima determined in the compression
tests can be interpreted as the lower bound compressive strength values. For
comparison, according to the manufacturer the tensile strength of the matrix
yields 87 MPa and the compressive strength to 120 MPa (see Appendix A.5).
In general the actual strength values are difficult to determine, since the size
effect plays a major role, which affects the resulting strength values [41].

(a) 𝜀xx = 6.8 % (b) 𝜀xx = 10.2 % (c) 𝜀xx = 13.0 % (d) 𝜀xx = 14.9 % (e) 𝜀xx = 19.3 %

Figure 2.6: Resulting buckling of the matrix under compression loads prior to the stress
maximum

2.4.2 Filament Size and Distribution

Besides the mechanical properties of the fiber and the matrix, the geometry
of the filaments and their distance to each other within the roving is relevant
to create the micro-scale models. According to the manufacturer, the used
carbon fiber has a diameter of 7 µm. However, this specification assumes a
circular cross section, which does not necessarily have to be present [61]. In
addition, the diameter is measured on a few filaments and only the average
value is given. Hence, a prediction of the standard deviation is missing and
must be determined. To determine the diameter of the filaments and their
standard deviation, an evaluation method is developed in MATLAB (see Fig-
ure 2.7). For this purpose, a microscopic image of the cross section of a
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Figure 2.7: Algorithm to determine the geometrical microstructure fiber properties

roving in an infiltrated UD90◦ laminate is made. The cross section is prepared
in several grinding steps. The dimensions of the examined roving area are
4.6 mm × 0.39 mm. Since the cross section contains several thousand individ-
ual filaments, a very reliable statement about the statistical fiber cross section
and its distribution is possible. The cross section represents the composition
of individual images, which are taken under the microscope at a magnification
of 500 times. This results in a diameter of a filament of about 70 px. In the
first step, the gray scale distribution of the image is created. This step allows
to separate the filaments from the matrix. The gray value distribution should
have two significant peaks. The local minimum between the peaks is used
as a threshold to distinguish between fiber and matrix. This means that all
gray values below the threshold are colored white and all gray values above
the threshold are colored black. Using the modified image a binarization is
performed and can be used for edge detection by using the Canny algorithm.
Afterwards the detection of the circles follows. The first step is to determine
the position and diameter of the filaments. Then the results must be filtered
to remove overlaps, false positives and outliers. This reduces the number of
detected circles from about 30k to about 20k valid results. Based on the center
coordinates of the circles, the second step is performed to determine the cross
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2.5 Testing and Evaluation of Coupons with Draping Effects

section of the filaments. In this step, the individual ellipses are determined by
using Hough transform [67]. The final step provides the distribution of the
major and minor radius of the ellipses (see Figure 2.8 left). The determined
axes indicate a clearly elliptical shape of the filaments. If the distance between
the centers of two nearest neighbor filaments is determined, the minor radii
of the respective filaments can be subtracted to obtain the filament distance
distribution (cf. Figure 2.8 right). By using this method, the mean distance is
close to zero, what indicates that the filaments are touching each other.
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Figure 2.8: Resulting fiber diameter distribution using the major or minor axis of the
detected ellipses (left) and fiber distance distribution using results of the
filtered circle detection (right)

2.5 Testing and Evaluation of Coupons with
Draping Effects

2.5.1 Unidirectional Coupon Tests with varying FVC

2.5.1.1 Elastic Material Parameters

Draping effects affect the FVC and the corresponding material properties sig-
nificantly [47, 50]. Therefore, a special focus on the impact of the FVC on

25



2 Experimental Tests to Consider the Influence of Draping Effects

the mechanical properties of the composite is evaluated. For this purpose
the resulting stiffness and strength are investigated on unidirectional coupons.
The identification of the material parameters from the tests is carried out ac-
cording to the test series from Table 2.2. For all tests the resulting FVC is
calculated based on the average areal weight of 𝑚w = 331 g m−2 (for tests
at ILK 𝑚w = 338 g m−2) and the measured coupon thickness. Based on the
areal weight 𝑚w, the number of plies 𝑛L and the laminate thickness 𝑡 the fiber
volume content can be deduced by

𝜑 =
𝑚w𝑛L
𝜌f𝑡

, (2.2)

where 𝜌f corresponds to density of the fiber. The mechanical properties that
describe the elastic material behavior can be divided into fiber-dominant prop-
erties, such as 𝐸1 and 𝜈12, and matrix-dominant properties, such as 𝐸2, 𝐺12,
and 𝜈23. The impact of the FVC on the elastic quantities for plane loads
is generally known and has been studied in detail [17–19, 27]. The carbon
fiber-specific increase or decrease of the modulus in fiber direction due to
the misorientation of the crystallites in carbon fibers and their dependence on
the FVC as well as the transverse material properties, 𝐺23 or 𝜈23, have not
been considered so far. All determined dependencies of the material stiffness
parameters on the FVC are shown in Figure 2.9 and discussed below.

In order to determine the stiffness in fiber direction UD0◦ samples are used.
Due to nonlinear stress-strain relation, a distinction between the static modulus
𝐸 init

1 and the increase in modulus over strain d𝐸1/d𝜀11 must be made. The static
modulus defines the initial modulus if no load is applied. To determine these
quantities the secant 𝐸S

1 is evaluated. Using the origin point as reference the
secant yields

𝐸S
1 =

𝜎11
𝜀11

. (2.3)

By plotting the secant modulus over each strain value, a constant slope d𝐸1/d𝜀11

can be extracted. Based on this slope the intersection with the 𝐸S
1 -axis can

be determined and the static module 𝐸S
1 |𝜀11=0 = 𝐸 init

1 is obtained. The results
show a significant increase of the static modulus 𝐸 init

1 over the FVC, whereas
the increase of the modulus d𝐸1/d𝜀11 in the examined FVC range seems to be
rather constant (see Figure 2.9a and 2.9b). The results are plausible, since the
material properties result from a parallel connection of fiber and matrix. Only
the Poisson’s ratio 𝜈12 decreases with increasing FVC (see Figure 2.9e). This
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Figure 2.9: Material properties at different fiber volume contents: (a) static modulus
𝐸 init

1 , (b) slope of the 𝐸1 modulus, (c) transverse modulus 𝐸2, (d) in-plane
shear modulus 𝐺12, (e) major Poisson’s ratio 𝜈12 and (f) major through-
thickness Poisson’s ratio 𝜈23 (experimental tests results for 𝐸 init

1 , d𝐸1/d𝜀11

and 𝜈12 are provided by the ILK in Dresden)
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indicates that the Poisson’s ratio of the fiber is smaller than that of the matrix.
Material properties of the fiber, which are available in the literature, confirm this
observation [17, 68–70]. The transverse stiffness 𝐸2 and the Poisson’s ratio 𝜈23
are determined from compression tests on UD90◦ samples. As expected, the
𝐸2 modulus increases significantly with FVC, since the influence of the matrix
stiffness decreases with increasing FVC (see Figure 2.9c). The increase of the
modulus is clearly nonlinear and shows an increasing gradient towards higher
FVC values. On the other hand, the Poisson’s ratio 𝜈23 shows a decreasing
trend with increasing FVC (see Figure 2.9f). Since 𝜈23 is a combination of the
transverse modulus 𝐸2 and the shear modulus 𝐺23, it can be concluded that
the shear modulus 𝐺23 also increases over the FVC.

To determine the shear modulus𝐺12 at different FVC, OAT45◦ tests are carried
out. For this purpose the local shear stress 𝜎12 and the shear strain 𝛾12 are
required. As the force is applied in the longitudinal direction of the specimen,
𝜎xx is the only nonzero component of the global stress tensor in an OAT45◦
test. To calculate the local shear strain 𝛾12 the global in-plane strains 𝜀xx,
𝜀yy and 𝛾xy are required. Since 𝜎xx is the only nonzero component, the local
shear stress and shear distortion can generally be calculated using the following
transformation

𝜎12 =
− sin (𝜃 + 𝜃12) sin (𝜃)

sin2 (𝜃12)
𝜎xx

𝛾12 = − 1
sin2 (𝜃12)

(2 sin (𝜃) sin (𝜃 + 𝜃12) 𝜀xx

+2 cos (𝜃) cos (𝜃 + 𝜃12) 𝜀yy − sin (2𝜃 + 𝜃12) 𝛾xy
)
,

(2.4)

where 𝜃 is the off-axis angle and 𝜃12 is the angle between the material axes
(see Figure 2.10). If 𝜃 = 45◦ and 𝜃12 = 90◦ are used as angles, the shear stress
is exactly half of the applied stress 𝜎xx and the shear strain is reduced to half
of the difference between 𝜀yy and 𝜀xx. However, due to the deformation of the
specimen, the initial fiber orientation changes and must be taken into account
to calculate the local stresses and strains. The corresponding fiber orientation
can be calculated using the deformation gradient 𝑭 at any point in time. From
the optical strain measurement, the deformation gradient is known. The initial
fiber orientation 𝒇 init

1 is defined by the angle 𝜃0 from the undeformed 𝒙-axis
(here 𝒙0-axis). The fiber orientation angle 𝜃 in Equation (2.4) results from the

28



2.5 Testing and Evaluation of Coupons with Draping Effects

fxx

fxx

G

H

21 2̂1̂

\ \0 \init
12 \12

(a)

fxx

fxx

G

H

21
2̂1̂

\ \0 \init
12 \12

(b)

Figure 2.10: Schematic representation of the change of initial fiber orientation 𝜃0 to the
deformed fiber orientation 𝜃 and the initial angle between material axes
𝜃init

12 to the angle after deformation 𝜃12 for (a) tension and (b) compression
loads

scalar product between the deformed 𝒙-axis and the current fiber orientation
vector 𝒇 1

𝜃 = arccos
𝒇 1 · 𝒙
∥ 𝒇 1∥∥𝒙∥

(2.5)

with
𝒙 = 𝑭𝒙0 =

(
𝐹11 𝐹21

)⊤
(2.6)

and

𝒇 1 = 𝑭 𝒇 init
1 =

(
𝐹11 cos 𝜃0 + 𝐹12 cos

(
𝜃0 + 𝜃init

12
)

𝐹21 cos 𝜃0 + 𝐹22 cos
(
𝜃0 + 𝜃init

12
)
)
. (2.7)

The initial angle between the material axes is 𝜃init
12 = 90◦. The acting angle 𝜃12

can also be calculated via

𝜃12 = arccos
𝒇 1 · 𝒇 2
∥ 𝒇 1∥∥ 𝒇 2∥

(2.8)

with

𝒇 2 = 𝑭 𝒇 init
2 =

(
𝐹11 sin 𝜃0 + 𝐹12 sin

(
𝜃0 + 𝜃init

12
)

𝐹21 sin 𝜃0 + 𝐹22 sin
(
𝜃0 + 𝜃init

12
)
)
, (2.9)
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where 𝒇 init
2 and 𝒇 2 define the initial and the deformed second material axes.

Using the updated angles 𝜃 and 𝜃12, the shear stress𝜎12 and 𝛾12 can be obtained.
The ratio of these stresses allow to determine the shear modulus in the linear
elastic region. The shear modulus shows the large increase with increasing
FVC compared to the other material stiffness values (see Figure 2.9d). The
pronounced increase in the shear modulus results from the decrease in the
volume fraction of the matrix. At high FVC the fiber shear stiffness contributes
more to the transfer of the shear stress as the matrix. The fibers usually have a
shear modulus 𝐺f

12 which is 15 to 50 times as large as the shear modulus 𝐺m
of the matrix [68–70]. In comparison, the ratio of the transverse modulus of
carbon fibers 𝐸 f

2 to the modulus of the matrix 𝐸m is between 5 to 7.

2.5.1.2 Hardening due to Plasticity

The determined material constants are used to model the elastic behavior. In
general, nonlinear material behavior (such as plasticity) is expected for different
loads. At uniaxial stress conditions, the strain can be divided into an elastic
and a plastic component. The uniaxial plastic strain over the corresponding
uniaxial stress defines the hardening due to plasticity. Additionally, the FVC
can be varied to determine the impact on the hardening. For this purpose, tests
according to the V-Notched Rail Shear Method (ASTM D7078) are carried
out at the ILK. The resulting hardening curves for varying FVC are shown in
Figure 2.11. It can be seen that despite increasing shear modulus, the hardening
due to plasticity is independent of the FVC. This simplifies the modeling, since
only one single hardening curve has to be specified for the evaluated FVC
range.

2.5.1.3 Material Strength Values

To describe the failure behavior, the uniaxial strengths of the composite must
be known. This includes the strengths in fiber direction and transverse to it. A
further distinction needs to be made between tensile and compressive strengths.
The dependencies of the tensile and compressive fiber strengths (𝑋T and 𝑋C) on
the FVC was already proven [17–19, 24, 26–29]. Matrix-dominant strengths,
such as the transverse tensile and compressive strength (𝑌T and𝑌C), have barely
been investigated so far. Thus, there are two different findings regarding the
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Figure 2.11: Hardening curves from V-Notched Rail Shear Method experimental results
at different fiber volume contents 𝜑 ≈ {48 %, 54 %, 60 %} (all experiments
performed at ILK in Dresden)

transverse tensile strength and its dependence on the FVC: a direct dependence
on the FVC [18] and no dependence at all [27]. On the other hand, the interface
between fiber and matrix has a significant impact on the resulting transverse
tensile strength [18]. Experimental studies do exist, but they only compare
two FVCs and have a maximum FVC of 50 % [27, 28]. Furthermore, for the
analysis of the strength gradient more than two support points over the FVC
are required. Additionally, the material characteristics at higher FVC values
are generally needed for the component level. The experimentally determined
material strengths are shown in Figure 2.12.

By analyzing the experimental results, the composite strengths in fiber direc-
tion 𝑋T and 𝑋C increase significantly over the FVC. As expected, there is a
linear relationship across the FVC for tensile strength in fiber direction (Fig-
ure 2.12a). The compressive strength in fiber direction is about 35 % lower
than the corresponding tensile strength (Figure 2.12b). Similarly, the increase
in compressive strength is significantly lower towards higher FVC than for the
tensile strength. In comparison to the tensile strength, the compressive strength
shows a large spread. These tests involve a stability failure that is caused by
the material intrinsic fiber misalignment. The transverse compressive strength
𝑌C shows also an increase towards higher FVC values. Furthermore, a lin-
ear relationship in the analyzed FVC range can be observed (Figure 2.12d).
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Figure 2.12: Experimentally obtained strength values at different fiber volume contents
(all experiments performed at ILK in Dresden have cross markers): Lon-
gitudinal tensile strength 𝑋T (a), longitudinal compressive strength 𝑋C
(b), transverse tensile strength 𝑌T (c) and transverse compressive strength
𝑌C (d)

Thereby, the experiments at 𝜑 ≈ 60 % for samples with a thickness of 4 mm
(black triangles) show a significantly lower scattering than the samples with a
thickness of 1.8 mm (black crosses). The transverse tensile strengths 𝑌T show
no clear trend (Figure 2.12c). The results indicate that the transverse tensile
strength tends to remain constant independent of the FVC. A possible reason
for this condition is the fact that with increasing FVC the distance between
the filaments decreases and thus the weakest link determines the strength of
the composite [71]. Considering the results, the assumption of a constant
transverse tensile strength seems to be the most suitable approach.
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The determination of the shear strength 𝑆12 represents a special challenge.
Ideally, hoop wound specimens are well suited to determine the shear strength.
However, such samples are difficult to manufacture and there is always an
overlapping area that creates an inhomogeneous stress state. There is also no
standardized procedure for the production of such samples, which makes it
more difficult to compare the results. So far the shear strength with varying
FVC has been only determined on round samples [18]. No obvious correlation
between FVC and shear strength could be observed. The experimental analysis
on samples according to the V-Notched Rail Shear Method (ASTM D 7078)
shows a slight increase towards higher shear strengths with increasing FVC
(cf. Figure 2.13). As mentioned in Section 2.2.2, this type of test provides
a conservative estimate of the shear strength, since a multiaxial stress state is
created near the notch, which can induce premature failure.
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Figure 2.13: Shear strength results at different fiber volume contents using the V-
Notched Rail Shear Method (all experiments performed at ILK in Dresden)

2.5.1.4 Failure Envelopes

Failure envelopes are needed to model the failure behavior under combined
stress loads. Based on experimental results of combined 𝜎22-𝜎12 load cases,
failure criteria have been developed for fiber composites that can be transferred
to three-dimensional stress states [72, 73]. A possibility to analyze different
𝜎22-𝜎12 stress ratios can be achieved by off-axis tension and compression tests
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2 Experimental Tests to Consider the Influence of Draping Effects

[53, 54]. The global failure stress 𝜎xx is therefore transformed into the local
stresses 𝜎22 and 𝜎12, while the deformation of the material axes is taken into
account. The calculation of the angles 𝜃 and 𝜃12, as well as the local shear
stress 𝜎12 is given in Equations (2.4) to (2.8). Since 𝜎xx is the only nonzero
component, the local stress 𝜎11 and 𝜎22 can be calculated as follows:

𝜎11 =
sin2 (𝜃 + 𝜃12)

sin2 𝜃12
𝜎xx and 𝜎22 =

sin2 𝜃

sin2 𝜃12
𝜎xx. (2.10)

Thus, to determine a failure envelope, individual support points are needed.
As the failure envelope defines the brittle failure of unidirectional laminates,
the failure stresses from OAT and OAC tests 𝜎OAT/OAC𝜃◦

22 and 𝜎OAT/OAC𝜃◦
12 , as

also from UD90◦ tests, are used. A total of six different off-axis angles are
experimentally investigated under tensile and compressive loading. The initial
fiber orientation angles for the OAT and OAC tests are given in Table 2.2. In
addition to the uniaxial tests on UD90◦ samples, the V-Notched Rail Shear
Method tests, which provide support points along the 𝜎22 and 𝜎12 axes, are
used to provide a more holistic overview of the available test data. The
result of the off-axis tests provides in total twelve additional support points in
the (𝜎22, 𝜎12)-plane. The resulting support points are given in Figure 2.14.
All OAT and OAC samples have an FVC of approximately 𝜑 ≈ 55 %. To
investigate the impact of the FVC on the failure envelope, additional selected
OAT and OAC tests are performed at different FVC values (𝜑 ≈ 50 % and

-210 -180 -150 -120 -90 -60 -30 0 30 60 90
Transverse stress 𝜎22 (MPa)

0

20

40

60

80

100

Sh
ea

rs
tre

ss
𝜎

12
(M

Pa
)

OAT/OAC10°
OAT/OAC20°
OAT/OAC30°
OAT/OAC45°
OAT/OAC50°
OAT/OAC75°
UD90°
ILK data

𝜑 ≈ 50 %
𝜑 ≈ 55 %
𝜑 ≈ 60 %

Figure 2.14: Failure envelope in the (𝜎22, 𝜎12)-plane for different fiber volume con-
tent values 𝜑 ≈ {50 %, 55 %, 60 %} (ILK experimental data at 𝜑 ≈
{48 %, 54 %, 60 %})
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𝜑 ≈ 60 %). As for uniaxial transverse compression tests, an expansion of the
support points can be observed. This means that these failure stresses are
also dependent on the FVC. By a detailed analysis some test results (such as
OAC10◦, OAC20◦, OAT10◦ and OAT20◦) show a higher deviation from an
overall failure envelope trend. The OAC tests with an angle 𝜃 ∈ {10◦, 20◦}
have a much higher local shear stress 𝜎12 compared to the transverse stress
𝜎22. Although these specimens should have a shear dominant failure behavior,
the specimens fail due to buckling. Therefore, the failure results from the local
stress in the fiber direction rather than from a shear stress failure. Thus, the
support points of these tests in the (𝜎22, 𝜎12)-plane represent a lower limit of
the actual failure stress. The OAT tests of specimens with the same angles
(𝜃 ∈ {10◦, 20◦}) show a significantly lower failure stress than the V-Notched
Rail Shear Method tests or the OAT30◦ specimens. A possible explanation is
that with decreasing angle, the local stress in the fiber direction 𝜎11 increases
significantly and thus causes an interaction with the local stresses 𝜎22 and 𝜎12,
which leads to premature failure. This phenomenon has already been observed
in experimental tests and is considered by analytical failure criteria [74].

2.5.1.5 Experimental Off-Axis Tests on Unidirectional Coupons for
Validation of Numerical Models

The parameterization of simulation models is done on uniaxial experiments.
To validate the developed model, OAT and OAC tests with complex stress states
can be used. These tests can be used to compare the resulting deformation
behavior and failure. The measured stress-strain curves for different OAT and
OAC tests at 𝜑 ≈ 55 % are shown in Figure 2.15. For a better comparison, the
results are plotted by using the global stress 𝜎xx and the strain in longitudinal
direction 𝜀xx. The test results show distinct nonlinear behavior. As expected,
the maximum stress and stiffness decreases with increasing off-axis angle. It
can also be observed that for OAC tests significantly larger deformations are
achieved.

In addition to the deformation behavior, stiffness and strength, the fiber rotation
Δ𝜃 can be used as an essential factor in validation. If the fiber orientation
angle 𝜃 is calculated according to Equation (2.5) and the initial angle 𝜃0 is
subtracted, the fiber rotation Δ𝜃 can be plotted over the acting strain 𝜀xx. The
resulting fiber rotation for different OAT and OAC tests is given in Figure 2.16.
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Figure 2.15: Compression (left) and tension (right) coupons tests at different off-angles
(failure points are denoted by markers)

The results are taken from samples with a FVC 𝜑 ≈ 55 %. It should be
noted that the fiber rotation Δ𝜃 is given as an absolute value to allow a direct
comparison between tensile and compression tests. In general, Δ𝜃 is negative
in tensile tests and positive in compression tests (see Figure 2.10). Fiber
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Figure 2.16: Fiber rotation over strain during off-axis compression and tension tests
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large strain area (right)
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rotation occurs under both tensile and compressive loading. For small strains
and for samples with the same off-axis angle, the fiber rotation is independent
of the loading direction. Only tests at an angle of 𝜃 ∈ {20◦, 30◦} show
larger deviations between tensile and compressive loads. High shear strains
do not lead to maximum fiber rotation for OAT/OAC tests, which is the case
for OAT/OAC10◦ tests. Instead, the maximum fiber rotation angle occur for
laminates with 𝜃 ≈ 45◦. By comparing tensile and compressive tests, large
difference in the maximum achievable fiber rotation can be observed. In tensile
tests with angles of 𝜃 > 20◦ the maximum fiber rotation is significantly smaller
than for compression tests. This can be attributed to the fact that the strains
until failure are also higher than in compression tests. In other words, higher
strain values allow the specimens to undergo greater deformation. For OAC10◦
and OAC20◦ tests, the fiber rotation is less than or equal to the OAT tests, since
these tests fail by buckling rather than shear failure. It is noticeable that the
sensitivity of the fiber rotation around 𝜃 ≈ 45◦ is small. Thus, the results for
OAT/OAC45◦ and OAT/OAC50◦ tests are almost identical.

In addition to the fiber rotation, the deformation of the initially transverse
material axis can be analyzed. In this case the deformation can lead to different
rotation angles as for the fiber direction. The angle 𝜃12 is determined from
the performed OAC and OAT tests and can be used as a measure for the
change of the second material axis. The results are given in Figure 2.17.
It can be observed that for all tensile tests the angle 𝜃12 becomes smaller
and for all compression tests larger than 90◦. The slope of the angle 𝜃12 is
dependent on the off-axis angle. The slope increases from small angles to larger
ones. For OAT tests up to 30◦ a maximum angle of 𝜃12 ≈ 87◦ seems to be
reached independently on the strain at failure. Compared to OAC tests, such a
correlation cannot be observed. One possible explanation yields from different
failure modes (e.g., OAC10◦ and OAC20◦ tend to buckle). It is particularly
noteworthy that for OAC30◦ tests, the maximum angle yields 𝜃12 ≈ 96◦, while
at the same point the fiber rotation reach an angle of 𝜃 ≈ 1.2◦. This condition
leads to the consequence, that the second material axis changes by an angle of
4.8◦, which is four times larger as the fiber rotation.

One special note should be mentioned regarding the acting stress in combi-
nation with rotation of material axes. By using the initial orthogonal ma-
terial coordinate system and the global stress 𝜎xx, the resulting local stress
values can be totally different compared to the local stress values by us-
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Figure 2.17: Angle between material axes over strain for different off-axis tension and
compression coupon tests

ing the deformed material axes instead. Previous investigations concern-
ing the fiber rotation on coupon tests show a maximum change of the an-
gle by about Δ𝜃 ≈ 8◦ for ±45◦ angle-ply laminates [11]. Here, with uni-
directional laminates a maximum fiber rotation of Δ𝜃 ≈ 2.3◦ at OAC45◦
occurs. This means that the acting global stress 𝜎xx at an initial angle
𝜃0 = 45◦ and 𝜃init

12 = 90◦ is equally distributed to the local stress components
𝜎11 = 0.5𝜎xx, 𝜎22 = 0.5𝜎xx, 𝜎12 = −0.5𝜎xx. If the deformation of the material
axes is not taken into account, this distribution remains unchanged. On the
other hand, by calculating the local stresses along the deformed material axes,
the stress components yields 𝜎11 = 0.36𝜎xx, 𝜎22 = 0.55𝜎xx, 𝜎12 = −0.44𝜎xx
using Δ𝜃 = 2.3◦ and 𝜃12 = 96◦. This produces a stress difference of 8.5 % to
38.5 % compared to the results of an orthogonal coordinate system. Therefore,
when modeling composite materials, special attention should be paid to the
reference coordinate system in which the stress is evaluated.

In addition to stiffness, strength and the resulting deformation of the material
axes, the variation of the fiber volume content can be used for a model valida-
tion. For selected OAC and OAT experiments (see Table 2.2), the fiber volume
content is varied to analyze its impact on the nonlinear material behavior. In
contrast, uniaxial tests such as UD90◦ tension or compression tests show a
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difference in nonlinear behavior. Tension tests show a linear elastic material
response. On the other hand, compression tests show a pronounced nonlinear
stress-strain curve. Therefore, UD90◦ compression tests with varying fiber
volume content are chosen to validate the developed material model. The
experimental results are given in Figure 2.18. As the fiber volume content
increases, the degree of nonlinearity decreases. This can be explained by the
fact that the dominance of the fiber increases and that the plastic deformation,
which results from the matrix, plays a reduced role. Another observation re-
garding nonlinearity can be observed with the increase of the off-axis angle.
For example, the OAT75◦ tests show an approximately linear trend. This ob-
servation correlates with tensile tests on UD90◦ samples, where the 𝜎22 is the
dominant stress component.

2.5.2 Angle-ply Coupons

Due to the different load cases unidirectional laminates are only suitable for
precisely known load paths. For this reason, laminates with different orienta-
tions are used to withstand forces from different directions. In addition to the
validation of deformation and nonlinear behavior of unidirectional laminates,
different angle-ply laminates can be also used. For this purpose, tests are
carried out at different angle-ply angles ±𝜃 (see Table 2.2). The results of
the stress-strain curves are given in Figure 2.19. The FVC of the laminates is
𝜑 ≈ 55 %. Regardless of the load direction, the initial stiffness of the speci-
mens with the same angle ±𝜃 is equal. It is noticeable that for ±30◦ and ±40◦
laminates, the failure stress of tensile loads is significantly higher than the fail-
ure stress of compression loads. For all other angle combinations, the strength
under tension is lower than compression strength. By comparing unidirectional
laminates with angle-ply laminates, it is primarily noticeable that the achiev-
able strengths and maximum strains differ. For example, OAT30◦ achieves a
strength of 130 MPa and a maximum strain of approximately 2 %. In contrast,
a ±30◦ laminate achieves a tensile strength of 230 MPa and a maximum strain
just below 1 %. The difference appears even more significant if the results of
OAT45◦ and ±45◦ angle-ply tests are compared. The maximum strain differs
by at least a factor of four. The reason for this is that occurring cracks in
angle-ply laminates do not cause complete failure of the laminate and further
load can be applied. Both fiber orientations in an angle-ply laminate continue
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Figure 2.18: Stress-strain curves of selected off-axis compression (OAC) and off-axis
tension (OAT), and UD90◦ compression tests at different fiber volume
contents
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Figure 2.19: Experimental results for angle-ply laminates at 𝜑 ≈ 55 % under tension
and compression loads (angle-ply angles are annotated)

41



2 Experimental Tests to Consider the Influence of Draping Effects

to contribute to the integrity of the laminate. A sequential formation of cracks
can be observed in tests (see Figure 2.20). It is known that for unidirectional
laminates with increasing compressive transverse stress 𝜎22 the fracture plane
changes [72]. This correlation could also be observed for angle-ply laminates.
Compression loads on angle-ply laminates with an angle 𝜃 ≥ 45◦ lead to a
fracture angle 𝜃ap ≠ 0◦. However, the exact value of the fracture angle is
difficult to be determined from experiments. Large uncertainties can arise as
the fracture angle is determined after unloading the test specimen. In contrast
to OAT and OAC tests, where failure is primarily matrix dominant, angle-ply
tests can be divided into three failure categories. Loads up to an angle of ±30◦
exhibit high stresses in fiber direction and show also fiber dominant failure
behavior. For angles between ±40◦ and ±50◦ a high reorientation of the fiber
direction is observed. After the maximum stress value is reached, the stress
decreases while the test samples do not fail. A complete separation of the
coupons is primarily not observed. Such material behavior suggests a shear
dominant failure. Laminates with an angle of ±60◦ and ±75◦ show a matrix
dominant failure, which leads to a sudden failure, as for unidirectional coupon
tests.

As for unidirectional laminates, a fiber rotation Δ𝜃 can also be observed for
angle-ply laminates. The resulting fiber rotation for each test is shown in

(a) 𝜀xx = 4.8 % (b) 𝜀xx = 5.2 % (c) 𝜀xx = 6.0 % (d) 𝜀xx = 6.3 % (e) 𝜀xx = 6.5 %

Figure 2.20: Global strain distribution and the formation of cracks during tensile loading
of an ±45◦ angle-ply laminate at different strain states
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Figure 2.21. For angle-ply laminates a maximal fiber rotation of Δ𝜃 ≈ 4.5◦
for the compression test on a ±45◦ laminate can be observed. Similar to
OAT and OAC tests, the change of the fiber orientation is independent of the
load direction. Concerning ±30◦ laminates a parallel trend of the curves can
be observed, but the horizontal offset between the tensile and compression
tests could not be clarified conclusively. For larger deformations, only ±45◦
laminate tests show a difference between tensile and compression tests. Here
the change of the angle 𝜃, described in Figure 2.10, can be observed: under
tension the angle becomes smaller while under compression it becomes larger.
As in unidirectional coupon tests, an approximately linear progression of fiber
rotation versus strain can be observed for each angle-ply angle combination.
This leads to the conclusion that the geometric deformation has a greater
impact on the fiber rotation than the material behavior itself. For unidirectional
samples the fiber rotation through the sample can be assumed to be constant.
On the other hand, angle-ply laminates have an alternating fiber orientation,
which raises the question whether fiber rotation is the same for each ply. Since
𝑭 describes the global deformation of the sample and the deformation of the
individual layers is coupled, it can be assumed that the same fiber rotation
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Figure 2.21: Fiber rotation over strain for various angle-ply coupon tests (angle-ply
laminate angles are annotated): small strain area (left) and large strain
area (right)

43



2 Experimental Tests to Consider the Influence of Draping Effects

occurs in the inner plies. A further difference to the unidirectional coupon
tests can be observed by comparing the slope of fiber rotation versus strain. In
OAT and OAC tests, the largest slope is observed at an angle of 𝜃 ≈ 45◦. In
addition, the slope increases with increasing angle and then decreases again
after reaching 𝜃 ≈ 45◦. The slope of the fiber rotation of angle-ply laminates
decreases continuously with increasing angle.

Just as in unidirectional laminate tests, the angle between the material axes
𝜃12 is undergoing a continuous change. Using the deformation gradient 𝑭 the
angle 𝜃12 for angle-ply laminates is determined. The results are summarized
in Figure 2.22. The slope of 𝜃12 versus strain decreases from small angles to
larger ones. This observation is comparable with unidirectional laminate tests.
Compared to OAT and OAC tests, an even more significant change of the angle
between the material axes occur. The ±45◦ and ±50◦ angle-ply laminates show
the largest change of 𝜃12.

A direct deduction to the local stresses 𝜎11, 𝜎22 and 𝜎12 as in the unidirectional
laminate tests cannot be made without further ado. In case of angle-ply
laminates in addition to the global stress 𝜎xx, which can be determined from
the force measurement, the global shear stress 𝜎xy is also present in each
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Figure 2.22: Angle between material axes over strain for angle-ply coupon tests at
𝜑 ≈ 55 %
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2.5 Testing and Evaluation of Coupons with Draping Effects

layer. However, the global shear stress is not known and cannot be determined
without knowledge of the material stiffness. As the absolute value of 𝜎xy is
the same in all layers, they cancel each other out due to the alternating angles.
Nevertheless, on the basis of unidirectional coupon tests it can be concluded
that the fiber rotation Δ𝜃 and the angle 𝜃12 for angle-ply laminates have an
even greater impact on the local stress. If this composite specific condition is
neglected, the validity of the numerically determined stress and the resulting
failure behavior of the material can be questioned.

2.5.3 Coupons with Waviness

Due to the draping process, areas with waviness may occur. The mechanical
properties in these areas also change significantly. Waviness and its impact
on the compression failure of composites has been analyzed in numerous
investigations [27, 30–35]. Usually, waviness is the result of shearing or
running length difference that can occur between two parallel running rovings.
Such effects occur close to multiple curved regions, since fibers running parallel
to each other have to follow different path lengths. Another possible cause
of waviness is an applied compressive load in fiber direction. To reduce
complexity, an occurring waviness can be approximated as sinusoidal. For this
purpose, the following wave definition is used

𝑦 = 𝐴 sin
2𝜋𝑥
𝜆
. (2.11)

An occurring waviness in an area with previously straight fibers leads to an
increase of the local fiber length. The length of the fiber in a wavy area can be
determined from the arc length 𝑠𝜆 of the sinusoidal waviness

𝑠𝜆 =
∫ 𝜆

0

√︄
1 +

(
d𝑦
d𝑥

)2
d𝑥 =

∫ 𝜆

0

√︄
1 +

(
2𝜋𝐴
𝜆

cos
2𝜋𝑥
𝜆

)2
d𝑥. (2.12)

It is obvious that with an amplitude 𝐴 = 0 the fiber length is exactly the
wavelength of the wave 𝑠𝜆 = 𝜆. This means that for the arc length of the fiber
the condition 𝑠𝜆 ≥ 𝜆 must apply. To solve such an integral, the following
substitution is made

𝑢 =
2𝜋𝑥
𝜆

and
d𝑢
d𝑥

=
2𝜋
𝜆

d𝑥. (2.13)
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This simplifies the integral to

𝑠𝜆 =
𝜆

2𝜋

∫ 2𝜋

0

√︄
1 +

(
2𝜋𝐴
𝜆

cos 𝑢
)2

d𝑢 =
2𝜆
𝜋
𝐸

©­«
2𝜋

√︄
−

(
𝐴

𝜆

)2ª®¬
, (2.14)

where 𝐸 describes the elliptic integral of the second kind. In the case of an
existing waviness, the maximum angle deviation from the ideal state can also
be determined. These occur at the inflection points of the wave. Only the
amplitude 𝐴 and the wavelength 𝜆 are required to determine the maximum
waviness misalignment angle

𝜃max = arctan
2𝜋𝐴
𝜆
. (2.15)

Due to material flow in an area with waviness the local fabric weight is in-
creased [50]. As a result, the FVC increases and can be estimated as

𝜑 = 𝜑0
𝑠𝜆
𝜆

(2.16)

where the initial FVC 𝜑0 can be determined from Equation (2.2). Due to the
condition that the length of the roving can only increase, the FVC can also only
increase. This correlation has already been experimentally proven [50]. For
a constant wavelength 𝜆 and an initial FVC of 𝜑0 = 0.55, the resulting FVC
corresponding for each 𝐴/𝜆 ratio can be calculated using Equations (2.14) and
(2.16). This relationship is shown in Figure 2.23. The FVC rises significantly
nonlinear with increasing 𝐴/𝜆 ratio. For an initial FVC of 𝜑0 = 0.55 and a
waviness ratio 𝐴/𝜆 ≈ 0.1 the FVC only increases by 5 %. For a further increase
of the FVC by 5 % it only takes a ratio of 𝐴/𝜆 ≈ 0.15. The relation between
FVC and 𝐴/𝜆 ratio can be compared to the reduction of the laminate thickness
Δ𝑡/𝑡 (cf. Figure 2.23). In both cases the sensitivity of the FVC is strongly
dependent on the present waviness ratio.

Using the manufacturing tools developed at the ILK in Dresden [50], two
different waviness ratios, 𝐴/𝜆 ≈ {0.03, 0.06}, under tensile and compressive
loads are analyzed (see Table 2.2). The stress-strain curves determined are
given in Figure 2.24. The thickness of the coupon samples lead to a FVC
of 𝜑0 ≈ 55 %. For the examined 𝐴/𝜆 ratios, the FVC increases again to
𝜑 ≈ 55.5 % and 𝜑 ≈ 56.9 %. To deduce the impact of the waviness on the
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Figure 2.23: Analytical solutions of the resulting fiber volume content with increasing
amplitude to wavelength ratio 𝐴/𝜆 or percentual decrease of the laminate
thickness 𝑡

stiffness and strength, UD0◦ coupons with a FVC of 𝜑 ≈ 55 % are used. The
resulting stiffness and strength values are specified in Table 2.3. By comparing
the resulting stiffness 𝐸x no difference between the tensile and compressive
loads is found. As expected the stiffness drops significantly by up to 60 %.
The resulting strength values are even more affected by the waviness. The
tensile strength of UD0◦ samples yields approximately 𝑋T = 1500 MPa. At

Table 2.3: Comparison of experimental results at different 𝐴/𝜆 ratios (all experiments
performed at ILK in Dresden)

Waviness ratio Stiffness Tensile strength Compressive strength
𝐴/𝜆 /− 𝐸x /GPa 𝑋T /MPa 𝑋C /MPa

0 100.9 1500 988.8

0.03 70.3 568.2 307.9

0.06 41.2 231.1 277.0
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Figure 2.24: Experimental results for coupons with imposed waviness under tension (a)
and compression (b) loads [47]

𝐴/𝜆 ≈ 0.03 the strength yields 𝑋T = 568.2 MPa, which corresponds to a
reduction of 62 %. With increasing waviness ratio, the tensile strength drops
even further. Here, the strength is only 15 % of the tensile strength of UD0◦
coupon samples. Similar results are obtained for the compression tests. The
ratio 𝐴/𝜆 ≈ 0.03 leads to a 69 % reduction and 𝐴/𝜆 ≈ 0.06 to 72 % lower
strength value. By analyzing the damage evolution of coupons with waviness,
a load direction specific pattern can be observed (cf. Figure 2.25a-e). For

(a) 𝜀 = 0.2 % (b) 𝜀 = 0.75 % (c) 𝜀 = 1.1 % (d) 𝜀 = 1.7 % (e) 𝜀 = 2.0 % (f) compression

Figure 2.25: Evolution of deformation under tensile load for an amplitude to wavelength
ratio of 𝐴/𝜆 ≈ 0.06 (a)–(e) and resulting crack after compression for
𝐴/𝜆 ≈ 0.03 (f) [47]
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tensile loads, initial cracks are formed at the edges of the coupons. Next, these
cracks develop further until they reach the point, where the normal direction of
the crack is perpendicular to the loading direction. At the same time, cracks at
turning points of the wave all over the sample start to form. Finally, the cracks
continue to grow until these are connected and the sample fails. On the other
hand, samples under compression loads fail with a single crack formation (cf.
Figure 2.25f). An in depth discussion of the experimental tests is published by
Kunze/Galkin et al [47].

Based on the experimental results an amplitude to wavelength ratio depen-
dent tensile and compressive strength formulation in fiber direction could be
found [47]. As shown in Figure 2.25, for tensile loads inter-fiber failure occur.
Using a well established failure criteria for inter-fiber failure by Puck [72],
the corresponding failure stress can be determined for each stress state. This
criterion requires local stress values as input. The acting global stress 𝜎xx of
samples with waviness can be rotated to the local fiber direction to obtain the
local stress components 𝜎11, 𝜎22 and 𝜎12. The angular difference between
global direction and local fiber direction is defined by the maximum misalign-
ment angle 𝜃max. As the local stress components are functions of 𝜃max, the
global stress 𝜎IFF

xx = 𝑓 (𝜃max) defining the failure for different amplitude to
wavelength ratios can be calculated using Puck’s failure criterion. For small
misalignment angles 𝜃max < 5◦ (𝐴/𝜆 ≈ 0.014) the dominance of the fiber di-
rection is more pronounced. Therefore, a case dependent waviness strength
formulation is used

𝑋T,C = min{𝜎IFF
xx , 𝑋

UD0◦
T,C }, (2.17)

where 𝑋UD0◦
T,C is the tensile or compressive strength in fiber direction of nonun-

dulated UD0◦ laminates. Such formulation shows a very good correlation with
experimental results for tensile strength. However, this formulation must be
extended for compressive strength as a transition from an inter-fiber failure to
a fiber failure is reached. The tensile and compressive strength for samples
with waviness can be finally defined as follows

𝑋T = min{𝜎IFF
xx , 𝑋

UD0◦
T }

𝑋C =




2𝑋UD0◦
C 𝑆12

2𝑆12 cos2 𝜃max−𝑋UD0◦
C sin 2𝜃max

, 𝜃max < 10◦

min{𝑋C |𝜃max=10◦ , 𝜎
IFF
xx }, 𝜃max ≥ 10◦

,
(2.18)

49



2 Experimental Tests to Consider the Influence of Draping Effects

where 𝑋UD0◦
C correspond to the compressive strength of nonundulated UD0◦

laminates, 𝑆12 is the in-plane shear strength, and 𝑋C |𝜃max=10◦ is the resulting
waviness compressive strength at 𝜃max = 10◦. The detailed derivation of the
analytical strengths for different amplitude to wavelength ratios is described
by Kunze/Galkin et al [47].

As already observed for unidirectional and angle-ply coupons, a fiber rotation
also occurs in case of waviness. As a result, a continuous change of the
waviness ratio takes place. A schematic representation of the fiber angle
change is shown in Figure 2.26. The initial maximum angles 𝜃init

1,max and 𝜃init
2,max

thus change to 𝜃1,max and 𝜃2,max during an applied deformation. The developed
DIC algorithms (see Section 2.3) are used to analyze this phenomenon. The
resolution of the DIC measurement is about 24 px/mm and allows a very
detailed evaluation. To calculate the fiber rotation along the wavelength 𝜆, the
start and end coordinates of the wave within the strain field must be known.
If the coordinates are known, the displacements of each point along the wave
can be used to determine the fiber direction change. Since a speckle pattern is
applied to the sample, the periodic waves can no longer be visually determined.
However, the individual waves can be determined by the displacements of the
facets. If a specimen is stretched, the largest displacement occurs in areas
where the fiber orientation is parallel to the loading direction. These positions
correspond exactly to the minima and maxima of a wave. Since the amplitude
to wavelength ratio is known, the deformation of a wave function between
these points can be evaluated. The resulting fiber rotation due to straightening
of the roving is shown in Figure 2.27. It can be observed that the fiber rotation
increases with increasing 𝜀xx strain. The position of the maximum reached
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2,max

G
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L

Figure 2.26: Schematic representation of the fiber orientation change due to deformation
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Figure 2.27: Experimental result of fiber orientation change for coupons with an im-
posed waviness of 𝐴/𝜆 ≈ 0.03

fiber rotation angles correspond to the turning points of the wave. The regions
where the fiber and loading direction are parallel, the fiber rotation remains
zero. In the examined area the change of the angle is mostly homogeneous.
The formation of spikes between 𝜆 and 2𝜆 results from local crack formation,
which pronounces the fiber rotation even more. The average fiber rotation for
a waviness ratio 𝐴/𝜆 ≈ 0.03 ranges between −4.3 ◦ to 4 ◦. This condition shows
again the importance of considering the local change of the fiber orientation in
the numerical simulation of composite materials.
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3 Constitutive Modelling of Fiber
Reinforced Plastics Considering
Draping Effects

3.1 Literature Review

Despite the comprehensive research in the field of fiber reinforced composites,
the material behavior, especially as a result of forming, is still under ongoing
research. In most cases, the influence of the manufacturing process is con-
sidered in a simplified way. This includes the projection of the global fiber
orientation onto the component, the use of a constant FVC and the assumption
of perfectly straight fibers. This leads to fiber orientations deviating from
the real ones which significantly influence the mechanical response of fiber
reinforced composites [1, 75–77]. The use of virtual process chains that trans-
fer information from the manufacturing process to the structure mechanical
component simulation creates the possibility of a more realistic design of FRP
components. In addition to the forming related effects, the structure mechan-
ical material behavior from the initial state to failure needs to be considered
accurately. This includes some further material-specific characteristics, for
example fiber rotation due to shear deformation. This aspect has not yet been
taken into account in commercially available material models for FRP materi-
als. The corresponding publications only consider the fiber orientation itself
and neglect the rotation of the other material axes [10–15, 78–80]. In addition
to this, the carbon fiber specific material property (increase or decrease of
the modulus in fiber direction [21–23, 81]) is largely neglected. For example
various publications [82, 83] report a tension-compression asymmetry of the
stiffness of CFRPs, which is actually caused by the nonlinear behavior of car-
bon fibers [21] and the initially not perfectly straight fibers. While numerous
analytical and semi-empirical models [17, 84–88] exist to determine the FVC-
dependent material stiffnesses in different directions, the variety of models for
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the FVC-dependent strengths is limited [20, 88–90]. For example, the tensile
strength in the fiber direction is determined by the Voigt rule of mixture using
fiber and matrix tensile strength. On the other hand, the FVC-dependent com-
pressive strength in fiber direction results from a micro mechanical stability
failure and therefore cannot be determined in the same way. An extensive study
[25] showed that the model according to Rosen [91] clearly overestimates the
compressive strength. The reason for the deviation are idealistic assumptions
which neglect the presence of possible imperfections. However, further mod-
els showed better agreement if the fiber misalignment is considered [73, 92].
Currently, there are no validated models predicting the strength transverse to
the fiber direction or the shear strength at different fiber volume contents. On
the other hand, there are many validated failure criteria [73, 93–95] that reli-
ably predict the material-specific interaction of stresses for inter-fiber failure
for a constant FVC. For example, the fracture angle can be predicted for an
inter-fiber failure, which in turn can be considered in the damage evolution.
The extension of these criteria by FVC-dependent strengths has received little
attention so far.

Until failure initiation, the nonlinear material behavior is influenced not only
by the used fiber but also by the matrix itself. In most cases FRPs are manu-
factured by using a thermoset matrix system. The matrix behaves viscoplastic
at moderate strain rates and viscoelastoplastic at very high strain rates. To
model the plastic behavior of FRPs there are numerous approaches available
[96–101]. Hereby the hydrostatic sensitivity of the matrix in a composite de-
termines the load dependent initial yield stress. In some cases it is not possible
to distinguish between plasticity and diffuse micro damage. Therefore, there
are approaches which consider the nonlinear material behavior until failure by
degradation [102–106]. The influence of the FVC on the nonlinear material
behavior has not been considered so far.

Over the past years, intensive research has been conducted on damage modeling
occurring after failure initiation and the results have been compared in a
worldwide competition [107]. Although the models have similarities such as
the usage of energy release rates to model the damage evolution process, they
differ in the number of required material parameters which in the worst case
cannot be measured. In order to provide real measured intralaminar energy
release rates to model damage, several experimental methods are available
to determine the energy release rates for different load directions [108–112].
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The dependence of these intralaminar energy release rates on the FVC is still
unknown. In contrast to intralaminar failure, the interlaminar failure and the
resulting energy release rate as a function of the FVC were analyzed at an
early stage [113–117]. The results show that there is no apparent relationship
between the energy release rate and the FVC, which allows to use a constant
value over a certain range of the FVC.

In addition to the effect of fiber orientation and FVC-dependent strengths,
local waviness is a further effect which reduces stiffness and strength. An
existing waviness has in particular an impact on the compressive strength
along the effective fiber direction [30, 32, 33, 118]. In order to determine
the effective stiffnesses analytical solutions can be used [33, 38, 118–120].
In addition, there are numerical approaches that use representative volume
elements (RVE) at the micro scale to analyze the material behavior more
precisely [121–123]. On this scale, the influence of the FVC on the stiffness
of the composite with a present waviness was also investigated. Thus, a
nonlinear relationship between the present waviness and the resulting stiffness
was found when the FVC was varied. This RVE method, initially presented
by Karami and Garnich [121–123] can reliably predict the stiffness and is
therefore also suitable for the analysis of the resulting strength at different fiber
volume contents. However, a suitable material model for each constituent,
fiber and matrix, must be developed beforehand. In addition, the strength
for flat nonundulated RVEs at different loads can be investigated in order to
improve the understanding of the observed experimental results for different
fiber volume contents. For example, the matrix material strength can be
varied or other parameters which affects the failure initiation and damage
progression. In contrast to meso-scale models, where the roving and the
matrix are discretized separately, the use of micro-scale models to determine
the strength of a composite is particularly suitable, since with decreasing
distance between adjacent fibers an increase of the globally applied strain in
the matrix is induced. The ratio between the stiffness of fiber and matrix
can increase the local strain by a factor of 20, leading to failure initiation
[60]. However, the influence of initial or deformed geometry of the preform
is not captured in micro-scale models. For this purpose meso-scale models
are suitable that consider this geometry dependency and provide a deeper
understanding of the acting mechanisms. The gained knowledge from micro-
and meso-scale models can be considered in the development of homogenized
macro models.
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The combination of fiber orientation, FVC and waviness has not yet been con-
sidered in a single material model on macroscopic scale. Only experimental
analyses of these factors and the assumption of a constant FVC for structural
simulation of FRP parts are available [27]. In addition, the waviness is real-
ized by fiber orientation, which in turn leads to a mesh-dependent waviness.
Whether these simplifications can be made, must be analyzed in detail for each
new composite configuration, since with increasing isotropy of the laminate or
geometrical stiffness the influence of the manufacturing process can turn out
differently. Based on the state of the art and on the findings described above, a
material model that can consider forming dependent draping effects must meet
the following requirements:

• Consideration of the rotation of the material axes and the resulting strain
and stress

• Consideration of the carbon fiber specific material behavior in fiber
direction

• Consideration of the hydrostatic sensitivity of the matrix, which affects
the plastic flow behavior in a composite

• Prediction of the failure initiation including the fracture angle

• FRP specific damage evolution based on the fracture angle and the
associated direction-dependent material effort

• Processing of information from the forming process, such as local fiber
orientation, local FVC and local waviness

• Determination of the effective stiffness and strength based on the local
FVC

• Use of effective stiffnesses resulting from waviness present

For the analysis of the FVC- and waviness-dependent strength on the micro
scale, additional material models for the matrix and the fiber are needed.
The constitutive equation for the matrix should cover the viscoplastic material
behavior, a physical failure criterion and damage evolution. The fiber model has
to consider the nonlinear material behavior for carbon fibers, has to reliably
predict the failure in fiber direction and has to be able to model resulting
damage evolution. In the following section, the question of a suitable strain
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measure that correctly considers the rotation of material axes is addressed first.
Subsequently, the constitutive equations for matrix, fiber and composite that
meet the requirements are presented.

3.2 Strain Measures

To define a constitutive model for any material describing the relationship
between strains and stresses, an appropriate strain measure for the specific ma-
terial needs to be defined. Dependent on the used strain measure, the resulting
stresses and therefore the failure and damage propagation are highly affected.
In this section different approaches of strain measures are compared regarding
physical meaning, their effect on the resulting stresses, failure initiation and
damage propagation. This section is by no means complete, for more detailed
explanation the reader is referred among others to the work of Belytschko et
al. [124] or Willems [125].

3.2.1 Kinematics of a Material Point

In a three-dimensional space the position of a material point 𝑿 at time 𝑡 is
defined by:

𝒙 = 𝜒 (𝑿, 𝑡) . (3.1)

The displacement of the material point is then defined by the vector field 𝒖

𝒖 = 𝜒 (𝑿, 𝒕) − 𝑿 . (3.2)

Utilizing the displacement gradient of the vector field 𝒖, the deformation
gradient of the material point 𝑿 is defined as

𝑭 = 𝑰 + ∇𝒖, (3.3)

where 𝑰 is the second order identity tensor. The deformation gradient has
a significant role in the definition of a strain measure. For instance, it is
possible to distinguish between the rigid body motion 𝑹 and the symmetric
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3 Constitutive Modelling of Fiber Reinforced Plastics Considering Draping Effects

right or left stretch tensor (𝑼 or 𝑽) of the material point by utilizing the polar
decomposition

𝑭 = 𝑹𝑼 = 𝑽𝑹. (3.4)

𝑼 and 𝑽 are both positive definite and symmetric. It is important to note that
the information about stretching or shortening (in general volume change) of
the material body is contained by 𝑼 or 𝑽 (cf. Figure 3.1). By squaring the
left or right stretch tensor, the right and left Cauchy-Green tensors and their
relation to 𝑭 are obtained

𝑪F = 𝑼2 = 𝑭⊤𝑭 and 𝑩F = 𝑽2 = 𝑭𝑭⊤. (3.5)

The right Cauchy-Green tensor 𝑪F is used for instance to describe finite
strains, so called Green-Lagrange strain, 𝑬GL = 1/2 (𝑪F − 𝑰). The physical
meaning of 𝑬GL can be interpreted as follows: strain components on the main
diagonal are functions of the engineering strain along the material direction 𝒆𝑖 .
The off-diagonal components represent the shear strain based on the change of
the angle between two material directions in conjunction with the engineering
strain along those material directions.

Using curvilinear vectors, such as covariant base vectors 𝑮𝑖 (or contravariant
base vectors 𝑮𝑖) in the initial space and the covariant vectors 𝒈𝑖 defining the

e1

e2

e3

F

U
R

R V

Figure 3.1: Deformation of a body and the differentiation between each component of
the deformation gradient
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3.2 Strain Measures

tangent space (or contravariant vectors 𝒈𝑖 defining the cotangent space), a
further formulation of the deformation gradient can be defined by

𝑭 = 𝒈𝑖 ⊗ 𝑮𝑖 or 𝑭 = 𝒈𝑖 ⊗ 𝑮𝑖 , (3.6)

since 𝑮𝑖 and 𝑮𝑖 are equivalent in the initial space. The relation between the
covariant vectors 𝒈𝑖 and the covariant base vectors 𝑮𝑖 are especially important
for materials with distinct material behavior along their material axes. Such
materials are e.g., dry fabrics or continuous fiber reinforced plastics [125]. Fur-
ther connection between the co- and contravariant vectors can be summarized
in the following equations:

𝒈𝑖 = 𝑭 · 𝑮𝑖 , 𝑮𝑖 = 𝑭−1 · 𝒈𝑖 , 𝒈𝑖 = 𝑭−⊤ · 𝑮𝑖 and 𝑮𝑖 = 𝑭⊤ · 𝒈𝑖 . (3.7)

It is important to note that the dyadic product of co- and contravariant vectors
results in the identity tensor 𝑰

𝑰 = 𝒈𝑖 ⊗ 𝒈𝑖 = 𝒈𝑖 ⊗ 𝒈𝑖 . (3.8)

This relation is also valid for the base curvilinear vectors 𝑮𝑖 and 𝑮𝑖 .

G1, G
1

G2, G
2

g1

g2

g1

g2

F−T

F

Figure 3.2: Relation between the initial space and the tangent or respectively the cotan-
gent space
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3.2.1.1 Material Strains Family

There are several approaches to obtain material strains utilizing the deformation
gradient. Based on the work of Seth [126] and Hill [127] the different strain
measures can be combined in a generalized Seth-Hill family of strain tensors

𝑬 (𝑚) =

{
1

2𝑚
(
𝑼2𝑚 − 𝑰

)
, 𝑚 ≠ 0

ln𝑼, 𝑚 = 0
(3.9)

where the parameter 𝑚 determines the resulting strain measure. For instance
𝑚 = 1 results in Green-Lagrange strain tensor and𝑚 = 0 in the Hencky strain
tensor (aka Logarithmic or True strain). The Seth-Hill family of strain tensors
are expressed as a function of the right stretch tensor𝑼, since𝑼 represents the
stretch in the material coordinate system. These strains can be also expressed
as function of the left stretch tensor 𝑽. The relationship between 𝑼 and 𝑽 can
be derived from the deformation gradient 𝑭. Using Equation (3.4) it is obvious
that by multiplying 𝑹⊤ from the right side and considering that 𝑹𝑹⊤ = 𝑰, the
relationship between 𝑼 and 𝑽 is given as

𝑼 = 𝑹⊤𝑽𝑹. (3.10)

Therefore, the left stretch tensor 𝑽 is expressed in the initial configuration and
is rotated to the material coordinate system.

According to Onaka [128] the different strain measures can be defined in the
scope of their application. Dependent on the application each strain measure
can therefore be defined as a function of strain and rotation. For small rotation
and strain the infinitesimal (or linearized) strain is sufficient. On the other hand,
for large rotation and small strain the Green-Lagrange is more recommended.
However, for large strain and rotation the Hencky strain suits better.

Besides the used strain measure, it is required to use the proper definition and
utility of the stress, stress rate, the work-conjugate strains and strain rates [129].
For example the finite element analysis software Abaqus uses Green-Naghdi
and Jaumann stress rates, which both are work-conjugate to Cauchy stress
and Hencky strain.
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3.2 Strain Measures

3.2.2 Influence of Material Axis Rotation on the Strain
Measure

For materials with distinct material axes, such as FRPs, the resulting strain from
the right stretch tensor𝑼 does not always coincide with the initial material axis
after deformation. For instance the true stress in fiber direction is only achieved,
if either the strain is rotated into the material axis coordinate system or the
material stiffness itself. The following example demonstrates the problem.
Let’s assume a hexahedral cube body with unit edge length (see Figure 3.3). If
a deformation is applied only along the material axes the deformation gradient
𝑭1 equals

𝑭1 =
©­­«
1 + 𝑥 0 0

0 1 + 𝑦 0
0 0 1 + 𝑧

ª®®¬
. (3.11)

To calculate the actual material strain (in this case 𝜺 = ln𝑼) a polar decompo-
sition of the deformation gradient needs to be performed. Since 𝑪F = 𝑼2 and
𝑪F is a function of 𝑭 (see Equation (3.5)) only the square root of 𝑪F needs to
be calculated to obtain the right stretch tensor𝑼. Using the orthogonal relation
of the eigenvalues 𝜆𝑖 and eigenvectors 𝒗𝑖 a symmetric 𝑁 × 𝑁 matrix can be
decomposed as

𝑪F = 𝑸𝚲𝑸⊤, (3.12)

1

1

1

e1

e2

e3

e1

e2

e3 1 + x

1 + y

1 + z

F1

Figure 3.3: Simple deformation along each material axis
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where 𝚲 = diag (𝜆1, . . . , 𝜆𝑛) and the columns of 𝑸 are the eigenvectors
𝒗𝑖 . Since 𝑪F is symmetric per definition and the square root of a diago-
nal matrix corresponds to the square root of each value along the diagonal√
𝚲 = diag

(√
𝜆1, . . . ,

√
𝜆𝑛

)
the right stretch tensor 𝑼 equals

𝑼 =
√︁
𝑪F
+
= 𝑸
√
𝚲
+
𝑸⊤. (3.13)

It should be noted that only the positive square roots of 𝑪F are taken into
account, since the eigenvalues are real and nonnegative and therefore the
square roots can be chosen as real and nonnegative. In the same manner as the
right stretch tensor 𝑼 the strain 𝜺 can be calculated by using Equation (3.13)

𝜺 = ln𝑼 = 𝑸 ln
(√

𝚲
+)

𝑸⊤, (3.14)

where the natural logarithm is calculated from the square roots of the eigen-
values of 𝑪F.

In the given case of 𝑭1 each component on the main diagonal correspond to a
square root of each eigenvalue and therefore the only nonzero strain components
result to 𝜀𝑖𝑖 = ln 𝐹𝑖𝑖 . Furthermore, the rigid body motion 𝑹 results here to
identity tensor 𝑰. Therefore, the material axes remain the same and the strains
are also applied only along the material axes.

Now consider a simple shear deformation where the material axis 𝒆2 is de-
formed. The other material axes 𝒆1 and 𝒆3 remain the same (cf. Figure 3.4).
The deformation is defined by the deformation gradient 𝑭2

𝑭2 =
©­­
«
1 1/√2 0
0 1 0
0 0 1

ª®®¬
. (3.15)

In this case 𝚲 and 𝑸 are equal to

𝚲2 =
©­­«
1 0 0
0 2 0
0 0 0.5

ª®®¬
and 𝑸2 =

1
3
©­­
«
0
√

3 −
√

6
0
√

6
√

3
3 0 0

ª®®
¬
. (3.16)
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Figure 3.4: Simple shear deformation with resulting material and rigid body coordinate
systems

From 𝚲2 and 𝑸2 the left stretch tensor 𝑼2 and the rigid body motion 𝑹2, by
utilizing the relationship 𝑹2 = 𝑭2𝑼2

−1, are calculated to

𝑼2 =
1
6
©­­«
4
√

2 2 0
2 5

√
2 0

0 0 6

ª®®¬
and 𝑹2 =

1
6
©­­«
4
√

2 2 0
−2 4

√
2 0

0 0 6

ª®®¬
. (3.17)

Now it becomes obvious that the deformed material axis 𝒆2 corresponds to
𝒆2 = 𝑭2𝒆2 = (1/√2, 1, 0)⊤, while the axis 𝒓2 corresponding to the rigid body
motion 𝑹2 (and therefore to 𝑼2) equals 𝒓2 = 𝑹2𝒆2 =

(
1/3, 2

√
2/3, 0)⊤. Thus 𝒆2

and 𝒓2 are totally different (cf. Figure 3.4). Another observation is that the
axes of 𝑹2 are all perpendicular to each other, which is not the case for 𝒆1 and
𝒆2. If the strain is now calculated from 𝑼2, it does not correspond to the strain
along the true physical material axes which has also an effect on the resulting
stresses.

The previous observations show that the usage of the Hencky strain is not
useful, if the strain along the deformed material axes of FRPs need to be
considered. Further, in contrast to the orthogonal coordinate system of the
Hencky strain, the deformed material axes can create a new nonorthogonal
coordinate system. The Hencky strain and the strain from the deformed
material axes correspond only for a special case (cf. example using 𝑭1). In
such case only the length of the axes change, while the initial axes direction
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3 Constitutive Modelling of Fiber Reinforced Plastics Considering Draping Effects

remains the same. For arbitrary deformations the true strain along the current
material axes can also be calculated directly. This can be done by calculating the
natural logarithm of the length of the deformed material axes 𝒆𝑖 (cf. example
using 𝑭1). Note that the initial material axes must have a length of one
∥𝒆𝑖 ∥ = 1. In this initial state the strain along the material axes corresponds
to 𝜀𝑖𝑖 = ln ∥𝒆𝑖 ∥ = ln 1 = 0. When the material axes are deformed, the strain
along these axes is always known from 𝜀𝑖𝑖 = ln ∥𝒆𝑖 ∥. However, the shear strains
cannot be directly calculated from the deformed material axes. Nevertheless,
it is possible to obtain the shear strains by using a hypoelastic approach. Here
the strain within the material axes frame can be incrementally determined.
The following section show the methods to determine the strains based on
hypoelastic material behavior and its impact on failure and damage behavior.

3.2.3 Calculation of Strains in a Hypoelastic Material

There are different approaches available to determine the material stress re-
sponse to a given deformation. For instance constitutive laws for hyperelastic
materials define the stress-strain relationship derived from a strain energy den-
sity function. As these types of materials undergo large deformations such
constitutive laws can reliably predict the stress response. For constutive mod-
els using hyperelastic strain, such as Green-Lagrange strain, is defined in the
initial configuration and is independent of the increment size. On the other
hand hypoelastic materials require incremental steps to ensure the prediction
of accurate stress states. A further difference between hyperelastic and hypoe-
lastic materials is the fact that hypoelastic materials are not derived from the
strain energy density function, but from the relation between stress rate and
strain rate. This also implies that for the same deformation different loading
paths are possible between these two material types. Both material types fol-
low the material axes deformation. However, the hypoelastic material models
are simpler to be implemented. If failure is initiated and damage occurs, the
further loading path is highly dependent on the acting stress. In this case
small increments are required to capture the damage evolution. Hypoelastic
constitutive laws are capable of considering large deformations and material
nonlinearity such as plasticity [130, 131]. Such constitutive equations have
been widely used [124, 132–134]. In hypoelastic approaches, the stresses for
each increment are given in a rotated objective frame. This type of constitutive
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laws is based on rate constitutive equations, which are often used in finite
element analysis. For instance in Abaqus the Green-Naghdi and Jaumann
objective frames are used. Both frames represent the mean values of the ac-
tual material axes. Although the usage of mean values within such frames is
reasonable for isotropic materials, for direction-dependent materials such as
FRPs the strains should be evaluated in the material frame itself. However, the
stress objectivity must be kept in order to avoid nonphysical results for large
rigid body motions.

Generally speaking for hypoelastic materials a stress rate ¤𝝈 depends on the
strain rate ¤𝜺 by a constitutive stiffness tensor C. The stress rate ¤𝝈 is defined as
the objective derivative which fixes an observer with respect to the material.
By this definition the objective stress rate is not affected by rigid body rotations.
The relation between stress rate and strain rate can be written as

¤𝝈 = C : ¤𝜺, (3.18)

where the stress rate ¤𝝈 can be obtained by using 𝒍 as the material rotation
matrix

¤𝝈 = 𝒍

(
d
d𝑡

(
𝒍⊤𝝈𝒍

) )
𝒍⊤ = 𝝈̊ + 𝝈𝛀 −𝛀𝝈. (3.19)

Here 𝝈 defines the Cauchy stress and 𝝈̊ its rate. By using 𝛀 = ¤𝑹𝑹⊤,
where 𝑹 represent the rigid body rotation from the polar decomposition of the
deformation gradient, the stress rate ¤𝝈 corresponds to the Green-Naghdi rate
of the Cauchy stress. The rotation of the objective frame is here defined by
𝑹. On the other hand if 𝛀 = 𝒘, where 𝒘 is the spin tensor, the Jaumann rate
of the Cauchy stress is defined.

To calculate the true material strain, each strain increment Δ𝜺 (𝑂) defined in
the initial coordinate system, is transformed to the corresponding deformed
material axes. It should be noted that the initial coordinate system, denoted by
(𝑂), coincides with the initial material axes (𝒆 (𝑂)𝑖 = 𝒆𝑖). The strain increment
Δ𝜺 (𝑂) is calculated from the incremental left stretch tensor Δ𝑽, which is
obtained from polar decomposition of the incremental deformation gradient
Δ𝑭

Δ𝜺 (𝑂) = lnΔ𝑽 = ln
√︁
Δ𝑭Δ𝑭⊤. (3.20)

The left stretch tensor is used since it defines the stretch of the material body
in the initial coordinate system. The incremental deformation gradient itself
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is obtained from the deformation gradient at the start 𝑡 and at the end 𝑡 + Δ𝑡 of
the time increment

Δ𝑭 = 𝑭𝑡+Δ𝑡𝑭−1
𝑡 . (3.21)

To transform the strain Δ𝜺 (𝑂) to the true material strain Δ𝜺 a suitable transfor-
mation matrix 𝒍 is needed. This matrix can be calculated from the initial and
the deformed material axes 𝒆𝑖 and 𝒆̂𝑖 . The components of 𝒍 are defined by the
dot product of the target axis with the initial axis

𝑙𝑖 𝑗 = 𝒆̂𝑖 · 𝒆 𝑗 . (3.22)

It should be noted that here the vectors 𝒆̂𝑖 and 𝒆 𝑗 are normalized. Otherwise, if
the transformation matrix 𝒍 would be calculated from nonnormalized vectors
additional strain would be created. Therefore, 𝒆̂𝑖 is defined as follows:

𝒆̂𝑖 =
𝑭𝑡+Δ𝑡 𝒆𝑖
∥𝑭𝑡+Δ𝑡 𝒆𝑖 ∥ . (3.23)

The transformation of the strain increment Δ𝜺 is achieved by a simple tensor
transformation

Δ𝜀𝑖 𝑗 = 𝑙𝑖𝑘 𝑙 𝑗𝑙Δ𝜀
(𝑂)
𝑘𝑙 or Δ𝜺 = 𝒍Δ𝜺 (𝑂) 𝒍⊤. (3.24)

3.2.3.1 Influence of the Number of Material Axes Used for a Strain
Transformation

According to Equation (3.24) all three material axes are used to perform the
strain transformation. However, materials such as unidirectional FRPs have
only one distinct material orientation. The question arises whether all material
axes or only the material-specific ones should be transformed. The necessity
of transforming all axes is shown by following example. Consider two different
unidirectional laminates with 0◦ (UD0◦) and 90◦ (UD90◦) orientation. Both
laminates are applied to simple shear (cf. Figure 3.5). Since unidirectional
laminates have one distinct direction, one can assume that transforming the
strain only to the fiber direction, while the other directions are perpendicular
to the fiber direction, would be sufficient. From observation of the resulting
deformation in case of UD0◦ no fiber strain 𝜀f = 0 is observed. In contrast,
the deformed transverse direction is stretched, which leads to a positive strain
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Figure 3.5: Simple shear examples for UD0◦ (left) and UD90◦ (right) laminates with
corresponding strains

along this material axis 𝜀t > 0. For the UD90◦ case it is quite the opposite.
On the other hand, strains along the 𝒆⊥f axis differs considerably. In case
of UD0◦ it yields zero, while for UD90◦ a negative strain is produced. This
phenomenon will result in different stresses which cause different interpretation
of the material behavior. In conclusion 𝜀t and 𝜀⊥f are considerable different for
both cases and only 𝜀t corresponds to the material frame.

Considering only the fiber direction and rotating the strain to this direction
has been used in several publications [10–15, 78–80]. In most cases fiber
rotation is only considered as an in-plane deformation. Additionally, instead
of using the deformed fiber axis, the fiber rotation is expressed as the angle
resulting from the current strain state. For instance using the pure geometrical
relationship between the applied strain and initial fiber orientation of a ±45◦
laminate the resulting fiber angle is calculated by

𝜃 = arctan
1 + 𝜀yy

1 + 𝜀xx
. (3.25)

Using a more general case to determine the resulting fiber angle can be ex-
pressed by

𝜃 = 𝜃0 + arctan
(
− sin (𝜃0) cos (𝜃0)

(
𝜀xx − 𝜀yy

)
+1

2

(
cos2 (𝜃0) − sin2 (𝜃0)

)
𝜀xy

) (3.26)
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where 𝜃0 is the initial fiber orientation of the ply. The term inside arc tangent
function equals the rotation of the global strains (𝜀xx, 𝜀yy and 𝜀xy) to obtain the
local shear strain 𝜀12. The assumption to rotate the global strain by a certain
angle resulting from the local shear strain is legitimate within an objective
frame, since this frame represents the mean values of the material axes. How-
ever, several experimental studies [11, 16, 78] reported very high transverse
stress 𝜎t for ±45◦ laminates, if only the fiber axis deformation is considered.
At the same time, almost all appearing cracks are perpendicular to the local
transverse direction. According to well-established failure criteria, damage
models and experimental results for FRPs [72, 135–139] at high transverse
stress 𝜎t the occurring failure plane is no longer perpendicular, but rather tilted
to the local transverse direction. While knowing this phenomenon for FRPs,
the discrepancy between experimentally observed crack direction can be solved
by transforming both material axes. In this case the transverse strain 𝜀t for the
±45◦ laminate remains positive and therefore also the transverse stress 𝜎t.

3.2.3.2 Hypoelastic Strain Dependency on the Number of Increments

The result of rate dependent approaches, such as hypoelastic constitutive laws,
are highly affected by the number and length of increments to reach a specific
deformation. Generally the result of a rate dependent constitutive law is
dependent on the grade of deformation itself. Large deformations need more
increments to achieve accurate results. If no rigid body motion occurs, the
results within the objective frame are not affected by the number of increments.
However, as soon as shear strains occur, a certain number of increments are
needed to achieve reliable results. To quantify a certain number is difficult
because of the high conjunction with the deformation itself. Nevertheless, a
range of necessary number of increments can be estimated for specific cases
such as simple shear alone or with superimposed tension. The following
in-plane deformations are evaluated

𝑭sh =

(
1 0
1 1

)
and 𝑭tsh =

(
2 0
1 1

)
, (3.27)

where sh denotes simple shear and tsh denotes tension with simple shear. The
influence of the number of increments 𝑁 for both deformations is evaluated
for 𝑁 = {1, 2, 10, 20, 50, 100, 1000}. For the strain components 𝜀11 and 𝜀22
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an exact solution can be calculated via 𝜀𝑖𝑖 = ln∥𝑭𝒆𝑖 ∥. The results of each
strain component from 𝑭sh and 𝑭tsh are shown in Figure 3.6. The given
deformation results at very high strain (cf. 𝜀11 = 0.7 for 𝑭tsh). These examples
are specifically chosen to evaluate the convergence of the strain components
for large deformations. For smaller deformations the convergence of the strain
components will require a lower number of increments, since the axes rotations
are also smaller. From the results it can be inferred that the hypoelastic
strains itself are a source of nonlinear behavior of the material (cf. 𝜀11 for
𝑭sh). Further, the evaluated deformations converge above a certain number of
increments to the exact solutions. Depending on the required accuracy of each
strain component it can be derived that in case of simple shear only 𝑭sh the
highest number of increments 𝑁 = 1000 are needed to achieve convergence of
the strain component 𝜀22. All other strain components require only 50 to 100
number of increments to achieve convergence. But even for small number of
increments (e.g., at 𝑁 = 10) the accuracy of the strain components, besides 𝜀22
from 𝑭sh, are very high. From the results of 𝜀12 at 𝑭sh and 𝜀11 at 𝑭tsh it can
be also observed that in some cases the convergence is almost not effected by
the number of increments. Additionally, it should be noted that the results are
not affected by the chosen objective frame. However, to transform the Green-
Naghdi or Jaumann strain increments, the knowledge of the rotated frame is
needed. Since the strain increments of both objective frames are derived from
the same strain increment Δ𝜺 (𝑂) , the calculation of the hypoelastic strains
would only result in a higher computational effort compared to the direct
transformation of the strain increment Δ𝜺 (𝑂) itself. In conclusion, it can be
recommended to perform a study for a given deformation to determine the
necessary number of increments. In this work all numerical simulations are
performed with at least 100 increments.

3.2.3.3 Resulting Errors from an Inaccurate Incrementation of the
Transformed Strain

The calculation of resulting stresses of constitutive laws can be defined in two
ways. The first option is by using each strain increment Δ𝜺 to compute the
corresponding stress increment Δ𝝈, which is added to the stress 𝝈𝑡 to obtain
the resulting stress 𝝈𝑡+Δ𝑡 at the end of the increment. This option correspond
to the stress response using a hypoelastic approach. The second way uses
directly the total strain 𝜺𝑡+Δ𝑡 to compute the resulting stress 𝝈𝑡+Δ𝑡 . Such
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Figure 3.6: Resulting strain components 𝜀11, 𝜀22 and 𝜀12 at different number of incre-
ments for the deformations 𝑭sh (simple shear, left) and 𝑭tsh (tension with
simple shear, right)
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3.2 Strain Measures

way represents the hyperelastic modeling approach. However, by using a rate
dependent approach to consider material axes rotations, huge errors can arise
by an inaccurate incrementation of the strain and therefore also the stress. For
example, Badel et al. [133] analyzed two different approaches to accumulate
stresses of hypoelastic constitutive equations. In their study the rotation of the
fiber material axis is considered, while the other material axes are perpendicular
to the fiber direction, which corresponds to the Green-Naghdi frame. The
first approach updates stresses of the rotated Green-Naghdi frame via

𝝈 (GN)
𝑡+Δ𝑡 = 𝝈 (GN)

𝑡 + 𝑻 (f)𝑪𝑻 (f)⊤Δ𝜺 (GN) , (3.28)

where 𝑻 (f) defines the 6× 6 transformation matrix to the fiber direction and 𝑪
the stiffness matrix for a transversely isotropic material. In this case only the
material stiffness is rotated to the fiber direction. Besides the Green-Naghdi
frame also the Jaumann frame can be used in the same way to determine the
resulting stress. The second approach uses a rotated frame defined by the
fiber direction itself. Here the stress of the objective Green-Naghdi frame are
obtained from the transformed stress of the fiber-parallel frame. This stress
update procedure is defined by the following equation

𝝈 (GN)
𝑡+Δ𝑡 = 𝒃⊤𝝈 (f)𝑡+Δ𝑡 𝒃 = 𝒃⊤

(
𝝈 (f)𝑡 + 𝑪𝒃Δ𝜺 (GN) 𝒃⊤

)
𝒃, (3.29)

where 𝒃 is the transformation matrix from the Green-Naghdi frame to the fiber
direction and 𝝈 (f) denotes the stress in the fiber-parallel frame. It should be
noted that the transformation matrix 𝑻 (f) is derived from 𝒃. Both approaches
have been applied to four different load cases with varying fiber orientation.
The load cases are summarized in Figure 3.7. All loads have been applied to
a unit cube where the fiber orientation corresponds to one axis of the cube.
Since only the fiber stress should be evaluated, all materials constants besides
the fiber direction modulus has been set to zero. The resulting stresses of
both approaches have been evaluated regarding their feasibility. Since only the
modulus in fiber direction is used, only the fiber stress should be present at
the end of each load case. Using the first approach, rotation the stiffness to
the fiber direction, the load cases (a) and (b) lead to feasible results. However,
both other load cases (c) and (d) lead to transverse and shear stresses which
are spurious stresses. On the other hand the second approach, rotation of the
fiber frame stresses, leads in all cases to satisfying results. Therefore, only the
incrementation within the fiber-parallel frame is reliable for evaluating rotated
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(a) (b)

(c) (d)

Figure 3.7: Four different load cases according to [133]: UD0◦ simple shear (a), UD0◦
tension and rigid body rotation (b), UD90◦ simple shear (c) and UD0◦
tension and simple shear (d)

fiber stress. According to Badel et al. the inaccuracy of the first approach
arise from the initial stress 𝝈 (GN)

𝑡 . Here the rotation of rigid body 𝑹, which
correspond to the Green-Naghdi frame, differs from the fiber frame 𝒃. The
erroneous stresses at the end of the load cases are only resolved if both frames
are equal 𝑹 = 𝒃.

Both approaches have been also used in several publications [12, 79, 80, 140–
142] by rotating the total strain 𝜺𝑡+Δ𝑡 to the fiber direction, instead of using the
strain increment. However, if the total strain is used to calculate fiber-parallel
stress 𝝈𝑡+Δ𝑡 a similar error, compared to the first approach used by Badel et
al. (cf. Equation (3.28)), occur in both cases. Since the error is equal for both
approaches the source of this error is shown based on the fiber frame approach.
In this case the fiber-parallel stress can be expressed as

𝝈 (f)𝑡+Δ𝑡 = 𝑪𝜺 (f)𝑡+Δ𝑡 = 𝑪𝒃𝜺 (GN)
𝑡+Δ𝑡 𝒃

⊤. (3.30)

The transformation of the fiber parallel stress 𝝈 (f) to the Green-Naghdi frame
is conducted according to Equation (3.29). Here the total strain can be split
up into the initial strain 𝜺 (GN)

𝑡 and the strain increment Δ𝜺 (GN) . If the latter
expression is expanded, then the rotation matrix 𝒃 will be also applied to the
initial strain

𝝈 (f)𝑡+Δ𝑡 = 𝑪𝒃𝜺 (GN)
𝑡+Δ𝑡 𝒃

⊤ = 𝑪𝒃𝜺 (GN)
𝑡 𝒃⊤ + 𝑪𝒃Δ𝜺 (GN) 𝒃⊤. (3.31)
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However, the rotation matrix 𝒃 rotates the initial strain 𝜺 (GN)
𝑡 from the current

Green-Naghdi frame to the fiber-parallel frame. As the initial deformation at
𝑡 can have a different rigid body rotation, compared to the rigid body rotation
in the current increment 𝑡+Δ𝑡, this will lead to an incorrect strain accumulation
in the current increment. This means that the definition of the rotation matrix
𝒃 is not suited to be applied to the initial total strain 𝜺 (GN)

𝑡 . Using the total
strain will correspond to the hypoelastic approach with only one increment (cf.
Figure 3.6).

Since in the present work not only the fiber axis but all material axes are
transformed to the nonorthogonal fiber-parallel frame, special care needs to
be taken for the forward and backward transformation of the strain and stress.
In general a rotation from one orthogonal coordinate system to another using
the rotation matrix 𝑹 satisfies the condition 𝑹−1 = 𝑹⊤. For example, if the
strain increment is rotated forward from the origin frame (𝑂) to the rotated
frame (𝑅) (Δ𝜺 (𝑅) = 𝑹Δ𝜺 (𝑂)𝑹⊤), then the backward rotation of the corre-
sponding stress can be performed by using the inverse or transposed rotation
matrix (Δ𝝈 (𝑂) = 𝑹⊤Δ𝝈 (𝑅)𝑹). However, this is not the case for nonorthog-
onal (curvilinear) coordinate systems, which is obvious the case by using all
deformed material axes as the material frame. By using the relation between
co- and contravariant vectors from Equation (3.7) and the condition that the
transformation matrix should not add any stretch to the deformed vectors, re-
sults in definition of a transformation matrix according to Equation (3.22) by
utilizing the normalized deformed vectors from Equation (3.23). Since the
stress tensor 𝜎𝑖 𝑗 is a contravariant second-order tensor, it is connected to the
covariant strain tensor 𝜀𝑘𝑙 , according to Hooke’s law, by the stiffness tensor
𝐶𝑖 𝑗𝑘𝑙 (𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙) or the other way around by the compliance tensor 𝑆𝑘𝑙𝑖 𝑗
(𝜀𝑘𝑙 = 𝑆𝑘𝑙𝑖 𝑗𝜎𝑖 𝑗 ). The stiffness and the compliance tensor are both forth-order
tensors. Using the relationship between the strain and stress tensors and also
the relation between co- and contravariant vectors, the transformation rules
and the resulting constitutive equation using a nonorthogonal material frame
is summarized and visualized in Figure 3.8. For a reliable determination of
the strains and stresses in the fiber-parallel frame, the following approach has
been chosen in the present work:

• First the deformed normalized material axes 𝒆̂𝑖 and the corresponding
transformation matrix 𝒍 is determined from the deformation gradient
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Figure 3.8: Transformation procedure for normalized curvilinear vectors and the corre-
sponding constitutive equation

𝑭𝑡+Δ𝑡 at the end of the increment 𝑡 + Δ𝑡 (see Equations (3.22) and
(3.23)).

• Next the strain increment Δ𝜺 (𝑂) based on the incremental left stretch
tensor Δ𝑽 is obtained from the deformation gradient increment Δ𝑭 (see
Equations (3.20) and (3.21)).

• Utilizing the strain increment Δ𝜺 (𝑂) and the transformation matrix 𝒍,
the strain increment Δ𝜺 (f) in the material axes frame is calculated (see
Equation (3.24)).

• The total strain 𝜺 (f)𝑡+Δ𝑡 is obtained from the initial strain 𝜺 (f)𝑡 in the material
axes frame and the current strain increment Δ𝜺 (f) . It should be noted
that the initial strain is equal to zero prior to the first deformation. After
the first increment the total strain needs to be stored for the calculation
of the next increment.

• From the total strain 𝜺 (f)𝑡+Δ𝑡 the resulting material stress 𝝈 (f)𝑡+Δ𝑡 is deter-
mined by utilizing the material stiffness 𝑪.

• Finally, the material stress 𝝈 (f)𝑡+Δ𝑡 is transformed back to the stress of the
original frame 𝝈 (𝑂)𝑡+Δ𝑡 by using the transposed transformation matrix 𝒍⊤

It should be noted that Abaqus provides the deformation gradient only for
nonlinear calculations (Nlgeom=On). In this case an objective frame (Green-
Naghdi or Jaumann) is used. Therefore, special care needs to be taken as the
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stress needs to be provided in the correct frame. In this work the parameters for
the solver are set in a way, that the resulting stress should always be transformed
to the global coordinate system.

3.2.3.4 Influence of the of Hypoelastic Material Modeling on the Failure
and Damage Behavior

If the strain from a hypoelastic material model is used, the failure initiation and
the damage behavior are highly affected by the material axes. This condition
has a significant effect on the interpretation of failure and damage propagation
from experimental results. To demonstrate the effect on the failure resulting
from using hypoelastic strain compared to a Green-Naghdi strain, the stress of
an isotropic material is determined and the von Mises stress is evaluated. The
examples of a simple shear and a tension-superposed simple shear test from
Section 3.2.3.2 are used as load cases to analyze the effect of the hypoelastic
strain. To achieve an accurate result for the hypoelastic strain the number of
increments is set to 𝑁 = 1000. To calculate the isotropic material stiffness
a Young’s modulus 𝐸 = 3 GPa and a Poisson’s ratio 𝜈 = 0.3 is used. The
resulting von Mises stress for the Green-Naghdi frame and the material axes
frame (𝜎 (GN)

vm and 𝜎 (f)vm ) and the ratio 𝜎
(f)
vm/𝜎 (GN)

vm are shown in Figure 3.9. For
both examples the usage of hypoelastic strains lead to an increase of the von
Mises stress. If this circumstance is taken into account the failure initiation
for a certain failure stress is reached earlier compared to the von Mises stress
resulting in the Green-Naghdi frame. It is particularly remarkable that this
condition applies to isotropic direction-independent materials. It should be
noted that the ratio 𝜎

(f)
vm/𝜎 (GN)

vm is dependent on the deformation itself. Isotropic
materials with intrinsically brittle material behavior, such as an epoxy matrix
system, tend to a sudden failure which complicates the analysis of the damage
behavior in conjunction with hypoelastic strains. A transversely isotropic
material with the same brittle matrix system can sustain cracks within the
matrix transverse to the fiber direction. The increase of the crack density of
±45◦ and ±50◦ laminates is evaluated by Taubert [78] based on the material
IM7-8552. It is found that the first cracks appear for the ±45◦ laminate at 2 %
and for the±50◦ laminate at 1.3 % strain in specimen direction. With increasing
strain the crack density rises and additionally, according to Mandel [11], the
fiber direction also changes. For example, for the ±45◦ laminate the rotation
of the fiber from 0 % to 2 % strain equals to 1.1◦, but at failure the total fiber
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Figure 3.9: Comparison of von Mises stress in the Green-Naghdi frame, the material
axes frame and the ratio of both values for two different load cases, simple
shear (left) and simple shear with tension (right)
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rotation reach 7.8◦. The difference of additional 6.7◦ in fiber rotation need to
be taken into account during damage propagation. This condition reveals the
benefit of using a hypoelastic (or hyperelastic) model within deformed material
axes rather than using strain in an orthogonal coordinate system.

3.3 Constitutive Matrix Model

The capabilities of micro or meso mechanical simulations allow analyzing and
understanding the material behavior of composites more precisely. At this
modeling levels, fiber (or roving) and matrix need to be modeled separately.
Therefore, a constitutive model is developed for each constituent. In this
section the material model for the matrix is described. The model captures
viscoplastic material behavior and during damage evolution it can distinguish
between damage caused by tension or compression. The presented viscoplastic
material is based on a published plasticity model [143–146] which is extended
by strain-rate dependency [147, 148]. The viscoplastic model is combined with
a failure initiation utilizing the yield surface proposed by Tschoegel [149]
and a damage surface [150]. Although the failure criterion cannot distinguish
between tensile and compressive failure, the damage model used can do so by
decomposing the stress. In total the combined model covers all major aspects
of the matrix material behavior. As described in Section 3.2 the strain measure
is crucial for an accurate and physical reliable result of the material stress.
Therefore, the hypoelastic model is used to determine the resulting material
stress of the matrix. In the following the used strain is always defined in the
material axes.

3.3.1 Elasto-Viscoplasticity Model

In general isotropic polymer matrix systems tend to develop a nonlinear stress
response over an increasing load. Such material behavior can be captured suf-
ficient by plasticity models if no damage is present. There are several plasticity
models available for different kind of materials. A more detailed overview and
the phenomenological aspects of the plasticity theory are given in [151, 152].
Furthermore, if a time dependency of the material is present, which is the case
for polymers, this behavior can be modeled by using time dependent viscous
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models. For such a case two major model types are commonly used: vis-
coelastic or viscoplastic models. As the name suggests viscoelastic covers the
elastic region of the material by additionally considering the time dependency.
On the other hand viscoplastic can capture permanent deformations within the
material. A combination of both model types is also possible. The difference
between both approaches can be observed during the unloading phase. For
a pure elastic-viscoplastic approach the stress response during unloading is
linear. In combination with a viscoelastic model, a time dependent nonlin-
ear stress response is possible. An example for a pure viscoplastic material
response is given in Figure 3.10.

Figure 3.10: Example for a viscoplastic material behavior of uniaxial tensile test

3.3.1.1 Elastic Behavior

Assuming linear elastic material behavior of isotropic materials, the relation-
ship between the stress tensor 𝝈 and elastic strain tensor 𝜺el is defined by

𝝈 = C : 𝜺el (3.32)

whereC is the fourth order material elasticity tensor. For isotropic materials the
elasticity tensor can be defined by only two distinct material property constants.
Dependent on the constitutive model this two constants can be defined in terms
of Lamé parameters 𝜇 and 𝜆, in terms of bulk modulus 𝐾 and shear modulus
𝐺 or in terms of engineering constants Young’s modulus 𝐸 and Poisson’s ratio
𝜈. Using bulk modulus 𝐾 and shear modulus 𝐺 the linear elastic stress tensor
can also be defined as follows

𝝈 = 2𝐺𝜺dev + 3𝐾𝜀vol𝑰 (3.33)
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where 𝜺dev represents the deviatoric strain tensor, 𝜀vol = 1/3𝑡𝑟 (𝜺el) is the
volumetric strain and 𝑰 is the identity tensor. If the material elasticity tensor C
is used instead it can be expressed in index notation as follows

𝐶𝑖 𝑗𝑘𝑙 = 2𝐺𝐼dev
𝑖 𝑗𝑘𝑙 + 𝐾𝛿𝑖 𝑗𝛿𝑘𝑙 (3.34)

with

𝐼dev
𝑖 𝑗𝑘𝑙 = 𝐼

s
𝑖 𝑗𝑘𝑙 −

1
3
𝛿𝑖 𝑗𝛿𝑘𝑙 and 𝐼s𝑖 𝑗𝑘𝑙 =

1
2

(
𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘

)
. (3.35)

3.3.1.2 Yield Function

During loading, besides elastic strain 𝜺el, plastic strain can occur (cf. Fig-
ure 3.10). In such case at a specific stress 𝜎y yielding of the material begins.
From this point the plastic strain increases and to determine the resulting mate-
rial stress the elastic strain must be known. To obtain the current elastic strain
the total strain can be decomposed in its elastic and plastic part

𝜺 = 𝜺el + 𝜺pl. (3.36)

The elastic and the plastic part of the total strain under uniaxial load can be
directly determined from the stress-strain curve by knowledge of the Young’s
modulus. However, to determine the acting plastic strain in a three-dimensional
space a yield surface Φpl and the corresponding plastic flow rule 𝑵pl must be
defined. In general the yield surface must satisfy the condition:

Φpl (𝝈, 𝒒) = 0, (3.37)

where 𝒒 defines the hardening variables. This surface defines the elastic region
for Φpl < 0, and at Φpl = 0 each point on the surface corresponds to plastic
region. A suitable definition of the yield surface is dependent on the material
itself. There are several yield surfaces which have been developed in past
century. Among others the Mohr-Coulomb, Tresca, von Mises or Drucker-
Prager are the most well-known yield criteria. From experimental studies
[41, 153–157] it is observed that for epoxy polymers the uniaxial tension and
compression strength differ. This condition indicates that epoxy materials have
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a hydrostatic pressure dependency which also affects the yielding. Therefore,
yield criteria which have no hydrostatic pressure dependency, such as Tresca
or von Mises, are not suited for epoxy materials. Additionally, yielding can
be strain rate dependent and need to be considered by the yield criteria. In his
work, Melro [143] concludes that a good yield criterion for epoxy polymers
must have the following characteristics:

• Hydrostatic pressure dependency - allows considering yielding at differ-
ent stress states.

• Different yield strengths in tension and compression - enables failure
prediction for epoxy materials.

• Strain rate dependency - considering change of the yield surface based
on the strain rate.

Although yield criteria such as Mohr-Coulomb or Drucker-Prager meet the
requirements, special care must be taken because these surfaces are not free of
edges or vertices. This condition creates difficulties since they are not differen-
tiable in all of its domain and therefore the implementation into a constitutive
model is more complex. To avoid such inconvenience based on experimental
observations Fiedler [41, 155] suggests the usage of a paraboloidal criterion.
A parabolic shaped expression of a yield or failure criterion is first introduced
by Tschoegel [149]. This criterion is a quadratic modified version of the von
Mises criterion and is defined as

Φpl = 6𝐽2 + 2𝐼1 (𝜎c − 𝜎t) − 2𝜎c𝜎t = 0 (3.38)

where 𝐽2 is the second invariant of the deviatoric stress tensor, 𝐼1 is the first
invariant of the stress tensor and 𝜎t,c are the yield functions or failure strengths
in tension and compression, respectively. If the strengths𝜎c and𝜎t are equal the
expression is reduced to a von Mises criterion. A visualization of this criterion
is shown in Figure 3.11. An intensive study for different polymer materials
using this criterion is performed by Raghava et al [158]. In general, an
excellent agreement with experimental results is found using such paraboloidal
criterion. Using the yield surface the resulting plastic strain can be derived.
To do so two different ways are possible using an associative or nonassociative
flow rule. In the next section it is shown that only a nonassociative flow rule
leads to feasible results.
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Figure 3.11: Paraboloidal yield (inner surface) and failure (outer surface) criterion in
the principal stress space according to Tschoegel [149]

3.3.1.3 Plastic Flow Rule

If a stress state exceeds the yield surface Φpl > 0 a return mapping scheme
needs to be solved to satisfy the condition Φpl = 0. In order to perform the
return mapping the actual plastic strain needs to be determined. Based on the
current stress state 𝝈 the flow tensor 𝑵pl, which defines the direction of the
plastic flow, can be directly obtained from the yield surface:

𝑵pl =
𝜕Φpl

𝜕𝝈
= 6𝝈dev + 2 (𝜎c − 𝜎t) 𝑰, (3.39)

where 𝝈dev is the deviatoric stress tensor, 𝑰 is the identity tensor and 𝜎t and 𝜎c
are the yield stresses in tension and compression direction, respectively. By
using such definition of the flow tensor, an associative flow rule of the plastic
strain increment is given by

Δ𝜺pl = Δ𝜆pl𝑵pl = Δ𝜆pl
𝜕Φpl

𝜕𝝈
, (3.40)

where Δ𝜆pl is the plastic multiplier which defines the length of the flow tensor.
Since 𝑵pl is self-dependent on Δ𝜺pl the backward Euler scheme is being used
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to solve such an equation. More important is that Δ𝜆pl in conjunction with the
yield surface Φpl satisfies the condition for the plastic domain

Δ𝜆plΦpl = 0. (3.41)

If the stress state does not exceed the yield surfaceΦpl < 0, the plastic multiplier
results to Δ𝜆pl = 0. Further, since the direction of the plastic flow is defined
by flow tensor 𝑵pl, this leads to the condition Δ𝜆pl ≥ 0. These conditions
are known as the Kuhn-Tucker conditions, which define the evolution of the
plastic domain

Φpl ≤ 0, Δ𝜆pl ≥ 0 and Δ𝜆plΦpl = 0. (3.42)

If an associative flow rule is used special care needs to be taken since non-
physical results can occur. As shown by Melro if the associative flow rule
given in Equation (3.40) is used in conjunction with hydrostatic pressure
𝜎11 = 𝜎22 = 𝜎33 < 0, the resulting plastic strain Δ𝜺pl leads to values greater
zero which seems to be not feasible for negative stress values. Therefore, a
nonassociative flow potential proposed by [144–146] is used

𝑔pl =
√︃
𝜎2

vm + 𝛼𝑝2, (3.43)

where 𝜎vm is the von Mises stress, 𝑝 is the hydrostatic stress and 𝛼 controls
plastic volumetric flow. The corresponding flow rule is then defined as

Δ𝜺pl = Δ𝜆pl
𝜕𝑔pl

𝜕𝝈
= Δ𝜆pl

𝜕
√︁
𝜎2

vm + 𝛼𝑝2

𝜕𝝈

=
Δ𝜆pl

2𝑔pl

(
2𝜎vm

𝜕𝜎vm
𝜕𝝈

+ 2𝛼𝑝
𝜕𝑝

𝜕𝝈

)
=
Δ𝜆pl

2𝑔pl

(
3𝝈dev − 2

3
𝛼𝑝𝑰

)
.

(3.44)

The parameter 𝛼 can be determined from a uniaxial load. In such a case the
stress tensor, the corresponding deviatoric stress tensor and the hydrostatic
stress result to

𝝈 =
©­­
«
𝜎 0 0
0 0 0
0 0 0

ª®®
¬
, 𝝈dev =

©­­
«

2
3𝜎 0 0
0 − 1

3𝜎 0
0 0 − 1

3𝜎

ª®®¬
and 𝑝 = −𝜎

3
. (3.45)
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For a uniaxial tensile load the acting stress 𝜎 is positive and the nonassociative
flow potential yields

𝑔pl = 𝜎

√︂
1 + 𝛼

9
. (3.46)

Substituting these results into the nonassociative flow rule the plastic strain is
given as

Δ𝜺pl = Δ𝜆pl
1

2
√︁

1 + 𝛼/9
©­­«
©­­«
2 0 0
0 −1 0
0 0 −1

ª®®¬
+ 2𝛼

9
©­­«
1 0 0
0 1 0
0 0 1

ª®®¬
ª®®¬
. (3.47)

Since for a uniaxial tension load in isotropic material the plastic strain in
transverse direction is defined by

Δ𝜀pl22 = Δ𝜀pl33 = −𝜈plΔ𝜀pl11, (3.48)

where 𝜈pl is the plastic Poisson’s ratio, the volumetric plastic strain Δ𝜀plvol =
𝑡𝑟 (Δ𝜺pl) can also be defined by:

Δ𝜀plvol =
(
1 − 2𝜈pl

)
Δ𝜀pl11. (3.49)

Furthermore, if the volumetric plastic strain and the plastic strain Δ𝜀pl11 are
used from Equation (3.47) and by replacing the components of Equation (3.49),
the relation between the parameter 𝛼 and the plastic Poisson’s ratio is obtained:

Δ𝜀plvol =
(
1 − 2𝜈pl

)
Δ𝜀pl11

⇔Δ𝜆pl
𝛼

3
√︁

1 + 𝛼/9
=

(
1 − 2𝜈pl

)
Δ𝜆pl

√︁
1 + 𝛼/9

⇔𝛼 =
9
2

1 − 2𝜈pl

1 + 2𝜈pl
.

(3.50)

The plastic Poisson’s ratio can be determined from uniaxial tests and therefore
the parameter 𝛼 is fully defined. Furthermore, it can be noted that in case of
incompressible materials with 𝜈pl = 0.5, the parameter 𝛼 yields to zero and
the flow potential 𝑔pl is reduced to a simple von Mises yield criterion.
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3.3.1.4 Hardening Law

In case of uniaxial loads with one active stress component, the hardening or
softening of the material can be defined by a simple scalar function. However,
in a more general case this definition must also be valid for a multiaxial load
case. To accomplish this validity, a definition of a hardening law based on
equivalent stress 𝜎̄ and equivalent plastic strain 𝜀pl is used. In this case an
arbitrary stress state and the corresponding strain is represented by a scalar.
Generally the definition of a certain analytical function of a hardening law is
dependent on the material behavior itself. Well known laws such as Voce [159]
or Swift [160] are used to model plasticity of metals. A broad overview of
different hardening laws have been analyzed by Larour [161]. However, such
functions can also be applied to polymer matrix systems. In the present model
a combination of the Voce and Swift hardening law is used (cf. Figure 3.12).
Since the hardening can differ in tension and compression, the direction-
dependent parameters are denoted by t or c and the hardening law is given
by

𝜎̄t,c = 𝑚t,c𝐴t,c
(
𝜀0t,c + 𝜀pl

)𝑛t,c

+ (
1 − 𝑚t,c

) (
𝜎̄st,c +

(
𝜎̄0t,c − 𝜎̄st,c

)
𝑒
− 𝜀̄pl

𝑘t,c

)
,

(3.51)

Swift
Voce
Combination Swift/Voce

𝜎̄0

𝜎̄

𝜀pl

Figure 3.12: Hardening law definitions of Voce, Swift and the combined version
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where 𝜀0t,c and 𝑘 t,c are defined as

𝜀0t,c =

(
𝜎̄0t,c

𝐴t,c

) 1
𝑛t,c

and 𝑘 t,c =
𝜎̄st,c

𝐻0t,c
. (3.52)

Here the term 𝑚t,c balances the weight of the Voce and Swift hardening laws
on the combined hardening law. In case of 𝑚t,c = 1 only the Swift hardening
law is used and in case of 𝑚t,c = 0 the Voce hardening law is recovered.
Each hardening law requires only two parameters. For example, Swift defines
the parameter 𝐴 as a general measure of the rate of hardening and 𝑛 as the
decrement of this hardening. On the other hand Voce uses saturation flow stress
𝜎̄s and a parameter 𝑘 which is defined as a slope in the logarithmic stress ratio
vs. logarithmic strain space. Here the parameter 𝑘 is redefined as a quotient of
the saturation flow stress and the hardening modulus 𝐻0. Since for tension and
compression the initial yield stress 𝜎̄0 is known, the remaining five parameters
can be identified by a least square fit based on experimental results of uniaxial
tension and compression tests. In case of plasticity, the acting equivalent
plastic strain 𝜀pl at the end of each increment is not known. To determine
the equivalent plastic strain, it can be decomposed into the equivalent plastic
strain at the end of the last increment and the current equivalent plastic strain
increment

𝜀pl = 𝜀
𝑡
pl + Δ𝜀pl. (3.53)

The incremental equivalent plastic strain is defined here as

Δ𝜀pl =
√︁
𝑘Δ𝜺pl : Δ𝜺pl (3.54)

where 𝑘 depends on the plastic Poisson’s ratio 𝜈pl. For example, in case of von
Mises yield criterion and 𝜈pl = 0.5 the parameter 𝑘 results to 2/3. To determine
the general definition of 𝑘 a uniaxial load case is used. Here the equivalent
plastic strain is reduced to:

Δ𝜀pl =

√︂
𝑘

(
Δ𝜀pl

2
11 + Δ𝜀pl

2
22 + Δ𝜀pl

2
33

)
(3.55)
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and by substituting Equation (3.48) into the equation above, while enforcing
Δ𝜀pl = Δ𝜀pl11 then the parameter k is defined by

𝑘 =
1

1 + 2𝜈pl
. (3.56)

3.3.1.5 Strain-Rate Dependent Material Behavior

To extend the yielding behavior of the matrix by a strain-rate dependency,
several approaches are possible. For example, it is suitable to define the
hardening law based on the strain-rate or by scaling the yield surface itself. A
broad overview of different viscoplastic models is given by Souza Neto et al.
[162]. A definition of a strain-rate dependent plastic multiplier Δ𝜆pl has been
proposed by Perzyna [147, 148]. Such viscoplastic model is defined by

¤𝜆 =




1
𝜇

(
Φpl

2𝜎t𝜎c

) 1
ℎ
, Φpl ≥ 0

0, Φpl < 0
(3.57)

where 𝜇 is the viscosity-related parameter and ℎ is the rate sensitivity. Here ¤𝜆
defines the change due to a rate and can be discretized by ¤𝜆 = Δ𝜆pl/Δ𝑡. In case
Φpl ≥ 0 Equation (3.57) can be repositioned to

Δ𝜆pl

Δ𝑡
=

1
𝜇

(
Φpl

2𝜎t𝜎c

) 1
ℎ

⇔ 𝑅pl =

(
Δ𝜆pl𝜇

Δ𝑡

)ℎ
− Φpl

2𝜎t𝜎c
= 0, (3.58)

where 𝑅pl defines the viscoplastic consistency condition of the yield surface
Φpl. It should be noted that in case of 𝜇 = 0 and ℎ ≠ 0 the function 𝑅pl is
reduced to a strain-rate independent formulation. To identify the parameters
𝜇 and ℎ, experimental tension and compression tests at different strain-rates
are needed. Special care needs to be taken by determining the parameters of
the hardening law. Since these parameters are different for each strain-rate,
the definition of the hardening laws from Equation (3.58) represent the limit
case at 𝜇 → 0. Since the plastic strain from experimental tests is known,
the plastic multiplier Δ𝜆pl can be directly derived from Equation (3.47) by
solving to Δ𝜀pl11. In this case the plastic multiplier Δ𝜆pl is only dependent
on the parameter 𝛼 and therefore on 𝜈pl. Using experimental test results,
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the stress at every time step is known and the viscoplasticity parameters or
the hardening law parameters in Equation (3.58) can be obtained by using
a parameter optimization algorithm. To solve the viscoplastic consistency
condition for Δ𝜆pl a return mapping algorithm is used. The full derivation of
the return algorithm is given in Appendix A.1.1.1. Using the obtained solution
for Δ𝜆pl the stress state for a present strain state is defined and can be returned
to the solver. In addition to stress, the derivative of stress with respect to strain
(also known as the consistent tangent operator) is needed to achieve rapid
convergence. The required tangent operator is derived in Appendix A.1.1.1.

3.3.2 Damage Initiation and Evolution

Besides nonlinear behavior due to plasticity of the epoxy a further nonlinearity
results from progressive damage. To determine the initiation point of progres-
sive damage a failure criterion is used. Typically, damage is activated if the
value of a failure criterion is above one. For example, a uniaxial load leads
to a stress 𝜎 which cause damage above the material strength 𝑋 . Therefore,
if 𝜎/𝑋 > 1 progressive damage is activated. For polymer materials the yield
surface proposed by Tschoegel [149] can also be used as a failure surface by
replacing the hardening variables 𝜎t,c with the macroscopic material strengths
𝑋T and 𝑋C respectively. The failure index 𝑓M is then defined as follows

𝑓M =
6𝐽2 + 2 (𝑋C − 𝑋T) 𝐼1

2𝑋T𝑋C
. (3.59)

It should be noted that if the material strengths 𝑋T and 𝑋C are equal, the failure
initiation surface falls back to a simple von Mises failure criterion. Typically,
polymers such as epoxy are strain rate sensitive. This material behavior has
been shown in Figure 2.5. This strain rate sensitivity of the strengths is not
observed from experimental tests in Section 2.4.1 for the used epoxy system.
In other words the tensile and compressive strength of the epoxy is assumed to
be constant at different strain rates. After the failure criterion exceeds the value
of one, damage is initiated. There are several ways to model damage evolution.
The resulting stress is based on the actual value of the damage variables. By
using damage evolution laws two main groups are available: isotropic and
anisotropic damage (cf. Figure 3.13). In the case of isotropic damage, the
damage surface is represented by a sphere. On the other hand anisotropic
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Figure 3.13: Schematically understanding of isotropic (left) and anisotropic (right) dam-
age within an extracted cylindrical continuum

damage laws define slit damage surfaces, which account for different loading
directions and therefore cause a direction-dependent material response. This
behavior results from the assumption of the cross section area reduction due to
damage. If the initial cross section area 𝐴0 is reduced by the damage surface 𝐴D,
in case of isotropic damage the remaining cross section area remains the same
in each direction, even if the cylindrical continuum is rotated (cf. Figure 3.13).
However, in the case of anisotropic damage the remaining surface depends on
the orientation of the slit. For example, in transverse direction to 𝒏, which
represent the direction of the damage surface 𝐴D, the cross section of the
continuum equals the initial cross section area 𝐴0. Generally the effective
stress 𝝈̂, which represents the trial stress based on the current elastic strain, is
used to calculate the actual acting nominal stress 𝝈. The relation between the
effective stress and the nominal stress can be expressed via a damage tensorM
which is a forth-order tensor,

𝝈 = M : 𝝈̂. (3.60)

Using M an isotropic or an anisotropic damage model can be defined. As
discussed in Section 3.1 there are several published damage models available.
Here a simplified isotropic damage model is used to define the progressive
damage of the epoxy material. In the case of isotropic damage the damage
factorM is defined as follows

M = (1 − 𝑑) Is, (3.61)
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3.3 Constitutive Matrix Model

where 𝑑 is the isotropic damage variable. Combining Equations (3.60) and
(3.61) leads to a formulation of the constitutive equation using isotropic damage
evolution

𝝈 = M : 𝝈̂ = M : C : 𝜺el = CD : 𝜺el. (3.62)

3.3.2.1 Stress Decomposition

If an initial crack is created due to a tension load, the resulting crack will
have a direct effect on the stiffness of the isotropic material. However, if
the load is reversed and a compressive load is applied, the crack closes and
full stiffness of the material is recovered. Considering this effect at least two
separate damage variables need to be used to distinguish between positive
and negative damage. One of the main challenges modeling damage of an
isotropic material is to determine these two damage variables from a given
stress load. Simo [163, 164] proposed an approach to separate the strain load
into a positive and a negative part. The same approach can also be used to
determine the positive and the negative stress part. Such approach has been
used in several publications [150, 165–168]. It is assumed that a stress state
can be decomposed as follows

𝝈 = 𝝈+ + 𝝈− , (3.63)

where the subscript denotes the positive and negative stress tensor. To dis-
tinguish between these, a projection tensor P is used. Due to symmetry of
the stress tensor, such projection tensor must also be symmetric. The relation
between the positive and the negative stress part can then be expressed as

𝝈+ = P+ : 𝝈 and 𝝈− = P− : 𝝈 (3.64)

where P− is defined as follows

P− = Is − P+. (3.65)
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To determine the projection tensor the principal stresses 𝜎I, 𝜎II and 𝜎III with
the corresponding principal direction vectors 𝒆1, 𝒆2 and 𝒆3 are utilized. The
positive projection tensor P+ can then be expressed in index notation as

𝑃+𝑖 𝑗𝑘𝑙 =
3∑︁
𝑚=1

𝐻 (𝜎𝑚) 𝑒𝑚𝑖𝑒𝑚 𝑗𝑒𝑚𝑘𝑒𝑚𝑙 , (3.66)

where 𝐻 (·) is the Heaviside step function. For a better understanding of such
projection tensor let’s assume a triaxial load along each axis of the coordinate
system. In such case the stress tensor values along the main diagonal are equal
to the principal stresses. The corresponding principal directions yields the
axis of the coordinate system of the stress tensor. Here the following stress
state is assumed 𝜎I > 0, 𝜎II > 0 and 𝜎III < 0. Now if the positive and the
negative stress part are calculated, both positive stress components are the only
nonzero components along the main diagonal of 𝝈+. On the other hand 𝜎III
is the only nonzero component along the main diagonal of 𝝈− . It should be
noted that for both tensors, all off-diagonal components are zero. The sum
of both stress tensors result to the initial stress tensor containing positive and
negative components. If the trial stress tensor is decomposed into its positive
and negative part and by utilizing the relation between the nominal and the trial
stress tensor (cf. Equation (3.60)) the resulting damage stress can be expressed
by

𝝈 = M+ : 𝝈̂+ +M− : 𝝈̂− , (3.67)

where the damage tensorsM+ andM− are dependent on the damage variables
𝑑+ and 𝑑− respectively. By using these damage variables, stiffness recovery
can be modeled for isotropic materials after damage initiation. It should be
noted in case 𝑑+ < 𝑑− , the damage due to compression affects also the damage
variable due to tension. Therefore, the positive damage variable is updated by
the following rule:

𝑑+ = max
{
𝑑− , 𝑑+

}
. (3.68)

If the positive and negative stress (cf. Equation (3.64)) and the definition of
the trial stress 𝝈̂ from Equation (3.60) is substituted into Equation (3.67), a
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definition of the damage factor M based on the positive and negative damage
factorsM+, andM− can be obtained

𝝈 = M+ : 𝝈̂+ +M− : 𝝈̂− ⇔ M : 𝝈̂ = M+ : P+ : 𝝈̂ +M− : P− : 𝝈̂
⇒ M = M+ : P+ +M− : P− .

(3.69)

3.3.2.2 Damage Surface

To model damage it is necessary to ensure thermodynamic consistency. This
means that in case of damage the dissipated energy due to damage must be
positive and consistent with the amount of elastic energy loss. Following the
work of Cicekli [150] the definition of the specific Helmholtz free energy
can be decomposed to

𝜓 = 𝜓el + 𝜓pl + 𝜓d, (3.70)

where 𝜓el, 𝜓pl and 𝜓d represent the elastic, plastic and damage parts respec-
tively. The elastic Helmholtz free energy is determined from the damaged
material stiffness, which is dependent on the damage variables, and is given as

𝜓el =
1
2
𝜺el : CD : 𝜺el =

1
2
𝝈 : 𝜺el =

1
2

(
𝝈+ + 𝝈− ) : 𝜺el. (3.71)

By utilizing the definition of stress decomposition (cf. Equation (3.63)) and
the relation between trial and resulting stress using damage tensor M (cf.
Equation (3.60)), a further simplification can be made

𝜓el =
1
2
M : 𝝈̂ : 𝜺el. (3.72)

To obtain thermodynamic consistent damage evolution the dissipated energy
has to be positive. The rate of damage energy dissipation based on the damage
rate is given as:

𝑌+ ¤𝑑+ + 𝑌− ¤𝑑− ≥ 0, (3.73)

where𝑌 denote the positive and the negative thermodynamic forces, which are
the driving forces of the damage progression. Since the damage rate has to be
positive for further damage evolution, the rate of damage energy leads to the
condition that the driving forces𝑌 has also to be positive. The thermodynamic
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forces are defined by the derivative of the elastic Helmholtz free energy to
the damage variables

𝑌± = −𝜕𝜓el
𝜕𝑑±

= −1
2
𝜕M

𝜕𝑑±
: 𝝈̂ : 𝜺el =

1
2
P± : 𝝈̂ : 𝜺el. (3.74)

Furthermore, by using 𝑌 a definition of the damage surface can be formulated.
For each damage variable the damage surface is defined as

Φ±d = 𝑌± − 𝑌±D ≤ 0, (3.75)

where𝑌D defines the positive or negative damage isotropic hardening function.
It should be noted that 𝑌D is interpreted as the driving force to 𝑑 and can be
also derived from the damage part of the Helmholtz free energy 𝜓d. The
derivative of 𝜓d to 𝑑 yield then to

𝜕𝜓d
𝜕𝑑

= 𝑌D. (3.76)

3.3.2.3 Damage Evolution

Comparable to the plasticity model the evolution of the damage variables can
be obtained from the derivative of the damage surface Φd to the driving forces.
Since the damage hardening function 𝑌D is considered as a history term and
therefore not dependent on the current acting driving forces 𝑌 the damage
increment is given as:

Δ𝑑± = Δ𝜆±d
𝜕Φ±d
𝜕𝑌±

= Δ𝜆d. (3.77)

The Kuhn-Tucker conditions must be also fulfilled for damage evolution,

Φd ≤ 0, Δ𝜆d ≥ 0 and Δ𝜆dΦd = 0. (3.78)

It is obvious that damage progression occurs only in the case of Φd ≥ 0 and
the damage increment is positive since Δ𝜆d has to be positive per definition.
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3.3.2.4 Isotropic Damage Hardening Law

Damage evolution defines the stress softening after failure initiation. Similar
to plasticity the evolution can be defined by a hardening law. In this case the
evolution of the equivalent damage variable over the damage driving force is
defined. While the damage variable increases (hardening), at the same time
the stress response decreases (softening). For example, the simplest way to
model damage evolution is achieved with a linear softening of the stress over
the strain. Other damage models can model an exponential softening of the
resulting stress or even a constant stress, which is the limit case for all damage
models (cf. Figure 3.14). The general procedure to derive a damage model
is presented using the linear stress softening damage model. In Figure 3.15 a
1D linear elastic path of the stress is given. This path can be separated into
an area prior to damage initiation 𝑔0 and afterwards 𝑔d. The total area sums
up to the total available energy 𝑔 of the material. In general the energy of
the material 𝑔 can be experimentally determined. By calculating the energy
𝑔0 prior to damage initiation, the available energy 𝑔d for damage evolution
can be determined. Prior to failure initiation at 𝜎0 the damage variable 𝑑 is
equal to zero. Here the stress 𝜎0 can be interpreted as the material strength.
After failure initiation, the damage variable starts to grow until the strain 𝜀f is
reached. A certain strain 𝜀1 leads to 𝜎1 as a response of the reduction of the
initial material stiffness 𝐶 by the factor 1 − 𝑑. The gradient of 𝑑 is dependent
on 𝑔d. It is obvious that in case of 𝑑 = 1 for any strain state the stress will
remain zero. To determine the evolution of the damage variable 𝑑 based on the

linear
exponential
constant

𝜎0

𝜎

𝜀𝜀0 𝜀f

Figure 3.14: Schematic representation of different damage models with linear, expo-
nential and a constant stress softening

93



3 Constitutive Modelling of Fiber Reinforced Plastics Considering Draping Effects

𝜀0 𝜀f𝜀1

𝜎0

𝜎1
𝑔0 𝑔d

(1 − 𝑑)𝐶𝜀1

𝑔 = 𝑔0 + 𝑔d

𝜀

𝜎

Figure 3.15: Stress path of a triangular damage model based on the damage variable 𝑑

strain 𝜀 in conjunction with 𝑔d (and by noticing that 𝐶 = 𝜎0/𝜀0) the following
relation between the resulting stress and the stress path is used:

𝜎 = (1 − 𝑑)𝐶𝜀 !
= − 𝜎0

𝜀f − 𝜀0
(𝜀 − 𝜀f)

⇔(1 − 𝑑)��𝜎0
𝜀0
𝜀 = − ��𝜎0

𝜀f − 𝜀0
(𝜀 − 𝜀f) ⇔ 𝑑 =

𝜀f (𝜀 − 𝜀0)
𝜀 (𝜀f − 𝜀0) ,

(3.79)

where the total failure strain 𝜀f is defined as a function of 𝑔d

𝜀f = 𝜀0 + 2𝑔d
𝜎0

. (3.80)

The definition of the damage variable for the 1D stress path can also be used
for the 3D stress state. This is permissible because the 1D stress path can be
derived from the 3D stress state. However, the acting strain tensor 𝜺 needs to be
reduced to a scalar in order to be used as input for damage variable evolution.
This definition of 𝑑 is only valid within the damage evolution region. Since
the damage variable 𝑑 is calculated only after failure initiation and up to total
failure strain 𝜀f, a full definition of the damage variable 𝑑 using a piecewise
function of 𝑑 is given as:

𝑑 =




0, 𝜀 ≤ 𝜀0
𝜀f (𝜀−𝜀0 )
𝜀 (𝜀f−𝜀0 ) , 𝜀0 ≤ 𝜀 ≤ 𝜀f

1, 𝜀 ≥ 𝜀f.

(3.81)
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Using the same procedure the damage evolution of the exponential and the
constant stress softening can be obtained:

𝑑exp = 1 − 𝜀0
𝜀

exp
(
−𝜎0
𝑔d
(𝜀 − 𝜀0)

)
(3.82)

𝑑const = 1 − 𝜀0
𝜀
. (3.83)

If the damage evolution function (cf. Equation (3.75)) is used to determine the
damage propergation a relation between the damage driving force 𝑌 and the
damage variable 𝑑 is needed. In general the following definition is applied to
the positive and the negative damage evolution law. In the following a uniaxial
tensile load𝜎11 > 0 where 𝜺 = 𝜺el is assumed. Therefore, the projection tensor
P can be neglected since 𝜎11 is the only nonzero term of the stress tensor 𝝈̂.
Since the relation between the strain components at a uniaxial load is known
(cf. Equation (3.48)) and by using the formulation of the stiffness tensor C for
isotropic materials based on the Young’s modulus 𝐸 and the Poisson’s ratio 𝜈
the resulting damage driving forces can be simplified to

𝑌 =
1
2
𝝈̂ : 𝜺 =

1
2
𝜺 : C : 𝜺 =

1
2
𝐸𝜀2

11. (3.84)

For the sake of clarity the index of the strain and stress will be dropped from
now on. At damage initiation a specific initial damage driving force 𝑌0 need
to be exceeded for damage evolution. For a uniaxial load case this point can
be expressed as:

𝑌0 =
1
2
𝝈0𝜺0 =

1
2
𝐸𝜀2

0. (3.85)

By solving Equation (3.79) to the strain 𝜀 and substituting the failure 𝜀f by
Equation (3.80) the damage driving force from Equation (3.84) can be ex-
pressed as follows

𝑌 =
1
2
𝐸𝜀2 = 𝑌0

(𝑔d + 𝑌0)2
((1 − 𝑑) 𝑔d + 𝑌0)2

. (3.86)

In the same manner the exponential damage evolution law can be used to define
the damage driving force. To find an adequate solution a new relation between
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𝜀 and 𝜀0 is introduced. By assuming that 𝜀 is a multiple of 𝜀0 a ratio between
𝑌 and 𝑌0 can be derived

𝜀 = 𝑟y𝜀0 ⇒ 𝑟y =

√︂
𝑌

𝑌0
. (3.87)

Now by substituting the strain 𝜀 in Equation (3.82) by using the equation above,
the exponential damage evolution based on damage driving force 𝑌 yields

1 − 𝑑exp =
𝜀0
𝜀

exp
(
−𝜎0
𝑔d
(𝜀 − 𝜀0)

)

⇔1 − 𝑑exp =
1
𝑟y

exp
(
−𝜎0
𝑔d

(
𝑟y𝜀0 − 𝜀0

) )

⇔𝑌 =

√
𝑌0𝑌

1 − 𝑑exp
exp

(
− 1
𝑔d

(√︁
𝑌0𝑌 − 𝑌0

))
.

(3.88)

It is obvious that this equation has no closed solution and need to be solved
iteratively. Using the assumed relation between 𝜀 and 𝜀0 also the damage
evolution for a constant stress can be derived

𝑑const = 1 − 𝜀0
𝜀

= 1 −
√︂
𝑌0
𝑌
. (3.89)

Each damage evolution law can be solved to the damage variable 𝑑. This
allows to calculate a closed solution of 𝑑 for a given damage driving force 𝑌 .
An example of each damage law using the same energy 𝑔d and the same initial
driving force 𝑌0 is visualized in Figure 3.16. Even though the same 𝑔d value is
used, the hardening of each damage law is different. For all laws the rate of the
damage growth is dependent on the value of the initial damage driving force
𝑌0. Additionally, the hardening rate of the linear and the exponential damage
law is highly affected by 𝑔d. For very high values of 𝑔d, the damage evolution
for a constant stress represents a limit case for the linear and exponential stress
softening case. Although the damage evolution law of a linear stress softening
is very simple and easy to implement, the transition at 𝑑 = 1 leads to a vertex
and is therefore not differentiable at this point. Therefore, the exponential
damage evolution law is used to determine the matrix damage behavior. In
combination with the damage surfaceΦd from Equation (3.75) the history term
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linear
exponential
constant

1
𝑑

𝑌𝑌0

Figure 3.16: Examples of different damage evolution law based on the same energy 𝑔d
and the same initial driving force 𝑌0

𝑌D is then defined by Equation (3.88) and the damage variable for tension and
compression results to

0 = Φ±d = 𝑌± − 𝑌±D = 𝑌± −

√︃
𝑌±0 𝑌

±

1 − 𝑑±exp
exp

(
− 1
𝑔±d

(√︃
𝑌±0 𝑌

± − 𝑌±0
))

⇔𝑑±exp = 1 −
√︄
𝑌±0
𝑌±

exp
(
− 1
𝑔±d

(√︃
𝑌±0 𝑌

± − 𝑌±0
))
.

(3.90)

As the initial damage driving force 𝑌0 is dependent on the strain at failure
initiation, this strain value should be known to capture the damage evolution
correctly. This is crucial as the material point deformation can change and
lead to a different location of the stress on the damage surface. To deter-
mine the initial damage driving force 𝑌0, a specific procedure is introduced in
Appendix A.1.1.2.

3.3.2.5 Viscous Regularization

Damage models create a softening behavior of the stress due to stiffness degra-
dation. Such conditions show severe convergence difficulties for an implicit
solver, such as Abaqus/Standard. To overcome these difficulties, a viscous reg-
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ularization scheme is used. This approach is as the name says a time dependent
approach. Here the Duvaut-Lions regularization model [169] is used

¤𝑑v =
1
𝜇d
(𝑑 − 𝑑v) , (3.91)

where 𝜇d denotes a viscosity coefficient representing the relaxation time of the
damage evolution and 𝑑v is the regularized damage variable. Since 𝑑 − 𝑑v ≥ 0
and by using the backward Euler scheme, the damage variable at 𝑡 + Δ𝑡 results
to

𝑑v𝑡+Δ𝑡 = 𝑑v𝑡 + Δ𝑑v, (3.92)

where Δ𝑑v can be obtained from Equation (3.91) by discretization of ¤𝑑v as
follows

Δ𝑑v
Δ𝑡

=
1
𝜇d
(𝑑𝑡+Δ𝑡 − 𝑑v𝑡+Δ𝑡 ) . (3.93)

If Δ𝑑v is substituted in Equation (3.92) and solved to 𝑑v𝑡+Δ𝑡 the regularized
damage variable results to

𝑑v𝑡+Δ𝑡 =
Δ𝑡

Δ𝑡 + 𝜇d
𝑑𝑡+Δ𝑡 + 𝜇d

Δ𝑡 + 𝜇d
𝑑v𝑡 . (3.94)

Two limiting cases can be observed:

• For 𝜇d → 0 the regularized damage variable 𝑑v𝑡+Δ𝑡 results to 𝑑𝑡+Δ𝑡 . This
solution correspond to a rate-independent formulation of the damage
variable.

• For 𝜇d → ∞ the regularized damage variable 𝑑v𝑡+Δ𝑡 results to 𝑑v𝑡 . In
this case no damage evolution is present.

It should be noted that the value of 𝜇d needs to be small compared to the
time increment Δ𝑡. Otherwise, the results will be falsified due to very slow
damage evolution. To determine a proper ratio between convergence of the
simulation and accuracy of the results either a study with varying 𝜇d values
need to be performed or the ratio between the dissipated energy due to viscous
regularization and the damage energy for the whole part should not exceed
e.g., a value of 0.1. With the definition of the viscous damage variables, the
updated stress can be returned to the solver. As for the matrix plasticity the

98



3.4 Constitutive Fiber Model

consistent tangent operator is also required to achieve rapid convergence. The
full derivation of the tangent operator can be found in Appendix A.1.1.2.

3.4 Constitutive Fiber Model

At the micro scale both constituents, matrix and fiber, require a suitable con-
stitutive model. While glass fibers are considered to be isotropic and the
constitutive law requires only two parameters to model the stiffness, this is not
the case for anisotropic fibers such as carbon fibers. Such fibers are considered
to be a transversely isotropic material. Therefore, five independent material
parameters are needed to describe the material stiffness. According to Vogler
[99] the tensorial definition of a transversely isotropic material reads

CTI = 𝜆TI𝑰 ⊗ 𝑰 + 2𝜇TI
T I

s + 𝛼TI (𝑨 ⊗ 𝑰 + 𝑰 ⊗ 𝑨)
+ 2

(
𝜇TI

L − 𝜇TI
T

)
IA + 𝛽TI𝑨 ⊗ 𝑨,

(3.95)

where 𝑨 and IA are defined as

𝑨 = 𝒂 ⊗ 𝒂 (3.96)

𝐼A𝑖 𝑗𝑘𝑙 =
1
2

(
𝛿𝑖𝑘𝑎 𝑗𝑎𝑙 + 𝛿𝑖𝑙𝑎 𝑗𝑎𝑘 + 𝛿 𝑗𝑙𝑎𝑖𝑎𝑘 + 𝛿 𝑗𝑘𝑎𝑖𝑎𝑙

)
(3.97)

and 𝜆TI, 𝛼TI, 𝜇TI
𝐿 , 𝜇TI

𝑇 and 𝛽TI are the five invariant material coefficients of CTI.
The vector 𝒂 denotes the axis normal to the plane of isotropy, which coincides
with the fiber direction in case of both carbon fibers and UD fiber reinforced
composites. Here the direction of the axis is considered to be along the 𝑥-axis
direction and is therefore set to

𝒂 =
(
1 0 0

)⊤
. (3.98)

Since material parameters are measured in engineering coefficients, such as
Young’s moduli 𝐸 f

1 and 𝐸 f
2, the Poisson’s ratio 𝜈f

12 and the shear moduli 𝐺f
12

and 𝐺f
23, a conversion of the invariant coefficients to the engineering ones
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is needed. Using the defined orientation of the normal axis 𝒂 the invariant
coefficients result to

𝜇TI
L = 𝐺f

12, 𝜆TI =
1
𝐷f

(
𝐸 f

2

(
𝜈f

23 + 𝜈f
12𝜈

f
21

))
,

𝜇TI
T = 𝐺f

23, 𝛼TI =
1
𝐷f

(
𝐸 f

2

(
𝜈f

12𝜈
f
23 + 𝜈f

12

))
− 𝜆TI,

𝛽TI =
1
𝐷f

(
𝐸 f

1

(
1 − 𝜈f

23𝜈
f
32

)
+ 𝐸 f

2

(
1 − 𝜈f

12

(
𝜈f

21 + 2
(
1 + 𝜈f

23

))))
− 4𝐺f

12

(3.99)

with
𝐷f = 1 − 𝜈f

23𝜈
f
32 − 2𝜈f

12𝜈
f
21 − 2𝜈f

23𝜈
f
21𝜈

f
12. (3.100)

For clarity reasons the denotation ’f’ is dropped in the following sections. The
presented model covers the elastic transversely isotropic material behavior,
which is extended by the nonlinear material behavior in fiber direction [23]. As
the fiber has a very high stiffness, compared to the polymer matrix, it is assumed
that applied stress states would only lead to failure in fiber direction. All other
damage processes take place within the matrix or interface between fiber and
matrix itself. Therefore, the failure initiation is triggered only by exceeding
the material strength in fiber direction. An isotropic damage evolution is
considered in order to avoid any spurious results in other material directions.
Due to reasons mentioned in Section 3.2, especially for the fiber material the
strain needs to be defined in the material axes coordinate system.

3.4.1 Nonlinear Material Behavior

Material behavior of carbon fibers is generally modeled linear elastic. However,
experimental tests on single carbon fibers have shown that nonlinear behavior
in fiber direction can be observed [21–23, 81]. According to various studies
the axial misorientation of the crystallites in a carbon fiber are responsible to
the nonHookean material behavior. This leads to the phenomenon that the
Young’s modulus in fiber direction increases for tension loads and decreases
for compression loads [21]. The change of the modulus is dependent on the
current strain in fiber direction 𝜀11. Such material behavior has been observed
for Toray T300 carbon fibers with a modulus of about 222 GPa, but also for
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carbon fibers with a very high modulus, such as Toray M50J, of about 475 GPa
[23] (cf. Figure 3.17). Neglecting such material behavior would lead to an
underestimation of the actual stress in fiber direction. For example, for a Toray
T300 carbon fiber, the increase of the modulus per 1 % strain is about 55 GPa.
This lead to stress of 2.77 GPa at 1 % strain. On the other hand if a constant
modulus is used, this leads to a stress of 2.22 GPa at 1 % strain, which is 20 %
lower than the real stress. According to experimental results of Kant et al.
[23], they suggest a universal constant relation between the static modulus
𝐸 f,init

1 and the resulting modulus, independent of the PAN based carbon fiber
type, if strain in fiber direction is applied. This relation is given by

𝐸1 = 𝐸 f,init
1 +

(
29.4𝐸 f,init

1 − 1010 GPa
)
𝜀11. (3.101)

If the static modulus of the fiber is known then the slope of the modulus is also
defined. For a different fiber type using the slope of the modulus over strain
(cf. Figure 3.17), the strain dependent modulus can also be expressed by

𝐸1 = 𝐸 f,init
1 + Δ𝐸

Δ𝜀
𝜀11 = 𝐸 f,init

1 + 𝑚f𝜀11 (3.102)
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Figure 3.17: Experimental results of the stiffness of different carbon fibers over
strain [23]
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where 𝐸 f,init
1 is the static modulus of the fiber and𝑚f is the slope of the modulus

over strain. The resulting stress over strain for uniaxial tensile and compressive
load cases is given exemplary in Figure 3.18. Using this formulation of the
modulus requires some attention to ensure symmetry of the stiffness tensor.
The new definition of the modulus also affects the Poisson’s ratio 𝜈12. Due to
symmetry of the stiffness tensor, the relation between 𝐸1 and 𝐸2 is given by

𝜈12
𝐸1

=
𝜈21
𝐸2
. (3.103)

Assuming that the later quotient is constant leads to a new definition of the
Poisson’s ratio 𝜈12

𝜈12 =
𝜈f,init

12

𝐸 f,init
1

𝐸1 (3.104)

where 𝜈f,init
12 is the static Poisson’s ratio of the carbon fiber.

constant 𝐸1
tensile load
compressive load

|𝜎 |

|𝜀 |

Figure 3.18: Nonlinear material behavior of a carbon fiber if tensile or compressive
load is applied

3.4.2 Damage Initiation and Evolution

3.4.2.1 Failure Criteria

In addition to the material stiffness of the carbon fiber, the strength is needed
to determine the point of damage initiation. Although the tensile strength
in fiber direction can be measured, the strength in other directions, such as
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tensile and compressive strength transverse to the fiber direction or longitudinal
and transverse shear strength, is in general not available. There are some
publications which deal with tensile and compressive strength (𝑋T and 𝑋C) of
single carbon fibers in fiber direction [62, 63]. In comparison, it is shown that
Toray T800S fibers have a compressive to tensile strength ratio of 𝑋C/𝑋T ≈ 0.5,
while Toray T300 fibers have a ratio of 𝑋C/𝑋T ≈ 1. Since the stiffness of
the fiber is much higher than the surrounding matrix, it is assumed that in
case of transverse or shear loads the failure would occur within the matrix
or the interface between both. Due to lack of experimental data regarding
further strength values of the fiber and the significance of the strength in
fiber direction for the composite material, only the failure initiation in fiber
direction is evaluated. Here a maximum stress criterion is used for tension and
compression

𝑓t =
𝜎̂11
𝑋T

and 𝑓c =
|𝜎̂11 |
𝑋C

, (3.105)

where 𝑋T and 𝑋C are the strength in tensile and compressive direction respec-
tively.

3.4.2.2 Damage Hardening Law and Damage Evolution

Based on the failure criteria, the stress in fiber direction needs to exceed the
strength to initialize damage evolution. The propagation of the damage affects
the material stiffness. Here the degradation of the stiffness is similar to the
matrix material and is considered to be isotropic.

𝝈 = (1 − 𝑑) CTI : 𝜺̂el (3.106)

According to explanations in Section 3.3.2, there are several approaches to
define the damage hardening law. As for the matrix material, the exponential
damage evolution law is used (cf. Equation (3.90)). Furthermore, also two
damage variables 𝑑± are used to distinguish between positive and negative
damage. Due to the effect of the negative damage variable on the resulting
stress in case of tension the update of the positive damage variable is defined
by Equation (3.68). Here the damage driving force 𝑌 is defined as

𝑌± =
1
2
𝜎̂11𝜀11, (3.107)
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where the distinction between the positive and the negative damage driving
force is determined by the sign of the stress 𝜎̂11. This includes that only the
stress in fiber direction is responsible for further damage evolution. To deter-
mine the initial damage driving force 𝑌±0 the corresponding scaling factor is
needed. By using the definition of the failure initiation criterion (cf. Equa-
tion (3.105)) and by applying the scaling factor to the trial stress, the scaling
factor results in an inverse definition of the failure criterion

𝑓t,c =
𝜆±0 |𝜎̂11 |
𝑋T,C

!
= 1⇔ 𝜆±0 =

𝑋T,C

|𝜎̂11 | . (3.108)

This definition lead to an initial damage driving force 𝑌±0 based on the current
acting damage driving force

𝑌±0 = 𝜆±0
2𝑌±. (3.109)

To prevent convergence issues during stress softening, the same viscous regu-
larization scheme as for the matrix material is used to determine the viscous
damage variable 𝑑±v (cf. Equation (3.94)). Since no plastic behavior occurs,
only the elastic energy 𝑔0

±
el defines the energy 𝑔±0 prior to failure initiation.

The resulting energy 𝑔±d is defined according to the matrix model, given in
Equation (A.53). Using 𝑌±, 𝑌±0 and 𝑔±d the damage evolution law according
to Equation (3.90) is defined and the resulting stress 𝝈 can be returned to the
solver. In addition, the consistent tangent operator which is needed for a rapid
convergence is derived in Appendix A.1.2.1. It is also returned to the solver.

3.5 Constitutive Model for Composites

The combination of the material behavior of fiber and matrix leads to the
material behavior of the composite material. In this section the nonlinear
material behavior resulting from the matrix and the fiber are combined in
a macroscopic constitutive model. Especially for composite materials the
definition of the material axes is crucial. As discussed in Section 3.2 the
nonlinear strain measure with the non-orthogonal material frame is applied
here. The macroscopic material behavior in fiber direction is dominated by
the nonlinear behavior of the fiber. Therefore, the same approach as for
the fiber material is utilized here, but with adapted FVC-dependent material
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parameters. Besides elastic behavior, plasticity within the matrix takes place.
A plasticity model by Thomson et al. [101] is used here. One advantage
of this model is that it can be directly combined with the failure criteria
developed by Puck [139]. The developed damage model distinguishes between
different failure modes and considers the cracking direction caused by inter
fiber failure. To cover the material behavior in conjunction with draping effects,
the model is extended in order to consider not only the fiber orientation, but
also varying fiber volume content and fiber waviness. As the elastic material
parameters and the material strength values depend on the FVC, they are
defined as a function of the FVC. In order to consider the material behavior
due to waviness, an amplitude to wavelength dependent material response is
developed. It utilizes the developed model for nonundulated laminates by
assuming piecewise unidirectional behavior of the undulated region.

3.5.1 Nonlinear Material Behavior

3.5.1.1 Nonlinear Behavior in Fiber Direction

Since composite materials are considered to be transversely isotropic, only
five material parameters, as for the carbon fiber material model, are needed to
define the material stiffness. The inverse of an orthotropic composite material
compliance 𝑺 leads to the corresponding material stiffness 𝑪

𝑪 = 𝑺−1 =

©­­­­­­­­­­
«

1
𝐸1

− 𝜈21
𝐸2
− 𝜈31
𝐸3

0 0 0
− 𝜈12
𝐸1

1
𝐸2

− 𝜈32
𝐸3

0 0 0
− 𝜈13
𝐸1
− 𝜈23
𝐸2

1
𝐸3

0 0 0
0 0 0 1

𝐺12
0 0

0 0 0 0 1
𝐺13

0
0 0 0 0 0 1

𝐺23

ª®®®®®®®®®®¬

−1

. (3.110)

In case of transverse isotropy the following equality of the material parameters
𝐸3 = 𝐸2, 𝜈13 = 𝜈12, 𝜈31 = 𝜈21, 𝜈32 = 𝜈23 and 𝐺13 = 𝐺12 is given. For the full
definition of the material stiffness see Appendix A.1.3.1. However, as discussed
in Section 3.4.1, by using carbon fibers the material response in fiber direction
is nonlinear due to axial misorientation of the crystallites within the fiber. In
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such case modulus in fiber direction 𝐸1 of CFRP is one of the sources for
nonlinear behavior. In addition, the nonlinear behavior is superimposed with
intrinsic fabric undulations. These also lead to an initially reduced stiffness
in fiber direction. According to experimental measurements performed by
Wilhelmsson et al. [170], the mean angle of the intrinsic undulation ranges
between 1.3◦ to 3.1◦. Using the mean undulation angle of 3.1◦ would lead up to
5 GPa stiffness decrease in fiber direction. However, the intrinsic undulations
have a smaller impact on the resulting modulus 𝐸1 compared to the impact of
the carbon fiber itself. By analyzing the experimental results of the modulus
change d𝐸1/d𝜀11 (cf. Figure 2.9), the increase or decrease of the modulus 𝐸1
due to carbon fiber ranges between 1.04 TPa to 1.3 TPa [47].

For a given constant FVC, the resulting modulus 𝐸1 can be determined by
utilizing Equation (3.102) and replacing 𝐸 f,init

1 and 𝑚f by FVC-dependent
ones. As for the fiber material to ensure symmetry of the stiffness matrix, the
Poisson’s ratio 𝜈12 needs to be adjusted corresponding to Equation (3.104).
A more general approach, which uses the FVC to determine modulus 𝐸1 and
Poisson’s ratio 𝜈12, will be presented in Section 3.5.5.1.

3.5.1.2 Action Plane based Plasticity

As observed from experimental results, the matrix material shows a viscoplastic
material behavior (cf. Section 2.4.1), which affects the material behavior of the
composite. Several approaches are available to model plasticity of composites
[96–101]. As for the matrix material the yielding of the composite is dependent
on the applied hydrostatic pressure [171–174], which controls the initial yield
stress of the composite. While the yield surface of the matrix is defined along
the hydrostatic axis, this is not mandatory for a transversely isotropic material
due to the reinforcing fiber. As discussed previously the failure of the matrix
material can also be derived by using the yield surface, while the yield stresses
in tension and compression are replaced by the corresponding strength of the
material (cf. Section 3.3.2). If now a failure envelope for matrix dominant
failure in composites is found, a transfer of the relation between the yield and
failure surface of the matrix can be made. Since in fiber direction the fiber
itself is responsible for failure of the composite, all transverse loads will lead
to matrix dominant failure. According to Mohr [175] the fracture of brittle
materials, such as composites, is determined by the stresses on the action
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plane. For transversely isotropic materials one can use the fiber direction as
the rotation axis and rotate the stress to evaluate different action plane stresses

𝝈ap = 𝑹ap
⊤𝝈𝑹ap =

©­­«
𝜎11 𝜏n1 𝜏t1

𝜏n1 𝜎n 𝜏nt

𝜏t1 𝜏nt 𝜎t

ª®®¬
, (3.111)

where 𝑹ap is the rotation matrix and is defined as

𝑹ap =
©­­«
1 0 0
0 cos 𝜃ap − sin 𝜃ap

0 sin 𝜃ap cos 𝜃ap

ª®®¬
(3.112)

and 𝜃ap is the action plane angle. Generally this angle is not known and need
to be determined. Such approach, to use action plane stress dependent failure,
has been addressed in several publications [139, 176, 177]. Puck [139] has
provided a formulation of the matrix dominant inter-fiber failure for composite
materials by using action plane dependent stresses. This formulation allows
to determine the fracture plane 𝜃fp, which results from the maximum value
of the failure index given at each action plane angle 𝜃. A more detailed
discussion to determine the fracture plane 𝜃fp is presented in the next section.
This failure criterion is based on the action plane stresses 𝜎n, 𝜏n1 and 𝜏nt (cf.
Figure 3.19). These stress components result by rotating the stress tensor along
the fiber direction by the angle 𝜃fp. A visualization of the resulting stresses
on the fracture plane is given in Figure 3.19. If the failure surface is used

Figure 3.19: Resulting fracture plane stresses 𝜎n, 𝜏n1 and 𝜏nt at fracture plane an-
gle 𝜃fp [9]
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as the yield surface for composites, the nonlinear material behavior due to
plasticity can be modeled. Such approach is used by Thomson et al. [101].
While Puck’s surface is similar to the parabolic shaped one used for the matrix
(cf. Figures 3.11 and 3.20a), Thomson et al. [101] used a simple Drucker-
Prager-type yield surface for the plasticity (cf. Figure 3.20b). The usage of
such a yield surface results from the facts, that a linear correlation between
the 𝜎n stress and the yield onset at different hydrostatic stresses has been
experimentally observed [173], which is satisfied by the Drucker-Prager-
type yield surface. Such yield surface can be expressed by the equivalent
stress 𝜎̄ap and the hardening law 𝜏y as follows

Φap = 𝛼ap𝜎n +
√︃
𝜏2

n1 + 𝑒ap𝜏
2
nt︸                      ︷︷                      ︸

𝜎̄ap

−𝜏y = 0, (3.113)

where 𝛼ap defines the slope along the 𝜎n axis, 𝑒ap defines the ellipticity of the
surface in the (𝜏n1, 𝜏nt)-plane and 𝜏y defines the isotropic hardening function.
Originally the hardening function is extended to a strain rate dependency.
However, as the experimental tests are all performed under quasi-static loads,
a rate independent hardening function is used here. The flow potential 𝑔ap is
used to define the plastic flow rule

𝑔ap = 𝛽ap𝜎n +
√︃
𝜏2

n1 + 𝑓ap𝜏
2
nt, (3.114)

(a)

σn

τnt

τn1

(b)

Figure 3.20: Fracture surface according to Puck (visualized by Knops [9]) in the (𝜎n,
𝜏n1, 𝜏nt)-space (a) and Drucker-Prager-type yield surface used by Thom-
son et al. [101] (b)
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where 𝛽ap corresponds to the dilatancy coefficient in a Drucker-Prager model
and 𝑓ap defines the elliptical shear flow interaction in the (𝜏n1, 𝜏nt)-plane. It
can be noticed that such flow potential leads to a nonassociative flow rule
definition. The associative flow rule is recovered if 𝛽ap = 𝛼ap and 𝑓ap = 𝑒ap
is used. By determining the derivative of the flow potential 𝑔ap to the action
plane stress tensor 𝝈ap the flow rule is given by

Δ𝜺pl,ap = Δ𝜆ap
𝜕𝑔ap

𝜕𝝈ap
= Δ𝜆ap

©­­­­­«
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(3.115)
where Δ𝜆ap is the action plane dependent plastic multiplier for composite
materials. Similar to the matrix plasticity the Kuhn-Tucker conditions must
be also fulfilled here. It is obvious that for such plasticity model no plastic
strain in fiber direction or perpendicular to the (1, 𝑛)-plane occur. In order to
determine the plastic strain increment based on the yield surface, the isotropic
hardening function 𝜏y is utilized. Generally 𝜏y defines the plastic behavior of
a material under a uniaxial stress load (e.g., shear stress load due to torsion).
Here the material response between strain and stress can be directly correlated
to each other. However, for a more general load case a complex strain state
needs to be reduced to an equivalent scalar plastic strain 𝜀pl,ap. Noticing that the
plastic strain increment is based on the stress at the end of the time increment
and by using the work conjugacy due to plasticity, the equivalent plastic strain
Δ𝜀pl,ap can be obtained

∫ 𝑡+Δ𝑡

𝑡
𝝈apd𝜺pl,ap =

∫ 𝑡+Δ𝑡

𝑡
𝜎̄apd𝜀pl,ap

⇔1
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(
𝝈ap

��
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��
𝑡

)
: Δ𝜺pl,ap =
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��
𝑡+Δ𝑡 + 𝜎̄ap

��
𝑡

)
Δ𝜀pl,ap

⇔Δ𝜀pl,ap =

(
𝝈ap

��
𝑡+Δ𝑡 + 𝝈ap

��
𝑡

)
: Δ𝜺pl,ap

𝜎̄ap
��
𝑡+Δ𝑡 + 𝜎̄ap

��
𝑡

.

(3.116)

Utilizing the definition of the equivalent plastic strain 𝜀pl,ap, a correlation
between the isotropic hardening function 𝜏y and the acting plastic strain 𝜺pl,ap
can be defined. The definition of the isotropic hardening function 𝜏y is adapted
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to experimental results in conjunction with the equivalent plastic strain 𝜀pl,ap.
Following the hardening function of the matrix (cf. Equation (3.51)), a similar
function can be defined for the composite

𝜏y = 𝑚t,c𝐴t,c
©­«
(
𝜏init

y

𝐴t,c

) 1
𝑛t,c

+ 𝜀pl,ap
ª®¬
𝑛t,c

+ (
1 − 𝑚t,c

) (
𝜏s +

(
𝜏init

y − 𝜏s
)
𝑒
− 𝜀̄pl,ap𝜏s

𝐻0t,c

)
,

(3.117)
where 𝜏init

y denotes the yield onset. In contrast to the matrix hardening function
no difference between plasticity evolution under tension and compression loads
is assumed. For example, its definition can be obtained from an in-plane shear
load case. In such case the fracture angle results to 𝜃fp = 0◦ where the only
nonzero component is 𝜏n1, which is equivalent to𝜎12, and the equivalent plastic
strain 𝜀pl,ap yields 𝛾pl12. Furthermore, to determine the parameters 𝛼ap and
𝑒ap the yield onset at different stress loads is needed. For example, such stress
cases can be generated by off-axis tension or compression tests. The remaining
parameters 𝛽ap and 𝑓ap are determined from a least square fit using also off-axis
coupon tests.

To solve the action plane based yield surface and thus obtain the plastic strain
a return mapping algorithm is used (see Appendix A.1.3.2). With the derived
equations, the return mapping algorithm can be performed to determine the
plastic corrector Δ𝜆ap for a given action plane stress state. Afterwards plastic
strain increment Δ𝜺pl,ap and action plane stress 𝝈ap need to be rotated back
to the initial coordinate system. This allows to store the plastic strain 𝜺pl in a
reference coordinate system, since the fracture plane angle can change during
load propagation. The resulting stress 𝝈̃ defined in the reference coordinate
system is then used to check whether failure initiation occurred or not. In case
the applied trial stress 𝝈̂ does not exceed the yield surface Φap the stress after
plasticity is set to the trial stress 𝝈̃ = 𝝈̂.

3.5.2 Failure Initiation

Compared to isotropic materials, composites have a different and complex fail-
ure behavior. For example, only two strength values (tensile and compressive
strength) are required to determine failure initiation of isotropic materials (cf.
Section 3.3.2). On the other hand transversely isotropic composites require the
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following strength values: tensile and compressive strength in fiber (𝑋T and
𝑋C) and transverse direction (𝑌T and 𝑌C) and additionally the in-plane shear
strength 𝑆12 as also the out-of-plane shear strength 𝑆23. By using these param-
eters a maximum stress criterion for each in-plane loading direction could be
used. However, based on experimental results a strong interaction between the
components of the stress tensor, which lead to inter-fiber failure (IFF) or fiber
failure (FF), is observed. There are several failure initiation criteria available
to predict composite failure (e.g., [73, 93–95]). This circumstance led to a
competition of different failure initiation and damage evolution approaches
to evaluate their capabilities and differences [107, 178–180]. As a result the
failure criterion according to Puck [139] is able to predict experimental results
for complex stress states by using only experimental results of unidirectional
tests as input data. The main difference to most other approaches is the fact that
Puck utilizes action plane dependent fracture for IFF, while other approaches
predict failure independent of the actual fracture plane. The LaRC failure
criteria [73] are also based on Mohr’s idea, that failure of brittle materials is
driven by the action plane. In this work, the failure criteria of Puck are used as
the plasticity model relies on the action plane predicted from Puck’s criteria.
For example, compression test results on coupons with fiber angles between
45◦ and 90◦ showed fracture angles in a range of 40.1◦ to 59.1◦ [53]. Using
Puck’s failure criterion allows to determine such fracture angles for complex
three-dimensional stress loads. As shown in Figure 3.20a the fracture surface
is defined in the (𝜎n, 𝜏n1, 𝜏nt)-space. Failure is initiated if the fracture surface
is exceeded for a given stress state. Within the surface the ratio between the
length of the actual stress vector and the length of a fracture stress vector, which
has the same direction but leading to the fracture, is called stress exposure 𝑓IFF.
This ratio can be considered as a failure index. It increases linearly with the
applied stress and is a direct measure for the risk of fracture [93]. Along the
normal direction 𝜎n, the surface can be distinguished into a positive and a
negative part. This leads to the definition of the Puck IFF criterion [139]
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(3.118)
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where the expression

𝑝t,c
Ψ

𝑆Ψ
=
𝑝t,c

nt

𝑆
ap
23

cos2 Ψ + 𝑝
t,c
n1
𝑆12

sin2 Ψ (3.119)

denotes the ratio between the slope (so called inclination parameter) of the
fracture surface 𝑝t,c

Ψ at 𝜎n = 0 and the term 𝑆Ψ, which depends on the angle
Ψ (cf. Figure 3.19) and defines a strength value between 𝑆12 and 𝑆ap

23. The
superscript of the inclination parameter 𝑝t,c denotes two possible cases: tension
(t) and compression (c). The strength 𝑆ap

23 does not represent the actual shear
strength in the (2,3)-plane. Instead, it defines the resistance of the action plane
against 𝜏nt shear stress. This strength can be determined from the transverse
compressive strength 𝑌C and the inclination parameter 𝑝c

nt at 𝜎n = 𝜏n1 = 0

𝑆
ap
23 =

𝑌C

2
(
1 + 𝑝c

nt
) . (3.120)

It is obvious that in case of 𝜎n = 0 the failure criterion is reduced to a simple
quadratic formulation of the failure envelope in the (𝜏n1, 𝜏nt)-plane. Further,
in case of 𝜎n = 0 and Ψ = 0◦ only shear stress 𝜏nt is present and the failure
criterion is reduced to a maximum stress criterion (this is also valid in case of
Ψ = 90◦). For 𝜎n > 0 and 𝜏n1 = 𝜏nt = 0 failure occurs if the normal stress
reaches the transverse tensile strength 𝜎n = 𝑌T. While the material strengths
required for the failure criterion can be determined from simple uniaxial load
cases, the corresponding inclination parameters need experimental results with
combined stress loads. For example, 𝑝c

nt can be determined by the knowledge
of the fracture angle 𝜃fp. However, the resulting fracture angle is quite difficult
to determine considering the fact that the material behavior is brittle. As these
parameters are quite challenging to determine, a simplification can be made by
assuming 𝑝c

nt = 𝑝
t
nt = 𝑝nt. Further, a lower bound of the inclination parameter

𝑝nt is then defined as follows [9]

𝑝nt ≤

√︃
(𝑟 + 4)2 + 2

(
𝑟2 − 4

) (𝑟 + 2) − (𝑟 + 4)
2 (𝑟 + 2) , with 𝑟 =

𝑌C
𝑌T
. (3.121)

Using off-axis compressive tests the inclination parameter 𝑝c
n1 can be deter-

mined [53]. The same procedure can be performed to determine 𝑝t
n1 using

off-axis tensile tests. If 𝑝t ≠ 𝑝c then a kink of the fracture plane at the transition
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between positive and negative𝜎n stress is created. As suggested by Bleier [18]
the inclination parameters 𝑝t

n1 and 𝑝c
n1 (and also 𝑝t

nt and 𝑝c
nt) can be equated,

as their sensitivity for different values is small. A general recommendation
and a more in-depth discussion of the choice of the inclination parameters is
given in [9].

In addition to the challenge of determining the material strengths and inclina-
tion parameters, the fracture angle has to be also determined by performing
a fracture angle search. As previously described, failure is determined by
the stresses on the fracture plane. However, this plane is not clearly defined.
By rotating the stress using the angle 𝜃, a corresponding curve of the stress
exposure 𝑓IFF over the angle is achieved. In general, it is suggested to analyze
𝜃 in a range of −90◦ to 90◦. Afterwards the fracture plane is determined by the
overall maximum stress exposure 𝑓IFF. However, this condition requires a lot of
additional computational time. An optimized fracture angle search algorithm
has been addressed by Wiegand et al. [181] and Schirmaier et al. [182].
According to Schirmaier et al. there are up to three possible maxima of the
stress exposure 𝑓IFF over action plane angle 𝜃ap. Using material data for the
AS4/3501-6 unidirectional prepreg material (cf. Table 3.1) and by choosing
the corresponding inclination parameters to 𝑝t,c

nt = 0.25 and 𝑝t,c
n1 = 0.35, three

different stress states are evaluated (cf. Table 3.2). Using the definition of
𝑓IFF (cf. Equation (3.118)) a curve for each stress state can be generated (cf.
Figure 3.21). It can be seen that the number of stress exposure peaks over ac-
tion plane angle 𝜃ap varies between 1 and 3. Therefore, it is necessary to know
which angle corresponds to the overall maximum stress exposure. To find
the overall maximum stress exposure within a precision of 1◦, the optimized
fracture angle search algorithm by Schirmaier requires up to 36 supporting
points instead of 180.

Failure in fiber direction has been determined by several approaches [73, 93–
95, 176]. As for the IFF criterion, failure occurs if a failure index exceeds

Table 3.1: Material data for AS4/3501-6 unidirectional prepreg [68]

𝑌T /MPa 𝑌C /MPa 𝑆12 /MPa

AS4/3501-6 48 200 79
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Table 3.2: Three different stress states resulting in different number of maxima for the
stress exposure 𝑓IFF over action plane angle 𝜃ap

𝜎22 /MPa 𝜎33 /MPa 𝜎12 /MPa 𝜎13 /MPa 𝜎23 /MPa

stress state 1 34 0 22 46 0
stress state 2 34 -87 22 46 0
stress state 3 34 -87 22 46 25
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Figure 3.21: Inter-fiber stress exposure 𝑓IFF over action plane angle 𝜃ap for three differ-
ent stress states with up to three maxima

the value of one 𝑓1 > 1. While Cuntze [95] uses a simple maximum stress
criterion to determine failure initiation in tensile and compression, others
suggest extending such criteria to consider interaction between 𝜎11 stress and
other stress components. For example, Hashin’s fiber failure criterion [94,
176] is given by {

𝑓 +FF = 𝜎11
𝑋T
+ 𝜎2

12+𝜎2
13

𝑆12
, 𝜎11 ≥ 0

𝑓 −FF = |𝜎11 |
𝑋C

, 𝜎11 < 0
(3.122)
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which considers the effect of the shear stresses 𝜎12 and 𝜎13 only in the tensile
case. On the other hand the LaRC05 criterion [73] uses a simple maximum
stress criterion for fiber tensile failure and considers fiber kinking and splitting
as the main source for failure in compression. Here additional knowledge of
the initial misalignment angle and a kink band search (comparable to Puck’s
fracture plane search) are necessary. While Puck used initially also a maximum
stress criterion, it was later extended by considering the Poisson’s effect due
to 𝜎22 and 𝜎33 loads. However, it was found that in case of plane stress the
difference between a maximum stress criterion and its extension to consider
𝜎22 and 𝜎33 stresses is small. Therefore, for simplicity reasons fiber failure is
considered here by a maximum stress criterion{

𝑓 +FF = 𝜎̂11
𝑋T
, 𝜎̂11 ≥ 0

𝑓 −FF = | 𝜎̂11 |
𝑋C

, 𝜎̂11 < 0
(3.123)

where the trial stress 𝜎̂11 is used to determine failure initiation for a given strain
state.

One further aspect needs to be addressed. The load in fiber direction has an
impact on the value of 𝑓IFF [183]. If the failure envelope for a combined 𝜎22-
𝜎12 stress state is plotted, the 𝜎11 stress has no effect on the shape. However,
experimental results showed that an interaction between 𝜎11 and 𝜎12 can be
observed [74]. The increase of 𝑓 +FF or 𝑓 −FF can be directly incorporated into
the updated definition of 𝑓IFF. To the initial calculated value of 𝑓IFF (here
𝑓 init
IFF ), a weakening parameter is applied which increases the stress exposure in

dependence on the value of 𝑓FF. The relationship is expressed as follows [183]

𝑓IFF = 𝑓 init
IFF/𝜂w1 with 𝜂w1 = 𝑐

(
𝑎
√
𝑐2 (𝑎2−𝑠2)+1+𝑠

)
/(𝑐𝑎)2+1 (3.124)

where
𝑐 = 𝑓 init

IFF/ 𝑓FF and 𝑎 = 1−𝑠/√1−𝑚2. (3.125)

The choice of 𝑓FF depends on the sign of 𝜎11. This formulation of 𝑓IFF affects
the shape of the inter-fiber failure envelope with increasing 𝑓FF value. The
parameter 𝑠 defines the onset from which the stress in fiber direction has an
influence on the failure curve. Further, the parameter 𝑚 defines the rate at
which the failure envelope changes from the onset to the maximum 𝜎11 value.
Both parameters range is limited to 𝑠 = [0, 1] and 𝑚 = [0, 1].
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3.5.3 Action Plane based Damage Evolution

Generally continuous fiber reinforced plastics are subjected to in-plane loads.
However, in areas with holes or bearings three-dimensional loads occur. While
in-plane loads tend to fail at an angle of 𝜃ap = 0◦ for transverse tensile and
moderate compression loads, only in case of high compression stress 𝜎22
stress values the fracture angle will result in a range of 0◦ to 60◦. To consider
the direction of the occurring damage at failure initiation, an action plane
dependent damage model is derived. Similar attempts have been made by
several authors [135, 184–188]. The Gibbs free energy for an orthotropic
material is given by

Γ =
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(3.126)

with

𝑑m2 =
1
𝜎n

(⟨𝜎n⟩𝑑+2 + ⟨−𝜎n⟩𝑑−2
)

𝑑m3 =
1
𝜎n

(⟨𝜎n⟩𝑑+3 + ⟨−𝜎n⟩𝑑−3
)

𝑑m23 = max {𝑑m2, 𝑑m3}

(3.127)

where ⟨·⟩ is the Macaulay bracket operator, which is defined as

⟨𝑥⟩ = 𝑥 + |𝑥 |
2

, 𝑥 ∈ R (3.128)

and allows to distinguish between positive and negative damage evolution.
This differentiation is only applied to the damage in fiber and transverse direc-
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tion. This condition is legitimate since according to numerical studies there is
no sensitivity of the damaged shear modulus on the sign of the corresponding
shear stress [189]. The derivative of Γ to 𝝈 leads to the definition of the elastic
strain 𝜺el, while the second derivative yields the damaged material compliance
matrix 𝑺D. The inverse of the damaged compliance matrix defines the dam-
aged material stiffness matrix 𝑪D. Although the damage variables are only
on the main diagonal of the compliance matrix, they cause an interaction be-
tween each stiffness component (cf. Equation (A.77)). While for transversely
isotropic materials the number of material parameters can be reduced to five
(cf. Section 3.5.1.1), the number of damage variables cannot be further reduced
to achieve direction-dependent damage evolution. To ensure thermodynamic
consistent damage evolution, the rate of the energy dissipation during damage
propagation must satisfy the condition

𝑌±1 𝑑
±
1 + 𝑌±2 𝑑±2 + 𝑌±3 𝑑±3 + 𝑌12𝑑12 + 𝑌13𝑑13 + 𝑌23𝑑23 ≥ 0 (3.129)

where 𝑑𝑖 correspond to the direction-dependent damage variables and 𝑌 de-
notes the corresponding thermodynamic damage driving force. The derivatives
of Γ to each damage variable yield the corresponding damage driving forces
𝑌𝑖 . Since all derivatives result in the same structure

𝑌 =
𝜕Γ
𝜕𝑑

=
1
2

𝜎2

(1 − 𝑑)2 𝐸
(3.130)

and always lead to positive values of 𝑌 , the rate of energy dissipation will be
positive if damage variables 𝑑 are nondecreasing functions. This condition
can be satisfied by updating damage variables during a time step as follows

𝑑 = max
{
𝑑𝑡+Δ𝑡 , 𝑑𝑡

}
. (3.131)

Further, as for the matrix and fiber constitutive models (cf. Section 3.3.2.1
and 3.4.2.2) damage evolution in compression affects also the resulting stress
in tension and yields the following formulation

𝑑+𝑖 = max
{
𝑑+𝑖 , 𝑑

−
𝑖

}
, 𝑚 ∈ {1, 2, 3} . (3.132)

To consider direction-dependency within the damage evolution law, it needs to
be a function of a direction-dependent scalar. Therefore, the failure index itself
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( 𝑓 ±FF or 𝑓IFF) comes handy since it is based on the fracture direction. Based
on the presented damage evolution laws in Section 3.3.2.4 the exponential one
is used here. This damage evolution law is based on an equivalent strain.
However, for the composite it is useful to define this damage evolution law
in terms of the failure criteria itself. The benefit from such definition is that
the failure criteria already considers complex stress states. To convert the
exponential damage evolution law from a strain based one into a failure index
one, a uniaxial tensile load case of a linear elastic material in 1D space is
used as an example. The uniaxial load case represents the simplest load case
and is captured by the failure criterion, which is also capable to consider
complex stress states. Furthermore, nonlinearity prior to failure initiation can
be neglected in this example as the stress at failure initiation is used. While the
fiber failure index 𝑓 ±FF is a maximum stress criterion per se, for a uniaxial tensile
load the IFF criterion 𝑓IFF is also reduced to a maximum stress criterion. At
failure initiation the criterion yields one and leads to the first equation which
is needed to convert the damage evolution law

𝑓𝑖
!
= 1 =

𝜎0
𝑋
⇔ 𝜎0 = 𝑋 (3.133)

where 𝑖 ∈ {FF, IFF},𝜎0 is the stress at failure initiation and 𝑋 correspond to the
material strength. In a more general case the failure index can be expressed in
terms of strains (𝜀 and 𝜀0) and𝜎0 by noticing that the stress can be expressed as
𝜎̂ = 𝐶𝜀 = 𝜎0/𝜀0𝜀. In conjunction with Equation (3.133) the relation between
𝑓𝑖 and strain leads to the second equation for the conversion of the damage
evolution law

𝑓𝑖 =
𝜎̂

𝑋
=
𝜎0𝜀

𝜀0𝑋
= �𝑋𝜀

𝜀0�𝑋
⇔ 1

𝑓𝑖
=
𝜀0
𝜀
. (3.134)

If this equation is now plugged into the definition of 𝑑exp (see Equation (3.82))
and by noticing that 2𝑔0 = 𝜎0𝜀0, the definition of the exponential damage
evolution law based on the failure index is obtained

𝑑exp = 1 − 𝜀0
𝜀

exp
(
−𝜎0
𝑔d
(𝜀 − 𝜀0)

)
= 1 − 𝜀0
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− 1
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( 𝑓𝑖 − 1)

)
= 1 − 1

𝑓𝑖
exp

(
−2𝑔0
𝑔d
( 𝑓𝑖 − 1)

)
.

(3.135)
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The ratio of 𝑔0 to 𝑔d leads to two limit cases:

• For 𝑔d → ∞ the exponential function yields one and the damage law
results to a constant stress softening one.

• For 𝑔d → 0 the exponential function yields zero, which leads to a drastic
drop of the stress to zero at failure initiation since 𝑑 = 1.

The different damage variables can now be defined by using the derived damage
evolution law. For damage variables which are direction-dependent, such as
𝑑±1 , 𝑑±2 and 𝑑±3 , a case switch need to be defined. For example, using the stress
in fiber direction, the components of the damage evolution law for fiber damage
can be defined as follows

𝑓1 =
1
𝜎11

(⟨𝜎11⟩ 𝑓 +FF + ⟨−𝜎11⟩ 𝑓 −FF
)
, 𝑔d =

1
𝜎11

(⟨𝜎11⟩𝑔+d + ⟨−𝜎11⟩𝑔−d
)

(3.136)
and

𝑔0 =
1

2𝜎11
(⟨𝜎11⟩𝑋T𝜀0 + ⟨−𝜎11⟩𝑋C𝜀0) (3.137)

where 𝜀0 defines the strain in fiber direction at failure initiation. This strain
can be obtained by solving to 𝜀11 using the relationship between 𝜎11 and 𝜀11
for a uniaxial load at failure. Since the result depends on the modulus 𝐸1, and
𝐸1 depends on the strain 𝜀11, the relationship yields a quadratic polynomial.
While fiber damage is defined by the fiber direction, damage evolution in
transverse direction is based on the fracture angle 𝜃fp determined by Puck’s
failure criterion. Using the normal direction to the fracture plane, which
coincide with 𝜎n, leads to the direction-dependent definition of the damage
variable 𝑑n

𝑑±n = 1 − 1
𝑓IFF

exp
(−𝑟g ( 𝑓IFF − 1)) (3.138)

where 𝑟g defines the ratio of 2𝑔0 to 𝑔d. Based on the sign of 𝜎n the direction of
the damage evolution is given (𝜎n ≥ 0 leads to positive damage on the action
plane 𝑑+n and vice versa). Since 𝑑n is dependent on the fracture angle 𝜃fp, it
has also a direct effect on the definition of 𝑑2 and 𝑑3. For example, fracture
angle 𝜃fp = 0◦ leads to 𝑑2 = 𝑑n and 𝑑3 = 0, while 𝜃fp = 90◦ leads 𝑑3 = 𝑑n
and 𝑑2 = 0 (cf. Figure 3.22a and 3.22b). However, it is not sufficient to use
a simple rotation of 𝑑n to obtain 𝑑2 and 𝑑3 for an angle in the range of 0◦
to 90◦, which is shown in the following. Since 𝜃fp defines the direction of
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θfp ≈ 0°
d2 ≈ 1
d3 ≈ 0
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d3 ≈ 1

Figure 3.22: Three fracture plane results for 𝜃fp = {0◦, 45◦, 90◦} leading to direction-
dependent values of 𝑑2 and 𝑑3 by considering the projected crack area

the occurring crack (cf. Figure 3.22) and 𝑑n is the only nonzero value of the
damage tensor, the rotated tensor gives the definition of 𝑑2 and 𝑑3

𝑑2 = cos2 (
𝜃fp

)
𝑑n and 𝑑3 = sin2 (

𝜃fp
)
𝑑n. (3.139)

In case of 𝜃fp = 45◦ and a present crack through the whole ply (𝑑n = 1), the
damage values result to the same value 𝑑2 = 𝑑3 = 0.5, which indicates that
a remaining load capacity is available for loads in 2 or 3 direction. However,
this is not the case, since the projected area due to the crack in both directions
is equal to the cross section of the evaluated area of the ply (cf. Figure 3.22c).
This condition leads to a necessary redefinition of the damage variables 𝑑2 and
𝑑3. Using the projected area of the crack in each direction, a case-dependent
definition of 𝑑2 and 𝑑3 yields

𝑑2 =

{
𝑑n, 0◦ ≤

��𝜃fp
�� ≤ 45◦

cot2
(
𝜃fp

)
𝑑n, 45◦ ≤

��𝜃fp
�� ≤ 90◦

𝑑3 =

{
tan2 (

𝜃fp
)
𝑑n, 0◦ ≤

��𝜃fp
�� ≤ 45◦

𝑑n, 45◦ ≤
��𝜃fp

�� ≤ 90◦.

(3.140)

Based on a numerical study using a 0◦/90◦/0◦ laminate with one discrete crack
through the 90◦ ply, the resulting reduction of the 𝐸2 and 𝐸3 moduli at varying
fracture angle 𝜃fp corresponds to the proposed approach to determine 𝑑2 and 𝑑3
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3.5 Constitutive Model for Composites

[189]. Furthermore, the same behavior is observed for the corresponding shear
damage variables 𝑑12 and 𝑑13. Also, according to this study the remaining out-
of-plane shear damage variable 𝑑23 seems to be not sensitive to transverse
cracks and is assumed to remain zero during damage propagation. It should
be noted, that the definition of the damage variables 𝑑2 and 𝑑3, according to
Equation (3.140), yield from a quadratic region of interest (cf. Figure 3.22).
However, other shapes of the region of interest would shift the transition angle
(here 𝜃fp = 45◦), which denotes the onset where the damage variable 𝑑2 and 𝑑3
start to change. The definition of in-plane shear damage variables 𝑑12 and 𝑑13
is coupled to 𝑑2 and 𝑑3. Regarding the resulting definition of these, there are
several approaches available [73, 135, 136, 190]. While some damage models
postulate the equality of 𝑑2 and 𝑑12 during damage propagation, others uses
an individual definition of these damage variables. Here the damage variables
𝑑12 and 𝑑13 are proposed to be functions of the fracture angle 𝜃fp and the stress
expose 𝑓IFF. The exact definition of these is discussed in the next section. It
should be further noted that due damage evolution severe convergence issues
can occur. To overcome such difficulties, a viscous regularization as for the
matrix and fiber material model is used. Since anisotropic damage evolution
is used, the regularized damage variables are defined by separate viscosity
coefficients

𝑑𝑖,v𝑡+Δ𝑡 =
Δ𝑡

Δ𝑡 + 𝜇d,𝑖
𝑑𝑖 𝑡+Δ𝑡 +

𝜇d,𝑖

Δ𝑡 + 𝜇d,𝑖
𝑑𝑖,v𝑡 (3.141)

where 𝑖 ∈ {1, 2, 3, 12, 13}.

3.5.4 Damage Variables Interaction

After the material strengths are exceeded, the first cracks appear which influ-
ence the material stiffnesses. While damage variable 𝑑1 is not influenced by
matrix cracking [191, 192], an interaction between the damage variables 𝑑2
and 𝑑12 (or 𝑑n and 𝑑n1 respectively) has been observed by numerical analysis
and experimental tests [193–195]. Although transverse and shear modulus are
both reduced due to occurring matrix cracks, according to experimental results
this degradation is proportional and linear from low to high crack density [194].
Using the ratio of damaged moduli 𝐸2 and 𝐺12 to the initial undamaged ones
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𝐸 init
2 and 𝐺 init

12 defined by 𝐸2/𝐸 init
2 = 1 − 𝑑2 and 𝐺12/𝐺init

12 = 1 − 𝑑12, this relation
can be expressed by

1 − 𝑑12 = 𝑚 (1 − 𝑑2) + 𝑏 (3.142)

where 𝑚 denotes the proportional factor for 𝑑2 to 𝑑12 and 𝑏 is the ratio of
𝐺12/𝐺init

12 at 𝑑2 = 1. A visualization of this equation is given in Figure 3.23.
Since transverse cracks affect the transverse modulus 𝐸2 more than the in-plane
shear modulus 𝐺12, 𝑑2 need to be greater than or equal to 𝑑12. This limits
the range of possible values for 𝑚 ∈ [0, 1] and since 𝑏 = 1 − 𝑚 also of 𝑏.
However, this is a simplified formulation due to the fact that in case of 𝑑2 = 1
the shear damage variable yields a constant value 𝑑12 = 1 − 𝑏. This would
imply that for 𝑏 ≠ 0, the resulting shear damage variable 𝑑12 > 1− 𝑏 will lead
to values greater than one of the transverse damage variable, which is obviously
not feasible. To evaluate the bounds of possible solutions for the interaction
between 𝑑2 and 𝑑12 the constant stress softening damage evolution law is used
as the upper bound. Using Equation (3.135) at fracture angle 𝜃fp = 0◦, the
upper bound of the in-plane shear damage variable 𝑑12 is defined as

𝑑12 = 1 − 1
𝑓IFF

. (3.143)

The transverse damage variable 𝑑2 is then obtained from Equations (3.138)
and (3.140)

𝑑2 = 1 − 1
𝑓IFF

exp
(−𝑟g ( 𝑓IFF − 1)) (3.144)

𝑚 = 1, 𝑏 = 0
𝑚 = 0.3, 𝑏 = 0.7
𝑚 = 0.6, 𝑏 = 0.4

10.5

1

0.5

1
−
𝑑

12
(−
)

1 − 𝑑2 (−)

Figure 3.23: Interaction between the damage variables 𝑑2 and 𝑑12 for different values
of 𝑚 and 𝑏
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3.5 Constitutive Model for Composites

where 𝑟g is the only parameter which allows to define the bounds of 𝑑2 in a
valid range. As discussed in Section 3.5.3 the parameter 𝑟g can be in a range
between zero and infinity. In case of 𝑟g = 0 the damage variables would be
equal 𝑑2 = 𝑑12 and for all values 𝑟g > 0 the condition 𝑑2 > 𝑑12 is satisfied. If
this relation is extended to fracture plane dependency, the general definition of
𝑑12 and 𝑑13 is obtained

𝑑12 =

{
1 − 1

𝑓IFF
, 0◦ ≤

��𝜃fp
�� ≤ 45◦

cot2
(
𝜃fp

) (
1 − 1

𝑓IFF

)
, 45◦ ≤

��𝜃fp
�� ≤ 90◦

𝑑13 =

{
tan2 (

𝜃fp
) (

1 − 1
𝑓IFF

)
, 0◦ ≤

��𝜃fp
�� ≤ 45◦

1 − 1
𝑓IFF
, 45◦ ≤

��𝜃fp
�� ≤ 90◦.

(3.145)

It should be noted that for all other damage evolution law definitions of 𝑑12 and
𝑑13 the corresponding bounds for 𝑟g in Equation (3.138) need to be adjusted
that the condition 𝑑2 ≥ 𝑑12 is always satisfied.

3.5.5 Effect of the Fiber Volume Content on Nonundulated
Composites

The so far presented model is valid for a composite material with nonundulated
fibers. During forming process the fabric undergoes large deformation which
can lead to thickness or local areal weight deviations. This condition affects
the local FVC and therefore the composite material stiffness and strength. In
contrast to stiffness and strength, hardening due to plasticity seems to be not
affected by the FVC within the evaluated range (cf. Section 2.5.1). In the fol-
lowing subsections the previously presented model is extended by considering
FVC-dependent stiffness and strength. Furthermore, the interaction of damage
variables and their dependency on the FVC is derived.

3.5.5.1 Material Stiffness at Different Fiber Volume Contents

The initial stiffness of a unidirectional ply with straight fibers can be deter-
mined from rules of mixture. The resulting material stiffness must be between
upper and lower bounds, which are in the simplest way defined by the Voigt
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and Reuss bounds. Since the carbon fiber is a transversely isotropic material,
five different rules of mixtures are needed to define material stiffness for a
given FVC. While there are several analytical homogenization methods (e.g.,
Mori-Tanaka method, self-consistent scheme, Interaction direct derivative
approach) or semi-empirical methods (e.g., Chamis, Förster, Puck, Halpin-
Tsai) available to determine the effective material properties of composites,
the validity of the results and the complexity of each approach varies. Since the
used unidirectional non-crimp fabric alone contains four different constituents
(carbon fibers, glas fiber fixation, PES sewing thread and binder) in conjunc-
tion with the matrix, the ideal homogenization method would have to consider
each constituent as a separate phase. For glass/epoxy composites a compar-
ison of different approaches has been performed by Heidari-Rarani et al.
[19]. According to experimental results Halpin-Tsai equations and Chamis
model provide a very good agreement for the transverse modulus 𝐸2 and the
in-plane shear modulus 𝐺12. In general, the Halpin-Tsai equations [84, 85]
provide sufficient flexibility regarding the homogenization result, while re-
maining within the physical possible bounds. These equations are a simplified
version of Hill’s generalized self-consistent model [86]. The homogenized
material stiffness can be expressed according to Halpin-Tsai equations as
follows

𝑝

𝑝m
=

1 + 𝜁𝜂𝜑
1 − 𝜂𝜑 (3.146)

with
𝜂 =

𝑝f/𝑝m − 1
𝑝f/𝑝m + 𝜁 , (3.147)

where 𝜑 is the FVC, 𝑝 is the homogenized composite material modulus, 𝑝f the
corresponding fiber modulus, 𝑝m the corresponding matrix modulus and 𝜁 is
a measure of reinforcement geometry which depends on loading conditions.
The parameter 𝜁 is defined within the range 𝜁 ∈ [0,∞], with the two possible
bounds:

• For 𝜁 → 0 the series-connected model of material moduli is obtained
(aka Reuss bound).

• For 𝜁 → ∞ a linear distribution of the material modulus over the FVC
can be achieved (aka Voigt bound).
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3.5 Constitutive Model for Composites

By varying the parameter 𝜁 a wide range of resulting material stiffness can be
obtained. For example, for 𝜁 = 2 the resulting material stiffness for 𝑝f = 7𝑝m
is given in Figure 3.24.

In fiber direction the parallel-connected model of fiber and matrix stiffness is a
suitable approach to approximate the homogenized material stiffness 𝐸1 (and
therefore also 𝜈12) This leads the following definition of 𝐸1 and 𝜈12

𝐸1 = (1 − 𝜑) 𝐸m + 𝜑𝐸 f
1 (3.148)

𝜈12 = (1 − 𝜑) 𝜈m + 𝜑𝜈f
12, (3.149)

where 𝐸m is the Young’s modulus of the matrix, 𝐸 f
1 is the modulus of the

fiber in fiber direction, 𝜈m is the Poisson’s ratio of the matrix and 𝜈f
12 is the

Poisson’s ratio in the (1,2)-plane. Since the carbon fiber shows a nonlinear
behavior during loading (cf. Section 3.4.1) the modulus 𝐸 f

1 in Equation (3.148)
represents the static modulus 𝐸 f,init

1 . To consider nonlinear behavior of the
composite in fiber direction for a given FVC, the slope of the modulus over
strain 𝑚f needs to be added to the definition of 𝐸1. By replacing 𝐸 f

1 in
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Figure 3.24: Visualization of the Halpin-Tsai equation for three different values of 𝜁
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Equation (3.148) with (3.102) and by noticing that the slope 𝑚f is zero for
𝜑 = 0, the stiffness 𝐸1 yields

𝐸1 = (1 − 𝜑) 𝐸m + 𝜑
(
𝐸 f,init

1 + 𝑚f𝜀11

)
. (3.150)

This condition also affects the definition of 𝜈12. Using Equation (3.104) and
replacing the static values𝐸 f,init

1 and 𝜈f,init
12 in conjunction with Equations (3.148)

to (3.150) the Poisson’s ratio 𝜈12 yields

𝜈12 =
(1 − 𝜑) 𝜈m + 𝜑𝜈f,init

12

(1 − 𝜑) 𝐸m + 𝜑𝐸 f,init
1

(
(1 − 𝜑) 𝐸m + 𝜑

(
𝐸 f,init

1 + 𝑚f𝜀11

))
. (3.151)

The remaining composite material stiffnesses 𝐸2, 𝐺12 and𝐺23 are obtained by
using Halpin-Tsai equations (cf. Equation (3.146))

𝐸2 = 𝐸m
1 + 𝜂𝐸2 𝜁𝐸2𝜑

1 − 𝜂𝐸2𝜑
with 𝜂𝐸2 =

𝐸f
2/𝐸m − 1

𝐸f
2/𝐸m + 𝜁𝐸2

(3.152)

and
𝐺𝑖 = 𝐺m

1 + 𝜂𝐺𝑖 𝜁𝐺𝑖𝜑

1 − 𝜂𝐺𝑖𝜑
with 𝜂𝐺𝑖 =

𝐺f
𝑖/𝐺m − 1

𝐺f
𝑖/𝐺m + 𝜁𝐺𝑖

(3.153)

where 𝑖 ∈ {12, 23}, 𝐸 f
2 is the modulus of the fiber in transverse direction and

𝐺𝑖 is the shear modulus of the fiber in the corresponding plane. The parameters
𝜁𝐸2 and 𝜁𝐺𝑖 for 𝑖 ∈ {12, 23} can be obtained from experimental results.

3.5.5.2 Material Strength at Different Fiber Volume Contents

Modelling failure initiation in composites with varying FVC is one of the
main challenges if draping effects are considered. For a given FVC a set of
experimental tests can provide a failure envelope to predict failure initiation.
On the other hand for varying FVC an analytical solution of each strength
component is handy to avoid large number of experimental test. However,
there is no uniformly accepted approach available to determine each FVC-
dependent strength. This results from a variety of possible combinations of
different fabric and resin types. Even for a constant composite part thickness,
during deformation of the fabric the areal weight can change and lead to local
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increase or decrease of the FVC. A homogeneous FVC distribution is generally
aimed for. However, with increasing part complexity such aim requires a lot
of effort to be achieved.

In general fiber and matrix strength is size dependent. Therefore, the strength
of fiber or matrix is described well by a Weibull distribution using the char-
acteristic length and the Weibull modulus. However, even if the strength
distribution of the fiber and matrix is available, the used fabric within the com-
posite material smears this dependency to other fabric specific properties such
as intrinsic fiber misalignment. This condition makes an analytical definition
of the strength even more challenging. A widely applied approach for tensile
strength in fiber direction is derived from an assumption of an average stress
distribution. This results in a simple definition of the stress in fiber direction

𝜎11 = (1 − 𝜑) 𝜎m + 𝜑𝜎f, (3.154)

where 𝜎m and 𝜎f denote the stress of matrix and fiber. The FVC combines
the stress of each constituent to the resulting composite stress. Based on the
stress in fiber direction and under an assumption of straight fibers, linear elastic
behavior of fiber and matrix up to failure and brittle failure of the fiber, the
tensile strength of the composite is can be derived from the equation above as

𝑋T = (1 − 𝜑) 𝜎m
(
𝜀ft,max

) + 𝜑𝑋 f
T (3.155)

where the matrix stress 𝜎m is evaluated at fiber failure strain 𝜀ft,max and 𝑋 f
T is

the fiber tensile strength. This equation can be rewritten to

𝑋T = 𝑋 f
T
((1 − 𝜑) 𝐸m/𝐸f

1 + 𝜑
)

(3.156)

and depends only on fiber tensile strength 𝑋 f
T, matrix modulus 𝐸m and 𝐸 f

1
modulus of the fiber. Since the fiber modulus 𝐸 f

1 is dependent on strain in fiber
direction 𝜀11, tensile strength in fiber direction can then be expressed in terms
of fiber failure strain 𝜀f

11,max

𝑋T = 𝑋 f
T

(
(1 − 𝜑) 𝐸m

𝐸 f,init
1 + 𝑚f𝜀

f
11,max

+ 𝜑
)
. (3.157)

Such formulation provides sufficient accurate predictions of the
FVC-dependent fiber tensile strength.
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While FVC-dependent tensile strength is based on average distribution, com-
pressive strength is more complex. One of the most cited and earliest work
on compressive failure is published by Rosen [91]. He suggested that com-
pressive fiber failure is triggered by microbuckling of the fibers. Two possible
modes are introduced: in-phase buckling (shear mode, Figure 3.25a) and out-
of-phase bucking (extension mode, Figure 3.25b). Using such approach and
under assumption of linear elastic behavior of an isotropic fiber and matrix,
the composite FVC-dependent compressive strength is given by

𝑋C = min

{
2𝜑

√︄
𝜑𝐸m𝐸f

3 (1 − 𝜑) ,
𝐺m

1 − 𝜑

}
(3.158)

where 𝐸m and 𝐺m are the Young’s and shear modulus of the matrix, while 𝐸f
is the isotropic fiber modulus. Here the first term correspond to the solution
of the extension mode and the second one to the shear mode. However,
an evaluation and comparison of compressive strength prediction models has
been performed by Naik et al. [25] where Rosen’s model overestimate the
compressive strength in the range of 30 % to 70 % FVC by about 200 %. This
circumstance led to the model by Lager and June [196] where the shear
modulus (or Young’s modulus respectively) of the matrix is multiplied by an
influence coefficient 𝑘c, which must be fitted to experimental results

𝑋C = min

{
2𝜑

√︄
𝜑𝑘c𝐸m𝐸f
3 (1 − 𝜑) ,

𝑘c𝐺m
1 − 𝜑

}
. (3.159)

While this model fits to experimental results, it is still a semi-empirical for-
mulation of the compressive strength. On the other hand, several model based

F F

(a) shear mode

F F

(b) extension mode

Figure 3.25: Two possible microbuckling failure modes according to Rosen: shear
mode (a) and extension mode (b)
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on fiber kinking were developed (e.g., Budiansky model). Such models have
also been compared by Naik et al. [25] and led to a better agreement be-
tween analytical models and experimental results. For all kinking models
additional information such as fiber misalignment or other geometrical (or
strength parameters) are needed. A simplified yet physically feasible model
is the Budiansky kinking model. It unifies the Rosen model and the Argon
kinking criteria [197] for an elastic and ideal plastic composite to the following
expression:

𝑋C =
𝐺m

(1 − 𝜑) (1 + 𝜙̄/𝛾y
) (3.160)

where 𝜙 is the fiber misalignment angle and 𝛾y is the yield strain of the
composite under longitudinal shear. While 𝜙 is considered to be a material
property and can be measured from high detailed micrograph images [37], the
yield strain is an assumed value based on an elastic-perfectly plastic model.
By comparing the available experimental results [170, 198] for different fabric
types, the average fiber misalignment angle is in the range of 1◦ to 4◦, while the
maximum angle can be up to 8◦ for woven fabrics. In this work the Budiansky
model is used, since it requires only one additional parameter 𝜙̄/𝛾y to predict
physical feasible material behavior over the evaluated range of FVC.

For the remaining material strengths, such as transverse tensile and compressive
strength or in-plane shear strength, several analytical models are available [20,
88–90]. These models predict the strength at different fiber volume contents,
but they lack of validation by experimental results. A general evaluation
of each model is given in Appendix A.1.3.4. As shown and discussed in
Section 2.5.1.3 the transverse tensile strength seems to be constant within
the evaluated FVC range. On the other hand, the in-plane shear strength
shows a slight and the transverse compressive strength significant increase
towards high fiber volume contents. This leads to a discrepancy to select
one specific analytical model for all strength values. To predict transverse
tensile and in-plane shear strength, Kaw model [90] seems to be handy, as it
provides similar results as the experiments and only requires one additional
parameter. For carbon fibers Huang’s model [20] requires the knowledge of
transverse tensile strength of the fiber 𝑌 f

T, which is currently not possible to
be determined experimentally. Therefore, such model provides no benefit to
others as the resulting strength is dependent on this parameter. Since energy
release rate 𝐺Ic is determined from coupon tests, which comes with a high
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scatter, the geometry of the coupon itself highly affects the obtained values.
Therefore, the prediction of Barbero’s energy release rate model [89] would
be highly affected by this material parameter. Furthermore, the knowledge of
local ply thickness is another parameter, which is not easily available after the
manufacturing process. Barbero’s void volume content empirical model at
𝜑v = 0 % (which is equal to Chamis model [88]) seems to be suitable to predict
transverse compressive strength of the composite at different fiber volume
contents, while requiring only one additional parameter. However, the required
increase of strength per FVC percent is too small for this model if the prediction
is compared to experimental results (cf. Figure 2.12d). In conclusion, it can
be summarized that all evaluated analytical models cannot satisfy the required
prediction accuracy with a low number of additional parameters. For the
experimentally observed results a simple linear correlation seems to be well
suited to predict the material strength at a specific FVC. Since the transverse
tensile strength 𝑌T seems to be constant within the evaluated FVC range, a
constant strength value over the whole range is used. However, the transverse
compressive strength 𝑌C and the in-plane shear strength 𝑆12 are defined via a
linear function based on the strength at 𝜑 = 50 %. The analytical formulation
is defined as follows

𝑌C =
𝜕𝑌C
𝜕𝜑
(𝜑 − 0.5) + 𝑌C |𝜑=0.5 and

𝑆12 =
𝜕𝑆12
𝜕𝜑
(𝜑 − 0.5) + 𝑆12 |𝜑=0.5

(3.161)

where 𝜕𝑌C
𝜕𝜑 and 𝜕𝑆12

𝜕𝜑 define the slope of the strength over FVC.

3.5.5.3 Failure initiation at Different Fiber Volume Contents

Using the predicted strength values for a given FVC, the defined failure ini-
tiation criteria in Section 3.5.2 can be extended. FVC-dependent failure in
fiber direction can be derived by using Equation (3.123), where the material
strengths are replaced with the predictions of Equations (3.157) and (3.160).
While failure in fiber direction is dependent only on the strength in loading
direction, by using Puck’s IFF criteria the 𝑌T, 𝑌C and 𝑆12 strength parameters
are connected. For a plane stress load (𝜎33 = 𝜎13 = 𝜎23 = 0) the failure enve-
lope can be given in the (𝜎22, 𝜎12)-plane. Here three different failure modes

130



3.5 Constitutive Model for Composites

can be observed: mode A, B and C (cf. Figure 3.26). For plane transverse
loads 𝜎22 ≥ 0 the fracture plane yields 𝜃fp = 0◦ and therefore the fracture
plane stress components are given by 𝜎n = 𝜎22 and 𝜏n1 = 𝜎12. The first mode
A defines the region for plane transverse loads 𝜎22 ≥ 0. The failure envelope
results from Equation (3.118) by considering that 𝜏nt = 0 since 𝜃fp = 0◦. For
stress loads 𝜎22 < 0 the fracture angle remains zero until |𝜎22 |/𝑌C does not
exceed a certain threshold. Until this point the mode B can be defined. If the
threshold at |𝜎22 |/𝑌C is exceeded, fracture occurs on a different plane 𝜃fp ≠ 0◦.
Since the strength parameters 𝑌T, 𝑌C and 𝑆12 are functions of the FVC, they
need to be redefined in the definition of Puck’s failure criteria (see Equa-
tion (3.118)). For increasing FVC the fracture surface expands, and it shrinks
for decreasing ones. Depending on the sensitivity of each strength parameter
the failure surface can be unequally expanded or shrunken. Additionally, to
each strength value the inclination parameters 𝑝n1 and 𝑝nt need to be defined as
functions of the FVC. The lower bound of 𝑝nt (cf. Equation (3.121)) is already
dependent on the transverse strength value 𝑌T and 𝑌C, which are defined for
varying fiber volume contents. Therefore, only the inclination parameter 𝑝n1
needs to be defined as a function of the FVC. Here a linear approach similar to
the transverse compressive strength is used

𝑝n1 =
𝜕𝑝n1
𝜕𝜑
(𝜑 − 0.5) + 𝑝n1 |𝜑=0.5. (3.162)
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Figure 3.26: Plane IFF failure envelope according to Puck with three possible failure
modes A,B and C
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A visualization of the failure envelope in the (𝜎22, 𝜎12)-plane is given in
Figure 3.27.
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Figure 3.27: Effect of the fiber volume content on the plane IFF failure envelope

3.5.5.4 Damage Evolution at Different Fiber Volume Contents

As shown in Section 3.5.3 damage evolution depends on the failure initiation
( 𝑓FF or 𝑓IFF) and the energy 𝑔d. In the case of FVC change the corresponding
material strength will change, which has an effect on failure initiation. On the
other hand the effect on the energy 𝑔d is unknown due to lack of experimental
results. It is assumed that in the evaluated FVC range 𝑔d remains constant.
This assumption can lead to an oversimplification of the resulting damage
propagation and needs to be considered in subsequent work. In the case of
constant 𝑔d, increasing FVC will generate a more abrupt stiffness reduction
(which correlates to the reduction of the stress) since 𝜎0 and thus 𝑔0 in Equa-
tion (3.135) increases. If FVC is reduced damage evolution will start earlier,
but with retarded progression.

The interaction of damage variables as discussed in Section 3.5.4 needs to be
also considered for varying FVC. However, due to lack of experimental data a
direct deduction of the effect of the FVC on damage variables interaction cannot
be derived. Using a simplified isotropic damage evolution, Fuhr [27] was
able to evaluate the degradation of the axial modulus of angle-ply laminates
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3.5 Constitutive Model for Composites

for different fiber volume contents. As a result damage propagation is not
affected, but a dependency of the maximum achievable damage variable in
conjunction with varying FVC is observed. To evaluate the dependency of
damage variables on FVC, an extension of the work of Deuschle [189] using
numerical studies with varying number of cracks in a 90◦ ply of a 0◦/90◦/0◦
laminate can be utilized. Such approach will be performed in the following
section to evaluate the sensitivity of the parameter 𝑟g from Equation (3.144)
against FVC.

3.5.6 Effect of Undulations on the Material Response of
Composites

A further major draping effect, which results after forming, is undulation of the
rovings. This local direction change of the fiber orientation reduces the local
laminate stiffness significantly. Since undulation has such an impact not only
on the stiffness but also especially on the strength in fiber direction, there are
several publications available. For example, analytical functions to determine
the effective elastic parameters of laminates with waviness have been found
[118, 199]. Further, the impact of the FVC on the effective elastic parameters
has been evaluated using micro-scale models [123]. The model presented
here utilizes the analytical approach to determine effective elastic material
properties. To determine nonlinear behavior or failure several approaches can
be found in [30, 32, 33, 38, 200]. In general, a ply-wise evaluation of the
maximum misalignment angle due to waviness is used to predict the failure of
the laminate. Previous publications focus on undulation in thickness direction
and its effect on the whole laminate. However, for the used fabric in-plane
undulation is more likely. In a recent experimental analysis of laminates with
imposed waviness an analytical approach to determine the resulting tensile
and compression strength in fiber direction has been proposed by the author in
[47]. In contrast to other publications, a new developed model that considers
in-plane undulations is presented. The model considers a continuous change of
the waviness during loading. Additionally, the FVC is considered to determine
the effective elastic properties as also the failure strength values. The new
model is presented in the following.
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3.5.6.1 Effective Elastic Material Parameters

Using simulation methods, undulations can be approximated by assigning dif-
ferent fiber angles to two neighbor elements [27]. This approach depends on
the wavelength of the undulation, since the element size must be lower than the
half wavelength. Using fine meshes, quite accurate results for stiffness can be
achieved, since each slice of the wave is modeled by a separate fiber orienta-
tion. For large parts or very local waviness a homogenization of the waviness
is more suitable to save computation time. Therefore, the effective elastic
material parameters of regions with an imposed waviness are determined. To
do so for every applied deformation in the (𝑥, 𝑦, 𝑧)-space, the corresponding
strain 𝜺x must lead to the effective stress 𝝈x which considers waviness by uti-
lizing homogenized material properties. To determine these effective material
properties, the local transversely isotropic material properties in the (1, 2, 3)-
space, can be integrated over the wavelength 𝜆. This assumption yield from an
infinitesimal slice Δ𝑥, where the fiber direction is constant (cf. Figure 3.28).
The fiber position along 𝜆 is given by

𝑦 = 𝐴 sin
2𝜋𝑥
𝜆

(3.163)

where 𝐴 is the amplitude of the curved fiber. To determine the angle 𝜃 of the
fiber, which correspond to the fiber direction at position 𝑥, the derivative of 𝑦
to 𝑥 can be utilized

tan 𝜃 =
d𝑦
d𝑥

=
2𝜋𝐴
𝜆

cos
2𝜋𝑥
𝜆
. (3.164)

∆x0 λ x

y θ1,max θ2,max

1

2

Figure 3.28: Ideal fiber waviness over a full wavelength 𝜆 in the (𝑥, 𝑦)-plane with
corresponding maximal fiber misalignment angles 𝜃1,max and 𝜃2,max
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The maximal misalignment angles 𝜃1,max and 𝜃2,max (cf. Figure 3.28) are
located at the turning points of the wave and are defined by amplitude and
wavelength

𝜃1,max = 𝜃2,max = arctan
2𝜋𝐴
𝜆
. (3.165)

The relationship between global strain 𝜺x and the resulting global stress 𝝈x
for an infinitesimal slice Δ𝑥 can be obtained by using the effective compliance
matrix 𝑺̄. The relationship between 𝜺x and 𝝈x is given by

𝜺x = 𝑹w
⊤𝜺1 = 𝑹w

⊤𝑺𝝈1 = 𝑹w
⊤𝑺𝑹w︸     ︷︷     ︸
𝑺̄

𝝈x (3.166)

with 𝑹w

𝑹w =

©­­­­­­­­­«

cos2 𝜃 sin2 𝜃 0 2 sin cos 𝜃 0 0
sin2 𝜃 cos2 𝜃 0 −2 sin cos 𝜃 0 0

0 0 1 0 0 0
− sin cos 𝜃 sin cos 𝜃 0 cos2 𝜃 − sin2 𝜃 0 0

0 0 0 0 cos 𝜃 sin 𝜃
0 0 0 0 − sin 𝜃 cos 𝜃

ª®®®®®®®®®¬

, (3.167)

where 𝑺 is the material compliance of a transversely isotropic material and
𝜃 is the misalignment angle. It should be noted that the compliance 𝑺, the
strain 𝜺x and stress 𝝈x in the equation above are written in Nye notation. Each
component of the homogenized compliance matrix 𝑺̄ can now be obtained by
integrating over the path defined by the wave [38, 118]

𝑺̄ =
1
𝜆

∫ 𝜆

0
𝑺dx. (3.168)

For example, the component 𝑆xx of the effective compliance matrix yields

𝑆xx =
1
𝜆

∫ 𝜆

0
𝑆11 cos4 𝜃 +

(
2𝑆12 + 𝑆44

)
sin2 𝜃 cos2 𝜃 + 𝑆22 sin4 𝜃dx (3.169)

where 𝑆𝑖 𝑗 are components of the transversely isotropic material compliance
matrix (cf. Equation (3.110)). All other components 𝑆𝑖 𝑗 of the effective
material compliance are given in [201]. To integrate these components first
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some preparations are needed. From trigonometric relationship following
conversions can be made

cos2 𝜃 =
1

1 + tan2 𝜃
and sin2 𝜃 =

tan2 𝜃

1 + tan2 𝜃
. (3.170)

By using Equation (3.164) the expression tan2 𝜃 can be substituted by

tan2 𝜃 =

(
2𝜋𝐴
𝜆
𝑢

)2
with 𝑢 = cos

2𝜋𝑥
𝜆
. (3.171)

The derivative of 𝑢 yields

d𝑢
d𝑥

= −2𝜋
𝜆

sin
2𝜋𝑥
𝜆

=

{
− 2𝜋
𝜆

√
1 − 𝑢2, 0 ≤ 𝑥 ≤ 𝜆/2

2𝜋
𝜆

√
1 − 𝑢2, 𝜆/2 ≤ 𝑥 ≤ 𝜆. (3.172)

For example, if the integral of cos4 𝜃 is formed by using the previous substitu-
tions, the following result can be obtained

Υ1 =
1
𝜆

∫ 𝜆

0
cos4 𝜃dx =

1
𝜋

∫ 1

−1

d𝑢(
1 + (2𝜋𝐴/𝜆𝑢)2

)2 √
1 − 𝑢2

=
1 + 1

2 (2𝜋𝐴/𝜆)2(
1 + (2𝜋𝐴/𝜆)2

)3/2 . (3.173)

In the same manner the remaining sin or cos components can be determined and
are given in Appendix A.1.3.5. If the results of all integrands are plugged into
𝑺̄, the homogenized material parameters can be obtained by applying uniaxial
stress loads. For example, the inverse of 𝑆xx leads to the effective modulus in
𝑥-direction. For a composite with induced waviness the material is no longer
transversely isotropic but rather orthotropic. All effective material parameters
are given in Appendix A.1.3.5. It is obvious that material parameters are only
dependent on the ratio of the amplitude 𝐴 to the wavelength 𝜆 and in case of
𝐴 = 0 the transversely isotropic material parameters are recovered.

3.5.6.2 Deformation of a Waviness

In the initial configuration, amplitude and wavelength are known. During
deformation these two values can change and must be determined prior to
calculation of the effective material parameters. For a given vector 𝝀init, which
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initially corresponds to the 𝑥-direction (cf. Figure 3.29a), the length of the
deformed vector 𝝀 corresponds to the updated wavelength

𝜆 = ∥𝝀∥ = ∥𝑭𝝀init∥ (3.174)

where 𝑭 is the deformation gradient.

Additionally, if the amplitude is defined by the vector 𝑨init, after deformation
the corresponding amplitude 𝐴 results from the shortest distance between 𝝀
and 𝑨

𝐴 =
∥𝝀 × 𝑨∥

𝜆
(3.175)

with
𝑨 = 𝑭𝑨init. (3.176)

The ratio 𝐴/𝜆 of the updated amplitude and wavelength are utilized to determine
the effective elastic properties of the composite. It should be noted that due to
deformation the initial maximum misalignment angles 𝜃init

1,max and 𝜃init
2,max can

change and be different to each other (cf. Figure 3.29).

𝑥, 𝑥

𝑦, 𝑦̂

𝜃init
1,max 𝜃init

2,max=

𝑨
init

𝝀init

(a) Initial waviness

x

y, ŷ
θ1,max θ2,max<

A

λ

x̂

(b) Deformed waviness

Figure 3.29: Deformation of a representative area with waviness and the corresponding
deformed vectors 𝝀 and 𝑨 with the resulting maximal misalignment angles
𝜃1,max and 𝜃2,max
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3.5.6.3 Homogenized Stress Response of a Waviness

As described before, a waviness can be approximated by two opposing fiber
direction angles. Previous publications have used the maximum misalignment
angle to calculate off-axis stress states, which lead to the effective stress re-
sponse of a waviness [32, 118, 200]. However, these approaches use only one
angle instead of two angles. As shown in Figure 3.29b, due to deformation
of the wave a difference between the maximum misalignment angles can oc-
cur. Therefore, an approach which considers both angles is presented here.
The process to determine the homogenized stress response due to waviness is
visualized in Figure 3.30 and explained in the following.

Initially the amplitude to wavelength ratio 𝐴/𝜆 and the applied strain 𝜺x are
known (cf. Figure 3.30a). Based on the initial ratio 𝐴/𝜆 an updated ratio
is calculated as described above. The strain 𝜺x is derived using the same
procedure as for areas with straight fibers. It should be noted that the strain
also considers the deformation of the initial material axes. To consider both
maximum misalignment angles, first the effective trial stress 𝝈̂x of the waviness

𝑪̄, 𝝈̂x

𝝈1 𝝈2𝝈x = 1
2
(
𝝈x

1 + 𝝈x
2
)

𝐴
𝜆 , 𝜺x

𝜺̂1 𝜺̂2

𝝈x
1,𝝈

x
2

(a) (b)

(c)(d)

Figure 3.30: Homogenization steps of a waviness to determine the effective stress re-
sponse: (a) initial model providing effective strain 𝜺x and amplitude to
wavelength ratio 𝐴/𝜆; (b) homogenized elastic trial stress 𝝈̂x providing
local trial strain 𝜺̂1 and 𝜺̂2; (c) local stress 𝝈1 and 𝝈2 of a waviness pro-
viding the transformed effective stress 𝝈x

1 and 𝝈x
2; (d) homogenized stress

of a waviness 𝝈x
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is determined (cf. Figure 3.30b). This trial stress can be obtained from the
applied strain 𝜺x and the effective material stiffness 𝑪̄. The effective material
stiffness 𝑪̄ defines an orthotropic material behavior (cf. Equation (3.110)) and
is based on effective material parameters. As described in Section 3.5.6.1,
each effective material parameter is a function of the amplitude to wavelength
ratio 𝐴/𝜆 and the local material properties of a transversely isotropic material.
Additionally, the local material properties take the FVC into account, which
enable the FVC-dependent waviness modeling. The definition of each effective
material parameter is given in Appendix A.1.3.5.

To consider both waviness angles, an imaginary cut of the volume into two
equal volumes is performed (cf. Figure 3.30c). Based on the effective trial
stress, the local trial strain 𝜺̂1 and 𝜺̂2 for each volume can be obtained. The
local trial strain is the product of the local trial stress 𝝈̂𝑖 (𝑖 ∈ 1, 2) and the
undamaged compliance matrix 𝑺 (cf. Equation 3.110). However, at first
the local trial stress needs to be obtained from the effective trial stress. By
transforming the effective trial stress to the local direction, the required local
trial stress can be determined. The corresponding local directions are defined
by the maximum misalignment angles 𝜃1,max and 𝜃2,max (cf. Figure 3.29b).
The waviness is initially present in the (𝑥,𝑦)-plane and it is assumed that due
to deformation it remains in the (𝑥,𝑦̂)-plane. Using Equation (3.165) the initial
misalignment vectors 𝒙init

1 and 𝒙init
2 are given in the (𝑥,𝑦)-plane by

𝒙init
1 =

(
1 2𝜋𝐴

𝜆 0
)⊤

and 𝒙init
2 =

(
1 − 2𝜋𝐴

𝜆 0
)⊤

(3.177)

while the perpendicular vectors 𝒚init
1 and 𝒚init

2 yield

𝒚init
1 =

(
− 2𝜋𝐴

𝜆 1 0
)⊤

and 𝒚init
2 =

(
2𝜋𝐴
𝜆 1 0

)⊤
. (3.178)

These vectors define the local maximum misalignment, which correlates with
the local material direction. By applying a deformation, the direction of the
vectors can change. As a result the deformed vectors (𝒙1, 𝒙2, 𝒚1 and 𝒚2) may
be no longer perpendicular to each other and have additional stretching. These
vectors can be used to form transformation matrices 𝑹1,max and 𝑹2,max. The
transformation matrices define the change of the reference system from the
(𝒙̂, 𝒚̂, 𝒛̂)-space to the (𝒙𝑖 , 𝒚𝑖 , 𝒛𝑖)-space. However, the deformed vectors (𝒙̂, 𝒚̂, 𝒛̂
and 𝒙𝑖 , 𝒚𝑖 , 𝒛𝑖) must be normalized beforehand. It should be noted that the
through thickness direction is equal for both local sections 𝒛̂ = 𝒛1 = 𝒛2. To
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calculate the components of the transformation matrices 𝑹1,max and 𝑹2,max,
Equation (3.22) can be used. Since the stress is given in vector notation,
the transformation matrices are rewritten to 6 × 6 transformation matrices 𝑻𝑖
(𝑖 ∈ 1, 2). By applying the transformation matrices to the trial stress 𝝈̂x and
by using the undamaged compliance matrix 𝑺, the local trial strains 𝜺̂1 and 𝜺̂2
are obtained.

Next step is to calculate the local stress response 𝝈1 and 𝝈2 (cf. Figure 3.30c).
Using the trial strain 𝜺̂1 and 𝜺̂2 and the developed material model for straight
fibers, the local stress response is obtained. The model for straight fibers
covers the local nonlinear behavior and failure mechanisms, such as plasticity
or fiber and inter-fiber failure. Additionally, the FVC defines the local strength
values and is used within the failure criteria. This approach allows to model
waviness and simultaneously consider FVC and nonlinear material behavior of
the composite. The local stress needs to be transformed back to the (𝒙̂, 𝒚̂, 𝒛̂)-
space to define the effective stress response of the waviness. Using the inverse
of transformation matrices 𝑹−1

𝑖,max allows to form the 6× 6 back transformation
matrices 𝑻̃𝑖 . The transformed effective stress 𝝈x

1 and 𝝈x
2 are obtained by

applying 𝑻̃1 and 𝑻̃2 to the corresponding local stress 𝝈1 and 𝝈2.

Finally the homogenized stress response of the waviness𝝈x can be determined.
Since the two imaginary volumes are equal in size, the volumetric homoge-
nization leads to simple mean values of the stress components 𝝈x

1 and 𝝈x
2 as

the results for 𝝈x (see Figure 3.30d). In general, the whole calculation process
can be defined as

𝝈x = 1/2 (
𝝈x

1 + 𝝈x
2
)

(3.179)

with

𝝈x
1 = 𝑻̃1𝑪

(1)
D 𝜺̂el

1 = 𝑻̃1𝑪
(1)
D 𝑺𝝈̂1 = 𝑻̃1𝑪

(1)
D 𝑺𝑻1𝝈̂x = 𝑻̃1𝑪

(1)
D 𝑺𝑻1𝑪̄𝜺x

𝝈x
2 = 𝑻̃2𝑪

(2)
D 𝜺̂el

2 = 𝑻̃2𝑪
(2)
D 𝑺𝝈̂2 = 𝑻̃2𝑪

(2)
D 𝑺𝑻2𝝈̂x = 𝑻̃2𝑪

(2)
D 𝑺𝑻2𝑪̄𝜺x

(3.180)

where the damaged stiffness matrix 𝑪 (𝑖)D considers damage evolution and 𝜺̂el
𝑖

results from the plasticity model. For a rapid convergence of the constitutive
model, which considers waviness, the consistent tangent operator is needed
and is derived in Appendix A.1.3.6.
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3.5.7 Summarizing Flowcharts of the Constitutive Model

The constitutive model for regions with a waviness and for regions with straight
fibers performs several calculation steps. A flowchart for the whole constitu-
tive model which considers draping effects, with two misalignment angles to
define waviness and varying FVC is given in Figure 3.31. Additionally, the
flowchart for the transversely isotropic material considering material nonlinear-
ities, failure initiation and damage propagation, which is used by the waviness
constitutive model, is given in Figure 3.32.

Compared to previously published models the developed model can process
information of draping effects. These very important input draping information
allows continuous composites to be modeled more realistically. In general, the
usage of deformed material axes is crucial, as experimental results show a
significant change. Further, the combination of the provided strain measure
with material nonlinearity (such as carbon fiber-specific nonlinearity, action
plane plasticity and direction dependent damage evolution) is implemented
here for the first time. Especially the intense evaluation of the available FVC-
dependent experimental data leads to the conclusion that for IFF the provided
linear functions of FVC-dependent material parameters are sufficient. Finally,
the continuous change of the waviness for both maximum misalignment angles
based on the deformation of the material is considered.
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,ẑ

O
ut
pu

t:
�
,_
,X

1,
m
ax
,X

2,
m
ax

Eff
ec
tiv

e
w
av
in
es
s
sti
ff-

ne
ss

an
d
tra

il
str
es
s

In
pu

t:
�
,_
,�

1,
a 1

2,
�

2,
�

12
,�

23
,Δ

9
,9

t

O
ut
pu

t:
Ī
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Figure 3.31: Flowchart of the composite constitutive model considering FVC and wavi-
ness by using the developed constitutive model for transversely isotropic
materials
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3.5 Constitutive Model for Composites

Start transversely
isotropic constitive model

Material stiffness
Input: 𝐸1, 𝜈12, 𝐸2, 𝐺12, 𝐺23, d𝐸1/d𝜀11

Output: 𝑪, d𝐸1
d𝜺

Calculate trail stress
Input: 𝑪,Δ𝜺, 𝜺t

Output: 𝝈̂

Determine action plane Input: 𝝈̂, 𝑝n1, 𝑝nt, 𝑌T, 𝑌C, 𝑆12
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Determine damaged stress
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Output: d𝝈
d𝜺

Return data to caller

yes

no

no

yes

Figure 3.32: Flowchart of the constitutive model for transversely isotropic materials
considering nonlinear material behavior, failure initiation and damage
propagation
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4 Virtual Process Chain for
Composites considering Draping
Effects

4.1 Literature Review

The holistic view of the manufacturing process provides a major advantage
regarding reliable structure simulation results. To do so, the outcome of
each manufacturing step must be known. To consider draping effects two
possible ways are available: experimental measurement and simulation of the
draping process. There are several approaches to experimentally analyze the
deformed fabric after the draping step [27, 202–206]. However, in general,
such methods demand high effort, while providing only the fiber orientation
as a homogenized result. The actual deformation of the fabric is not available.
Additionally, the inner plies are in general not evaluated at all. On the other
hand, the actual deformation of the fabric for all plies can be obtained by using
draping simulation methods. There are several approaches available to model
the draping process [2, 59, 207–211]. Especially the model developed by
Schirmaier [2, 3] provides reliable results for the UD-NCF material, which
is used in the present work [4].

Since the deformation of the fabric during the forming process has the most
impact on the resulting draping effects, the draping simulation is best suited
to obtain the necessary data for the structural simulation. By transferring the
simulation results of one manufacturing step to the next, one follows the re-
alistic manufacturing process of composite parts. Such virtual process chains
are under ongoing research and have been applied in several composite devel-
opment processes [1, 27, 75–77, 212]. In general, the meshes of the different
simulation steps are not equal and the resulting data need to be mapped. There
are several mapping algorithms available, which allow transferring scalars,
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4 Virtual Process Chain for Composites considering Draping Effects

vectors, and tensorial data [213, 214]. It is one thing to develop a constitu-
tive model which considers draping effects, but the results of such a model
are strongly dependent on the input data. Such data can be influenced by the
mapping step, but also by the previous simulation results, which serve as input
for the mapping process. As the input data is obtained from draping simu-
lations, these have to be validated based on experimental results. By using
macroscopic draping models, a homogenization step of the fabric is already
performed. Especially in the case of UD-NCF materials, which consist of
several components, such macroscopic models have some limitations regard-
ing occurring gaps within the fabric or other comparable deformations of the
fabric. However, these limitations do not outweigh the enormous advantage
over a conventional design of fiber composite components. In a conventional
design process the fiber orientation is provided, either by a kinematic draping
algorithm or by a simple projection of the initial fiber orientation of the fabric
to the composite part. Such approaches do not consider the actual material
behavior of the fabric and can lead to erroneous results. Additionally, draping
simulations provide information about the local deformation which may cause
a change of the FVC or may induce fiber waviness.

If the influence of the manufacturing process is taken into account for structural
simulation, a much better prediction of the resulting stiffness and strength can
be achieved [1, 27, 215]. However, to provide the necessary information to the
structural simulation model, the used FEA-software can have some limitations.
First, it must be possible to use a user-defined material model. Second, it must
be possible to provide the mapping data to this model. Third, it must be
possible to save the read-in data permanently in order not to unnecessarily
extend the runtime of the simulation. By using the FEA-software Abaqus it
is possible to implement user-defined material models and compare different
approaches to import the mapped data [216]. However, the mapping methods
used have spent most of the simulation time reading the data. Therefore, a new
method must be found to reduce this bottleneck. Since the fiber orientation,
the fiber volume content and fiber waviness are to be taken into account in the
structural simulation, these data must be obtained from the draping simulation.
To do so, new methods must be developed to process macroscopic draping
simulation results.
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4.2 Evaluation and Processing Draping Simulation Results

4.2 Evaluation and Processing Draping
Simulation Results

4.2.1 Obtaining the Fiber Orientation

The material properties of transversely isotropic materials are defined corre-
sponding to the fiber orientation. Therefore, it is a major aspect to predict
the local fiber orientation to obtain reliable simulation results. The fiber ori-
entation is primarily defined by the used fabric and its orientation within the
reference coordinate system of the composite part. During the draping pro-
cess, due to the deformation of the fabric, the fiber orientation may change.
There are several possibilities to approximate fiber orientation. One of them is
the projection of the initial fiber orientation of the fabric on to the composite
part. Here the quality of the projection is highly dependent on the geometry
itself. For example, the prediction quality of the fiber orientation for plane
components with almost no height gradients will be quite high. However, with
increasing part complexity, especially in double curved areas, the fabric will be
more subjected to shear deformation modes which result in a reorientation of
the initial fiber direction that cannot be captured by a pure projection. Another
possibility is to obtain the fiber orientation results from kinematic draping
algorithms. Such a method uses a mathematical approach that considers the
geometry of the components and assumes a dominant shear mode, being either
pure shear (for woven fabrics) or simple shear (for UD fiber reinforcements).
However, the quality of the results is highly dependent on the choice of the
starting point [217]. Further, the results are more accurate if woven fabrics are
used and if the occurring shear deformation does not get close to the critical
shearing angle. On the other hand, such methods are less accurate for UD-
NCF materials since the fabric can undergo different deformation modes such
as stretching or compression of the sewing. Therefore, draping simulation
methods are more suitable. Such models allow considering the actual material
behavior of the fabric. With increasing computational power, the required
time to obtain results is manageable. Another major advantage of FE-based
draping simulation models, besides the fiber orientation itself, is the capability
to predict local draping effects such as varying FVC or fiber waviness.

The fiber orientation resulting from draping simulation models depends on
the used mesh. For example, shell elements are quite useful to determine
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4 Virtual Process Chain for Composites considering Draping Effects

the in-plane deformation [2, 207, 208]. However, in such a case the material
behavior of the fabric through the thickness cannot be determined. Therefore,
the 2D modeling approach limits a more accurate prediction of the fabric
volume change during deformation but provides a reliable prediction of the
fiber orientation. Initially, the fiber orientation within the fabric is defined and
its change is tracked during deformation. To do so the deformation gradient 𝑭
is utilized. For any initial fiber orientation 𝒇 init

1 the deformed fiber orientation
𝒇 1 is given by

𝒇 1 = 𝑭 𝒇 init
1 . (4.1)

For example, if the initial fiber orientation corresponds to the 𝒙-axis, after
the deformation the fiber orientation corresponds to the first column of the
deformation gradient. In general, material axes are expressed as unit vectors,
therefore, the fiber orientation also needs to be normalized. The usage of
the deformation gradient to determine the actual fiber orientation is crucial as
shown in Section 3.2.

4.2.2 Methods to Determine Fiber Volume Content

The FVC has a major impact on the resulting mechanical properties of com-
posites. As shown previously the FVC for UD-NCF can be determined by
the knowledge of the fabric areal weight and the ply thickness (cf. Equation
(2.2)). During deformation of the fabric, the initial area weight of the fabric can
change [50]. By defining the cavity height of the tool, the laminate thickness is
set. Knowing this information, the resulting FVC can be predicted. The shell
element-based draping simulation models provide the capability to predict the
change of the areal weight of the fabric. As this material property consists of
two parameters, the reference area, and the fabric areal weight, only the area
change can be determined from the draping simulation. The weight of the
fabric is assumed to be constant for each element. By utilizing the in-plane
deformation gradient 𝑭 (third row and column of the deformation gradient are
neglected), the resulting area can be determined as follows

𝐴f = det(𝑭)𝐴init
f = (𝐹11𝐹22 − 𝐹12𝐹21) 𝐴init

f (4.2)

where 𝐴init
f is the reference area and 𝐹𝑖 𝑗 are the components of the deformation

gradient. To determine the FVC, Equation (2.2) is utilized. By extending
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4.2 Evaluation and Processing Draping Simulation Results

the definition of the areal weight 𝑚w to its parameters, fabric weight 𝑚0, and
reference area 𝐴f, and by utilizing the equation above, a new definition of the
FVC is derived

𝜑 =
𝑚0
𝐴f

𝑛L
𝜌f𝑡L

=
𝑚0

det(𝑭)𝐴init
f

𝑛L
𝜌f𝑡L

=
𝜑0

det(𝑭) (4.3)

where 𝜑0 is the initial FVC for a specific areal weight of the fabric and a specific
laminate thickness. It is obvious that in the case of reduced reference area
(det(𝑭) < 1), the fiber volume increases and is reduced the other way around.
In any case such approach has been experimentally evaluated and shows a very
good correlation with the prediction of the draping simulation models [50].
However, by assuming a certain laminate thickness, the compactability of the
fabric, which is a common material behavior, is not taken into account. As
the fabric can undergo a thickness change and each single ply can undergo
different thickness change, this material behavior also needs to be considered
providing more accurate predictions of the FVC [55, 56].

4.2.3 Deduction of Occurring Fiber Waviness

As shown by experimental results, fiber waviness has an impact on stiffness and
strength. Therefore, it is crucial to provide such information to the structural
simulation. In contrast to the fiber orientation and the FVC, the local occurring
fiber waviness is more challenging to determine. As waviness represents a lo-
cal variation of the fiber orientation, the resulting amplitude and wavelength
ratio must be determined. It is easier to express the waviness in terms of piece-
wise changes of the fiber orientation. In such a case, a fine FE-mesh must be
used to avoid any loss of manufacturing process information. To consider this
piecewise fiber orientation change in the structural simulation, the mesh needs
to be also fine. This condition leads to long simulation runtime, which is in
general counterproductive in terms of an efficient design process. A simplified
approach expressing waviness in terms of two adjacent complementary vectors
has been already used [27]. Such an approach is highly mesh-size-dependent.
For example, by choosing a mesh size of 5 mm, a wavelength of 10 mm can
be expressed by two neighboring elements. Additionally, such an approach
neglects the fact that the used macroscopic draping simulation model repre-
sents a homogenized material behavior of the fabric. Therefore, it cannot be

149



4 Virtual Process Chain for Composites considering Draping Effects

guaranteed that each homogenized element also reflects a state without any
present waviness.

Since waviness occurs in areas where the rovings are compressed, the resulting
strain in fiber direction 𝜀11 is evaluated. By assuming an initially straight
roving, a negative strain in fiber direction leads to an undulation. To determine
the resulting amplitude and wavelength the following approach is used

𝐴

𝜆
=

{
𝑓 (𝑠𝜆, 𝜀11) , 𝜀11 < 0
0, 𝜀11 ≥ 0

(4.4)

where the function 𝑓 (𝑠𝜆, 𝜀11) returns the amplitude to wavelength ratio based
on the initial arc length 𝑠𝜆 and the acting strain in fiber direction 𝜀11. To define
such a function, it is assumed that in the case of a straight roving (𝐴 = 0) and
no applied strain in fiber direction (𝜀11 = 0), the wavelength 𝜆 corresponds
to the initial arc length 𝑠𝜆. For an initially straight roving, the initial arc
length defines the length of the observed roving that forms a waviness when
compression occurs. As the 𝐴/𝜆 ratio is a dimensionless quantity, the choice
of the initial arc length is arbitrary. If the roving is compressed, a waviness is
formed, leading to a reduction of the wavelength, while the arc length remains
the same. To determine the wavelength, the strain in fiber direction is utilized

𝜆 = (1 + 𝜀11) 𝜆init (4.5)

where 𝜆init correspond to the initial wavelength. As the wavelength and the arc
length are known, only the corresponding amplitude 𝐴 needs to be determined.
By using Equation (2.14) the inverse of the elliptic integral of the second kind
need to be solved to obtain the amplitude. However, an analytical solution of
the inverse is not known. Therefore, an iterative method is used (e.g., Newton-
Raphson method). A visualization of the resulting amplitude to wavelength
ratio 𝐴/𝜆 as a function of the acting fiber direction stain is given in Figure 4.1. It
is obvious that even small strain values lead to an immediate increase of the 𝐴/𝜆
ratio. Such an approach can be used as a simple estimation of the occurring
waviness. However, by using macroscopic draping simulation models, the
material behavior of the fabric in fiber direction needs to be modeled more
accurately. This means that the material behavior itself is actually influenced
by the occurring waviness, leading to nonlinear behavior of the modulus in
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Figure 4.1: Resulting amplitude to wavelength ratio 𝐴/𝜆 vs fiber direction strain 𝜀11
using draping simulation results

fiber direction and an additional in-plane bending of the roving. Therefore,
this condition has to be kept in mind while using the described method above.

4.3 Gathering Data from Draping Simulation

The deformed fabric provides the input data for the structural simulation. Since
the meshes of the draping and structural simulations differ, a mapping step that
transfers data from one mesh to another is needed. To do so, the draping
simulation data containing information about fiber orientation, the FVC, and
the fiber waviness need to be extracted. The VTK file format [218] is used to
export the data to a neutral format, which can be read by a mapping tool. The
file format provides sufficient flexibility to export different elements (e.g., shell
or solid elements) or data types (e.g., scalars, vectors, or tensors). Following the
VTK definitions, the nodes, and their connectivity to form a mesh are needed.
After the mesh is defined, the data obtained from the draping simulation is
assigned to each element. In general, a laminate contains multiple plies and
the data need to be mapped ply-wise. The VTK file format allows you to
export the laminate to a single file, but the affiliation of individual elements to
a particular ply is lost. Therefore, each ply is written as a separate file.
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4 Virtual Process Chain for Composites considering Draping Effects

As the draping simulation is performed using the Abaqus/Explicit solver, the
resulting data can be obtained using the Python API. In the first step, the nodes
and their connectivity are obtained to define a mesh. To gather all necessary
data for the structural simulation, the deformation gradient is obtained for
each element. As described in Section 4.2 the fiber orientation and the FVC
are directly determined using the deformation gradient. The amplitude to
wavelength ratio results from the fiber strain, which can also be obtained
directly from the deformation gradient. Using the draping simulation model
developed by Schirmaier [2], the strain in fiber direction can be determined
by

𝜀11 =
∥ 𝒇 1∥
∥ 𝒇 init

1 ∥
=
∥𝑭 𝒇 init

1 ∥
∥ 𝒇 init

1 ∥
. (4.6)

Here only the initial fiber orientation vector 𝒇 init
1 is needed as an additional

parameter. Using the fiber strain and the resulting wavelength, the amplitude
to wavelength ratio can be determined for each element (see Section 4.2.3).
The resulting ply-wise data is then written to separate VTK files.

4.4 Mapping and Import Data to Structural
Simulation

4.4.1 Mapping Process

To perform the mapping step the mapping library Maplib [214] is used. The
mapping library needs the source and target mesh as input in VTK file format.
To define the search radius between the two meshes, as well as the desired
mapping algorithm, an additional configuration file needs to be provided. The
mapping algorithms use the defined search radius (the tangential and normal
radius for shell, or sphere radius for solid elements) starting from the target
mesh to look up the data in the source mesh. Here the shapefct algorithm
is used as it considers the shape function of the different FE-based elements.
The processed data contains only vectors (fiber orientation) and scalars (FVC
and amplitude to wavelength ratio).

As the mapping step requires a VTK file of the structural simulation model
mesh, a preprocessing Python script is developed to extract the mesh of a
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4.4 Mapping and Import Data to Structural Simulation

model. Ideally, the orientation of the reference coordinate system is equal
for draping simulation as well as for structural simulation. However, in some
cases, the geometry needs to be translated or rotated to position both meshes
to each other. Since the draping simulation results are available ply-wise, the
structural simulation mesh also needs to be extracted for each ply. An example
of the mapped results is given in Figure 4.2. The fiber direction of the draping
simulation is shown with gray arrows, while the mapped vectors are shown in
red (cf. Figure 4.2a). An occurring shear strain leads to a local increase of the
FVC, which is visualized by the red colored path (cf. Figure 4.2b). Here the
underlying mesh corresponds to the draping simulation mesh and the top one
is the structural simulation mesh.

(a) Mapped fiber orientation: red arrows show
the draping simulation mesh and gray
arrows are the mapped vectors to the struc-
tural simulation mesh.

(b) Mapped fiber volume content: top mesh
shows the draping simulation mesh and the
bottom mesh corresponds to the structural
simulation mesh.

Figure 4.2: Mapped draping effects information from draping simulation to structural
simulation

4.4.2 Methods to Import Mapped Data in ABAQUS

The processed and mapped data need to be imported in order to use this
information in the structural simulation. By using Abaqus there are several
possibilities to do so. The fiber orientation can be directly assigned to each
element and the corresponding strain at the integration point will be directly
transformed into the corresponding coordinate system. However, if a directly
assigned fiber orientation is used the global deformation gradient 𝑭 is not
provided to the user subroutine. Instead, the deformation gradient is expressed
in terms of the corotational element frame. As shown in Section 3.2, a material
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4 Virtual Process Chain for Composites considering Draping Effects

axis frame is used which follows the material-specific directions. Additionally,
the scalar information of FVC and amplitude to wavelength ratio for each
element cannot be assigned and processed by the user subroutine. One possible
workaround is to use a read-in step at the beginning of the analysis. This
approach however will result in unnecessary time consumption [216].

A further possibility exists in Abaqus to provide the local fiber orientation, the
FVC and fiber waviness. By using the keyword "*Initial Conditions,
type=SOLUTION", an averaged value for the whole element can be written
directly into theSTATEV array of the user subroutine. This allows the processing
of the provided draping effects information directly at each integration point.
While the FVC and the amplitude to wavelength ratio are scalars and can be
directly assigned, the fiber direction needs some attention. The deformation
of each element is evaluated in the global coordinate system. To consider
the local fiber orientation at least two material axes (e.g., fiber and transverse
direction) need to be provided to the subroutine in order to consider consistent
stacking direction. Ideally, the fiber orientation vector after the mapping step
is perpendicular to the normal stacking direction of the element. However, this
is not the case as the meshes can deviate especially in double curved corner
regions. Therefore, the fiber direction vector is projected onto the element
surface defined by the stacking direction of the laminate. Special care needs to
be taken by defining the normal direction 𝒗n of the element surface. After the
stacking direction of the mesh is defined, which has an impact on the order of
the element connectivity, the vector 𝒗n is derived by using the first three nodes
of the element to form a plane. To obtain the projected fiber orientation 𝒇

proj
1

only the mapped fiber orientation 𝒇 1 and the normal direction 𝒗n are needed
(cf. Figure 4.3). The projected fiber orientation is given by

𝒇
proj
1 = 𝒇 1 − ( 𝒇 1 · 𝒗n) 𝒗n. (4.7)

Afterwards, the resulting vector needs to be normalized in order to obtain a unit
material axis direction. Together with the transverse direction 𝒇 2, which can
be obtained from the cross product of the normal direction and the projected
fiber direction, the material axes can be passed to the keyword definition. It
should be noted that the deformed fabric can have nonorthogonal material
axes. However, for the structural simulation the initial state is defined after
consolidation by an orthogonal coordinate system defined primarily by 𝒇 1 and
𝒇 2.
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𝑥

𝑦
𝑧

𝒗n

𝒇 1

𝒇
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1

element surface

Figure 4.3: Fiber orientation projection from draping simulation results ( 𝒇 1) onto the
element surface of a structural mesh ( 𝒇 proj

1 ), which is necessary in case
of differently oriented draping and structural mesh, e.g. at double curved
corner regions

A simple fiber projection approach, which does not consider draping simulation
results, will be introduced in the following, in order to compare it later with
the approach that considers draping information. An unsuitable engineering
approach for such fiber projection would simply assign a global direction as
fiber orientation, since it can lead to nonphysical results in curved areas. A
better projection approach uses a plane that cuts each element and defines the
projected fiber direction. To determine the fiber direction resulting from the
cutting plane, the cross product of the normal vectors of the cutting plane and
the element surface needs to be calculated. For example, if the normal direction
of the cutting plane is 𝒗

cp
n = (0, 1, 0)⊤ and the element normal corresponds

to 𝒗n = (0, 0, 1)⊤, the projected fiber direction yields 𝒇
proj
1 = (1, 0, 0)⊤ (c.f.

Figure 4.4). A special case can occur in which both normal vectors are equal,

G

H
I

vn

v
cp
n

f
proj
1

element surface

cutting plane

Figure 4.4: Fiber orientation projection onto the element surface based on cutting plane
method
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4 Virtual Process Chain for Composites considering Draping Effects

which leads to a null vector as a projection. In such a case, the global direction
of the fiber orientation can be assigned directly. In addition to the fiber
orientation, the fiber volume content and the fiber waviness can be set directly
to a constant value, and a comparison of the different approaches becomes
possible. Thus, an evaluation of the impact of each draping effect on the
mechanical properties and failure behavior can be made.
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5 Application and Validation of
Constitutive Models

5.1 Draping Effects on Microscopic Scale

Fiber reinforced composites consist of two main components: fiber and matrix.
However, the used fabric material contains additional sewing and glass rovings
as carrier material. While the additional components are mainly responsible
for the formability during the draping process, the fiber and matrix are still
the main factors which have an impact on the material properties of the com-
posite. It is known that the matrix and fiber-matrix interface failure are the
main trigger for inter-fiber failure and filaments breakage are responsible for
failure in fiber direction. While at the end the structure mechanical behavior
of composite parts should be predicted, the results are highly dependent on
the provided material data. Large scale experimental campaigns are costly
and often not always necessary. In order to analyze the impact of the fiber
and matrix on the mechanical behavior of unidirectional and also of undulated
composites, micro-mechanical models can be used. Especially if the origin
of the resulting FVC-dependent elasticity parameters and material strength
should be analyzed, micro-scale models are very useful. Here a more pro-
found understanding of the impact of each constituent or the associated fiber
distribution and shape on the failure and damage evolution can be obtained. In
perspective of occurring draping effects, the knowledge of material parame-
ters which affect the inter-fiber failure and therefore the corresponding failure
envelope are to be evaluated. The experimentally observed FVC-dependent
material behavior can be analyzed in detail. Finally, by achieving reliable
results or trends out of micro-scale models, tests which are not possible to be
performed experimentally (or only with a very high effort) can be conducted
numerically. In conclusion using micro-scale models the required amount of
information can be quickly generated and reduces the necessary experimental
work and coupon samples manufacturing effort. Furthermore, the occurring
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uncertainties, regarding the material parameters in macroscopic models, can
be evaluated and constrained.

5.1.1 Generating Micro Models

In general microstructures are complex and the numerical geometrical approxi-
mation must satisfy the reality. To do so there are several approaches available.
For example, one could use microscopic images or computed tomography
scans as input for the numerical model. However, while such approaches rep-
resent the reality, data acquisition for such model is time-consuming and costly.
Another possibility is to create a representative volume element (RVE). In such
case the RVE represent a cutout of the actual material which is representative
for the whole material. To reflect the composite material behavior, periodic
boundary conditions are applied to the outer surfaces of the RVE. In the past,
regularly arranged or cylindrical models were used. As an example such mod-
els can be a hexagonal arranged RVE or a model with a single round fiber
embedded in a cylindrical matrix. In any case these models represent a strong
periodic microstructure. Such approach is in generally used to determine the
material stiffness and in some terms the resulting material strength values.
However, due to such strong periodicity these models do not reflect reality. As
the regular RVE represents a small cutout of the material, any failure within
this RVE would also indicate an immediate failure of the whole material, which
is obviously not the case. After failure initiation, crack propagation through
the material causes a sequential degradation of the material. Nowadays the
modeling techniques has been further developed, which considers statistical
distribution of the filaments. Such statistical representative volume element
(SRVE) considers several dozen filaments and contrary to RVEs the filament
diameter and the distance between adjacent filaments varies. It has been shown,
that using SRVE the failure behavior of composites can be modeled quite well
[219–221].

5.1.1.1 Fiber Distribution

One of the main challenges creating SRVE models lies in the collision free
distribution of the filaments, while achieving high fiber volume contents in
a manageable time effort. There are two kinds of approaches to create such
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models: manual placing of filaments and automatic positioning. In order to
analyze several representations of SRVE only the fully automated methods are
useful. An advanced method to create representative volume elements with
random distribution of the filaments was introduced by Melro [222]. This
method allows creating models with a very high FVC (up to 𝜑 ≈ 65 %) in a short
amount of time. Here the filaments are assumed to be round as the collision
detection is easy to implement. As shown in Section 2.4.2 using microscopic
images, the cross section of the filaments can be elliptical. This shape can
occur in case of a slightly tilted microsection sample, cutting the filaments
under a certain angle, or naturally by the filaments itself. Nevertheless, by
using a model generator which only can process round filament shapes, the
minor radii of the ellipse is used as the lower bound.

In order to create a microstructure several input parameters, such as mean
filament diameter, its variance as also the dimensions of the final geometry
and the required FVC, are needed. To create a microstructure the algorithm
performs three steps (cf. Figure 5.1). First the filaments are placed randomly
and collision-free (hard-core model). If the required FVC is not achieved, new
space is needed in order to be able to put new filaments into the structure.
Therefore, the next two steps are used to move the filaments to allow the
addition of new filaments. During the second step, each filament is moved to
the next neighbor according to a special neighbor selection technique (stirring
step). Finally, the filaments at the edges of the evaluation region are moved
towards the center (moving outskirts step). Now the algorithm starts over and
further filaments can be added. In total, this algorithm creates a highly dynamic
movement of each filament, which allows creating multiple microstructures in a
short amount of time. It should be noted that an exact FVC cannot be set, since
each added filament has its own cross section which can lead to larger values
as requested. However, the impact of this condition reduces with increasing

(1) (2) (3) (1) (2) (3) (1)

Figure 5.1: Three steps of the fiber distribution algorithm: (1) hard-core model, (2)
stirring the fibers and (3) fibers in the outskirts (added or moved fibers are
colored in each step)

159



5 Application and Validation of Constitutive Models

SRVE size. As observed in microsection samples, for most of the filaments the
distance between the filaments is very small (cf. Figure 2.8). Therefore, this
geometrical condition needs to be reflected by the generated micro structure.
For all generated models the minimum distance between fibers is set to zero.
However, due to the nature of the fiber positioning algorithm the possibility of
a direct contact of two filaments is quasi nonexistent and a very short distance
is rather likely.

5.1.1.2 Model Generation

After the required FVC is reached, the position of each filament and its di-
ameter are written to a separate file. In conjunction with the dimensions of
the SRVE, the model can be generated in Abaqus using a Python prepro-
cessing script. Here the fiber distribution is recreated on a plane surface and
the meshing process is performed. In the next step the 2D elements are ex-
truded to create a volume. If a unidirectional and nonundulated material is
analyzed only one element row in fiber direction is needed. After assigning
the material properties of fiber and matrix to specific element sets, the desired
load cases need to be assigned. In order to achieve characteristic material
behavior, strong periodic boundary conditions are needed [223, 224]. There-
fore, each node on the outer face, edge and corner needs to be restrained to
induce the specific periodic material behavior. By enforcing these boundary
conditions, the SRVE can be subjected to an average strain or stress. This
allows to create iso-stress, iso-strain or combined load cases to determine the
homogenized material properties. For a better understanding of the required
periodic equations, a visualization of the embedded periodic cell is given in
Figure 5.2. Here each face, edge and corner has a counterpart. For example,
the face 1 and its counterpart 2 are connected due to periodicity of the cell
(cf. Figure 5.2a). To define the corresponding boundary conditions, different
deformations (or loads) can be analyzed. By analyzing each face, edge and
corner pair there are three face equations, 18 edge equations and 28 corner
equation in total. However, while all face equations are needed, only nine edge
and seven corner equations are required to enforce fully periodic boundary
conditions. In previous publications only partial equations have been used
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Figure 5.2: Embedded periodic representative volume element (a) and the extracted
element with the corresponding labels of the (b) faces, (c) edges and (d)
corners

to model microstructures [223, 224]. The used equations for the faces are
summarized to

𝑢
2
𝑖 −𝑢

1
𝑖 −𝐿1𝜀𝑖1 = 0, 𝑢

4
𝑖 −𝑢

3
𝑖 −𝐿2𝜀𝑖2 = 0, 𝑢

6
𝑖 −𝑢

5
𝑖 −𝐿3𝜀𝑖3 = 0 (5.1)

where 𝑢𝑖 defines the displacement, the index 𝑖 defines the direction (𝑖 ∈
{1, 2, 3}), 𝐿𝑖 is the corresponding length of the cell and 𝜀𝑖 𝑗 is the applied
average strain to a reference node. The corresponding edge and corner equa-
tions are given in Equations (5.2) and (5.3).
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𝑢
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9
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𝑢
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(5.2)

161



5 Application and Validation of Constitutive Models
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(5.3)

The equations above constrain the movement of each reference point and allow
the application of average loads to the cell. To impose these equations Abaqus
provides the keyword *Equation, where each node set for faces, edges and
corners can be defined connected to the reference points by the boundary
equations above. As mentioned in Section 3.2 the material axes directions
are crucial to obtain physically consistent results. Therefore, the material
axes directions are applied to the fiber and also to the matrix. The Abaqus
keyword "*Initial Conditions, type=SOLUTION" allows to provide the
information of the local material axes of each element to the matrix and fiber
user subroutines.

Representative volume elements can also be used to analyze undulated material
behavior. To create undulated microstructures additional steps are needed.
The geometry generation process for undulated microstructures is shown in
Figure 5.3. The dimensions of an undulated structure are larger than those
of a nonundulated microstructure. The meshed plane surface is extruded
sufficiently deep (cf. Figure 5.3a and 5.3b). To find the sufficient depth of
the undulated SRVE model, it is recommended to perform a mesh study and
compare the results of 𝐸x with the analytical solution. Now that the solid
elements are created, the position of all nodes needs to be modified to create a
waviness. For each node the corresponding offset is calculated and a sinusoidal
shape of the microstructure is created. To reduce the model creation time, an
offset can be directly applied to all nodes on the same plane. The remaining
model creation steps are identical to the nonundulated SRVE models.

5.1.1.3 Evaluation of Stiffness and Strength Values

To evaluate each elasticity material parameter an iso-stress load is applied and
by utilizing the material compliance matrix 𝑺 each parameter can be calculated.
Since nonlinear material behavior can occur due to material axes rotation,
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(a) (b) (c)

_

2�

extrude create waviness

Figure 5.3: Model generation workflow for micro-scale models with waviness: (a) plane
2D fiber distribution, (b) extruded model and (c) imposed waviness

plasticity or occurring damage, only very small deformations are applied to
obtain initial linear elastic material parameters. To obtain the material strength,
the corresponding load needs to be vastly increased to trigger complete failure
of the microstructure. Depending on the load case and the material response
of fiber and matrix, different failure behavior can be achieved. For example, a
shear load can lead to a continuous hardening of the stress-strain curve, without
any sudden drop of the stress at failure initiation. On the other hand, transverse
tension can show a sudden drop of the stress at failure of the microstructure.
However, in both cases the maximum value of the analyzed iso-stress load case
is used as the resulting homogenized material strength for the corresponding
load direction. For combined loads (e.g., transverse tension and shear) the
maximum stress can occur at different time points. Therefore, to determine
the failure stresses of combined loads, for each time point the norm of the
stress vector is determined. The maximum value is then determined, and the
corresponding stress values are taken as the final failure points of the combined
load.

The obtained results from micro-scale simulations need to be processed in
order to obtain homogenized values. To analyze the resulting material stiffness
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and strength, the occurring local strains and stresses need to be integrated over
the whole model

𝜺̂ =
∫

𝜺d𝑉 =
1
𝑉

𝑁∑︁
𝑖=1

𝜺𝑖𝑉𝑖 and 𝝈̂ =
∫

𝝈d𝑉 =
1
𝑉

𝑁∑︁
𝑖=1

𝝈𝑖𝑉𝑖 (5.4)

where 𝑁 is the number of elements and𝑉 is the total volume. However, depend-
ing on the analyzed model the strain and stress need to be evaluated in a suitable
coordinate system. For example, undulations create an orthotropic material
behavior [30, 118], but locally the material is still transversely isotropic (see
Section 3.5.6). Therefore, the material response in terms of strain and stress
is evaluated within the global coordinate system. Now that the homogenized
values are available, the corresponding material parameters can be determined.

5.1.1.4 Material Parameters for Fiber and Matrix Constitutive Models

The used material models require a number of parameters which can be partly
determined from experiments. The experimental test results of the matrix can
be used to define the elastic as well as the rate dependent plastic behavior. Fur-
thermore, some material properties of the fiber, such as stiffness and strength in
fiber direction, can be obtained from experimental results or literature. How-
ever, some model-dependent parameters for both constituents are not available
and must be chosen wisely. For example, the material energy release rate 𝐺f
has a major impact in the damage evolution. For both constituents this material
parameter is different for tension and compression loads (𝐺+f and𝐺−f ). During
damage propagation through the micro-structure these energy release rates in-
teract with each other, as they can trigger different stress states and therefore
different failure modes. Furthermore, SRVE are subject to scatter due to the
geometrical factors, which lead to different results for the same energy release
rates. These conditions make it difficult to perform a parameter fitting analysis,
rather than by choosing the required material parameters wisely. Additionally,
the material properties of the fiber, besides the one in fiber direction, are quite
challenging or currently not possible to determine and can be obtained via
reverse engineering from composite coupon tests.

In detail, the material parameters of matrix and fiber are determined as follows.
The initial linear elastic material behavior of the matrix (𝐸m and 𝜈m) can be
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directly obtained from experimental results. The material parameters for the
plastic behavior are obtained by using a nonlinear optimization algorithm of
the Python package SciPy called differential_evolution. The resulting
material parameters of the matrix are summarized in Tables A.3 to A.6. For
the used carbon fiber the manufacturer provides only the stiffness and tensile
strength in fiber direction. However, by using the obtained experimental uni-
directional coupon results and by variation of the unknown material properties
(such as 𝐸 f

2, 𝐺f
12 or 𝜈f

23) within the numerical microstructure simulation, a
suitable material parameter data set can be identified. The used carbon fibers
have similar mechanical properties (e.g., 𝐸 f

1 and 𝑋 f
T) as the Toray T300 carbon

fiber. Therefore, a tensile/compressive strength ratio of 𝑋C/𝑋T ≈ 1 is used [63].
As the used material model for the fiber requires only the strength in fiber
direction besides the elastic properties, all material parameters can be fully
defined. The summarized data set of the required fiber material properties is
given in Table A.7.

5.1.2 Stiffness and Strength of Nonundulated Models

When it comes to a more profound understanding of material behavior of
composites, micro-scale models are the key. However, many parameters can
influence the outcome results. Especially if microstructures with a random
fiber distribution are used, the results are subjected to natural scatter. In order
to obtain reliable results first the parameters with the most impact have to
be analyzed. Besides the statistical distribution of the filament position and
the corresponding diameter of each filament, the size of the microstructure is
crucial. In previous publications [143, 225] it could be shown that by choosing
a sufficient microstructure size the results converge. This factor has not only
an impact on the material stiffness (compared to regular microstructures) but
also on the resulting homogenized material strength. Here the SRVE size of
15𝑅 × 15𝑅, where 𝑅 is the mean filament radius, is used. This size turned
out to be sufficient if the number of micro-scale models at the same FVC is
large enough. Therefore, a total number of ten different microstructures at
each FVC has been evaluated. The number of filaments varies between 33
to 35 at 𝜑 ≈ 45 % and 50 to 53 at 𝜑 ≈ 65 %. In the following subsections
the impact of each constituent on the material behavior of the composite is
analyzed. Especially the impact on the elastic parameters of the composite
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and the resulting failure envelope is evaluated. The effect of the FVC itself
is also evaluated. As observed from experimental results (cf. Figure 2.11),
the nonlinear behavior of the composite due to plasticity of the matrix is not
affected by the FVC. By varying the plasticity parameters of the matrix, it
assumed that only the stress-strain curve of the composite would be affected.
Furthermore, the carbon fiber specific nonlinearity will have a major impact
on the stiffness in fiber direction and little to none in other loading directions.
Therefore, the nonlinear behavior due to plasticity of the matrix and nonlinear
behavior of the carbon fiber are not evaluated.

5.1.2.1 Impact of the Constituents on the Linear Elastic Parameters

By using micro-scale models the resulting homogenized stiffness must corre-
late with the experimental results of coupons. The directly obtained material
properties of fiber and matrix are determined by the method as described in
Section 5.1.1.4. Other material properties are generally determined via reverse
engineering using micro-scale models or analytical solutions. Using the ma-
terial parameters for the constituents (Tables A.3 and A.7) a variation of each
parameter is performed to determine the impact on the resulting composite
stiffness or Poisson’s ratio. Further the increase of the stiffness in fiber direc-
tion d𝐸1/d𝜀11 is set to zero, as only the initial linear elastic material properties
are evaluated. To avoid any impact of the material nonlinearity, such as plas-
ticity or damage, the applied loads are very small. The loads create iso-stress
states, which allow to determine the elastic material response more easily. To
ensure the comparability of the variation, each individual parameter is reduced
or increased by 10 % while all other parameters remain the same. General the
material properties of the composite are effected by any change of the material
parameters of the constituents. However, some changes are very small (e.g.,
the variation of the transverse modulus 𝐸 f

2 leads to a change of the Poisson’s
ratio 𝜈23 lower than 1 %). In order to show only the most significant impact,
only the parameters which change the resulting material property by at least
1 % are presented. All parameters are evaluated for a FVC of 𝜑 ≈ 60 %. The
results are shown in Figure 5.4.

In fiber direction the material stiffness 𝐸1 is well described by a parallel-
connected model. The change of the fiber stiffness 𝐸 f

1 leads to a direct change
of 10 % since the matrix has a much smaller stiffness. All other parameter
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Figure 5.4: The most significant impact on the linear elastic material properties of the
composite by varying the material properties of the constituents by 10 %

variations, such as the Young’s modulus of the matrix 𝐸m, lead to a change of
𝐸1 lower than 1 %. By analyzing the impact on transverse stiffness 𝐸2 several
observations can be made. The variation of the transverse stiffness of the fiber
𝐸 f

2 has the lowest impact on the resulting modulus. This can be explained
by the usage of the lower bound of the transverse stiffness, which is defined
by a series-connected model. Here the increase of 𝐸2 is highly affected by
the FVC. At 𝜑 ≈ 60 % the impact of 𝐸 f

2 is still small compared to the impact
of the matrix itself. However, at large FVC the material properties of the
fiber will predominate and therefore have the most impact on the transverse
stiffness. The change of 𝐸 f

2 leads to almost the same percentage increase or
decrease of 𝐸2. On the other hand, the Poisson’s ratio of the matrix 𝜈m leads
to different observations. If 𝜈m is increased by 10 % the transverse modulus is
disproportionate increased by over 10 %. In case of a reduction, it has a more
severe impact as the Young’s modulus of the matrix 𝐸m. The reason for both
observations lies in the Poisson effect itself. If 𝜈m is increased by 10 % it tends
towards 𝜈m → 0.5, which induces incompressibility of the matrix and leads to

167



5 Application and Validation of Constitutive Models

a stress increase within the fiber. The matrix stiffness 𝐸m has a similar impact
on 𝐸2 as 𝐸 f

2 regardless of the percentage increase or decrease.

If the Poisson’s ratios 𝜈12 and 𝜈23 are analyzed, they show a similarity. The
variation of the fiber material properties has a smaller impact than the matrix
Poisson’s ratio. As 𝜈12 can also be defined by parallel-connected model, which
leads to a linear distribution over the FVC, and the matrix Poisson’s ratio is more
than two times larger than 𝜈f

12, its variation causes also a greater change. The
Poisson’s ratio in the transverse isotropic plane 𝜈23 changes most significantly,
if the Poisson’s ratio of the matrix is varied by 10 %.

Finally, the results of the shear modulus 𝐺12 are evaluated. Compared to the
transverse modulus 𝐸2, the impact of the fiber shear modulus𝐺f

12 is small on the
outcome. Although the shear modulus of the fiber𝐺f

12 is about 23 times larger
than the shear modulus of the matrix 𝐺m, according to the series-connected
model a significant increase of the composite stiffness𝐺12 is achieved for FVC
above 70 %. The matrix shows an impact on the shear modulus𝐺12 by varying
𝐸m and 𝜈m. In detail, the Young’s modulus of the matrix has a higher impact
than the Poissons’s ratio of the matrix on the resulting composite shear modulus
𝐺12. This condition can be the result of the material deformation under shear
loads. While transverse loads cause a volume change, which is affected by
the Poisson’s ratio of the matrix, shear loads lead to a more pronounced shape
deformation while the volume remains almost constant.

In summary, for the evaluated FVC the impact of the uncertainty of the unknown
material parameters of the fiber is relatively small (except for the stiffness in
fiber direction) compared to the impact of the material properties of the matrix.
Therefore, the accuracy of the matrix material properties is crucial to obtain
reliable results. Generally to obtain more accurate fiber material properties,
test results of coupons with a very high FVC have to be considered. Here
the fiber material properties are predominant compared to the matrix and by
remodeling the corresponding coupon tests the fiber material parameters can
be defined more precisely. If deviations between the experimentally obtained
composite material properties and the micromechanical models occur, the
primary reason could result from inaccurate matrix properties rather than
unknown fiber material properties.

Using statistical representative volume elements allow to analyze the occurring
material properties scatter. In order to compare the statistical scatter of SRVEs
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ten different microstructures at five different fiber volume contents have been
created. Each fiber distribution is evaluated to obtain all material properties
to define the linear elastic behavior of a unidirectional composite material.
The results are given in Figure 5.5. Due to transversely isotropic material
behavior, the corresponding material property has been added to the same plot
(e.g., 𝐸2 and 𝐸3). In several publications the regular RVE with hexagonal fiber
configuration is used to determine the actual material stiffness. Therefore, the
hexagonal array distribution is added as a comparison. As expected the material
parameters 𝐸1, d𝐸1/d𝜀11 and 𝜈12 are well described by a parallel-connected
model. In this case the increase or decrease of each specific parameter can be
defined by a linear function. However, in terms of scatter the numerical results
of the Poisson’s ratio 𝜈12 (or 𝜈13) are more affected (cf. Figure 5.5e) compared
to the stiffness in fiber direction. The hexagonal array results correspond very
well with the statistical distribution ones. By comparing the results of 𝐸2 and
𝐺12 a more nonlinear behavior over the FVC can be observed. It should be
noted that the shear modulus 𝐺23 can be directly deducted from 𝐸2 and 𝜈23
(see Equation (2.1)) and shows therefore also a nonlinear increase for higher
fiber volume contents. One remarkable observation is that the hexagonal array
for 𝐸2,𝐺12 and 𝜈23 show a more pronounced serial-connected model behavior.
This is especially observed for the shear modulus 𝐺12 where the difference
between the results of the SRVE and regular RVE increase over the FVC. At
𝜑 ≈ 65 % the difference is about 30 %, although same material parameters
are used. The generally higher shear modulus of SRVEs are the result of the
distance between filaments, compared to a regular hexagonal array distribution.
In areas with close filaments the shear stiffness of the fiber is more dominant as
in other areas. In total these areas contribute to the higher shear modulus 𝐺12.
As a result the usage of regular RVE seems to be inappropriate to determine
shear properties of composites. By comparing the scatter of each cluster the
results for most parameters are in a range of 2 %, only the in-plane shear
modulus 𝐺12 show a scatter in a range of 3 % to 5 %. The corresponding
experimental results show a good to very good agreement with numerical
ones. The trends over the FVC are clearly given. Only a larger deviation
in the slope d𝐸1/d𝜀11 can be observed. This difference results from the fact,
that the material properties of the fiber are determined from single filament
tests. However, the experimental results at the given fiber volume contents are
obtained from coupon tests. Here the used fabric contains an intrinsic waviness
as it is not pretensioned impregnated. In this case the results are not directly
comparable with single filament tests, where each filament is preloaded. To
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Figure 5.5: Resulting material properties from experiments (exp), RVE with hexagonal
fiber arrangement (hex) and SRVE with statistic fiber arrangement at differ-
ent FVC: (a) static modulus and (b) slope of the modulus in fiber direction,
(c) transverse modulus, (d) in-plane shear modulus, (e) in-plane and (f)
through-thickness Poisson’s ratio
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5.1 Draping Effects on Microscopic Scale

model the intrinsic waviness of the fabric, either the fiber stiffness 𝐸 f,init
1 and

the increase of fiber stiffness 𝑚f should be reduced, or models with waviness
of the filaments should be used. Nevertheless, it is obvious that the micro
model with the determined material parameters of the matrix and fiber can
sufficiently reflect the observed material behavior from coupon tests.

5.1.2.2 Failure Envelopes at Different Fiber Volume Contents

Due to combination of fiber and matrix, the resulting homogenized stress also
results from the stresses of each constituent. The proportion of each constituent
depends on the corresponding fiber volume fraction. Since the fibers have a
much higher stiffness than the matrix, most of the deformation occurs within
the matrix to achieve stress equilibrium. For example, a unidirectional iso-
stress load case leads to zero stress in all other directions. However, in a
heterogeneous material these homogenized zero stress components can only
be achieved if the stresses of each constituent counterbalance each other. If
a tensile load is applied in the transverse direction of a composite, a negative
strain is applied in fiber direction due to Poisson’s effect. Since the fiber has a
much higher stiffness than the matrix, the acting strain results in a compressive
stress within the fiber. On the other hand tensile stresses occur in the matrix,
which together with the compressive stress of the fiber will produce a zero
stress.

Generally the tensile strength of the matrix is higher than the resulting trans-
verse tensile strength of the composite. This condition can yield from a weak
bond or interface between fiber and matrix, but also from a triaxial stress state
within the matrix. In both cases a stress concentration at the edge of each
filament occurs, which leads to initial microscopic failure. There are several
numerical studies available which utilize representative volume elements to
determine the uniaxial strengths of the composite or its failure envelopes [219,
220, 226]. It could be shown that the interface between fiber and matrix plays
a significant role on the failure under transverse tension loads. However, if
an in-plane shear or transverse compression load is applied, the failure of the
matrix itself is more important. Especially Melro [143] analyzed the re-
sulting failure envelopes using SRVE models and compared the results to the
analytical ones. While the results in the transverse tension region (cf. Fig-
ure 3.26 Puck’s mode A) correlate very well with the used failure envelope,
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greater deviations occur under transverse compressive loads. Especially the
increase of the failure resistance due to combined transverse compressive and
in-plane shear stress (cf. Figure 3.26 transition from mode B to C) is not
observed. As for such loads the matrix failure is more significant than the
fiber-matrix interface failure, it is assumed that the experimentally determined
matrix tensile and compressive strengths used as material properties are to
be questioned (cf. Section 2.4.1). Especially on micro-scale the size effect
of the matrix is crucial and tends to result in higher tensile and compressive
strengths. Nevertheless, using the obtained matrix plasticity parameters and
the provided material properties of fiber and matrix (see Appendix A.5), the
failure envelope at different fiber volume contents can be obtained. Using the
previously generated microstructures, 21 different load cases are evaluated.
All load combinations are performed in the (𝜎22, 𝜎12)-plane ranging from pure
tension to pure compression in transverse direction while the amount of shear
is varied. The load cases are summarized as following, a total of ten load cases
each for transverse tension or compression and an additional pure shear load
case. In order to analyze the impact of the FVC on the failure envelope, a FVC
range from 45 % to 65 % is modeled. The results are given in Figure 5.6. All
failure points create a specific distribution in the (𝜎22, 𝜎12)-plane. To constrain
these, the Puck-failure criterion is used, with strength values determined by
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Figure 5.6: Failure envelope resulting from micro-scale model simulations at dif-
ferent FVC compared to selected experimental results at different FVC
𝜑 ∈ [48 %, 60 %]
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5.1 Draping Effects on Microscopic Scale

the 5 % and 95 % percentiles at the corresponding load cases. The inclination
parameters 𝑝t

n1 = 𝑝c
n1 = 𝑝n1 are adjusted so that the resulting scatter band well

encloses the failure points. The lower bound of the band shows that 𝑝n1 is equal
to zero. However, the upper bound show in some extent a pronounced slope.
The corresponding inclination parameter results 𝑝t

n1 = 𝑝c
n1 = 0.1, which is

still much smaller than generally observed in experimentally results [53, 227].
Such observation has been also made by Melro [143]. The reason for the
deviation, especially in the failure mode B range, is not conclusively clarified.
One possible reason is the used material strength values of the matrix. Another
possible explanation is the occurring damage evolution and propagation. An
in-depth discussion can be found in Appendix A.2. In addition to the numerical
results, selected experimental data is added in Figure 5.6. Here the numerical
results correlate quite well with the experimental transverse tensile loads. The
small scatter for experimental transverse tensile and in-plane shear strength
over the evaluated FVC range is supported by micro-scale models (cf. Fig-
ures 2.12 and 2.13). The increase of the transverse compressive strength over
the FVC is also present. However, the scatter band of numerical results overes-
timate the resulting transverse compressive strength values. Additionally, the
band is highly affected by the choice of the matrix strength values or damage
parameters. An in-depth study with different matrix strength values and their
impact on the results failure envelopes is given in Appendix A.2. In general,
the matrix strength values affect not only the uniaxial tensile, compressive or
in-plane shear strength values, but also the inclination parameters of the failure
envelope. Nevertheless, using micro-scale models for nonundulated areas in
composite parts can be used to predict a more conservative failure envelope
range at different fiber volume contents.

In conclusion the evaluated models showed that the linear elastic material
parameters and the strength values of the composite are highly affected by the
matrix properties. As for the FVC variation the SRVE results show a very
good source to predict linear elastic properties of the composite. To be able
to predict the FVC strength values, only the transverse tension loads can be
covered reliably. At this point the usage of micro-scale models for transverse
compressive loads show some limitations. From the observed numerical results
it is recommended to use the numerically obtained transverse strength values
𝑌T and 𝑌C in conjunction with the in-plane shear 𝑆12. However, to be able to
predict the failure envelope of the composite for combined compression and

173



5 Application and Validation of Constitutive Models

shear, the inclination parameter 𝑝n1 should be taken from experimental tests
or literature.

5.1.3 Stiffness and Strength of Undulated Models

Compared to areas of laminates with straight fibers, undulated areas have a
major impact on the mechanical behavior. Micro-scale models can be used to
model waviness and evaluate its dependence on the grade of waviness or FVC.
In contrast to homogenized macroscopic models a clear distinction of the failure
mechanisms can be made. Additionally, no previous assumptions regarding
homogenized material properties of the composite need to be made. In the
following micro-scale models are used to evaluate the prediction capability
of analytical methods in comparison with numerical results. Furthermore,
the failure initiation and damage propagation is analyzed and compared to
experimental results. Finally, the FVC is varied to evaluate the resulting
strength values.

5.1.3.1 Linear elastic in-plane properties

The effective elastic material properties of composites with wavy areas are
dependent on the local nonundulated material properties. Additionally, the
impact of the FVC in conjunction with waviness is generally not considered.
In order to evaluate different amplitude to wavelength ratios 𝐴/𝜆, while varying
the FVC, previously generated micro-scale models have been used. As shown
in Figure 5.5 different microstructures tend to create a certain material param-
eter scatter. Therefore, using all micro-scale models the resulting transverse
isotropy is evaluated for each microstructure. The fiber distribution with the
lowest overall orthotropy grade for 𝐸2 vs. 𝐸3, 𝜈12 vs. 𝜈13 and 𝐺12 vs. 𝐺13
is selected to perform further analyses. According to a previously performed
numerical study, the wavelength is set to 𝜆 = 512 µm [228]. By varying the
𝐴/𝜆-ratio the amplitude can be specifically adjusted. Since the in-plane global
material properties (𝐸x, 𝐸y, 𝜈xy and 𝐺xy) are highly affected by undulations,
only these are evaluated for different 𝐴/𝜆-ratios and fiber volume contents. The
numerical results for all micro-scale models are given in Figure 5.7. Using
the analytical solutions for each material property the correspondent range
can be calculated (gray areas in Figure 5.7). The used equations are given in
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Figure 5.7: Resulting elasticity material properties of composites with imposed wavi-
ness for varying fiber volume contents 𝜑 = [45 %, 65 %] (experimental
results performed at ILK [47])

Appendix A.1.3.5. Besides the amplitude to wavelength ratio each analyti-
cal equation requires the in-plane composite material properties as input. As
these parameters vary with the corresponding FVC, the numerical results of
the micro-scale models at 𝐴/𝜆 = 0 have been used to determine the bounds of
the range for the analytical solution. The analytical results are in a very good
agreement with the numerical ones. Major deviations occur for the in-plane
shear modulus 𝐺xy for a FVC 𝜑 = 65 %. It can be observed that the deviation
increases with increasing 𝐴/𝜆-ratio. One possible explanation is that the analyt-
ical result oversimplifies the actual material behavior, due to shape deformation

175



5 Application and Validation of Constitutive Models

and fiber reorientation. In addition to the numerical and analytical results, the
available experimental results have been added to Figure 5.7. At 𝐴/𝜆 = 0 the
experimental results are equivalent to the ones in Figure 5.5. Here the largest
deviations occur for coupons with a lower FVC for both 𝐸x and 𝜈xy (which
are equal to 𝐸1 and 𝜈12 at 𝐴/𝜆 = 0). Comparing the experimental results for
the stiffness 𝐸x with the numerical and analytical ones, a very good agreement
can be observed. However, the Poisson’s ratio 𝜈xy shows a larger deviation.
Following the numerical and analytical results, the Poisson’s ratio increases
with the amplitude to wavelength ratio. Here the experimental results show
a 𝐴/𝜆-ratio independent increase, compared to nonundulated coupon samples.
Although the transverse modulus 𝐸y is affected by the FVC, the 𝐴/𝜆-ratio has
almost no effect on the resulting value. This condition results from the fact that
with increasing 𝐴/𝜆-ratio, the impact of the initial modulus 𝐸2 is reduced, while
at the same time the in-plane shear modulus 𝐺12 contributes a greater impact
on the resulting transverse modulus 𝐸y. Here both parameters counterbalance
each other with increasing 𝐴/𝜆-ratio.

5.1.3.2 Failure Initiation and Damage Propagation

Contrary to the in-plane failure damage behavior, a waviness leads to a dam-
age evolution along the fiber direction. As experimentally observed (cf. Fig-
ure 2.25), besides the initial failure at the coupon edges, further damage occurs
at the turning points of the waves. The micro-scale models cannot capture
the edge failure due to periodic boundary conditions. By applying a tension
load to a micro-scale model the failure initiation and damage evolution can
be analyzed. The failure initiation at the turning points and its progression
towards the fiber direction can be reproduced (cf. Figure 5.8). The percentage
of the damaged matrix volume 𝑑V is evaluated at different steps. Due to oc-
curring damage within the matrix, the local stiffness is reduced. This leads to
a more pronounced deformation of the matrix. As a consequence the distance
between filaments changes. Additionally, the filaments are reoriented and lead
to a further damage propagation within the matrix. On the other hand, the
failure initiation in the filaments itself is triggered much later, compared to the
matrix. This is obviously due to the high strength of the fibers. Furthermore,
the failure initiation in the fibers is not homogeneous. Due to the curvature of
the filaments, the tension load creates a bending moment on the fibers. There-
fore, a tension and a compression load is triggered within the fiber. The tensile
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𝑑V = 0.1 %
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Figure 5.8: Damage evolution in a micro-scale model under a tensile load in fiber
direction with an amplitude to wavelength ratio 𝐴/𝜆 = 0.03: matrix damage
evolution (a)-(e) and fiber damage at max stress (f)

stress dominates and reaches the tensile strength of the filaments, which leads
to the initial failure. The location of the initial fiber failure corresponds to areas
close to the largest curvature of the fibers (cf. Figure 5.8f). Overall initial
fiber failure leads to a sudden decrease of the load capability of the area with
an imposed waviness. As observed in experimental results the pronounced
deformation of the coupon samples, even with multiple perpendicular cracks,
comes to a sudden stop as the load cannot be carried by the fibers alone.

Using the developed fiber and matrix material models, the experimental tests
on undulated samples have been remodeled. Here both compression and
tensile tests are evaluated. To evaluate the impact of the microstructure, three
different fiber distributions have been created for each configuration. The FVC
has been set to 𝜑 = 55 %. The amplitude to wavelength ratios correspond to
the approximate ones from experimental tests 𝐴/𝜆 = {0.03, 0.06}. Obtained
results are given in Figure 5.9. Based on different microstructures all the
stress-strain curves follow the same path. By comparing the stiffness of the
numerical and experimental results a good correlation can be observed. The
main differences arise in the resulting strength. For 𝐴/𝜆 = 0.03 the maximum
stress values are all in a small scatter range. Compared to the experimental
results, the predicted numerical strength values are higher. The numerical
stress-strain curves for tensile loads show similarities for both 𝐴/𝜆-ratios. In
both cases a pronounced change of the stress-strain path can be observed, for
𝐴/𝜆 = 0.03 at about 400 MPa and for 𝐴/𝜆 = 0.06 at about 160 MPa. At this point
the matrix damage has progressed from one side of the microstructure to the
other side. The same observation could be made from the experimental results,
where the cracks along the fiber direction become visible (cf. Figure 2.25d
and 2.25e). As in experimental results, further damage progression follows
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Figure 5.9: Comparison of numerical results of micro-scale models and experimental
results for tensile loads (a) and compressive loads (b)

the fiber direction. This condition allows that the fibers are further stretched,
which affects the tangential stiffness. In general the described damage evolution
above (cf. Figure 5.8) applies to the evaluated numerical models. After first
damage initiation in the filaments, tensile load cannot be further increased. On
the other hand no fiber damage is triggered in compressive loads. In fact the
damage within the matrix is not only present in the area of the turning point
of the wave (as for tensile loads), but rather over the whole model. Therefore,
the maximum stress yields from the matrix damage and the fiber reorientation
alone. The experimentally observed fiber kinking (cf. Figure 2.25f) could not
be reproduced.

5.1.3.3 Impact of the Fiber Volume Content on the Strength

The experimental results for specific 𝐴/𝜆-ratios, coincide with a specific FVC
[47, 50]. Using micro-scale models an in-depth analysis of the FVC-dependent
strength can be performed. To do so, two different amplitude to wavelength ra-
tios 𝐴/𝜆 = {0.05, 0.1} and three fiber volume contents 𝜑 = {50 %, 55 %, 60 %}
have been analyzed. To consider the loading direction, tension and compres-
sive load cases has been evaluated. The results are given in Figure 5.10. The
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Figure 5.10: Numerical results of micro-scale models for different amplitude to wave-
length ratios and varying fiber volume contents for tension (a) and com-
pression (b) loads

obvious stiffness differences yield from the FVC. The failure and damage mech-
anisms are comparable to the ones already observed. However, the resulting
strength values seem to be not affected by the FVC. This behavior is especially
obvious for the tension loads. Although a 5 % FVC difference between each
curve is set, the reached stress values are very close to each other. This behavior
is similar to transverse tensile loads with superimposed in-plane shear, where
the failure range is barely affected by the FVC (cf. Figures 2.14 and 5.6). On
the other hand, the results for compression loads seem to be more diffuse and
contradictory. Especially the results for 𝜑 = 55 % show much lower strength
values. However, this behavior can also yield from the used fiber distribution.
This assumption seems to be reasonable since for the same FVC, the same
microstructure is used and only the 𝐴/𝜆-ratio is changed. The resulting strength
values for both ratios are smaller in comparison to the two other fiber volume
contents. At this point it seems that the FVC in undulated areas affects only the
stiffness. A similar observation is made by analyzing analytical predictions of
the strength at different amplitude to wavelength ratios [47].
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5.2 Draping Effects on Macroscopic Scale

The understanding of the mechanical behavior of composites is crucial to obtain
reliable results to design composite parts. The use of macroscopic material
models for the design of components is widespread. However, the necessary
material properties are in generally obtained at a specific configuration which
can vary due to manufacturing. Without any further experimental results or
draping effect information, the predictability of the mechanical behavior comes
with some uncertainties. With increasing part complexity different mechanical
characteristics are present.

In order to capture the relevant material behavior on component level, basic
material parameters need to be provided to the macroscopic material model.
Additionally, model specific parameters are required. The presented micro-
scale models can be used as a virtual material characterization toolbox for a
variety of different load cases. Another possibility is to use simple unidirec-
tional coupon tests for a basic material characterization and different laminate
layups for the material model validation. In Section 5.2.1 the deduction of the
required material and model parameters are presented. Using the developed
macroscopic material models, the experimental coupon tests are remodeled.
In Section 5.2.2 the fiber rotation, the nonlinear behavior and failure is vali-
dated based on off-axis and angle-ply coupon tests. Finally, the experimentally
analyzed fiber waviness is modeled. The numerical results are given in Sec-
tion 5.2.2. Once all results are validated on coupon level, several numerical
studies are performed on an automotive composite part (see Section 5.2.3).
Here the impact of the draping effects on component level are evaluated and
conclusions are drawn.

5.2.1 Determination of Macroscopic Model Parameters

In order to model the elastic material behavior, the developed material model
requires several basic parameters. Using elasticity parameters of fiber and
matrix only the Halpin-Tsai parameters such as 𝜁𝐸2 , 𝜁𝐺12 and 𝜁𝐺23 need to
be defined. To do so the different material stiffness values from experiments
or micro-scale models are used to calibrate the Halpin-Tsai parameters. The
decision whether experimental results or micro-scale models should be used
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depends on the available material data of the constituents. If the material
properties of fiber and matrix are known, the Halpin-Tsai parameters can be
defined using coupon tests. On the other hand, if the material properties of the
fiber are not known, it is suitable to use micro-scale models to determine the
fiber properties. This is the case for the used fiber. Based on the results from
the micromodels and by utilizing experimental results of the coupon test, the
Halpin-Tsai parameters are determined. After these parameters are defined,
the elastic behavior of the composite is given over the whole FVC range. The
obtained elasticity parameters are summarized in Table A.8. Besides linear
elastic behavior the main cause of nonlinear material behavior is plasticity. The
used plasticity material model requires five parameters (𝜏y, 𝛼ap, 𝑒ap, 𝛽ap and
𝑓ap) for a single FVC. In order to obtain these parameters only the experiments
with nonlinear behavior due to plasticity can be used. As the plasticity model
considers the acting action plane, first the Puck failure envelope parameters
need to be determined. Since the inclination parameters in the (1,n1)-plane
𝑝t

n1 and 𝑝c
n1 are set to be equal and the inclination parameters 𝑝t

nt and 𝑝c
nt are a

function of the 𝑌T/𝑌C-ratio, only the in-plane strength values and the inclination
parameter 𝑝n1 need to be defined. The strength values and the inclination
parameter are also functions of the FVC. Here the experimental results of
different off-axis, compression UD90◦ and in-plane shear coupon tests can
be utilized. The resulting Puck failure envelope is given in Figure 5.11. As
discussed in Section 2.5.1 some failure stress values are to be questioned. For
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Figure 5.11: Failure envelope for in-plane loads at different fiber volume contents based
on experimental results at different off-axis angles (20◦ to 90◦)
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example, the scatter for positive 𝜎22 value is very high, indicating that the FVC
dependency is much larger. However, as observed from micro mechanical
models and in conjunction with the experimental results from ILK, this scatter
can yield from a premature failure near the end tabs. Furthermore, the in-
plane shear strength obtained from double V-notch rail shear coupon tests is
smaller compared to the predicted failure envelope. The experimental results
are highly affected by the notch of the samples and therefore tend also to fail
prematurely.

Using the defined Puck failure envelope parameters, each action plane for
a corresponding stress state can be defined. This is important to define the
plasticity material parameters. By analyzing the performed coupon tests, an
action plane angle 𝜃ap ≈ 0◦ could be observed for all off-axis tension tests
(mode A) and several compression tests (mode B). In this case the acting
stresses are limited to 𝜎n and 𝜏n1, while 𝜏nt equals to zero. This condition
allows to determine the yield onset 𝜏y and the slope 𝛼ap along the 𝜎n axis.
First the yield onset is determined. Generally this parameter can be obtained
from in-plane shear tests. In such case 𝜎n is equal to zero. However, the yield
onset must be suitable for all other load cases. Here additional off-axis tension
and compression tests have been used to determine the yield onset. Such load
cases create support points in the (𝜎n,𝜏n1)-plane. These points allow to define
the slope 𝛼ap of the cone. The evolution of 𝜏y depends on the equivalent
plastic strain 𝜀pl,ap. Using the stress-strain of the double V-notch rail shear
test, the plastic strain can be extracted (see Figure 2.11). The experimentally
obtained plasticity stress-strain curve is fitted to the used hardening function
(cf. Equation (3.117)). Since the equivalent plastic strain for an action plane
angle 𝜃ap = 0◦ has a dependency on the dilatancy coefficient 𝛽ap, an in-depth
analysis is performed to determine the impact of this parameter. By comparing
the results of the off-axis and angle-ply models, it could be shown that the best
results are obtained if 𝛽ap is set to zero. The other plasticity parameters, such
as 𝑒ap and 𝑓ap, are mainly important if 𝜃ap is not zero. Especially the UD90◦
compression tests have the highest action plane angle within the evaluated
test plan. Here only the parameter 𝑒ap shows a significant sensitivity on
the results, while 𝑓ap is more important for large deformations of angle-ply
compression tests. The used plasticity parameters, the corresponding in-plane
strength values and inclination parameter are given in Tables A.9 and A.10.
Since the strength of the composite is FVC-dependent, the corresponding
dependency is added to Table A.10. It should be noted that the tensile strength
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in fiber direction is solely defined by the matrix and fiber strength. However,
the compressive strength is defined by Equation (3.160) and therefore by the
parameter 𝜙̄/𝛾y and the shear modulus of the matrix alone. Such formulation
allows to define the strength values with a certain safety within the evaluated
FVC range.

5.2.1.1 Damage Variables Interaction

As shown in Section 3.5.4 the parameter 𝑟g can be used to define the interac-
tion between the normal direction damage variable 𝑑n and the shear damage
variables 𝑑12 and 𝑑13. As discussed in Section 3.5.3 this parameter can range
between zero and infinity. However, it is unclear whether this parameter is
affected by the FVC or not and how the damage variables interaction can be
defined. Using a specific laminate layup with a (0◦/90◦/0◦) configuration, the
interaction of the damage variables can be experimentally analyzed [194, 195,
229, 230]. The middle 90◦ ply is generally thick enough to visually observe the
occurring cracks or to trigger sudden force drops for each new occurring crack.
Each crack is formed if the transverse tensile strength of the inner ply is ex-
ceeded. While the transverse tensile strength is obviously not FVC-dependent,
the in-plane shear strength shows a slight increase over the FVC [47]. Since
experimental results with varying FVC and the specified laminate layup are
not available, numerical studies can be used instead. The same procedure as
for the experimental tests from literature is used: for each occurring crack the
global stiffness drop can be recorded. As the cracks are formed due to IFF,
these cracks can also be explicitly modeled. Such behavior can be achieved by
adjusting the mesh of the middle ply. The mesh of this ply contains equidistant
slit cracks represented by neighbor elements, which does not share the same
nodes in the crack plane (cf. Figure 5.12). Since the cracks are already present,
the resulting effective stiffness of the inner ply can be determined. The pre-
viously introduced methods for microscopic models can be used to model a
representative area of the laminate. As the laminate is a representative portion
of the evaluated area, periodic boundary conditions need to be applied. To do
so, the Equations (5.1) to (5.3) can be utilized. However, only a portion of
these equations is used since only the plane periodicity needs to be achieved.
Using numerical models the number of cracks and the FVC can be varied. To
determine the effective stiffness, the effective stress in load direction of the
inner ply is obtained and in conjunction with the overall displacement of the
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cracks0°

90°

0°

Figure 5.12: Side view of a model with a (0◦/90◦/0◦) laminate and imposed cracks in
the middle ply

laminate, the effective strain is also obtained. Since the strain is determined
from displacements, which represent a linearized strain measure, only very
small displacements represent accurate results. To evaluate the evolution of
the damage variables 𝑑2 and 𝑑12 and draw conclusions regarding their inter-
action, two different load cases are analyzed: transverse tension and in-plane
shear. It should be noted that the linearized strain for transverse tension results
from only one displacement component, while the shear strain corresponds to
the shear angle. For each FVC the initial undamaged transverse modulus 𝐸2 as
well as the shear modulus 𝐺12 are known. Since only small loads are applied,
the nonlinear material behavior due to fiber rotation or plasticity is not present.
The actual damage variable for each load case is obtained from the ratio of the
initial modulus and the one with cracks (e.g., 𝑑 = 1− 𝐸2/𝐸 init

2 ). With increasing
number of cracks, the crack density 𝛿c of the middle ply is increased. The
crack density defines the number of cracks per unit length. It is obvious that
with increasing crack density the damage variable values are also increased.
To evaluate the interaction between 𝑑2 and 𝑑12, the thickness of both 0◦ plies
has been set to 𝑡L = 0.2875 mm. The thickness of the middle ply is 14 times
thicker. For each crack density the effective moduli are obtained. For both
load cases the crack density is the connecting parameter, which can be used
to draw a graph (cf. Figure 5.13). Using the numerical results the interaction
between the two damage variables can be analyzed. Using the definition of
the damage variables 𝑑2 and 𝑑12 from Equations (3.143) and (3.144), the in-
teraction parameter for this study yields 𝑟g = 0.175. This value is used for all
further simulations. The numerical results show that the FVC has no effect on
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Figure 5.13: Interaction of damage variables 𝑑2 and 𝑑12 with the fitted energy ratio
parameter 𝑟g for varying fiber volume contents and different crack densi-
ties 𝛿c

𝑟g. This condition reduces the number of variables to model FVC-dependent
failure significantly.

5.2.2 Coupon Tests

To validate the developed macroscopic material model experimental coupon
tests are remodeled. Due to complex material behavior different load cases
trigger specific material responses. The major factors such as fiber direction,
FVC and fiber waviness allow to activate these triggers. As the experimental
results showed, several factors lead to nonlinear behavior. First, the experimen-
tal results of fiber rotation caused by deformation is compared with numerical
results. Next, the stress-strain curves from numerical and experimental results
are compared. Here unidirectional laminates and angle-ply laminates are an-
alyzed. While these results cover the material response triggered by the fiber
direction and its deformation, the next step is to additionally investigate the
FVC. Finally, the macroscopic material response for an imposed waviness is
compared with experimental results.
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5.2.2.1 Material Axes Rotation

The general material behavior is driven by the fiber direction of the laminate.
As shown from experimental results, for all cases where the load is applied
not in fiber direction or transverse to the fiber direction, the material axes
are forced to rotate. The developed material model captures this behavior.
However, the impact of the fiber rotation on the stress-strain response is not
clear. Using the developed model three combinations are possible: no material
axes rotation, considering only the rotation of the fiber direction (orthogonal
coordinate system) and rotation of all material axes (nonorthogonal coordinate
system). By analyzing the experimental results the off-axis and angle-ply
laminates with 𝜃 = 45◦ lead to severe fiber rotation. Therefore, an off-axis
compression (OAC) and an angle-ply tension load case are evaluated regarding
the resulting impact on the stress-strain curve. Here only the different cases of
fiber rotation with enabled plasticity are evaluated. Besides the global material
response (𝜀xx and𝜎xx), which both define the response along the 𝑥-axis, also the
local nonzero stress components (𝜎11, 𝜎22 and 𝜎12) are evaluated. In the local
material frame the stress 𝜎11 defines the load in fiber direction. On the other
hand, the local stress 𝜎22 represent the load transverse to the fiber direction.
The local shear stress 𝜎12 defines the shear response in the (1,2)-plane. The
fiber rotation angle and the angle between material axes for the OAC45◦ load
case is given in Figure 5.14 and for the ±45◦ laminate in Figure 5.15. The
numerical stress results for both load cases are given in Figures 5.16 and 5.17.
The numerical results show a fiber rotation of about Δ𝜃 = 1.5◦ at 𝜀xx ≈ 8 % for
the OAC45◦ load case. This value is reached for two strain measures: rotation
of the fiber direction and rotation of all material axes. As expected the fiber
direction angle without rotation remains zero. Furthermore, the angle between
material axes changes only if all material axes are rotated. In other cases an
orthogonal coordinate system is preserved (𝜃12 = 90◦). The angle-ply ±45◦
laminate shows a more pronounced fiber rotation compared to the OAC45◦
load case. The fiber rotation reaches a value of about Δ𝜃 = −4.5◦. While
the model using only the rotation of the fiber direction shows a linear trend
with increasing strain, the model using the rotation of all material axes has a
nonlinear increase of the fiber rotation angle. The remaining observations are
similar to the OAC45◦ load case.

By comparing the different approaches for the OAC45◦ load a distinct devi-
ation for the stress values can be observed. While no fiber rotation and fiber
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Figure 5.14: Resulting fiber rotation and the angle between material axes for different
strain measures for an off-axis compression (OAC45◦) model (plasticity
onset denoted by square markers)
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Figure 5.15: Resulting fiber rotation and the angle between material axes for different
strain measures an angle-ply ±45◦ model under tensile load (plasticity
onset denoted by square markers)
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Figure 5.16: Resulting stress response (global stress 𝜎xx along 𝑥-axis and local nonzero
stress 𝜎𝑖 𝑗 ) for different strain measures for an off-axis compression
(OAC45◦) model (plasticity onset denoted by square markers)

rotation only lead to nearly equal 𝜎xx stress results, the rotation of all material
axes reduces the stress response significantly. By comparing other stress com-
ponents in case of fiber rotation only, the stress in fiber direction 𝜎11 is reduced
and the transverse stress 𝜎22 is increased. This behavior can be explained
due to increase of the actual fiber angle, towards the material response of a
UD90◦ laminate, with increasing compression load. On the other hand, the
shear stress 𝜎12 seems to be independent of the actual fiber rotation case. The
added square marker to the stress-strain curve indicates the plasticity onset.
It is obvious that this onset does not correspond to the point where the stress
responses start to deviate. It seems to be rather the case that the associated
deformation causes the differences between the individual results.

On the other hand, the stress response of an angle-ply ±45◦ laminate shows
more pronounced stress components differences (cf. Figure 5.17). Although
the applied deformation of about 𝜀xx ≈ 8 % is similar for both models, the
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Figure 5.17: Resulting stress response for different strain measures for an angle-ply
±45◦model under tensile load (plasticity onset denoted by square markers)

fiber rotation for the angle-ply laminate is absolute about three times larger (cf.
Figure 5.14 and 5.17). By comparing the stress response of the fiber rotation
only, a unique attribute can be observed. The initial positive transverse stress
𝜎22 changes the sign with increasing deformation. Similar observations have
been already published [11]. The reason for such behavior is the corresponding
material axis frame. For the fiber rotation model the material axes remain
orthogonal (𝜃12 = 90◦). The tension load leads to a continuous change towards
smaller angles in each ply. Initially 𝜎11 and 𝜎22 are both positive values for
a ±45◦ laminate. If the maximum fiber rotation angle Δ𝜃 ≈ 4.5◦ is used,
the laminate layup changes from ±45◦ to ±40.5◦. In such case the initial
transverse stress 𝜎22 is no longer positive. On the other hand, the two other
strain measures lead to positive 𝜎22 stress values. The reason for this is that
the model without fiber rotation does not affect the laminate layup. Likewise,
the model where all material axes are rotated leads to the deformation of the
transverse material axis, which leads to a tensile stress. If only the fiber rotation
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is considered and the material frame remains orthogonal, a change in the failure
mode can be observed. The initially active failure mode A changes to mode B
and C. Overall each stress component for the fiber rotation only case leads to a
large deviation to both other presented methods. As mentioned in Chapters 2
and 3 the occurrence of transverse and perpendicular cracks indicates that the
𝜎22 stress remains positive. Since the fiber direction angle is reduced, the
dominance of the fiber is more pronounced and leads to an increase of the
global stress response. Evaluating the stress response due to no fiber rotation
or by rotating all material axes shows almost no difference for the local stress
components. However, the global stress response shows a dependency on the
used fiber rotation method. Similar to the off-axis results the plasticity onset,
denoted by square markers (see Figure 5.17), does not correspond to the onset
of the stress deviation between the three cases. From the observed numerical
results it can be concluded that by considering only the fiber rotation a severe
discrepancy can occur. Therefore, in conjunction with experimental results it
is obvious that the rotation of all material axes needs to be taken into account
to model the material behavior of composites correctly.

In order to compare the material model predictions of the fiber rotation angle
Δ𝜃 and the corresponding angle between material axes 𝜃12 with experimental
results, all evaluated experiments with an FVC of 𝜑 ≈ 54 % have been re-
modeled. From each numerical result both angles have been obtained using
the deformation gradient. The comparison of the results for the off-axis tests
are given in Figures 5.18 and 5.19, while the results for angle-ply laminates
are given in Figures 5.20 and 5.21. By comparing the numerical off-axis
results with the experimental ones, an overall good to very good correlation
can be observed. Especially all tensile loads are in a very good agreement.
On the other hand, the deviation for compressive loads can be observed for
off-axis compression tests with 𝜃 ∈ [45◦, 50◦, 75◦]. By evaluating the acting
failure mode for these angles, a transition from failure mode B (fracture angle
𝜃fp = 0◦) to failure mode C (fracture angle 𝜃fp ≠ 0◦) can be observed. All
evaluated load cases with a stress state leading to failure mode C show a de-
viation (cf. Figure 5.18 OAC45◦, OAC50◦ and OAC75◦). This observation
is present for the fiber rotation angle and the angle between material axes. In
all these cases the numerical prediction lead to smaller fiber rotation angles
and angle between material axes as the experimental results. Therefore, the
numerical results underestimate the material behavior. An in-depth analysis of
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Figure 5.18: Comparison of the fiber rotation angle from numerical (dark color) and
experimental (light color) off-axis tension (OAT) and off-axis compression
(OAC) tests (off-axis angles are annotated and plasticity onset is denoted
by markers)

the material behavior for fracture angles 𝜃fp ≠ 0◦ is needed to determine the
source of the deviation.

The numerical results for the fiber rotation of angle-ply laminates show a better
agreement with experimental observations as for off-axis tests (cf. Figure 5.20).
The only two laminates which show slight deviation to the experimental results
are the ±40◦ tension and the ±50◦ compression test cases. Using the developed
model, fiber rotation for a ±45◦ laminate is captured very well up to |Δ𝜃 | ≈ 5◦.
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Figure 5.21: Comparison of the angle between material axes from numerical and ex-
perimental angle-ply tests (plasticity onset denoted by black markers and
inter-fiber failure onset is denoted by white markers)

The angle between the material axes also shows a good correlation up to
an angle change of 10◦. As angle-ply laminates do not fail if first cracks
occur, the point of inter-fiber failure initiation can be specified. In the case
of ±30◦ compression tests, the IFF onset lead to a kink and an increase of
the fiber rotation angle. Overall the developed model provides reliable results
regarding fiber direction change for large deformations.

5.2.2.2 Stress-Strain Curves for Unidirectional and Angle-Ply Laminates

Besides the fiber rotation the general comparison of the stress-strain curves is
also performed. The experimental results of off-axis and angle-ply tests at a
FVC of 𝜑 ≈ 54 % are compared with numerical results. The corresponding
stress-strain curves are given in Figures 5.22 and 5.23. By comparing the
off-axis results a very good correlation between experimental and numerical
results is given. The overall nonlinear behavior due to plasticity is well cap-
tured. Although the initial stiffness at the same angle is equal for tensile and
compressive loads, the plasticity model can clearly create a distinct difference
during hardening. Regarding the final failure several observations can be made.
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Figure 5.23: Comparison of numerical stress-strain curves of angle-ply models (dark
color) with experimental results (light color) from angle-ply compression
and tension (Maximum stress from experiments is denoted by gray mark-
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As discussed in Section 2.5.1 the off-axis compression tests at 10◦ and 20◦ lead
to premature failure due to buckling. Therefore, the final failure stress values
do not represent the actual material failure behavior. The numerical failure
stress values for both compression tests are the result of the used failure enve-
lope, which lead to higher failure stress values. Although previously observed
deviation of the fiber rotation for OAC45◦ and OAC75◦ models is present, the
achieved strain prior to IFF show a good agreement with experimental results.
A major failure strain difference for OAC50◦ result can be observed. Here the
required stress to trigger IFF is reached only at very high strain. However, the
stress level is similar to the experimental results.

The stress states of angle-ply laminates are quite different to off-axis stress
states. Due to opposed fiber direction, the only nonzero global stress com-
ponents are 𝜎xx and 𝜎xy. For the same fiber direction angle the local stress
components of an angle-ply laminate and an off-axis load case are totally differ-
ent. This leads to stress states which create differences in the stress-strain curve
results. For example, the nonlinear behavior due to plasticity shows a good
correlation for angle-ply laminates with an angle of 45◦ and greater. However,
due to dominance of the fiber direction stress 𝜎11 for the ±30◦ laminate, which
has no effect on the hardening evolution, slight deviation occur for the tensile
load. The stress-strain curve of the tensile load for the ±40◦ laminate show
an obvious difference between experimental and numerical results. By per-
forming a sensitivity analysis of the plasticity material parameters to achieve a
better correlation between the results, only the 𝛽ap show a pronounced sensitiv-
ity. This parameter corresponds to the dilatancy coefficient and has been set to
zero to achieve a better agreement between numerical and experimental results.
However, the effect of dilatancy especially for the ±40◦ laminate seem to be
more relevant as for other laminate layups. On the other hand, the failure stress
at IFF correspond to the failure stress range of ±40◦ laminates. Therefore, it is
assumed that the dilatency is laminate layup specific and need to be considered
by the plasticity model. By comparing the tension load cases for ±50◦ and
±60◦ laminates, the numerical results predict an early IFF followed by a pro-
nounced degradation. It is assumed that the experimentally observed strength
of these laminate is higher due to in-situ effects. Contrary to unidirectional
laminates, the transverse tensile strength of each ply of and angle-ply laminate
can be higher due to in-situ effects. Such behavior is primarily determined by
the thickness of the ply and the fiber direction of the neighbor plies. By com-
paring the compression load cases the reached failure stress values are in a very
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good agreement for all angle-ply laminates. Overall, the developed material
model shows a great capability to predict the nonlinear behavior for different
stress states and the corresponding failure stress values. Further aspects such
as in-situ strength, effect of the dilatancy or the fiber direction stress on the
plasticity model need to be further evaluated and developed. Nevertheless, the
developed material model provides already reliable results for a constant FVC
and provides a solid basis to consider further impact due to draping.

5.2.2.3 Fiber Volume Contents on Coupon Level

The impact of the fiber orientation and the accompanying fiber rotation on the
mechanical behavior could be reliably reproduced. However, the previously
presented results are obtained for a specific FVC. The developed model is
able to process the draping information in terms of FVC. Using the performed
experimental results, two different FVC are utilized to compare the numerical
predictions. One of these tests is carried out in fiber direction at different
fiber volume contents [47]. Although the tensile and compressive strength
in fiber direction are determined by the analytical functions for different fiber
volume contents, the stress-strain curves show nonlinear material behavior. As
discussed in Section 3.4.1, the stiffness in fiber direction is determined by the
nonlinear material behavior of the carbon fiber. A comparison of the stress-
strain curves in the fiber direction for different fiber volume contents is given in
Figure 5.24. For both loading directions, the nonlinear material behavior can be
observed. The results show a very good agreement between the experimental
and numerical stress-strain curves under a tensile loading. On the other hand,
the experimental results of the compression tests show significantly higher
stiffnesses than the numerical results. On closer examination, it is noticeable
that the differences between the numerical and experimental results differ by
a constant multiple for both FVC values. The experimental results achieve
approximately 20 % higher stiffnesses. As already shown in literature, the
static stiffness is independent of the loading direction [21]. However, a special
experimental device is needed for this purpose. For this reason, it is suspected
that the acquisition of strain in the (1,2)-plane provides too small values due
to strain restraint. To investigate this circumstance further, the strain should
be recorded from two sides of the coupon sample. If a strain difference in
the fiber direction occurs in the same test, a reliable stiffness determination
from compression tests is not possible. In this case using the 𝐸1 stiffness
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Figure 5.24: Comparison of the stress-strain curves of (a) tensile and (b) compressive
tests in fiber direction at different fiber volume contents

from tensile tests would be a more reliable source. Nevertheless, the nonlinear
material behavior in compression tests is well represented by the developed
material model.

For selected off-axis tests, the FVC is varied to further investigate the in-
fluence on matrix-dominant load cases (cf. Figure 2.18). Compared to the
FVC-dependent results in fiber direction, the matrix dominant off-axis tests
are characterized by a pronounced nonlinear material behavior. The resulting
failure stress values are the result of the FVC dependent Puck failure criterion.
In addition to the dependence of the stiffness and strength values on the FVC,
the material parameters for plasticity are also dependent on it. As observed
experimentally (see Figure 2.11), the hardening curves are independent of the
evaluated FVC range. In other words for𝜎n = 0 the material plasticity response
does not change with variation of the FVC. For stresses 𝜎n ≠ 0 and increasing
FVC, the sensitivity of the plasticity model towards 𝜎n stress decreases. Con-
versely, this means that the load direction-dependence on the plastic material
behavior becomes smaller and the parameter 𝛼ap evolves towards zero. On the
other hand, with increasing FVC the parameter 𝑒ap needs to be also increased
to capture the material plasticity. For the parameters 𝛽ap and 𝑓ap no conclu-
sive statement can be made regarding their dependence on the FVC. For this
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5.2 Draping Effects on Macroscopic Scale

purpose, tests must be carried out on angle-ply laminates with different fiber
volume contents. The comparison of the stress-strain curves of the experimen-
tal and numerical results at different fiber volume contents, off-axis angles and
load directions is given in Figure 5.25. Overall a very good agreement between
experimental and numerical results can be achieved by the developed material
model at different FVC values.

5.2.2.4 Waviness on Coupon Level

Besides the impact of fiber orientation and FVC, a local fiber waviness is
another aspect that significantly influences the mechanical properties of FRP
materials. The developed material model processes the amplitude to wave-
length ratio to determine the corresponding effective stiffness and the local
fiber orientation in each section of the wave. Using the developed material
model for unidirectional straight composites, the experimental tests are re-
modeled. The comparison of numerical and experimental results is given in
Figure 5.26. A comparison of the resulting numerical and experimental results
shows that both the stress-strain curves and the strengths exhibit significant
deviations. First, the lack of pronounced nonlinear behavior can be observed.
Although in each half of the wave nonlinear behavior due to plasticity is pre-
dicted, the global stress seems to be not affected at all. It is assumed that
the back transformation of the local stress into the global coordinate system
leads to a diminishing effect. Furthermore, the numerical failure stress values
overestimate the experimental ones. Since the occurring discrepancy occurs
for both tensile and compression tests, its cause must lie in the failure initiation.
As mentioned above the local stress response leads to a very pronounced non-
linear material behavior. Since the global deformation increases, the global
strain leads to even higher local plastic strain. However, the occurring stress
state does not trigger the failure initiation as the local plasticity is severely pro-
nounced. For testing purposes the plasticity model is suspended to specifically
trigger the local failure initiation. In general, the plasticity should be always
considered when waviness is modeled. As previously shown, the material be-
havior is highly affected by plasticity (cf. Figure 5.22). When comparing the
stress-strain curves without plasticity, a much better agreement of the obtained
strength values can be observed. The obtained strength values are the result of
a combination of the local IFF and the corresponding damage evolution. This
observation is supported by the numerical micro-scale models and experimen-
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Figure 5.25: Comparison of numerical and experimental results on off-axis compression
(OAC, left), transverse compression (UD90◦, left) and off-axis tension
(OAT, right) at different fiber volume contents (Maximum stress from
experiments is denoted by gray markers, numerical plasticity onset denoted
by black markers and numerical inter-fiber failure onset is denoted by white
markers)
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Figure 5.26: Comparison of experimental and numerical stress-strain curves for (a) ten-
sion and (b) compression tests for coupons with two different amplitude to
wavelength ratios (experimental failure stress is denoted by white markers
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tal results. However, this improvement regarding the failure stress range leads
to an oversimplification of the actual nonlinear material behavior on compo-
nent level. Therefore, caution is advised as the deformation of the material
could be much higher (cf. Figure 5.26b). Generally by neglecting the plastic
material behavior, the deformation of the material prior to failure is predicted
too small. In this case, a premature failure initiation would not consider the
load-bearing capacity of the material. As a consequence, if a material model
is used without any plasticity model, the failure on a component level can
represent a lower limit of the total load-bearing capacity. To consider the more
accurate strength due to waviness, a case dependent distinction on component
is made. The plasticity is enabled for all elements, except those with a present
waviness. However, from the obtained numerical results a further develop-
ment of the material model is needed, to achieve a better agreement between
numerical and experimental results.
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5 Application and Validation of Constitutive Models

5.2.3 Numerical Prediction of the Mechanical Behaviour at
Part Level

The previous results are validated on simple coupons. The obvious impact
at coupon level is now to be verified at component level. For this purpose, a
component from the automotive sector is used as a numerical example. Since
different laminate configurations can be used in a real component, several drap-
ing simulations with different laminate configurations have been performed.
Using the developed material model, the impact of draping effects is modeled.
Finally, the impact of draping effects on the component failure and performance
is evaluated.

5.2.3.1 Acquisition and Processing of Experimental Results from
Draping Tests

The quality of numerical results rely upon validated input data. For the va-
lidity of the numerically predicted draping effects after forming, the resulting
deformation is first investigated on a reference component. As already shown,
the experimentally determined coupon tests can be very well reproduced. The
input data required such as fiber orientation, FVC or fiber waviness are directly
specified. During component manufacture, these parameters are set by the
forming process. If the forming process is robust and the quality of the used
fabric is ensured, a detailed full-field measurement of the deformed preform
can be performed. In previous publications [27, 204, 205], the homogenized
fiber orientation could be successfully measured. The results are captured
optically or by means of eddy current measurement. However, these methods
are not suitable to determine the deformation of the fabric itself, as they only
record the homogeneously distributed fiber orientation.

In-depth investigations are therefore carried out at the Institute of Lightweight
Engineering and Polymer Technology (ILK) of TU Dresden on the here used
fabric [206, 231]. A new approach is adopted to determine the deformation
of the fabric. The initially flat undeformed fabric is imprinted with a dot grid
and afterwards deformed (see Figure 5.27). After forming, the position of the
individual points can be determined over the entire surface using the GOM
Argus system. This is done by taking images from different viewing angles,
with specially placed reference markers serving as orientation aids. Since the
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5.2 Draping Effects on Macroscopic Scale

Figure 5.27: Imprinted dots on the preform (left) and the detected grid dots on a de-
formed fabric with the associated reference markers (right) [57, 206]

position of the reference markers is known, the coordinate of each point can
be determined by means of triangulation. Thus, the deformed surface of the
components can be captured relatively quickly and efficiently. If the initial
spacing of the imprinted point grid is specified and a corresponding coordinate
system is defined, the displacement of each point can be quantified. To deter-
mine the resulting fiber orientation, the individual points must be connected
along the initial fiber orientation. However, compared to other optical meth-
ods, this measurement method can also detect the deformation of a ply inside
a stack. The inner points have to be detected differently. For this purpose, the
points are printed with a silver-containing ink [206]. Due to the high material
density of the dots, the deformed dots can be easily detected using projection
radiography. Here, the fabric is radiated in a computer tomograph and the
printed dots can be made visible. For more details on the data acquisition of
the grid points see Kunze et al [206]. If a deformed mesh is formed from
the individual points, the deformation gradient 𝑭 can be determined directly.
Using this central factor all required data such as fiber direction, FVC or fiber
waviness are directly obtained.

To determine a mesh from the initial grid of points, Delaunay triangulation
is used. This method creates a mesh using triangular elements. An already
implemented method of the Delaunay triangulation can be used from the
Python package SciPy. Once a mesh is created, the deformation gradient is
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calculated using the element shape function for triangular elements based on
the initial and deformed coordinates of each node of an element. In order to
validate the draping simulation results, a direct comparison of the numerical
and experimental results can be made. However, some preparations are re-
quired first. Since the original coordinate system from the draping simulation
does not correspond to the coordinate system of the experimental one, these
must first be transferred into each other. A manual positioning of both geome-
tries to each other can be very difficult, since several support points have to be
calibrated at the same time. Therefore, an automated method is implemented
that determines both the required translation and the rotation of the coordinate
system of the experimental measurement with respect to the coordinate system
of the draping simulation. For this purpose, reference nodes are defined in
advance as support points for the automated positioning. Once the two ge-
ometries are aligned, both meshes (draping simulation and deformed preform)
can be mapped to a uniform mesh. To transfer the data to a unified mesh, the
mapping process according to Section 4.4.1 is used. This method ensures the
possibility that the results can be compared directly.

The L-shaped geometry with different draft angles is used to validate the
results from the draping simulation (see Figure 5.28). Since the validity of
numerical draping results has been investigated and validated for simple plane
forming tests [50], the focus here is on inner preform layers of an eight-layer

Figure 5.28: Selected L-shaped geometry for draping simulation validation
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5.2 Draping Effects on Macroscopic Scale

unidirectional stack. The dot pattern is applied in such a way that they are
located exactly between the fourth and fifth preform layers. The forming of
the stack is subject to scatter, therefore a total of three preforms are evaluated.
Due to manufacturing reasons, the dot pattern is printed in two adjacent areas.
After forming, the coordinates of the individual points are determined and as
previously described a mesh is generated. The model of the draping simulation
is simulated according to the real test setup. Eight layers are modeled taking
the friction between the individual layers and the mold into account. The
numerical strain results are used from the fourth layer for the comparison
with experimental results. Based on the used strain measure in the draping
simulation [2], the individual strain components 𝜀1 and 𝜀2 as well as the
perpendicular transverse strain 𝜀⊥ are determined (cf. Figure 5.29). The shear
strain 𝛾12 can be measured as the shear angle between the fiber direction and
the second material axis. In addition to the strains, further information can
be extracted from the measurements. This includes the fiber orientation 𝒇 1 as
well as the area change 𝐴/𝐴0, which is an indicator of the occurring FVC (see
Figure 5.29). As mentioned in Section 4.2.3, the potential fiber waviness along
a roving can be determined from the strain in the fiber direction. In order to be
able to compare the numerical and experimental results directly, a uniform L-
shape geometry is meshed and the results from the draping simulation and the
experimental measurement are mapped onto it (see Figure 5.30). This uniform
geometry is smaller than the dimensions of the draping simulation and larger
than the measured area. Therefore, after mapping the experimental results to
the unit geometry, areas will appear where no information is available. The
mapped experimental results of the three samples for the evaluated quantities

Y1

Y2 Y⊥

W12

f init
1 �0

L

f 1 �

Figure 5.29: Strain measure in the draping simulation and the resulting fiber orientation,
as well as the associated change in area of the element
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(a) (b) (c)

Figure 5.30: Deformed fabric layer from experimental forming (a), draping simulation
(b) and the uniform geometry for the mapping process (c)

is shown in Figure 5.31. If a general comparison of the different quantities is
made for the entire test series (vertical comparison), a very good agreement
is shown. This means that the test procedure is reproducible and thus the test
results are reliable. In order to be able to perform a comparison of the fiber
orientation, the local fiber orientation is compared with the direction along the
1-axis which represent the ideal fiber direction (see coordinate system bottom
left in Figure 5.31). For this purpose, the vector in the 1-direction is projected
into each element and the difference in degrees 𝜃 is calculated. There are
several areas where deviation angle is almost zero. Thus, in these regions, the
preform is barely reoriented. In contrast, a strong reorientation of the fiber
direction occurs in all corners (inside or outside) of the geometry. Due to the
difference in running length of neighboring rovings, a rotation of the initial
fiber direction occur. In addition to the fiber orientation, the local area change
has been considered. By assuming a constant thickness of the cavity, an area
change has a direct effect on the local area weight of the fabric, and therefore
the FVC is affected. To evaluate the area change the ratio 𝐴/𝐴0 of the local
area 𝐴 to its initial area 𝐴0 is calculated. From the experimental results the
area ratio ranges from 𝐴/𝐴0 = 0.8 to 1.1. If the ratio is 𝐴/𝐴0 < 1, the area
weight increases and thus the FVC also increases. This condition works in
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Figure 5.31: Comparison of test results of three different preforms (Sample 1,2 and
3): deviation from an ideal angle 𝜃, area ratio change 𝐴/𝐴0, strain in fiber
direction 𝜀1, strain along the second material axis 𝜀2, shear angle 𝛾12 and
strain perpendicular to the fiber direction 𝜀⊥ (in black areas there is no
information)

both directions, which shows the pronounced effect on the FVC. In the entire
bottom area, moderate to minimal area changes in the whole area are present.
The most significant changes are in the corners of the component. As with
the fiber orientation, an increase in the area weight occurs here due to the
material accumulation. The distribution of strain in the fiber direction 𝜀1 is
very diffuse. It seems as if compressed areas alternate with stretched areas in a
wave-like manner. In particular, a high degree of compression is evident in the
center of the geometry near the inner corner. In this region, a locally clearly
visible waviness is found in experimental tests, which supports the assumption
of negative strain in fiber direction as an indicator for a waviness setting in. In
all other areas, there is no visually perceptible waviness. The distribution of
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the strain along the second material axis 𝜀2 and the strain perpendicular to the
fiber direction 𝜀⊥ show clear similarities. Here, only a small strain occurs over
a large area in the entire bottom region. However, a clear difference can be
seen in the lower left flank. The strain 𝜀2 is nearly zero, whereas the vertical
strain 𝜀⊥ is clearly negative. This can only be explained by occurring shear
in this region. Indeed, a higher shear angle 𝛾12 is evident here over the entire
flank. Since the shear angle is initially zero, a change can be observed in all
areas where a material flow occur. This explains why there is hardly any effect
of the deformation on the investigated quantities in the entire bottom area and
even more clearly in double-curved areas.

A comparison of the numerical results with the experimental ones is given
in Figure 5.32. The occurring rotation of the fiber direction is reproduced
very well by the simulation. As in the experiment, the largest angular changes
𝜃 occur in areas with strong reorientation of the fiber. This shows that the
predicted fiber orientation from the draping simulation is reliable. As another
relevant parameter, the area change 𝐴/𝐴0 shows a widely good agreement
between experiment and simulation. The homogeneous distribution in the
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Figure 5.32: Comparison of experimental and numerical results: angle deviation 𝜃,
area ratio change 𝐴/𝐴0, strain in fiber direction 𝜀1, strain along the second
material axis 𝜀2, shear angle 𝛾12 and strain perpendicular to the fiber
direction 𝜀⊥ (in black areas there is no information)
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bottom area is reflected in the experiment. The difference between experiment
and simulation here is at most 2 %. Likewise, the effect of the inner corner,
where waviness is formed, is reflected in both results. The only noteworthy
difference occurs in the lower left flank. Here, the simulation shows a decrease
of the area, whereas an increase can be observed in the experiment. Since
further deviations occur in this flank, they will be discussed in the following.
As observed in the experiment, a significant shearing 𝛾12 occurs in this region.
This observation is reliably reproduced in the simulation. In general, the
resulting shear is in a very good agreement. Shearing is also accompanied by
the resulting fiber orientation and clearly shows the reliability of the numerical
results for both quantities. Besides the shear in this flank, a very large area
spread of the strain along the second material axis 𝜀2 is evident. Likewise,
a significant perpendicular strain 𝜀⊥ to the fiber direction occurs. Since both
quantities are coupled by the resulting shear (for further details see [50]), the
discrepancy between experiment and simulation is suspected to be the result of
a too small numerical transverse stiffness 𝐸2. This stiffness is determined based
on experimental tensile tests on plane fabrics at different off-axis angles [50].
Therefore, in further detailed investigations, the impact of the determined
transverse stiffness should be analyzed. By evaluating the further distribution
of 𝜀2 and 𝜀⊥ in the draping simulation, it is found that the perpendicular
strain 𝜀⊥ shows similar results as in the experiment. The largely homogeneous
distribution of 𝜀⊥ in the bottom region and the occurring disruption of the strain
distribution by the inside corner are very well reproduced. Likewise, to the left
of the critical flank, a similar strain distribution in the form of a vertical strip
with positive strain 𝜀⊥ > 0 is evident. This circumstantial evidence suggests
that only the transverse stiffness would need to be increased to achieve lower
𝜀2 strains in the lower left flank. The strain distribution in the fiber direction
𝜀1 shows a clear difference between the experiment and the simulation. The
numerical result shows that the run length difference is clearly reflected in
the fiber strain. Here, the strain changes from the positive to the negative
range. However, the calculated strain is much smaller than the one occurring
in the experiment. Here the stiffness in the fiber direction 𝐸1 is suspected to
be the cause of the significant differences. The used material stiffness seems
to be also to high as the resulting strains are very small. In the constitutive
law used for UD-NFC, the stiffness in the fiber direction is assumed to be a
constant which will be in general not the case. Since the material behavior of
the fabric is very complex, further investigations should analyze whether this
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assumption is legitimate. Likewise, it should be evaluated in detail whether a
lower stiffness 𝐸1 will lead to similar results as in the experiment.

From a structural mechanics point of view, the prediction accuracy of the
draping simulation for the fiber orientation and the resulting FVC is very high.
Only the occurring waviness is not yet reproduced with sufficient accuracy.
Nevertheless, it becomes apparent that the use of the results from the draping
simulation provides a solid basis of input data for a more reliable structural-
mechanical analysis of FRP components.

5.2.3.2 Draping Simulation and Mapping of Draping Results

Based on the reliability of the draping simulation results to predict the most
significant draping effects, the firewall of a car will be analyzed in the follow-
ing as a numerical example. The goal is to evaluate the impact of draping
effects on the mechanical component behavior. Following the process chain,
a rectangular blank of the used semi-finished product need to be draped to
obtain the final shape of the component. The draping model consists of an
upper and a lower tool (see Figure 5.33). The stack of individual layers of the
subsequent laminate is located between the tools. The material model used
and the material parameters of the individual layers are taken from the forming
of the L-shaped geometry. When selecting the dimensions of the stack, special

upper tool

lower tool

ply stack

0°90°

Figure 5.33: Draping simulation setup of the final firewall geometry
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care must be taken to ensure that the subsequent component geometry is com-
pletely covered. Since the geometry has many multiple curvatures, the initial
edge length of the stack is determined from the path along the geometry. This
simplification showed that especially due to the flow of the semi-finished prod-
uct, the corners of the later component are not covered. Therefore, iteratively
the dimension of the stack is adjusted until complete coverage is achieved. An
exemplary representation of the forming process is given in Figure 5.34.

Forming steps

Figure 5.34: Forming steps of the semi-finished product to the final component geom-
etry

The formed preform does not yet have any recesses for the later geometry
and still shows an overhang of the semi-finished product. However, the re-
sulting deformation defines the distribution of the draping effects in the stack.
According to the virtual process chain, this distribution is mapped from the
draping simulation mesh to the structure mechanical mesh. Here, the proce-
dure corresponds to the methods described in Chapter 4. A comparison of the
distribution of the draping effects determined in the draping simulation and
the mapped data on the structural-mechanical mesh is given in Figure 5.35.
A direct comparison shows that due to the different meshing of both mod-
els, a certain smoothing of the local extreme values occurs. Nevertheless, a
satisfactory mapping result can be seen in general.

5.2.3.3 Distribution of Draping Effects for Different Laminate Layups

Since the deformation behavior during the forming process is dominated by
the laminate layup, a total of four different laminate layups are investigated.
Each stack consists of a total of four individual layers arranged symmetrically
with respect to the center plane. Each ply has a thickness of 𝑡L = 0.3 mm.
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Figure 5.35: Transfer of information on fiber orientation (top), fiber volume content

(middle) and fiber waviness (bottom) from the draping simulation (left) to
the structure simulation (right)

The order of the single layers is defined such that the first layer is in direct
contact with the upper tool and is layered in the direction of the lower tool. The
evaluated laminate layups are (0◦4), (90◦4), (0◦, 90◦) |s and (45◦/−45◦) |s. Due
to the symmetry of the geometry along the 0◦ axis, the results differ only for
a (45◦/−45◦) |s laminate structure on the left and right sides of the component
geometry. Therefore, in the following, the results are discussed using the ±45◦
laminate setup. All other results are given in Appendix A.4.

The distribution of the fiber orientation strongly determines the mechanical
component behavior. By specifying the fiber orientation within the semi-
finished product, its deviation from the initial state can be determined after
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forming. The resulting distribution of fiber orientation deviation for a ±45◦
laminate structure is given in Figure 5.36. Due to the same orientation of
the second and third layers of the laminate, only a minimal difference occurs
between these two layers. This observation holds true for all investigated
laminate layups with equally aligned and adjacent plies (see Figures A.6 to
A.8). The difference in running length in adjacent areas leads to shearing of the
material, which in turn leads to reorientation of the fiber direction. With such
a complex geometry, a deviation from the ideal fiber orientation must always
be expected. A simplified projection of the fiber direction is not sufficient for
a reliable prognosis.

In addition to the fiber orientation, the distribution of the FVC is very het-
erogeneous (cf. Figure 5.37). No generally valid relationship in the change
of FVC can be derived from the distribution. Thus, the local deformation of
the semi-finished product is the sole factor for the resulting distribution. For
plies with the same orientation, the difference in FVC between the plies is very
small. This circumstance can be observed for all other laminate layups as well

Ply 1 Ply 2

Ply 3 Ply 4

0 5 10 15 20 25 30
Deviation from ideal angle Δ𝜃 (◦)

90°

0°

Figure 5.36: Deviation from the initial fiber direction angle for each ply of the
(45◦/−45◦) |s angle-ply laminate
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cent layers for a (45◦/−45◦) |s angle-ply laminate
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(see Figures A.9 to A.11). Depending on the load case the gradual change
of the FVC in the different areas of the component can lead to local stress
concentrations.

When evaluating the predicted fiber waviness, the underlying fiber orientation
can be identified (compare Figure 5.38). The nearly equal distribution for
equidirectional neighboring plies observed for fiber orientation and FVC, can
only be observed here in a rudimentary way. As the order of the plies has an
impact on the deformation of the individual plies, the fiber orientation itself,
the FVC and fiber waviness are also affected. Since the individual plies adhere
to each other as a result of friction, their relative displacement with respect
to each other is the dominant factor for the resulting fiber waviness. In some
cases, a local compression of the fiber may be present in one ply, while a
stretching of the fiber is present at the same location in the adjacent ply with
the same fiber orientation (cf. Figure A.12 differences in waviness distribution
between Ply 2 and 3).

Ply 1 Ply 2

Ply 3 Ply 4

0 0.001 0.002 0.003 0.004 0.005
Amplitude to wavelength ratio 𝐴/𝜆 (-)

90°

0°

Figure 5.38: Areas with a predicted waviness for a (45◦/−45◦) |s angle-ply laminate
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5 Application and Validation of Constitutive Models

5.2.3.4 Mechanical Behavior of the Component

The impact of draping effects on the structure mechanical behavior observed at
the coupon level can be analyzed at the component level. In contrast to coupon
tests, which produce largely uniform stress states, stress jumps and stress con-
centrations inevitably occur in complex component geometries. On the other
hand, the geometry of the component itself can cause additional stiffening,
which reduces the influence of draping effects. However, this circumstance
depends on the associated load case. The firewall used here is primarily in-
tended to separate the passenger compartment from the engine compartment.
Beams are attached to the firewall and absorb the energy in the event of a crash.
Accordingly, a bending load case can be isolated as the main load. In principle,
the load is applied over as much of the surface of the component as possible in
order to avoid unnecessary stress concentrations. Here, a direct load applica-
tion to the center of the firewall is selected as load case (see Figure 5.39). To
fix the firewall, the degrees of freedom of movement of the lateral flanks are
restricted. Since a force-controlled simulation would not find a solution in case
of a sudden force drop and thus abort the simulation, a displacement load is im-
posed instead. The resulting distribution of the displacement in load direction
for a ±45◦ laminate is given in Figure 5.39. The imposed displacement leads
to indentation of the component. At the same time, the firewall bulges against
the direction of loading, which indicates buckling in the blue areas (compare
displacements in Figure 5.39). This condition results due to the relatively thin
laminate (𝑡L = 1.2 mm). Nevertheless, the failure distribution can be evaluated
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Figure 5.39: Imposed load case on the firewall with the associated boundary conditions
(left) and the resulting distribution of displacements for a ±45◦ laminate
in load direction (right)
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5.2 Draping Effects on Macroscopic Scale

for fiber failure as well as for inter-fiber failure based on the proposed failure
criteria.

In order to analyze the impact of draping effects on the structure mechanical
component behavior, two different types of simulations are carried out. On
one hand, all draping effects are neglected, and on the other hand, all draping
effects are taken into account. When neglecting the draping effects, the initial
fiber orientation of the fabric is only projected, a constant FVC is used and
no waviness is assigned. For the visualization of the differences, the element-
wise difference of the failure criterion between both cases is created (Δ 𝑓IFF =
𝑓 w/o
IFF − 𝑓 w/

IFF). Since both inter-fiber failure and fiber failure are possible, a
comparison is formed for both failure criteria (see Figures 5.40 and 5.41).
For fiber failure, the sign of the 𝜎11 stress determines whether tension or
compression failure is induced. Since positive as well as negative 𝜎11 stresses
are present in the component, but never both at the same time in one element,
the maximum of the tensile fiber failure and the compressive fiber failure
criterion is presented for easier comparison.

When evaluating the inter-fiber failure criterion, it is noticeable that the IFF
distribution is very similar for both simulation models. This is also true for
all other laminate layups investigated (see Figures A.15, A.17 and A.19). Due
to the imposed load case, there are areas in which hardly any differences
exist between the two models. In particular, the edge areas of the component
are barely loaded and therefore do not show any significant use to capacity.
Nevertheless, the inhomogeneous distribution of the individual draping effects
is also clearly visible here. The areas with the largest values of 𝑓IFF are found
near the force initiation. The difference in the inter-fiber failure criterion Δ 𝑓IFF
shows that locally very significant differences exist between the two approaches
(cf. Figure 5.42). In particular, laminate structures with different fiber
orientations such as (45◦/−45◦) |s and (0◦/90◦) |s show local jumps of the inter-
fiber failure criterion in many regions of the component. Accordingly, only
isolated local differences occur for equidirectional laminates for the imposed
load case (see Figures A.15 and A.17). The characteristics shown for inter-
fiber failure also appear for fiber failure (see Figures 5.41, A.16, A.18, and
A.20). For both failure criteria, the position of the maxima shifts depending
on the model. This has the consequence that the damage initiation and the
propagation would differ. For example, the model without draping effects
predicts a higher value for the inter-fiber failure on the left side below the large
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Figure 5.40: Distribution of inter-fiber failure if the draping effects are neglected (left)
or considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (45◦/−45◦) |s angle-ply laminate

hole (cf. Figure 5.42 black rectangle). In contrast, the model with draping
effects hardly shows any capacity utilization at this point, which in turn means
that when draping effects are taken into account, stress concentrations can be
significantly mitigated.

As a further point, the compliance of the models can be analyzed. Normally,
the geometric stiffness plays a much greater role than the variation of the
draping characteristics. For all laminate layups investigated, the resulting
force and displacement at the load application point is recorded. The ratio of
the displacement and the force 𝑢/𝐹 results in the compliance and is evaluated at
each displacement point. For the laminate layups (0◦4), (90◦4) and (0◦, 90◦) |s,
no difference between the models with draping effects and without arises
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Figure 5.41: Distribution of fiber failure if the draping effects are neglected (left) or
considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (45◦/−45◦) |s angle-ply laminate

here. On the other hand, the model with a (45◦/−45◦) |s laminate, which
initially shows hardly any difference in the force-displacement curve, shows a
significant difference between the two models as the displacement increases
(see Figure 5.44 left). If the draping effects are taken into account, a higher force
is achieved than in the model without draping effects. Conversely, this means
that the compliance decreases when the draping effects are taken into account.
In the direct comparison it becomes clear that the compliance differs up to
10 % between the two models (see Figure 5.44 right). Thus, draping effects
extend the geometric factor to the local material behavior, demonstrating the
importance of considering draping effects to correctly capture the mechanical
component behavior.
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Ply 1 Ply 2

Ply 3 Ply 4

-0.01 0 0.01
Δ 𝑓IFF (-)

Figure 5.42: Difference of the inter-fiber failure criterion Δ 𝑓IFF = 𝑓 w/o
IFF − 𝑓 w/

IFF for
a (45◦/−45◦) |s angle-ply laminate between the results without draping
effects and with draping effects (blue areas show underestimated IFF and
red areas show overestimated IFF)

Ply 1 Ply 2

Ply 3 Ply 4

-0.003 0 0.003
Δ 𝑓FF (-)

Figure 5.43: Difference of the fiber failure criterion Δ 𝑓FF = 𝑓 w/o
FF − 𝑓 w/

FF for a
(45◦/−45◦) |s angle-ply laminate between the results without draping ef-
fect and with draping effect (blue areas show underestimated FF and red
areas show overestimated FF)

220



5.3 Conclusions on Material Modelling and Draping Effects

0.0 0.2 0.4 0.6 0.8 1.0
Displacement 𝑢 (mm)

0

20

40

60

80

100

120

140

160
Re

ac
tio

n
fo

rc
e
𝐹

(N
)

w/o draping effects
w/ draping effects

0.0 0.2 0.4 0.6 0.8 1.0
Displacement 𝑢 (mm)

1.0

2.5

4.0

5.5

7.0

8.5

10.0

Co
m

pl
ia

nc
e
𝑢 /𝐹

(m
m

kN
−1

) w/o draping effects
w/ draping effects

0

2

4

6

8

10

Co
m

pl
ia

nc
e

ra
tio

(%
)

Figure 5.44: Resulting force-displacement curves for a (45◦/−45◦) |s angle-ply laminate
(left) and the corresponding compliance with the percentual difference
(right) between the models with and without draping effects

5.3 Conclusions on Material Modelling and
Draping Effects

New insights have been gained through an intensive analysis of the mechanical
material behavior when draping effects occur. In terms of a virtual material
testing the usage of micro-scale models show promising results. Especially, the
failure and damage analysis can be adapted to different matrix and fiber types.
The microscopic models are capable to model undulated and nonundulated
regions reliably. Special care needs to be taken when the material properties
of the constituents are not known. The matrix has a significant impact on the
elastic as well as resulting strength values of the composite. From the modeling
prospective, the choice of the strain measure for fiber and matrix is crucial.
The continuous change of the material axes leads to other failure modes, which
might not be predicted correctly, if simplistic strain measures are used.

Based on the observations from experiments and micro-scale models the re-
quirements for the macroscopic material model are identified. The advantage
of the developed macroscopic model is that all analyzed draping effects can
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5 Application and Validation of Constitutive Models

be modeled simultaneously. The information from the draping simulation re-
garding draping effects are passed to each mesh element. This allows to model
draping effects on component level without any further assumptions. As the
fiber orientation is a key factor for FRPs, the developed model covers the con-
tinuous material axes rotation. This aspect has been for the first time evaluated
experimentally and validated numerically. Regarding the nonlinear behavior
of the composite, several mechanisms are identified. The nonlinear behavior
of carbon fiber in the fiber direction is important because the stiffness changes
significantly during loading. This condition leads to different interpretation of
the obtained stress-strain curves and the resulting strength values. In general,
the nonlinear behavior due to plasticity for nonundulated areas can be reliably
reproduced. As an important side note, no FVC-dependent plastic behavior is
observed.

When FVC is taken into account, the stiffness and strength values must be
adjusted immediately. The developed macroscopic model utilizes available
analytical approaches to predict the stiffness. Based on experimental tests
and microscale model observations, FVC-dependent strength values can now
be defined not only for FF but also for IFF. Especially, the transverse com-
pressive strength shows a distinct dependency on the FVC. By comparing the
experimental results with numerical predictions, the accurate prediction of the
strength is key to exploitation of the lightweight potential. Otherwise, ma-
terial reserves are not activated or oversimplified. Using numerical results,
no FVC-dependent interaction between different IFF damage variables is ob-
served. Therefore, the material behavior during damage evolution is defined
using only one parameter.

In addition to fiber direction and FVC, the significant stiffness and strength loss
due to waviness is critical. The developed model utilizes available analytical
approaches to predict the stiffness for wavy areas. However, the quality of
the prediction depends to a large extent on the exact knowledge about the
waviness grade. Based on the results of micro-scale models and analytical
models developed to determine the strength of a waviness in fiber direction, no
significant FVC-dependent behavior is observed. The reason that the strength
is independent of the FVC is due to the failure mode and the resulting local
stress state. When the load is applied in the direction of waviness, an inter
fiber fracture occurs. The sensitivity due to FVC-dependency of the strengths
determining the inter fiber fracture is very low at this stress state.
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6 Recommendations for Material
Characterization to Virtually
Evaluate Composite Parts with
Draping Effects

The following recommendations can be deduced for the design of fiber rein-
forced composite components with complex geometries, for which the impact
of draping effects is relevant to the performance. In the first step, the material
properties are required. Ideally, the tests should be carried out for at least two
different FVC. It is useful to evaluate the limits of the expected FVC range (e.g.,
𝜑 = 50 % and 𝜑 = 60 %). The experimental plan should cover both the linear
elastic and the strength parameters. The material parameters in fiber direction
can be determined from UD0◦ samples tested under a tensile and compressive
load. Thus, the strengths in fiber direction 𝑋T and 𝑋C are determined. In addi-
tion, the material parameters 𝐸 init

1 , d𝐸1/d𝜀11 and 𝜈12 are determined by the tests
as well. These parameters are all affected by the FVC. To use the analytical
approaches presented in Section 3.5.5.1, the material properties of the matrix
and the fiber are required. Since these characteristic properties are usually not
available, literature data or manufacturer’s data for the matrix can be used. The
required fiber properties (such as 𝐸 f,init

1 etc.) can be determined via reverse
engineering from composite coupon tests.

For the material properties transverse to the fiber direction, tensile and com-
pression tests should be performed on UD90◦ laminates. This will allow
further parameters such as 𝐸2, 𝜈23, 𝑌T and 𝑌C to be determined. For the
strengths, a linear or constant value, over the considered FVC range, seems
to be sufficient. In order to model the dependence on FVC, the mechanical
properties of the fiber are also necessary. For the elastic material parameters
transverse to the fiber direction, there are two possibilities to parameterize the
analytical equations. On the one hand, the stiffness of the matrix 𝐸m and the
literature parameters of the fiber 𝐸 f

2 [18, 69, 70] can be used to determine the
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Halpin-Tsai parameter 𝜁𝐸2 from the experimental results of the two different
FVC. On the other hand, it is possible using micro-scale models and reverse
engineering to identify the fiber parameters. The same methods can be used to
determine the major through-thickness Poisson’s ratio 𝜈23 (or corresponding
shear modulus𝐺23) and the specific Halpin-Tsai parameter 𝜁𝐺23 . As shown in
Section 5.1.2.1, for the parameters 𝐸2 and 𝜈23 the Poisson’s ratio of the matrix
𝜈m plays a significant role. Therefore, caution should be applied when taking
the material properties of the matrix from the literature or the manufacturer’s
specifications.

To determine the material shear properties, it is convenient to perform OAT45◦
and OAC45◦ coupon tests. This allows to determine the shear modulus 𝐺12
quite reliably. Similarly, the tests can be used to determine the IFF envelope.
To determine the Halpin-Tsai parameter 𝜁𝐺12 , it is suitable to use the material
properties of the matrix in conjunction with the coupon test results or in
conjunction with the micro-scale models. Since the shear modulus 𝐺12 is
strongly dominated by the stiffness of the matrix, reliable manufacturer data or
literature parameters should be used.

For the parameterization of the plasticity model, the IFF envelope must be
determined first. If the results of the UD90◦ tension and compression tests, as
well as the OAT45◦ and OAC45◦ tests are plotted in a (𝜎22, 𝜎12)-plane, only
the shear strength 𝑆12 and the slope parameter 𝑝n1 are missing to define the
IFF envelope. This can be done using an optimization algorithm that takes as
input the Puck failure criterion and the individual measured stress values as
input. In order to consider the impact of the FVC, the parameter optimization
is performed for one FVC at a time. Subsequently, the parameters found can
be described with a linear approach over the FVC range considered. Since the
inter-fiber failure is influenced by the load in the fiber direction, the interaction
factors 𝑚 and 𝑠 have to be defined. Choosing the parameters to be 𝑚 = 𝑠 = 0
leads to a conservative result, since the maximum interaction between 𝑓FF and
𝑓IFF is assumed here. Now all parameters for the fiber reinforced composite
specifying failure initiation are determined. Based on the findings for the
plasticity model, only parameters 𝛼ap, 𝑒ap and 𝑓ap are relevant. The parameter
𝛽ap can be set to zero. In addition to the plasticity model parameters, the
hardening curve is needed. Based on the results of the OAT45◦ and OAC45◦
tests, as well as the UD90◦ compression tests, a suitable set of parameters
can be found using an optimization algorithm. The remaining parameters
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of the energy release rate due to fiber failure 𝐺d and interaction parameter
𝑟g are material dependent values and can only be roughly determined. It is
recommended to perform a sensitivity study to analyze the influence of these
parameters on the damage behavior.

As shown in Section 5.2.2.1 the used strain measure has a crucial influence
on the resulting stress of the fiber reinforced composite. Therefore, it is rec-
ommended to consider the rotation of all material axes when modeling fiber
reinforced composites. If only the rotation of the fiber orientation is consid-
ered, a failure mechanism deviating from the experiment can be predicted.
To determine the resulting tensile and compressive strengths for areas with
waviness, the analytical approaches presented in Section 2.5.3 can be used.
The material parameters required for this approach, such as the compressive
strength in the fiber direction 𝑋C and the parameters required for the calculation
of the IFF criterion according to Puck Parameters are completely sufficient.

Based on the determined material parameters and the established material
model requirements, it is possible to predict the component behavior consider-
ing draping effects. The described scope of experiments represents a minimum
requirement. Compared to a material characterization that does not take any
draping effects into account, the number of tests required is doubled due to the
consideration of two different FVCs. However, all draping effects investigated
(fiber orientation, FVC and fiber waviness) are covered by these tests. This
justifies the additional effort for a more realistic analysis.
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7 Conclusion and Outlook

7.1 Conclusion

The forming of UD-NCF semi-finished products results in local draping effects
(fiber orientation, fiber volume content and fiber waviness), which influence
the mechanical material behavior. The influence of the draping effects is in-
vestigated experimentally, and requirements for a macroscopic material model
are derived. For this purpose, first the linear elastic material parameters and
the nonlinear material properties are determined for different types of drap-
ing effects. Furthermore, the material strengths are obtained at different fiber
volume contents (FVC). The FVC not only has an influence on the material
stiffnesses and strengths in fiber direction, but also a decisive influence on the
transverse compressive strength. It is found that for the range of FVC consid-
ered, linear relationships for different strength values proved to be sufficiently
accurate in most cases. Thus, the experimental effort can be reduced to only
two fiber volume contents to be investigated. However, plastic strain hardening
is independent of FVC, which means that it only needs to be determined for one
FVC. In addition, the nonlinear material behavior is recorded under different
fiber angles and laminate structures. The consideration of the fiber direction
and the accompanying rotation of the material axes is identified as an essential
aspect. It is shown that, in addition to the rotation of the fiber direction, the
angle between the fiber direction and the transverse material axis also changes
with the load. Since the forming of semi-finished products can lead to local
fiber waviness, different degrees of waviness are tested under tensile and com-
pressive load. This draping effect is found to also have a significant influence
on the mechanical properties. As with nonundulated laminates, the local fiber
orientation also changes with the load applied.

Based on the experimental findings, a suitable strain measure for modeling
fiber composites with draping effects is identified. Here, all material axes
are transformed depending on the load. The resulting stress response has an
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influence on the failure initiation and failure mode. In addition to modeling
the linear elastic material behavior, a fracture plane based plasticity model is
implemented. This is directly linked to the fracture plane based failure criterion
used. For the modeling of the FVC-dependent material behavior, different
existing analytical approaches are adopted and new ones are developed. Since
the influence of the FVC on the damage behavior requires a lot of experimental
effort to evaluate different stress loads, numerical investigations are carried
out. It is found that the FVC does not influence the interaction between
the damage mechanisms. To account for the influence of fiber waviness,
homogenized approaches specifically related to fiber waviness are implemented
in the material model.

Numerical studies are performed at the microscale for a comprehensive analy-
sis of the effective material behavior on macroscale. By varying the different
material parameters of each constituent, the influence on the resulting com-
posite material properties could be derived. It can be seen that the matrix has
a dominant influence on the elastic material properties, as well as the resulting
strengths of the composite. The experimentally observed influence of the FVC
on the material strengths could be reproduced. Likewise, on the microscale,
the material behavior in presence of fiber waviness is investigated. The ba-
sic phenomena, such as nonlinearity, failure initiation and propagation, and
fracture, are in good agreement with experiments. In addition, it is shown by
means of micro-scale models that the FVC does not affect the strength with
increasing fiber waviness.

For the validation of the developed macroscopic material model, the experi-
mental and numerical results are compared. The change in fiber orientation
and the angle between the material axes could be reproduced very well. Like-
wise, the nonlinear material behavior could be validated for different fiber
orientations and laminate layups. When comparing the results for fiber wavi-
ness, differences in the stress-strain curves appeared that need further attention.
However, the stiffness due to waviness and in some terms the corresponding
experimental strength could be reproduced. In addition to the validation of the
developed material model, the information provided from the draping simu-
lation regarding the occurring draping effects is compared with experimental
forming tests. For local fiber orientation and FVC, a very good prediction qual-
ity of the draping simulation is found. For prediction of local fiber waviness,
deviations still occur at the moment. With regard to the development of fiber
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composite components with complex geometries, a much more realistic design
can now be achieved by utilizing the virtual process chain. In combination
with the developed structural-mechanical material model under consideration
of the addressed draping effects, a significant extension and improvement of
the previous approach has been achieved.

7.2 Outlook

By taking into account the draping effects that occur, the material behavior of
fiber composites can be predicted more accurately. However, when modeling
the draping effects, other material-specific aspects have come to light that have
not been taken into account so far. For example, a different degree of waviness
may be present in each layer during forming, and such dissimilar adjacent
layers may interact during loading. Since the influence of fiber waviness
has a significant role on the local material properties, the material behavior
should therefore be further investigated for different laminate structures (e.g.,
angle-ply laminates with waviness) and the material model should be extended
and validated accordingly. Similarly, laminate thickness changes can occur
that lead to a local nesting effect. In this case, a combination of a change
in FVC and out-of-plane waviness occurs. Based on experimental tests, the
influence of local nesting effects should therefore be investigated for different
laminate structures. Another aspect is the modeling of the influence of FVC
on further material properties. It is generally known that the thickness of the
individual layers in a laminate can lead to higher strengths due to the in-situ
effect. An investigation in connection with the FVC is still pending. Similarly,
the influence of FVC on the experimentally determinable intralaminar energy
release rates has not yet been explored. Furthermore, homogenized modeling
of fiber waviness still poses challenges. In subsequent investigations, it would
therefore be useful to develop new methods that capture the material behavior
as a result of waviness more accurately.
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A Appendix

A.1 Further Derivations for the Material Models

A.1.1 Matrix Material

A.1.1.1 Viscoplasticity Model

Plasticity Return Mapping Algorithm In this section the implementation
of the viscoplastic model into a finite element user subroutine in Abaqus is
described. The implemented user material model must provide the stress 𝝈
and the consistent tangent modulus dΔ𝝈/dΔ𝜺 at the end of each increment to the
solver. To determine these parameters the finite element solver provides at the
beginning of each increment a strain incrementΔ𝜺 which is utilized to compute
the trial stress 𝝈̂ at the end of the increment. If the trial stress leads to Φpl ≥ 0
a return mapping algorithm must be performed. Generally this means that the
current stress state exceeds the yield surface and must be mapped back to the
surface. This condition is satisfied if a solution for the plastic multiplier Δ𝜆pl
in Equation (3.58) is found. If no solution is found, the strain increment must
be reduced to perform a new trial to find a solution. To obtain the resulting
stress Equation (3.32) in conjunction with Equation (3.44) can be defined as

𝝈 = C : 𝜺el = 𝝈̂ − Δ𝜆plC :
𝜕𝑔pl

𝜕𝝈
. (A.1)

This expression can be further separated into the deviatoric and the volumetric
part by using Equations (3.34) and (3.35), which allows to formulate a sim-
ple relationship between the trial deviatoric and volumetric stresses and the
resulting true stresses

𝝈dev = 𝝈̂dev −
3𝐺mΔ𝜆pl

𝑔pl
𝝈dev ⇔ 𝝈dev =

𝑔pl

3𝐺mΔ𝜆pl + 𝑔pl
𝝈̂dev (A.2)
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−𝑝 = −𝑝 + 𝐾m𝛼Δ𝜆pl

𝑔pl
𝑝 ⇔ 𝑝 =

𝑔pl

𝐾m𝛼Δ𝜆pl + 𝑔pl
𝑝. (A.3)

However, the flow potential 𝑔pl is itself based on the resulting stress 𝝈 (cf.
Eq. (3.43)). Therefore, if the definition of the resulting deviatoric and vol-
umetric stress from Equations (A.2) and (A.3) is used and by recalling that
𝜎vm =

√
3𝐽2 =

√︁
3/2𝝈dev : 𝝈dev the flow potential results to

𝑔pl =
√︃
𝜎2

vm + 𝛼𝑝2

=
√︃

3/2𝝈dev : 𝝈dev + 𝛼𝑝2

=

√︄
3/2

(
𝑔pl

3𝐺mΔ𝜆pl + 𝑔pl

)2
𝝈̂dev : 𝝈̂dev + 𝛼

(
𝑔pl

𝐾m𝛼Δ𝜆pl + 𝑔pl
𝑝

)2

=

√︄(
𝑔pl

3𝐺mΔ𝜆pl + 𝑔pl

)2
𝜎̂2

vm + 𝛼
(

𝑔pl

𝐾m𝛼Δ𝜆pl + 𝑔pl

)2
𝑝2.

(A.4)

If the equation above is solved to 𝑔pl a quartic equation of the following type
will result

𝑔4
pl + 𝑏𝑔3

pl + 𝑐𝑔2
pl + 𝑑𝑔pl + 𝑒 = 0 (A.5)

where the parameters 𝑏, 𝑐, 𝑑, 𝑒 are functions of the parameters
𝐺m, 𝐾m,Δ𝜆pl, 𝛼, 𝜎̂vm and 𝑝. Such type of equation can either be solved by
Newton-Raphson scheme or directly by using the solution to such equation
proposed by Lodovico Ferrari (first published 1545 in [232]). By observing
Equation (3.43) it leads to the conclusion that 𝑔pl must be greater zero, since
all terms in this equation lead to positive values. However, by solving the
quartic equation the roots can also result to complex conjugate nonreal roots.
By analyzing each root of the quartic equation only one solution leads to
a real and positive root in this case. At each time step all parameters of
Equations (A.2) and (A.3) except Δ𝜆pl are known. To determine the plastic
multiplier a further equation is needed. Using Equation (3.58) and solving for
Δ𝜆pl the stress response at the end of the increment can be determined. Due
to interdependence of Δ𝜆pl and the resulting stress 𝝈 results in a generally
nonlinear function. Utilizing the Newton-Raphson scheme to solve such
equation is an optimal choice. However, the derivative of the viscoplastic
consistency condition 𝑅pl to Δ𝜆pl is needed. First 𝑅pl needs to be expressed in
terms of parameters which are only dependent on Δ𝜆pl and the trial stresses.
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To do so all necessary equations are also redefined and simplified to solve for
Δ𝜆pl. To simplify Equations (A.2) and (A.3) the factors to 𝝈̂dev and 𝑝 are
redefined to

𝑔pl

3𝐺mΔ𝜆pl + 𝑔pl
=

1

1 + 3𝐺mΔ𝜆pl
𝑔pl

=
1
𝜁dev

𝑔pl

𝐾m𝛼Δ𝜆pl + 𝑔pl
=

1

1 + 𝐾m𝛼Δ𝜆pl
𝑔pl

=
1
𝜁vol

.

(A.6)

Since 𝑅pl depends on Φpl the solution of the yield stresses are required. In or-
der to determine the yield stresses in tension and compression (cf. Eq. (3.51))
the equivalent plastic strain increment Δ𝜀pl is also needed. Applying Equa-
tions (3.44), (A.2), (A.3) and (A.6) to Equation (3.54) result in an expression
of equivalent plastic strain increment which is dependent on Δ𝜆pl as the only
unknown parameter

Δ𝜀pl =
√︁
𝑘Δ𝜺pl : Δ𝜺pl

=
Δ𝜆pl

2𝑔pl

√√√
𝑘

(
6𝜎̂2

vm

𝜁2
dev
+ 4𝛼2𝑝2

3𝜁2
vol

)
.

(A.7)

For simplified reading the expression within the square root is substituted by

𝜂 = 𝑘

(
6𝜎̂2

vm

𝜁2
dev
+ 4𝛼2𝑝2

3𝜁2
vol

)
. (A.8)

Now the derivative of the viscoplastic consistency condition (cf. Eq. (3.58))
to Δ𝜆pl can be determined

𝜕𝑅pl

𝜕Δ𝜆pl
=

𝜕

𝜕Δ𝜆pl

((
Δ𝜆pl𝜇

Δ𝑡

)ℎ
− Φpl

2𝜎t𝜎c

)

=
ℎ

Δ𝜆pl

(
Δ𝜆pl𝜇

Δ𝑡

)ℎ
− 1

2𝜎t𝜎c

(
𝜕Φpl

𝜕Δ𝜆pl
−Φpl

(
1
𝜎c

𝜕𝜎c
𝜕Δ𝜆pl

+ 1
𝜎t

𝜕𝜎t
𝜕Δ𝜆pl

))
.

(A.9)
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Considering Equations (A.2), (A.3) and (A.6) the derivative of the yield surface
Φpl is expressed by

𝜕Φpl

𝜕Δ𝜆pl
=

𝜕

𝜕Δ𝜆pl
(6𝐽2 + 2𝐼1 (𝜎c − 𝜎t) − 2𝜎c𝜎t)

= −12𝐽2

𝜁3
dev

𝜕𝜁dev
𝜕Δ𝜆pl

− 2 (𝜎c − 𝜎t) 𝐼1
𝜁2

vol

𝜕𝜁vol
𝜕Δ𝜆pl

+ 2
(
𝐼1
𝜁vol
− 𝜎t

)
𝜕𝜎c
𝜕Δ𝜆pl

− 2
(
𝐼1
𝜁vol
− 𝜎c

)
𝜕𝜎t
𝜕Δ𝜆pl

,

(A.10)

where 𝐽2 and 𝐼1 correspond to the trial second invariant of the trial deviatoric
stress tensor and the first invariant of the trial stress tensor. Since the hardening
laws in tension and compression are dependent on the equivalent plastic strain
increment and therefore on Δ𝜆pl, the derivative is defined as

𝜕𝜎c
𝜕Δ𝜆pl

=
𝜕𝜎c
𝜕Δ𝜀pl

𝜕Δ𝜀pl

𝜕Δ𝜆pl
= 𝐻c

𝜕Δ𝜀pl

𝜕Δ𝜆pl

𝜕𝜎t
𝜕Δ𝜆pl

=
𝜕𝜎t
𝜕Δ𝜀pl

𝜕Δ𝜀pl

𝜕Δ𝜆pl
= 𝐻t

𝜕Δ𝜀pl

𝜕Δ𝜆pl
,

(A.11)

where 𝐻t,c are the hardening rates in tension and compression direction. Next
the derivative of the equivalent plastic strain increment Δ𝜀pl is determined.
Since the nonassociative flow potential 𝑔pl is used to determine Δ𝜀pl (cf.
Eq. (A.7)) and 𝑔pl is based on the parameters 𝜁dev and 𝜁vol (while these them-
selves depend on 𝑔pl), first the derivative of 𝑔pl to Δ𝜆pl needs to be determined.
By using Equation (A.6) the derivatives of 𝜁dev and 𝜁vol are defined as

𝜕𝜁dev
𝜕Δ𝜆pl

=
3𝐺m
𝑔pl

(
1 − Δ𝜆pl

𝑔pl

𝜕𝑔pl

𝜕Δ𝜆pl

)
𝜕𝜁vol
𝜕Δ𝜆pl

=
𝐾m𝛼

𝑔pl

(
1 − Δ𝜆pl

𝑔pl

𝜕𝑔pl

𝜕Δ𝜆pl

)
.

(A.12)
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With these equations and the definition of 𝑔pl (cf. Eq. (A.4)) the derivative can
be solved to

𝜕𝑔pl

𝜕Δ𝜆pl
=

𝜕

𝜕Δ𝜆pl

(√︄
𝜎̂2

vm

𝜁2
dev
+ 𝛼 𝑝2

𝜁2
vol

)

= − 1
𝑔pl

(
3𝐺m
𝑔pl

𝜎̂2
vm

𝜁3
dev︸     ︷︷     ︸

𝜅dev

+ 𝐾m𝛼
2

𝑔pl

𝑝2

𝜁3
vol︸      ︷︷      ︸

𝜅vol

) (
1 − Δ𝜆pl

𝑔pl

𝜕𝑔pl

𝜕Δ𝜆pl

)

⇔ 𝜕𝑔pl

𝜕Δ𝜆pl
=

(𝜅dev + 𝜅vol) 𝑔pl

(𝜅dev + 𝜅vol) Δ𝜆pl − 𝑔2
pl
.

(A.13)

Finally, the derivative of the equivalent plastic strain is deduced from Equa-
tions (A.8), (A.12) and (A.13)

𝜕Δ𝜀pl

𝜕Δ𝜆pl
=

𝜕

𝜕Δ𝜆pl

(
Δ𝜆pl

2𝑔pl

√
𝜂

)
=

1
2𝑔pl

(√
𝜂 − Δ𝜆pl

𝑔pl

√
𝜂
𝜕𝑔pl

𝜕Δ𝜆pl
+ 1

2
Δ𝜆pl

𝑔pl
√
𝜂

𝜕𝜂

𝜕Δ𝜆pl

)
(A.14)

where 𝜕𝜂
𝜕Δ𝜆pl

is defined as

𝜕𝜂

𝜕Δ𝜆pl
=

𝜕

𝜕Δ𝜆pl

(
𝑘

(
6𝜎̂2

vm

𝜁2
dev
+ 4𝛼2𝑝2

3𝜁2
vol

))

= −𝑘
(
12𝜅dev + 8

3
𝛼𝜅vol

) (
1 − Δ𝜆pl

𝑔pl

𝜕𝑔pl

𝜕Δ𝜆pl

)
.

(A.15)

Special care needs to be taken for the boundaries ofΔ𝜆pl. Since the plastic strain
increment Δ𝜺pl is limited by the actual strain increment Δ𝜺, the upper bound
of Δ𝜆pl is near the value of the trial equivalent plastic strain increment. This
trial value can be determined by replacing the plastic strain increment Δ𝜺pl in
Equation (3.54) by the actual strain incrementΔ𝜺. However, the lower bound of
Δ𝜆pl must be greater than zero in order to solve the Newton-Raphson, since the
plastic corrector is the denominator in the first term of Equation (A.9). Within
these bounds the quadratic convergence of the Newton’s iterative method can
be achieved.

235



A Appendix

Plasticity Consistent Tangent Operator To ensure rapid convergence of
the equilibrium of the finite element solver a proper definition of the consistent
tangent operator is required. In general by using a UMAT in the FE tool
Abaqus, the derivative of the strain increment to the resulting stress increment
dΔ𝝈/dΔ𝜺 needs to be determined. However, since the resulting stress increment
Δ𝝈 is dependent on the resulting stress 𝝈 and the stress itself is determined
from trial stresses 𝝈̂, which are based on the trial elastic strain 𝜺̂el = 𝜺el + Δ𝜺,
derivative can be rewritten to

dΔ𝝈
dΔ𝜺

=
d𝝈
d𝜺̂el

. (A.16)

Using Equation (A.1) the stress can be expressed by a trial stress state and the
plastic strain increment. The derivative to the trial elastic strain results to

d𝝈
d𝜺̂el

=
dC :

(
𝜺̂el − Δ𝜺pl

)
d𝜺̂el

= C − C :
dΔ𝜺pl

d𝜺̂el
. (A.17)

It should be noted that the expression dΔ𝜺pl
d𝜺̂el

is a forth-order tensor. By the
double dot product of C and dΔ𝜺pl

d𝜺̂el
a contraction to a new forth-order tensor is

performed. Furthermore, it is obvious that in case of a pure elastic step only the
stiffness tensor C remains as consistent tangent operator. Since the resulting
plastic strain increment depends mainly on the plastic corrector Δ𝜆pl, the trial
deviatoric stress 𝝈̂dev and the trial hydrostatic pressure 𝑝, the derivative of
Δ𝜺pl to 𝜺̂el will result in a following expression

dΔ𝜺pl

d𝜺̂el
= 𝝃 ⊗ dΔ𝜆pl

d𝜺̂el
+ 𝜒d𝝈̂dev

d𝜺̂el
+ 𝝍 ⊗ d𝑝

d𝜺̂el
(A.18)

where 𝝃 and 𝝍 are second-order tensors and 𝜒 is a scalar factor. However, to
obtain these components several derivatives need to be determined. First direct
solution of the plastic strain increment derivative using Eq. (3.44), (A.2), (A.3)
and (A.6) results to

dΔ𝜺pl

d𝜺̂el
=

d
d𝜺̂el

(
Δ𝜆pl

2𝑔pl

(
3𝝈̂dev
𝜁dev

− 2𝛼𝑝
3𝜁vol

𝑰

))

=
1

Δ𝜆pl
Δ𝜺pl ⊗

dΔ𝜆pl

d𝜺̂el
− 1
𝑔pl

Δ𝜺pl ⊗
d𝑔pl

d𝜺̂el
+ Δ𝜆pl

2𝑔pl

[
3
𝜁dev

(
d𝝈̂dev
d𝜺̂el

−𝝈dev ⊗ d𝜁dev
d𝜺̂el

)
− 2𝛼

3𝜁vol

(
𝑰 ⊗ d𝑝

d𝜺̂el
− 𝑝𝑰 ⊗ d𝜁vol

d𝜺̂el

)]
.

(A.19)
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Next the derivatives of 𝜁dev and 𝜁vol are needed to determine the derivative of
𝑔pl.

d𝜁dev
d𝜺̂el

=
3𝐺m
𝑔pl

(dΔ𝜆pl

d𝜺̂el
− Δ𝜆pl

𝑔pl

d𝑔pl

d𝜺̂el

)
d𝜁vol
d𝜺̂el

=
𝐾m𝛼

𝑔pl

(dΔ𝜆pl

d𝜺̂el
− Δ𝜆pl

𝑔pl

d𝑔pl

d𝜺̂el

) (A.20)

Using Equations (A.13) and (A.20) and also the definition of 𝜅dev and 𝜅vol after
some simplifications the derivative of 𝑔pl is deduced to

d𝑔pl

d𝜺̂el
=

1
𝑔pl

(
𝜎vm
𝜁dev

(
d𝜎̂vm
d𝜺̂el

− 𝜎vm
d𝜁dev
d𝜺̂el

)
+ 𝛼𝑝
𝜁vol

(
d𝑝
d𝜺̂el
− 𝑝 d𝜁vol

d𝜺̂el

))
⇔

=
𝜕𝑔pl

𝜕Δ𝜆pl

(dΔ𝜆pl

d𝜺̂el
− 1
𝜅dev + 𝜅vol

(
𝜎vm
𝜁dev

d𝜎̂vm
d𝜺̂el

+ 𝛼𝑝
𝜁vol

d𝑝
d𝜺̂el

))
.

(A.21)

For further simplifications the deviatoric and the volumetric plastic strains
(Δ𝜺pldev and Δ𝜺plvol) by using Equation (3.44) are introduced

Δ𝜺pldev =
3Δ𝜆pl

2𝑔pl
𝝈dev and Δ𝜺plvol = −

𝛼𝑝Δ𝜆pl

3𝑔pl
𝑰. (A.22)

Next the derivatives of 𝑔pl, 𝜁dev and 𝜁vol are substituted into Equitation (A.19).
By collecting the factors of the derivatives of 𝝈̂dev, 𝑝 and Δ𝜆pl and simplifying
each factor using previously defined expressions, such as Equations (A.12) and
(A.13), the parameters 𝝃, 𝝍 and 𝜒 from Equation (A.18) are defined as

𝝃 =

(
1

Δ𝜆pl
− 1
𝑔pl

𝜕𝑔pl

𝜕Δ𝜆pl

)
Δ𝜺pl − 1

𝜁dev

𝜕𝜁dev
𝜕Δ𝜆pl

Δ𝜺pldev −
1
𝜁vol

𝜕𝜁vol
𝜕Δ𝜆pl

Δ𝜺plvol

(A.23)

𝝍 =
𝛼𝑝

𝑔pl𝜁vol (𝜅dev + 𝜅vol)
𝜕𝑔pl

𝜕Δ𝜆pl

[
Δ𝜺pl −

Δ𝜆pl

𝑔pl

(
3𝐺m
𝜁dev

Δ𝜺pldev

+𝐾m𝛼

𝜁vol
Δ𝜺plvol

)]
− Δ𝜆pl𝛼

3𝑔pl𝜁vol
𝑰

(A.24)

𝜒 =
Δ𝜆pl𝜎vm

𝑔2
pl (𝜅dev + 𝜅vol)

𝜕𝑔pl

𝜕Δ𝜆pl

(
3
2
𝜎vm𝜁dev − 81

8
𝐺mΔ𝜆pl

𝑔pl

)
+ 3Δ𝜆pl

2𝑔pl𝜁dev
. (A.25)
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While the solution of derivatives of 𝝈̂dev and 𝑝 are trivial and results to

d𝝈̂dev
d𝜺̂el

= 2𝐺mIdev and
d𝑝
d𝜺̂el

= −𝐾m𝑰, (A.26)

the derivative of the plastic corrector Δ𝜆pl in unknown and needs to be deter-
mined from the viscoplastic consistency condition (cf. Eq. (3.58)). Similar to
the solution of the return mapping procedure to determine Δ𝜆pl, the derivative
of 𝑅pl and the hardening laws (𝜎c and 𝜎t) to the elastic trial stress results to

d𝑅pl

d𝜺̂el
=

d
d𝜺̂el

((
Δ𝜆pl𝜇

Δ𝑡

)ℎ
− Φpl

2𝜎t𝜎c

)

=
ℎ

Δ𝜆pl

(
Δ𝜆pl𝜇

Δ𝑡

)ℎ dΔ𝜆pl

d𝜺̂el

− 1
2𝜎t𝜎c

(dΦpl

d𝜺̂el
−Φpl

(
1
𝜎c

d𝜎c
d𝜺̂el
+ 1
𝜎t

d𝜎t
d𝜺̂el

))
,

(A.27)

d𝜎c
d𝜺̂el

= 𝐻c
dΔ𝜀pl

d𝜺̂el
and

d𝜎t
d𝜺̂el

= 𝐻t
dΔ𝜀pl

d𝜺̂el
. (A.28)

However, the derivatives of Φpl, Δ𝜀pl and 𝜂 to the elastic strain differs from the
derivatives to Δ𝜆pl due to the additional dependency on the strain. The results
of these derivatives are expressed by

dΦpl

d𝜺̂el
=

d
dΔ𝜆pl

(6𝐽2 + 2𝐼1 (𝜎c − 𝜎t) − 2𝜎c𝜎t)

= −12𝐽2

𝜁3
dev

d𝜁dev
d𝜺̂el

− 2 (𝜎c − 𝜎t) 𝐼1
𝜁2

vol

d𝜁vol
d𝜺̂el

+ 2
(
𝐼1
𝜁vol
− 𝜎t

)
d𝜎c
d𝜺̂el
− 2

(
𝐼1
𝜁vol
− 𝜎c

)
d𝜎t
d𝜺̂el

+ 6
𝜁2

dev

d𝐽2
d𝜺̂el
+ 2 (𝜎c − 𝜎t)

𝜁vol

d𝐼1
d𝜺̂el

,

(A.29)
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dΔ𝜀pl

d𝜺̂el
=

d
d𝜺̂el

(
Δ𝜆pl

2𝑔pl

√
𝜂

)

=
1

2𝑔pl

(√
𝜂

dΔ𝜆pl

d𝜺̂el
− Δ𝜆pl

𝑔pl

√
𝜂

d𝑔pl

d𝜺̂el
+ 1

2
Δ𝜆pl

𝑔pl
√
𝜂

d𝜂
d𝜺̂el

)
,

(A.30)

and

d𝜂
d𝜺̂el

=
d

d𝜺̂el

(
𝑘

(
6𝜎̂2

vm

𝜁2
dev
+ 4𝛼2𝑝2

3𝜁2
vol

))

= 𝑘

[(
12𝜅dev + 8

3
𝛼𝜅vol

) (
Δ𝜆pl

𝑔pl

d𝑔pl

d𝜺̂el
− dΔ𝜆pl

d𝜺̂el

)

+8
3
𝛼2𝑝

𝜁2
vol

d𝑝
d𝜺̂el
+ 12𝜎̂vm

𝜁2
dev

d𝜎̂vm
d𝜺̂el

]
.

(A.31)

If now the results of Equations (A.20), (A.21) and (A.29) to (A.31) are substi-
tuted into Equation (A.27), the following expression is obtained

0 = 𝛽Δ𝜆pl

dΔ𝜆pl

d𝜺̂el
+ 𝛽p

d𝐼1
d𝜺̂el
+ 𝛽dev

d𝐽2
d𝜺̂el

⇔ dΔ𝜆pl

d𝜺̂el
= − 1

𝛽Δ𝜆pl

(
𝛽p

d𝐼1
d𝜺̂el
+ 𝛽dev

d𝐽2
d𝜺̂el

) (A.32)

where 𝛽Δ𝜆pl , 𝛽p and 𝛽dev are scalar factors to each derivative. The full derivation
of these factors is presented in the next section. Using the result of the
derivative of Δ𝜆pl the consistent tangent operator of the viscoplastic matrix
material behavior is fully defined.

Factors of the Vicoplastic Consistent Tangent Operator The derivative
of the viscoplastic consistency condition 𝑅pl to 𝜺̂el results to an expression
based on the derivative of Δ𝜆pl, 𝐼1 and 𝐽2 with the factors 𝛽Δ𝜆pl , 𝛽p and 𝛽dev
respectively. To determine these factors first the derivatives of 𝑝 and 𝜎̂vm are
needed. Since 𝑝 = −1/3𝐼1 and 𝜎vm =

√︁
3/2𝐽2 the derivatives result to

d𝑝
d𝜺̂el

= −1
3

d𝐼1
d𝜺̂el

and
d𝜎̂vm
d𝜺̂el

=
3

2𝜎̂vm

d𝐽2
d𝜺̂el

. (A.33)
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To simplify the expression of each factor the trial values are replaced where
possible to true values (eg., 𝐼1/𝜁vol = 𝐼1). If the results of the derivatives of 𝑅pl
and Φpl are analyzed, it can be observed that the derivative of Δ𝜀pl separates
the required factors 𝛽Δ𝜆pl , 𝛽p and 𝛽dev to a fixed term Ω (this term is based on
the hardening laws 𝜎t,c itself, their hardening rates 𝐻t,c and the plastic yield
surface Φpl) and a remaining term considering the derivatives of 𝐽2 and 𝐼1.
Each factor has then the same form, which is given as:

𝛽𝑖 = (· · ·)︸︷︷︸
Ω

𝜔𝑖 + · · ·︸︷︷︸
remaining term

, 𝑖 ∈ {
Δ𝜆pl, p, dev

}
. (A.34)

The term Ω can be summarized to

Ω =

(
1 + 1

2
Φpl

𝜎t𝜎c

) (
𝐻c
𝜎c
+ 𝐻t
𝜎t

)
− (𝐻c − 𝐻t) 𝐼1

𝜎t𝜎c
. (A.35)

Since the derivative of Δ𝜀pl depends on the derivative 𝑔pl a further simplifica-
tion can be obtained for the remaining term of the factors 𝛽p and 𝛽dev. In both
factors the following expression can be substituted:

Ξ =

(
1
2
(𝜎c − 𝜎t) 𝐼1𝐾m𝛼

𝜁vol
+ 9𝐺m𝐽2

𝜁dev

)
Δ𝜆pl

(𝜅dev + 𝜅vol) 𝑔2
pl

𝜕𝑔pl

𝜕Δ𝜆pl
. (A.36)

Finally, each factor is defined as

𝛽Δ𝜆pl = Ω𝜔Δ𝜆pl +
ℎ

Δ𝜆pl

(
Δ𝜆pl𝜇

Δ𝑡

)ℎ
+ 1
𝜎t𝜎c

(
𝐼1
𝜁vol

𝜕𝜁vol
𝜕Δ𝜆pl

+ 6𝐽2
𝜁dev

𝜕𝜁dev
𝜕Δ𝜆pl

)
(A.37)

𝛽p = Ω𝜔p −
2
3Ξ𝛼𝑝 + 𝜎c + 𝜎t

𝜎c𝜎t𝜁vol
(A.38)

𝛽dev = Ω𝜔dev + 3 (Ξ − 1)
𝜎c𝜎t𝜁

2
dev

(A.39)

where 𝜔Δ𝜆pl , 𝜔p and 𝜔dev are defined as

𝜔Δ𝜆pl =
𝜕Δ𝜀pl

𝜕Δ𝜆pl
(A.40)
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𝜔p =

(
𝑘Δ𝜆pl√
𝜂

(
2
9
𝛼𝜅vol + 𝜅dev

)
−
√
𝜂

6

)
Δ𝜆pl𝛼𝑝

(𝜅dev + 𝜅vol) 𝑔2
pl𝜁vol

𝜕𝑔pl

𝜕Δ𝜆pl

− 2
9
𝑘Δ𝜆pl𝛼

2𝑝

𝜁vol
√
𝜂𝑔pl

(A.41)

𝜔dev =

(
3
4
√
𝜂 − 𝑘Δ𝜆pl√

𝜂

(
𝛼𝜅vol + 9

2
𝜅dev

))
Δ𝜆pl

(𝜅dev + 𝜅vol) 𝑔2
pl𝜁

2
dev

𝜕𝑔pl

𝜕Δ𝜆pl

+ 9
2

𝑘Δ𝜆pl√
𝜂𝑔pl𝜁

2
dev
.

(A.42)

A.1.1.2 Damage Model

Procedure to Model Progressive Damage To determine the resulting
stress after failure initiation several values need to determined in first place. For
example, the definition of the initial damage driving force𝑌0 in Equation (3.88)
needs to be determined to a corresponding damage variable for a given dam-
age driving force 𝑌 . Furthermore, plastic strain can occur, which affects the
resulting elastic strain to determine the damage driving forces. In general after
failure initiation 𝑓M > 1 and if plastic strain is present the resulting elastic
strain would be underestimated. Therefore, a correction of the plastic strain
increment needs to be performed. A linear distribution of the strain increment
during a time increment is assumed. Here the stress at 𝑓M = 1 would result to

𝝈0 = 𝝈𝑡 + 𝜆 (init)
0 Δ𝝈 = 𝝈𝑡 + 𝜆 (init)

0 C : Δ𝜺el (A.43)

where 𝜆 (init)
0 is a scaling factor in range from 0 to 1. Since the material stiffness

C is a constant parameter, this factor affects only the elastic strain increment
and therefore the plastic strain increment. The resulting elastic and plastic
strain increment at 𝑓M = 1 is then defined by

Δ𝜺pl0 = 𝜆 (init)
0 Δ𝜺pl and Δ𝜺el0 = 𝜆 (init)

0 Δ𝜺el (A.44)

To determine the scaling factor 𝜆 (init)
0 the failure criterion 𝑓M needs to be set

to one and solved to 𝜆 (init)
0 . In such case the invariants 𝐽2

(init) and 𝐼1 (init) are
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dependent on the resulting stress 𝝈0. Since the stress itself can be decomposed
according to Equation (A.43) the failure criterion 𝑓M results to

1 !
= 𝑓M =

1
2𝑋T𝑋C

(
6𝐽2
(init) + 2 (𝑋C − 𝑋T) 𝐼1 (init)

)

=
1

2𝑋T𝑋C

[
3
(
𝝈dev𝑡 + 𝜆 (init)

0 Δ𝝈dev

)
:
(
𝝈dev𝑡 + 𝜆 (init)

0 Δ𝝈dev

)
+2 (𝑋C − 𝑋T) 𝑡𝑟 (𝝈𝑡 + 𝜆 (init)

0 Δ𝝈)
]

=
1

2𝑋T𝑋C

[
6
(
𝜆 (init)

0
2
Δ𝐽2 + 𝜆 (init)

0 𝝈dev𝑡 : Δ𝝈dev + 𝐽2𝑡

)
+2 (𝑋C − 𝑋T)

(
𝐼1𝑡 + 𝜆 (init)

0 Δ𝐼1
)]
.

(A.45)

Due to exponent of the scaling factor a quadratic polynomial needs to be solved,
which leads to two solutions. However, only one solution leads to values of
𝜆 (init)

0 in a range of 0 to 1 and is defined as

𝜆 (init)
0 =

1
6Δ𝐽2

(
𝜅0 +

√︃
𝜅2

0 − 12 ((𝑋C − 𝑋T) 𝐼1𝑡 − 𝑋C𝑋T + 3𝐽2𝑡 ) Δ𝐽2

)
(A.46)

where 𝜅0 is defined as

𝜅0 = (𝑋T − 𝑋C) Δ𝐼1 − 3𝝈dev𝑡 : Δ𝝈dev. (A.47)

Special care needs to be taken in case of pure hydrostatic pressure. Here the
second invariant 𝐽 (init)

2 of the deviatoric stress tensor yields zero and therefore
a simplified solution of 𝜆 (init)

0 is obtained

𝜆 (init)
0

���
𝐽
(init)
2 =0

=
𝑋C𝑋T

(𝑋C − 𝑋T) Δ𝐼1 −
𝐼1𝑡
Δ𝐼1

. (A.48)

Using the obtained scaling factor the updated elastic stress Δ𝜺el is determined
from the current strain increment and the corrected plastic strain increment.

Δ𝜺el = Δ𝜺 − Δ𝜺pl0. (A.49)

Now the updated trial stress 𝝈̂ can be calculated and also the corresponding
damage driving forces 𝑌 . It should be noted that the loading path can change
during further damage propagation. This would have an effect on the initial
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damage driving force 𝑌0 and needs to be considered during damage evolution.
While the initial scaling factor 𝜆 (init)

0 is calculated once at damage initiation
and is primarily needed to determine the values such as plastic strain at damage
initiation, a further scaling factor 𝜆0 during damage propagation is needed to
determine𝑌0. The corresponding scaling factor can be determined in the same
manner as the initial one. The only difference is that the scaling factor is
directly applied to the trial stress 𝝈̂ instead to the stress increment Δ𝝈. The
scaling factor is then given as

𝜆0 =




1
6𝐽2

(
(𝑋T − 𝑋C) 𝐼1 +

√︃
12𝐽2𝑋C𝑋T +

((𝑋C − 𝑋T) 𝐼1
)2

)
, 𝐽2 ≠ 0

𝑋C𝑋T
(𝑋C−𝑋T ) 𝐼1 , 𝐽2 = 0

(A.50)
To determine the actual damage variables, the energy term 𝑔d needs to be first
determined. As shown in Figure 3.15 the area under a loading path is defined
as 𝑔 and can be separated into an area prior to failure initiation and afterwards.
Since plastic strain can occur the area prior to failure initiation can be defined
as following

𝑔±0 = 𝑔0
±
el + 𝑔0

±
pl, (A.51)

where the elastic and the plastic energy are defined as:

𝑔0
±
el =

∫ 𝜺el0

0
𝜎±0 d𝜺el and 𝑔0

±
pl =

∫ 𝜺pl0

0
𝜎±0 d𝜺pl. (A.52)

The area after failure initiation 𝑔d is then given as

𝑔±d = 𝑔± − 𝑔±0 =
𝐺±f
𝐿C
− 𝑔±0 , (A.53)

where 𝐺f is the material energy release rate under tensile or compressive
load, while 𝐿C is the characteristic length of the corresponding finite element.
The value of 𝑔±0 is stored at damage initiation and is used for further damage
evolution. Using the resulting initial damage driving forces 𝑌±0 defined by 𝝈±0
and also the trial damage driving forces 𝑌±, the damage variables in tension
and compression can be determined (cf. Equation (3.90)).
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Damage Consistent Tangent Operator In combination with plastic strain
the resulting stress after damage initiation is given by Equation (3.62). To
distinguish between positive and negative damage evolution, the definition of
M from Equation (3.69) is used. To determine the consistent tangent operator
derivative of the stress to the strain is given by

d𝝈
d𝜺̂el

=
dCD : 𝜺el

d𝜺̂el
=

dCD
d𝜺̂el

: 𝜺el + CD :
d𝜺el
d𝜺̂el

. (A.54)

While the later derivative accounts the change due to plasticity, the derivative
of CD covers the damage evolution. The derivative of CD is a sixth-order
tensor and is contracted to a forth-order tensor by 𝜺el. Using the results of
the consistent tangent operator is case of plasticity (cf. Section A.1.1.1), the
derivative of the elastic strain in conjunction with the initial scaling factor
𝜆 (init)

0 results to

d𝜺el
d𝜺̂el

=
d𝜺̂el − 𝜆 (init)

0 Δ𝜺pl

d𝜺̂el
= Is −

(
d𝜆 (init)

0
d𝜺̂el

⊗ Δ𝜺pl + 𝜆 (init)
0

dΔ𝜺pl

d𝜺̂el

)
. (A.55)

Since the damaged material stiffness CD depends on the damage tensorM, the
derivative of CD results to

dCD
d𝜺̂el

=
dM
d𝜺̂el

: C =
dM+

d𝜺̂el
: P+ : C + dM−

d𝜺̂el
: P− : C. (A.56)

The results of the derivatives ofM+ andM− differs only by the usage of P+ and
P− respectively. Using the definition ofM from Equation (3.61) the derivative
is expressed by

dM±

d𝜺̂el
= −d𝑑±v

d𝜺̂el
⊗ Is. (A.57)

The only factor in the formulation of the viscous damage variable 𝑑±v which
depends on the trial strain 𝜺̂el is the true damage variable 𝑑±. Therefore, the
derivative of 𝑑±v results to

d𝑑±v
d𝜺̂el

=
d𝑑±v
d𝑑±

d𝑑±

d𝜺̂el
=

Δ𝑡
Δ𝑡 + 𝜇d

d𝑑±

d𝜺̂el
. (A.58)
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Since the damage variables 𝑑± are dependent on the initial and the trial dam-
age driving forces (𝑌±0 and 𝑌±), using the chain rule the derivative can be
summarized to

d𝑑±

d𝜺̂el
=

d𝑑±

d𝑌±
d𝑌±

d𝜺̂el
+ d𝑑±

d𝑌±0

d𝑌±0
d𝜺̂el

. (A.59)

By noticing that the initial damage driving force is connected via the scaling
factor 𝜆0 to the trial damage driving force, the derivative of 𝑌±0 is given by

d𝑌±0
d𝜺̂el

=
d𝜆±0

2𝑌±

d𝜺̂el
= 2

d𝜆±0
d𝜺̂el

𝑌± + 𝜆±0 2 d𝑌±

d𝜺̂el
. (A.60)

Next the derivative of trial damage driving force 𝑌± and the derivative of the
scaling factor 𝜆±0 are needed. Using Equations (3.74) and (A.50) the derivatives
are defined as following

d𝑌±

d𝜺̂el
=

d𝑌±

d𝝈̂
:

d𝝈̂
d𝜺̂el
+ d𝑌±

d𝜺el
:

d𝜺el
d𝜺̂el

=
1
2
P± : 𝜺el :

d𝝈̂
d𝜺̂el
+ 1

2
P± : 𝝈̂ :

d𝜺el
d𝜺̂el

(A.61)

d𝜆±0
d𝜺̂el

=
d𝜆±0
d𝐽±2

d𝐽±2
d𝜺̂el
+ d𝜆±0

d𝐼±1

d𝐼±1
d𝜺̂el

=
d𝜆±0
d𝐽±2

𝝈̂±dev : P± :
d𝝈̂
d𝜺̂el
+ d𝜆±0

d𝐼±1
𝑰 : P± :

d𝝈̂
d𝜺̂el

(A.62)

Since the derivative of the trial stress 𝝈̂ to the trial elastic strain 𝜺̂el results
to the undamaged material stiffness C all parameters of the consistent tangent
modulus are known.

A.1.2 Fiber Material

A.1.2.1 Consistent Tangent Operator

In the case of pure linear elastic stress only the material stiffness CTI as the
consistent tangent operator dΔ𝝈/dΔ𝜺 would be returned. However, two sources
of nonlinear behavior of the fiber are present: nonlinearity of the modulus in
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fiber direction and damage evolution after failure initiation. The derivative of
the resulting stress leads to the following expression

d𝝈
d𝜺̂el

= −d𝑑±v
d𝜺̂el
⊗ 𝝈̂ + (

1 − 𝑑±v
) dCTI

d𝜺̂el
: 𝜺̂el +

(
1 − 𝑑±v

)
CTI. (A.63)

In the following the subscript ’el’ is dropped. Since the definition of the viscous
damage variable is equal to the matrix material, the derivative of it is also the
same and is given by Equation (A.58). Since the true damage variable 𝑑± is
dependent on the damage driving forces 𝑌± and 𝑌±0 the derivative of 𝑑± results
to

d𝑑±

d𝜺̂
=

d𝑑±

d𝑌±
d𝑌±

d𝜺̂
+ d𝑑±

d𝑌±0

d𝑌±0
d𝜺̂

(A.64)

with

d𝑌±0
d𝜺̂

=
d𝑌±0
d𝜆±0

d𝜆±0
d𝜺̂
+ d𝑌±0

d𝑌±
d𝑌±

d𝜺̂
= −2𝜆±0𝑌

±𝑋T,C

𝜎̂2
11

d𝜎̂11
d𝜺̂
+ 𝜆±0 2 d𝑌±

d𝜺̂
, (A.65)

d𝑌±

d𝜺̂
=

d𝑌±

d𝜎̂11

d𝜎̂11
d𝜺̂
+ d𝑌±

d𝜀11

d𝜀11
d𝜺̂

=
1
2
𝜀11

d𝜎̂11
d𝜺̂
+ 1

2
𝜎̂11

d𝜀11
d𝜺̂

. (A.66)

As the stress 𝜎̂11 depends on the material stiffnessCTI, which itself is dependent
on the strain, the resulting derivative can be summarized in index notation to

d𝜎̂11
d𝜀𝑚𝑛

=
d𝐶TI

𝑖 𝑗𝑘𝑙

d𝜀𝑚𝑛

�����
𝑖=1, 𝑗=1

𝜀𝑘𝑙 + 𝐶TI
11𝑚𝑛. (A.67)

Although the material stiffness CTI is dependent on five invariant material
constants, only 𝜆TI, 𝛼TI and 𝛽TI are affected by the change of the Young’s
modulus 𝐸1. The derivative of CTI is therefore given by

dCTI

d𝜺̂
=

dCTI

d𝜆TI ⊗
d𝜆TI

d𝜺̂
+ dCTI

d𝛼TI ⊗
d𝛼TI

d𝜺̂
+ dCTI

d𝛽TI ⊗
d𝛽TI

d𝜺̂
(A.68)

where the derivatives of 𝜆TI, 𝛼TI and 𝛽TI are defined as

d𝜆TI

d𝜺̂
=

d𝜆TI

d𝐷
d𝐷
d𝜺̂
+ d𝜆TI

d𝜈12

d𝜈12
d𝜺̂

(A.69)
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d𝛼TI

d𝜺̂
=

d𝛼TI

d𝜆TI
d𝜆TI

d𝜺̂
+ d𝛼TI

d𝐷
d𝐷
d𝜺̂
+ d𝛼TI

d𝜈12

d𝜈12
d𝜺̂

(A.70)

d𝛽TI

d𝜺̂
=

d𝛽TI

d𝐷
d𝐷
d𝜺̂
+ d𝛽TI

d𝜈12

d𝜈12
d𝜺̂
+ d𝛽TI

d𝐸1

d𝐸1
d𝜺̂

(A.71)

with
d𝐷
d𝜺̂

=
d𝐷
d𝜈12

d𝜈12
d𝜺̂

. (A.72)

Finally, the derivatives of the Poisson’s ratio 𝜈12 and 𝐸1 remains as the only
unknown. From the definition of 𝜈12 and 𝐸1 (cf. Equation (3.102) and (3.104))
the derivatives results to

d𝜈12
d𝜺̂

=
𝜈init

12

𝐸 init
1

d𝐸1
d𝜺̂

and
d𝐸1
d𝜺̂

= 𝑚f
d𝜀11
d𝜺̂

(A.73)

and the derivative of the strain component 𝜀11 yields to

d𝜀11
d𝜺̂

=
©­­«
1 0 0
0 0 0
0 0 0

ª®®¬
. (A.74)

Substituting these results in Equations (A.66) and (A.67) together with the defi-
nition of the derivative ofCTI (cf. Equation (A.68)) and 𝑑 (cf. Equation (A.64))
lead to a fully defined consistent tangent operator.
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A.1.3 Composite Material

A.1.3.1 Material Stiffness Matrix of a Transversely Isotropic Material

The inverse of the composite material compliance 𝑺 leads to the material
stiffness 𝑪. If the compliance is defined in matrix notation, the resulting
material stiffness is then given as

𝑪 =

©­­­­­­­­­«

𝐸1 (1−𝜈23𝜈32 )
𝐷

𝐸1 (𝜈31𝜈23+𝜈21 )
𝐷

𝐸1 (𝜈21𝜈32+𝜈31 )
𝐷 0 0 0

𝐸2 (𝜈32𝜈13+𝜈12 )
𝐷

𝐸2 (1−𝜈13𝜈31 )
𝐷

𝐸2 (𝜈12𝜈31+𝜈32 )
𝐷 0 0 0

𝐸3 (𝜈12𝜈23+𝜈13 )
𝐷

𝐸3 (𝜈13𝜈21+𝜈23 )
𝐷

𝐸3 (1−𝜈12𝜈21 )
𝐷 0 0 0

0 0 0 𝐺12 0 0
0 0 0 0 𝐺12 0
0 0 0 0 0 𝐺23

ª®®®®®®®®®
¬

(A.75)
where the parameter 𝐷 is defined as

𝐷 = 1 − 𝜈12𝜈23𝜈31 − 𝜈13𝜈32𝜈21 − 𝜈12𝜈21 − 𝜈13𝜈31 − 𝜈23𝜈32. (A.76)

Additionally, the damaged stiffness matrix as a result of the inverse of the
damaged compliance matrix 𝑺D yields to

𝑪D =

©­­­­­­­­­«

𝜙1𝐸1 (1−𝜙2𝜙3𝜈23𝜈32 )
Δ

𝜙1𝜙2𝐸1 (𝜙3𝜈31𝜈23+𝜈21 )
Δ

𝜙1𝜙3𝐸1 (𝜙2𝜈21𝜈32+𝜈31 )
Δ 0 0 0

𝜙1𝜙2𝐸2 (𝜙3𝜈32𝜈13+𝜈12 )
Δ

𝜙2𝐸2 (1−𝜙1𝜙3𝜈13𝜈31 )
Δ

𝜙2𝜙3𝐸2 (𝜙1𝜈12𝜈31+𝜈32 )
Δ 0 0 0

𝜙1𝜙3𝐸3 (𝜙2𝜈12𝜈23+𝜈13 )
Δ

𝜙2𝜙3𝐸3 (𝜙1𝜈13𝜈21+𝜈23 )
Δ

𝜙3𝐸3 (1−𝜙1𝜙2𝜈12𝜈21 )
Δ 0 0 0

0 0 0 𝜙4𝐺12 0 0
0 0 0 0 𝜙5𝐺12 0
0 0 0 0 0 𝜙6𝐺23

ª®®®®®®®®®
¬

(A.77)
where the damaged parameter Δ is defined as

Δ = 1 − 𝜙1𝜙2𝜙3 (𝜈12𝜈23𝜈31 + 𝜈13𝜈32𝜈21) − 𝜙1𝜙2𝜈12𝜈21 − 𝜙1𝜙3𝜈13𝜈31 − 𝜙2𝜙3𝜈23𝜈32.
(A.78)

with the damage vector 𝝓

𝝓 =
(
1 − 𝑑±1 1 − 𝑑±2 1 − 𝑑±3 1 − 𝑑12 1 − 𝑑13 1 − 𝑑23

)⊤
. (A.79)
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A.1.3.2 Action Plane Plasticity Return Mapping Algorithm

The return mapping algorithm is performed similar to Appendix A.1.1.1. Con-
sidering that the material stiffness CTI of a transversely isotropic material does
not change if it is rotated along the fiber direction and by rewriting stress and
plastic strain increment into vector notation, the relation between trial stress
and resulting stress is given by

𝝈ap = 𝝈̂ap − Δ𝜆apC
TI 𝜕𝑔ap

𝜕𝝈ap
. (A.80)

Since the plastic strain affects only the 𝜎n, 𝜏n1 and 𝜏nt stress components, a
direct relation between the resulting stresses and the trial stress is summarized
to

𝜎n = 𝜎̂n − Δ𝜆ap𝐶22𝛽ap (A.81)

𝜏n1 = 𝜏n1 − Δ𝜆ap𝐶44
𝜏n1√︃

𝜏2
n1 + 𝑓ap𝜏

2
nt

(A.82)

𝜏nt = 𝜏nt − Δ𝜆ap𝐶66
𝑓ap𝜏nt√︃

𝜏2
n1 + 𝑓ap𝜏

2
nt

(A.83)

where 𝐶22, 𝐶44 and 𝐶66 are components of the material stiffness matrix. From
Equations (A.82) and (A.83) it is obvious that the resulting stresses depend
on each other. By inserting the square root term of these equations into each
other, two possible cases as solution for 𝜏n1 and 𝜏nt can be determined

𝜏nt =
𝜏nt𝜏n1𝐶44

𝜏n1𝐶44 + (𝜏n1 − 𝜏n1) 𝐶66 𝑓ap
, 𝜏n1 ≥ 𝜏nt

𝜏n1 =
𝜏n1 𝑓ap𝜏nt𝐶66

𝑓ap𝜏nt𝐶66 + (𝜏nt − 𝜏nt) 𝐶44
, 𝜏nt ≥ 𝜏n1.

(A.84)

In case of 𝜏n1 ≥ 𝜏nt the solution for 𝜏nt is substituted in Equation (A.82) or
in the other case 𝜏n1 into Equation (A.83). The resulting definition of 𝜏n1 or
𝜏nt depends then only on trial stresses 𝜏n1 and 𝜏nt, the material stiffness matrix
components 𝐶44 and 𝐶66, the parameter 𝑓ap and the plastic corrector Δ𝜆ap. For
a givenΔ𝜆ap the resulting stress 𝜏n1 or 𝜏nt can then be solved by using Newton-
Raphson scheme. To determine Δ𝜆ap the definition of the yield surface (cf.
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Equation (3.113)) is utilized. Since the result of Δ𝜆ap can be highly nonlinear,
the Newton-Raphson scheme is suited to solve such condition. The derivative
of the yield surface to the plastic corrector is given by

𝜕Φap

𝜕Δ𝜆ap
=
𝜕𝜎̄ap

𝜕Δ𝜆ap
− 𝜕𝜏y

𝜕Δ𝜆ap
. (A.85)

The stress components𝜎n, 𝜏n1 and 𝜏nt of the equivalent stress 𝜎̄ap are dependent
on the plastic corrector. Therefore, its derivative results to:

𝜕𝜎̄ap

𝜕Δ𝜆ap
=
𝜕𝜎̄ap

𝜕𝜎n

𝜕𝜎n
𝜕Δ𝜆ap

+ 𝜕𝜎̄ap

𝜕𝜏n1

𝜕𝜏n1
𝜕Δ𝜆ap

+ 𝜕𝜎̄ap

𝜕𝜏nt

𝜕𝜏nt
𝜕Δ𝜆ap

= 𝛼ap
𝜕𝜎n
𝜕Δ𝜆ap

+ 1√︃
𝜏2

n1 + 𝑒ap𝜏
2
nt

(
𝜏n1

𝜕𝜏n1
𝜕Δ𝜆ap

+ 𝑒ap𝜏nt
𝜕𝜏nt
𝜕Δ𝜆ap

) (A.86)

Due to two possible cases 𝜏n1 ≥ 𝜏nt or 𝜏nt ≥ 𝜏n1, the solution of the derivatives
of the action plane shear stresses 𝜏n1 and 𝜏nt yield also in two cases. However,
the resulting derivatives have a similar structure. Using the definitions of 𝜏n1
and 𝜏nt according to Equation (A.84) the derivatives for each case result to

𝜕𝜏nt
𝜕Δ𝜆ap

=
𝜕𝜏nt
𝜕𝜏n1

𝜕𝜏n1
𝜕Δ𝜆ap

= 𝜉1
𝜕𝜏n1
𝜕Δ𝜆ap

, 𝜏n1 ≥ 𝜏nt

𝜕𝜏n1
𝜕Δ𝜆ap

=
𝜕𝜏n1
𝜕𝜏nt

𝜕𝜏nt
𝜕Δ𝜆ap

= 𝜉1
𝜕𝜏nt
𝜕Δ𝜆ap

, 𝜏nt ≥ 𝜏n1

(A.87)

where the result of 𝜉1 is also dependent on the specific case. Since the shear
stresses 𝜏n1 and 𝜏nt are self dependent on the plastic corrector Δ𝜆ap their
derivatives yield in conjunction with Equation (A.87) to

𝜕𝜏n1
𝜕Δ𝜆ap

=
𝜕𝜏n1
𝜕𝜏nt︸︷︷︸
𝜅1

𝜕𝜏nt
𝜕Δ𝜆ap

+ 𝜕𝜏n1
𝜕𝜏n1︸︷︷︸
𝜅2

𝜕𝜏n1
𝜕Δ𝜆ap

+ 𝜕𝜏n1
𝜕Δ𝜆ap︸ ︷︷ ︸
𝜅3

, 𝜏n1 ≥ 𝜏nt

𝜕𝜏nt
𝜕Δ𝜆ap

=
𝜕𝜏nt
𝜕𝜏nt︸︷︷︸
𝜅2

𝜕𝜏nt
𝜕Δ𝜆ap

+ 𝜕𝜏nt
𝜕𝜏n1︸︷︷︸
𝜅1

𝜕𝜏n1
𝜕Δ𝜆ap

+ 𝜕𝜏nt
𝜕Δ𝜆ap︸ ︷︷ ︸
𝜅3

, 𝜏nt ≥ 𝜏n1

⇒ 𝜕𝜏n1
𝜕Δ𝜆ap

=
𝜕𝜏nt
𝜕Δ𝜆ap

=
𝜅3

1 − 𝜅1𝜉1 − 𝜅2
,

(A.88)
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where the full definition of the case-dependent factors 𝜅1, 𝜅2 and 𝜅3 is given in
Appendix A.1.3.3. Next the derivative of the hardening function 𝜏y needs to be
determined. Similar to the hardening function of the matrix material only the
equivalent plastic strain is dependent on the plastic corrector Δ𝜆ap. Therefore,
the resulting derivative of 𝜏y yields a function dependent on the hardening rate
𝐻ap and the derivative of the equivalent plastic strain Δ𝜀pl,ap

𝜕𝜏y

𝜕Δ𝜆ap
=

𝜕𝜏y

𝜕Δ𝜀pl,ap

𝜕Δ𝜀pl,ap

𝜕Δ𝜆ap
= 𝐻ap

𝜕Δ𝜀pl,ap

𝜕Δ𝜆ap
. (A.89)

Since the plastic corrector Δ𝜆ap affects only the stress values at the end of the
time increment, the derivative of the equivalent plastic strain is applied also
only to them. The derivative is then given by

𝜕Δ𝜀pl,ap

𝜕Δ𝜆ap
= 𝜒1

𝜕𝜎n
𝜕Δ𝜆ap

+ 𝜒2
𝜕𝜏n1
𝜕Δ𝜆ap

+ 𝜒3
𝜕𝜏nt
𝜕Δ𝜆ap

+ 𝜒4
𝜕𝜎̄ap

𝜕Δ𝜆ap
+ 𝜒5. (A.90)

The full definition of the factors 𝜒1 to 𝜒5 is given in Appendix A.1.3.3.
While the derivatives of 𝜏n1, 𝜏nt and 𝜎̄ap to the plastic corrector are given by
Equations (A.86) to (A.88), the derivative of 𝜎n can be obtained by using
Equation (A.81)

𝜕𝜎n
𝜕Δ𝜆ap

= −𝐶22𝛽ap. (A.91)

A.1.3.3 Parameters of the Action Plane Based Plasticity

Due to two separate cases of 𝜏n1 and 𝜏nt the corresponding parameters of the
derivatives of each action shear stress lead to the following definition of the
parameters 𝜉1, 𝜅1 , 𝜅2 and 𝜅3. By using Equation (A.84) the parameter 𝜉1 yield
to

𝜉1 =



(
1 − 𝜏n1 (𝑒ap𝐶66−𝐶44)

( 𝜏̂n1−𝜏n1 )𝑒ap𝐶66+𝜏n1𝐶44

)
𝜏̂nt𝐶44

( 𝜏̂n1−𝜏n1 )𝑒ap𝐶66+𝜏n1𝐶44
, 𝜏n1 ≥ 𝜏nt(

1 − 𝜏nt (𝑒ap𝐶66−𝐶44)
( 𝜏̂nt−𝜏nt )𝐶44+𝜏nt𝑒ap𝐶66

)
𝜏̂n1𝑒ap𝐶66

( 𝜏̂nt−𝜏nt )𝐶44+𝜏nt𝑒ap𝐶66
, 𝜏nt ≥ 𝜏n1.

(A.92)
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The remaining parameters 𝜅1, 𝜅2 and 𝜅3 are obtained from derivatives of
Equations (A.82) and (A.83) which are summarized to

𝜅1 =




𝑓ap𝜏nt𝜏n1𝐶44Δ𝜆ap√︃
(𝜏2

n1+ 𝑓ap𝜏2
nt)3

, 𝜏n1 ≥ 𝜏nt

𝑓ap𝜏nt𝜏n1𝐶66Δ𝜆ap√︃
(𝜏2

n1+ 𝑓ap𝜏2
nt)3

, 𝜏nt ≥ 𝜏n1
(A.93)

𝜅2 =




(
𝜏2

n1
𝜏2

n1+ 𝑓ap𝜏2
nt
− 1

)
𝐶44Δ𝜆ap√
𝜏2

n1+ 𝑓ap𝜏2
nt
, 𝜏n1 ≥ 𝜏nt(

𝑓ap𝜏
2
nt

𝜏2
n1+ 𝑓ap𝜏2

nt
− 1

)
𝑓ap𝐶66Δ𝜆ap√
𝜏2

n1+ 𝑓ap𝜏2
nt
, 𝜏nt ≥ 𝜏n1

(A.94)

𝜅3 =



−𝐶44

𝜏n1√
𝜏2

n1+ 𝑓ap𝜏2
nt
, 𝜏n1 ≥ 𝜏nt

−𝐶66
𝑓ap𝜏nt√
𝜏2

n1+ 𝑓ap𝜏2
nt
, 𝜏nt ≥ 𝜏n1.

(A.95)

Additionally, from the derivative of the equivalent action plane based plastic
strain increment Δ𝜀pl,ap the factors 𝜒1 to 𝜒5 are defined as following (for the
sake of clarity the indication 𝑡 + Δ𝑡 is dropped)

𝜒1 =
𝛽apΔ𝜆ap

𝜎̄ap + 𝜎̄ap
��
𝑡

(A.96)

𝜒2 =
Δ𝜆ap

𝜎̄ap + 𝜎̄ap
��
𝑡

©­­
«

2𝜏n1 + 𝜏n1 |𝑡√︃
𝜏2

n1 + 𝑓ap𝜏
2
nt

−𝜏n1
( (
𝜏nt + 𝜏nt |𝑡

)
𝑓ap𝜏nt +

(
𝜏n1 + 𝜏n1 |𝑡

)
𝜏n1

)
√︃(
𝜏2

n1 + 𝑓ap𝜏
2
nt
)3

ª®®¬

(A.97)

𝜒3 =
Δ𝜆ap 𝑓ap

𝜎̄ap + 𝜎̄ap
��
𝑡

©­­
«

2𝜏nt + 𝜏nt |𝑡√︃
𝜏2

n1 + 𝑓ap𝜏
2
nt

−𝜏nt
( (
𝜏nt + 𝜏nt |𝑡

)
𝑓ap𝜏nt +

(
𝜏n1 + 𝜏n1 |𝑡

)
𝜏n1

)
√︃(
𝜏2

n1 + 𝑓ap𝜏
2
nt
)3

ª®®¬

(A.98)
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𝜒4 = − Δ𝜆ap(
𝜎̄ap + 𝜎̄ap

��
𝑡

)2

©­­«
𝛽ap 𝜎n |𝑡 +

𝜏n1 |𝑡 𝜏n1 + 𝑓ap 𝜏nt |𝑡 𝜏nt√︃
𝜏2

n1 + 𝑓ap𝜏
2
nt

+ 𝑔ap
ª®®¬

(A.99)

𝜒5 =
1(

𝜎̄ap + 𝜎̄ap
��
𝑡

) ©­­«
𝛽ap 𝜎n |𝑡 +

𝜏n1 |𝑡 𝜏n1 + 𝑓ap 𝜏nt |𝑡 𝜏nt√︃
𝜏2

n1 + 𝑓ap𝜏
2
nt

+ 𝑔ap
ª®®¬

(A.100)

A.1.3.4 Analytical Models for Fiber Volume Content dependent Strength
Values

To evaluate the suitability of the different analytical models [20, 88–90] to
predict the 𝑌T, 𝑌C and 𝑆12 strength values at specific fiber volume content,
each one is introduced and afterwards all models are compared. Although the
strength values of 𝑌T, 𝑌C and 𝑆12 differs, each proposed model use the same
structure of the formula but replace the material properties to the corresponding
load (e.g., use of 𝐸2 for transverse tension load and 𝐺12 for a shear load).
Therefore, only the formulas for transverse tensile strengths are presented
here, since the trends for the other strength values are the same. Using a 2D
approach Kaw [90] suggest that a transverse load leads to a strain distribution
𝜀22 via series-connected model using the fiber and matrix transverse strain.
Furthermore, by using the diameter of the fiber 𝑑 and the distance 𝑠 between
center of two fibers, the relation of the fiber volume content to these two values
is given by

𝑑

𝑠
=



√︃

4𝜑
𝜋 , for square array packing√︃

2
√

3𝜑
𝜋 , for hexagonal array packing.

(A.101)

By combining fiber and matrix strain (𝜀f
22 and 𝜀m

22) over the ratio 𝑑/𝑠, while
assuming an equal stress distribution in fiber and matrix 𝐸 f

2𝜀
f
22 = 𝐸𝑚𝜀m

22, the
composite strain results to

𝜀22 =
𝑑

𝑠
𝜀f

22 +
(
1 − 𝑑

𝑠

)
𝜀m

22 =

(
𝑑

𝑠

𝐸m

𝐸 f
2
+

(
1 − 𝑑

𝑠

))
𝜀m

22. (A.102)

In case of linear elasticity, the transverse stress 𝜎22 results as a product of 𝐸2
and 𝜀22. By defining the transverse modulus 𝐸2 as a function of fiber volume
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content 𝜑 and set 𝜀m
22 to 𝜀m

22,max as the matrix failure strain in transverse
direction, the transverse tensile strength is defined by

𝑌T = 𝐸2 (𝜑)
((
𝑑

𝑠

𝐸𝑚

𝐸 f
2
+

(
1 − 𝑑

𝑠

))
𝜀m

22,max

)
. (A.103)

According to Barbero [89] tensile strength is a fracture mechanics problem
and depends on the energy release rate 𝐺Ic, the geometry (in particular ply
thickness 𝑡L) and the material parameters 𝐸1, 𝐸2 and 𝜈12. This leads to the
following tensile strength definition

𝑌T =

√︄
𝐺IcΛ22

1.122𝜋 (𝑡/4) (A.104)

with

Λ22 =
𝐸2𝐸

3
1

2
(
𝐸3

1 − 𝜈2
12𝐸

3
2
) . (A.105)

The corresponding material parameters 𝐸1, 𝐸2 and 𝜈12 are functions of the
fiber volume content 𝜑, while it is assumed that the 𝐺Ic is constant within
the evaluated fiber volume content range. An older empirical approach by
Barbero assumed that transverse tensile strength is the result of the void
volume fraction 𝜑v and the matrix tensile strength 𝑋m

T . Such approach is
summarized by the following formula

𝑌T = 𝑋m
T 𝐶v

(
1 + (

𝜑 − √𝜑)
(
1 − 𝐸𝑚

𝐸 f
2

))
(A.106)

with

𝐶v = 1 −
√︄

4𝜑v
𝜋 (1 − 𝜑) . (A.107)

It should be noted that in case of 𝜑v = 0 % the definition of tensile strength is
equal to the one proposed by Chamis [88]. The model proposed by Huang
[20] distinguishes between transverse tensile fiber or matrix failure (𝑌 f

T or 𝑋m
T ).

Therefore, the resulting tensile strength yields from the comparison of these
two possible failure modes by choosing the first one which reaches failure for
given 𝑌 f

T and 𝑋m
T . Additionally, nonlinearity resulting due to yielding of the
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matrix is considered by introducing a matrix hardening modulus 𝐸T
m which

defines the tangent to a uniaxial stress-strain curve in a plastic region. The
transverse tensile strength is then defined by

𝑌T = min


𝑌 f

T −
(
𝛼f

el − 𝛼f
pl

)
𝜎init

22

𝛼f
pl

,
𝑋m

T −
(
𝛼m

el − 𝛼m
pl

)
𝜎init

22

𝛼m
pl




(A.108)

with

𝜎init
22 = min

{
𝑋m

T
𝛼m

el
,
𝑌 f

T

𝛼f
el

}
, (A.109)

𝛼f
el =

𝐸 f
2

𝜑𝐸 f
2 + 0.5 (1 − 𝜑) (𝐸m + 𝐸 f

2
) , (A.110)

𝛼m
el =

0.5
(
𝐸 f

2 + 𝐸m
)

𝜑𝐸 f
2 + 0.5 (1 − 𝜑) (𝐸m + 𝐸 f

2
) , (A.111)

𝛼f
pl =

𝐸 f
2

𝜑𝐸 f
2 + 0.5 (1 − 𝜑) (𝐸T

m + 𝐸 f
2
) , (A.112)

𝛼m
pl =

0.5
(
𝐸 f

2 + 𝐸m
)

𝜑𝐸 f
2 + 0.5 (1 − 𝜑) (𝐸T

m + 𝐸 f
2
) . (A.113)

To compare these models a common set of material parameters need to be
defined. To obtain fiber volume content specific material properties such as
𝐸1, 𝐸2 and 𝜈12 Equations (3.148), (3.149) and (3.152) are used. The necessary
parameters for those equations are given in Table A.1. Using the material prop-
erties for each fiber volume content, a variation of model specific parameters is
performed to evaluate the effect of each parameter on the resulting transverse

Table A.1: Common set of material properties for comparison of different approaches
to determine transverse tensile strength 𝑌T

𝐸 f
1 /GPa 𝐸 f

2 /GPa 𝐸m /GPa 𝜈f
12 /- 𝜈m /- 𝜁𝐸2 /-

200 20 3 0.2 0.4 2

255



A Appendix

tensile strength. The varied parameters for each model are summarized in
Table A.2. It should be noted that to enforce fiber or matrix failure only using
the Huang model, the corresponding strength 𝑌 f

T or 𝑋m
T should be set to a very

high value to provoke the result of the minimum function to the desired failure
mode. The results for each model are given in Figure A.1. In general the
results can be divided in two groups: tensile strength increases or decreases
with increasing fiber volume content. Only the results of the Kaw and Bar-
bero void volume content models predict a decrease of the strength while
fiber volume content increases. Comparing the results of the Kaw model for
square and hexagonal array packing at different matrix failure strains 𝜀m

22,max
in Figure A.1a and A.1b show that the packing has a significant effect on the
strength gradient. Since square and hexagonal array packing represent two
ideal limits, the real fiber distribution will be somewhere in between. With
increasing maximum matrix strains 𝜀m

22,max the resulting tensile strength also
increases, since the strain serves as a factor to a scalar value. Using Barbero’s
void volume content model (cf. Figure A.1d) leads to a drastic drop of the

Table A.2: Transverse tensile strength models and the corresponding model type and
parameter set variation

Proposed by Model type Parameter set to vary

Kaw square array packing
𝜀m

22,max = 2.0 %
𝜀m

22,max = 2.5 %

Kaw hexagonal array packing
𝜀m

22,max = 2.0 %
𝜀m

22,max = 2.5 %

Barbero energy release rate 𝐺Ic = 0.17 kJ m−2, 𝑡 = 0.25 mm
𝐺Ic = 0.20 kJ m−2, 𝑡 = 0.30 mm

Barbero void volume content 𝜑v = 0.0 %, 𝑋m
T = 68 MPa

𝜑v = 2.5 %, 𝑋m
T = 72 MPa

Huang fiber failure only 𝑌 f
T = 60 MPa, 𝐸T

m = 0.3 GPa
𝑌 f

T = 70 MPa, 𝐸T
m = 3.0 GPa

Huang matrix failure only 𝑋m
T = 35 MPa, 𝐸T

m = 0.3 GPa
𝑋m

T = 70 MPa, 𝐸T
m = 3.0 GPa
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Figure A.1: Comparison of different analytical approaches to determine transverse ten-
sile strength 𝑌T depending on the fiber volume content and their sensitiv-
ity to model specific parameters: Kaw model (square array packing (a),
hexagonal array packing (b)), Barbero model (energy release rate𝐺Ic and
thickness 𝑡L (c), void volume content 𝜑v and matrix tensile strength 𝑋m

T (d))
and Huang model (only transverse fiber failure 𝑌 f

T and matrix hardening
modulus 𝐸T

m (e), only matrix failure 𝑋m
T and matrix hardening modulus

𝐸T
m (f))
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strength with increasing void volume content. However, optimized manufac-
turing processes, such as HP-RTM process, allow reducing trapped air in the
fabric while simultaneously using high pressure forces to impregnate the fabric
and avoid entrapped voids within the ply. Other models such as Barbero’s
energy release rate model (cf. Figure A.1c) or Huang’s model (cf. Figure A.1e
and A.1f) predict an increase towards high transverse tensile strength for high
fiber volume contents. The model fracture specific parameters, such as energy
release rate 𝐺Ic or transverse fiber and matrix strength (𝑌 f

T and 𝑋m
T ), are the

direct proportional parameters which function as an offset for the resulting
tensile strength of the composite. Furthermore, the thickness 𝑡L in Barbero’s
energy release rate model has the same effect as the energy release rate 𝐺Ic.
The matrix hardening modulus 𝐸T

m in Huang’s model is not sensitive at all for
the evaluated fiber volume content and the chosen material properties of fiber
and matrix. As mentioned previously these models predicts the same trends
for each strength component.

A.1.3.5 Homogenized Parameters for Composites with Waviness

From the definition of the homogenized material compliance 𝑺̄ (cf. Equa-
tion (3.168)) each component which is dependent on 𝑥 can be integrated by
using the method described in Section 3.5.6 and the results are summarized to

Υ2 =
1
𝜆

∫ 𝜆

0
sin4 𝜃dx = 1 − 1 + 3

2 (2𝜋𝐴/𝜆)2(
1 + (2𝜋𝐴/𝜆)2

)3/2 (A.114)

Υ3 =
1
𝜆

∫ 𝜆

0
cos2 𝜃dx =

1√︃
1 + (2𝜋𝐴/𝜆)2

(A.115)

Υ4 =
1
𝜆

∫ 𝜆

0
sin2 𝜃dx = 1 − 1√︃

1 + (2𝜋𝐴/𝜆)2
(A.116)

Υ5 =
1
𝜆

∫ 𝜆

0
sin2 cos2 𝜃dx =

1
2 (2𝜋𝐴/𝜆)2(

1 + (2𝜋𝐴/𝜆)2
)3/2 (A.117)
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1
𝜆

∫ 𝜆

0
sin3 cos 𝜃dx =

1
𝜆

∫ 𝜆

0
sin cos3 𝜃dx =

1
𝜆

∫ 𝜆

0
sin cos 𝜃dx = 0. (A.118)

Furthermore, the effective material properties of a composite with waviness
can be obtained by applying uniaxial stress loads. Utilizing Equations (3.173),
(A.114) to (A.117) the effective material properties are given by

𝐸x =
1(

2𝑆12 + 𝑆44

)
Υ5 + Υ1𝑆11 + Υ2𝑆22

(A.119)

𝐸y =
1(

2𝑆12 + 𝑆44

)
Υ5 + Υ1𝑆22 + Υ2𝑆11

(A.120)

𝐸z =
1
𝑆33

(A.121)

𝜈xy = −

(
𝑆11 + 𝑆22 − 𝑆44

)
Υ5 + 𝑆12 (Υ1 + Υ2)(

2𝑆12 + 𝑆44

)
Υ5 + Υ1𝑆11 + Υ2𝑆22

(A.122)

𝜈xz = − Υ3𝑆13 + Υ4𝑆23(
2𝑆12 + 𝑆44

)
Υ5 + Υ1𝑆11 + Υ2𝑆22

(A.123)

𝜈zx = −Υ3𝑆13 + Υ4𝑆23

𝑆33
(A.124)

𝜈zy = −Υ3𝑆23 + Υ4𝑆13

𝑆33
(A.125)

𝐺xy =
1

(Υ1 + Υ2 − 2Υ5) 𝑆44 + 4
(
𝑆11 − 2𝑆12 + 𝑆22

)
Υ5

(A.126)

𝐺xz =
1

Υ3𝑆55 + Υ4𝑆66
(A.127)

𝐺yz =
1

Υ3𝑆66 + Υ4𝑆55
, (A.128)
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where 𝑆𝑖 𝑗 are components of the transversely isotropic material compliance
matrix (cf. Equation (3.110))

A.1.3.6 Consistent Tangent Operator

Due to high nonlinear behavior of the composite material the convergence of
the solver is highly affected by the accuracy of the consistent tangent operator.
While some derivations of the tangent operator are similar to the matrix or fiber
material, there are several differences due to failure initiation, damage prop-
agation etc. First the consistent tangent operator of the transversely isotropic
material is derived. Afterwards the resulting tangent operator is used within
the constitutive model which considers draping effects. The derivative of the
resulting stress of a transversely isotropic material to strain yields

d𝝈
d𝜺

=
d𝑪D𝜺el

d𝜺
=

d𝑪D
d𝜺

𝜺el + 𝑪D
d𝜺el
d𝜺

. (A.129)

To determine the derivative of the elastic strain 𝜺el its definition is used 𝜺el =
𝜺 − 𝜺pl, where only the plastic strain increment is dependent on the current
strain. Therefore, the derivative is given as

d𝜺el
d𝜺

= 𝑰 − dΔ𝜺pl

d𝜺
(A.130)

where 𝑰 is a 6 × 6 unity matrix and Δ𝜺pl is the plastic strain increment ro-
tated from the (1, 𝑛, 𝑡)-space into (1, 2, 3)-space. As for the matrix material
the derivative of the plastic strain increment Δ𝜺pl can be obtained by using
Equation (3.115). The necessary derivative of the plastic corrector Δ𝜆ap can
be obtained by derivation of Equation (3.113) to the strain 𝜺 and solving to
dΔ𝜆ap/d𝜺. The final definition yields an expression with the following structure

dΔ𝜆ap

d𝜺
= (· · ·) d𝜎̂n

d𝜺
+ (· · ·) d𝜏n1

d𝜺
+ (· · ·) d𝜏nt

d𝜺
(A.131)

where the derivatives d𝜎̂n/d𝜺,d𝜏̂n1/d𝜺 and d𝜏̂nt/d𝜺 are equal to the second, forth and
sixth rows of the product 𝑻ap𝑪, where 𝑻ap is a 6 × 6 rotation matrix using 𝜃ap
to rotate the initial stress vector 𝝈 to obtain 𝝈ap.
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On other hand the derivative of 𝑪D can be separated into two parts which
are dependent on the strain 𝜺: the 𝐸1 modulus (and therefore of 𝜈12) and the
damage variables 𝑑𝑖 . Therefore, the derivative results to

d𝑪D
d𝜺

=
d𝑪D
d𝐸1

d𝐸1
d𝜺
+ d𝑪D

d𝜈12

d𝜈12
d𝜺
+

∑︁
𝑖

d𝑪D
d𝑑𝑖

d𝑑𝑖
d𝜺

(A.132)

for 𝑖 ∈ {1, 2, 3, 12, 13, 23} and where d𝜈12/d𝜺 is also a function of 𝐸1 and is given
in Equation (A.73). It should be noted that the damage variables 𝑑1, 𝑑2 and
𝑑3 are dependent on the loading direction as shown in Section 3.5.3 and the
corresponding derivatives result from the use of Macaulay bracket operator.
Since the damage variable 𝑑±1 is a function of 𝑓 ±FF (which is self a function of
the 𝜎̂11 stress) the corresponding derivative yields

d𝑑±1
d𝜺

=
d𝑑±1
d 𝑓 ±FF

d 𝑓 ±FF
d𝜎̂11

d𝜎̂11
d𝜺

(A.133)

where the distinction between positive and negative damage is obtained by
using Equations (3.136) to (3.137). While the damage variable 𝑑23 remains
zero as discussed in Section 3.5.3 and its derivative is also zero, the derivatives
of the remaining damage variables are all functions of 𝑑n and 𝑓IFF

d𝑑𝑖
d𝜺

=
d𝑑𝑖
d𝑑n

d𝑑n
d 𝑓IFF

d 𝑓IFF
d𝝈̃

d𝝈̃
d𝜺

(A.134)

for 𝑖 ∈ {2, 3, 12, 13} and since 𝝈̃ = 𝝈̂ − 𝑪Δ𝜺pl the corresponding derivative is
given by

d𝝈̃
d𝜺

= 𝑪 + d𝑪
d𝜺

𝜺 −
(
d𝑪
d𝜺

Δ𝜺pl + 𝑪
dΔ𝜺pl

d𝜺

)
. (A.135)

Since the only strain dependent parameters of the trial material stiffness 𝑪
are 𝐸1 and 𝜈12, the corresponding derivative can be obtained as previously
described. If the results are plugged into Equation (A.129) the fully defined
consistent tangent operator of the transversely isotropic material is obtained.

By considering draping effects like fiber volume content or waviness, the
tangent operator of the transversely isotropic material can be utilized. If no
waviness is present and only the fiber volume content changes, the derivative of
the transversely isotropic stress corresponds to the required tangent operator.
However, in case of waviness the applied strain needs to be rotated to the mis-
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alignment angles. In every time increment a strain increment Δ𝜺 is calculated
and added to the previously present strain 𝜺t. The sum of both represents the
applied effective strain 𝜺x on the homogenized volume with present waviness.
The resulting stress, if waviness is present, is given by Equation (3.179). The
corresponding derivative is then defined as

d𝝈x
d𝜺x

=
1
2

(d𝝈x
1

d𝜺x
+ d𝝈x

2
d𝜺x

)
. (A.136)

Using Equation (3.180) both derivatives d𝝈x
1/𝜺x and d𝝈x

2/𝜺x for a linear elastic
behavior of the transversely isotropic material can be obtained. However,
during loading nonlinearity occurs and needs to be considered. Luckily such
behavior is already captured by the tangent operator of the transversely isotropic
material (cf. Equation (A.129)). Therefore, the derivative of 𝝈x

1 (or 𝝈x
2

respectively) in vector form is given by

d𝝈x
1

d𝜺x
= 𝑻1

d𝝈
d𝜺

d𝜺
d𝜺x

= 𝑻1
d𝝈
d𝜺

𝑺𝑻̃1𝑪̄ (A.137)

where 𝑻1 and 𝑻̃1 are 6 × 6 rotation matrices as discussed in Section 3.5.6,
𝑺 is the undamaged material compliance according to Equation (3.110) and
𝑪̄ is the effective material stiffness with present waviness. If the results of
each derivative are plugged into Equation (A.136) the tangent operator of the
constitutive model which considers draping effects is fully defined.

A.2 Impact of the Matrix on the Failure Envelopes
yielding from Micromodels

A.2.1 Influence of the Matrix Strength on the Composite
Strength

According to the used matrix failure criteria (see Equation (3.59)) the failure
initiation is not dependent on the used coordinate system as it is based on
invariants. In such case the coordinate system to evaluate the acting stresses
can be arbitrary. To obtain failure points in the transverse stress vs in-plane
shear plane different load combinations are applied to the micro-scale models.
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By evaluating the acting matrix stresses, the only nonzero stresses are the
normal stresses (𝜎11, 𝜎22, 𝜎33) and the shear stress 𝜎12. As long as linear
elastic behavior of the matrix is present, the normal stresses are also convertible
into each other due to interdependence of the elasticity parameters of fiber and
matrix. Therefore, the matrix failure criteria can be rewritten in terms of
the transverse stress 𝜎22 and 𝜎12 alone. For a given tensile and compressive
strength the failure shear stress can be expressed as following

𝜎12 =

{
1
6

(
2𝑋T𝑋C −

(
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2

+ 2 (𝑋C − 𝑋T) (𝜎11 + 𝜎22 + 𝜎33)
))}1/2

(A.138)

where in case of a pure shear load of the matrix (𝜎11 = 𝜎22 = 𝜎33 = 0) the
shear strength yields

𝑆m =

√︂
𝑋T𝑋C

3
. (A.139)

In the (𝜎22,𝜎12)-plane the equation above defines a parabolic curve. By set-
ting 𝜎11 and 𝜎33 to zero, a midpoint of the curve at 𝜎22 = 1/2 (𝑋T − 𝑋C) can
be defined. If the midpoint is plugged into Equation (A.138) the maximum
shear stress value in the (𝜎22,𝜎12)-plane can be determined (Figure A.2). It
should be noted that the failure envelope of the matrix in Figure A.2 does
not represent the failure envelope of a composite material. However, they
are related as the local failure of the matrix determines the resulting shape
of the failure envelope of a composite. Since the matrix tensile strength is
smaller as the compressive strength, the shear stress at the midpoint 𝜎(max)

12
is larger as the shear strength itself. Such failure envelope is comparable
with the one for composites (cf. Figure 3.26). The ratio between the maxi-
mum shear stress and shear strength 𝜎

(max)
12 /𝑆m is an indicator how the tensile

and compressive strength are related. In case of an increasing compressive
strength or a decreasing tensile strength the ratio will increase. It is obvi-
ous that if both strength values are equal the ratio yields one. In order to
analyze how this ratio affects the shape of the composite failure envelope,
the matrix strength has been varied. For fixed matrix tensile strength values
(𝑋T = {75 MPa, 87 MPa, 105 MPa, 123 MPa}), the corresponding compressive
strength values are determined from the 𝜎 (max)

12 /𝑆m = {1.05, 1.1, 1.15, 1.2, 1.25}
ratios. For each parameter combination several load combinations are applied
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Figure A.2: Matrix failure envelope in the (𝜎22,𝜎12)-plane for different matrix strength
values

to achieve different failure points in the (𝜎22, 𝜎12)-plane. All models have a
fiber volume content of around 60 %. Besides the strength values all material
parameters from Tables A.3 and A.7 are not changed. The obtained results
are given in Figure A.3. For all failure envelopes several similarities can be
observed. For example, by increasing the 𝜎 (max)

12 /𝑆m ratio, the slope of the curve
at negative𝜎22 values increases. With increasing matrix tensile strength values
(cf. Figure A.3c and A.3d) the impact on the slope at 𝜎 (max)

12 /𝑆m = 1.05, which
corresponds to the lower value of the compressive strength of the matrix, con-
tinues to decrease. By increasing the 𝜎

(max)
12 /𝑆m ratio, the obtained compressive

strength 𝑌C of the composite increases while the tensile strength 𝑌T decreases
(cf. Figure A.4). Although the compressive strength of the matrix is more
than doubled for a constant matrix tensile strength, it has not the same effect
on the resulting compressive strength of the composite. Similar observations
can be made in regard to the yielding tensile strengths. Furthermore, it can be
observed that with increasing matrix tensile strength values, the band of the
obtained composite strength values narrow down. In conclusion, it can be seen
that the slope of the failure envelope in the mode B region is highly affected by
the combination of the matrix strength values. The percentual increase of the
matrix strength values does not correlate directly with the resulting compos-
ite failure strength values. If additionally the interface between fiber matrix
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Figure A.3: Failure envelopes for unidirectional composites yielding from micro-scale
models for different matrix strength values: (a) 𝑋T = 75 MPa, (b) 𝑋T =
87 MPa, (c) 𝑋T = 105 MPa and (d) 𝑋T = 123 MPa

would be considered, inducing a transverse failure due to interface failure, the
resulting transverse tensile strength 𝑌T would be even lower. In the end the
usage of micro-scale models to predict composite failure envelopes becomes
even more a challenge.

A.2.2 Influence of the Matrix Energy Release Rate on the
Composite Strength

In addition to the obvious impact of the matrix strengths on the resulting
composite strengths and the failure envelope, the influence of the energy release
rate is equally crucial. Based on the previous results, the energy release rate
is varied and the resulting composite strength is investigated. The chosen
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Figure A.4: Resulting composite strength values from micro-scale models at different
𝜎
(max)
12 /𝑆m-ratios and matrix strength values 𝑋T

matrix strengths are 𝑋T = 87 MPa and 𝑋C = 257 MPa, which corresponds to
a 𝜎 (max)

12 /𝑆m-ratio of 1.15. The numerical results are summarized in Figure A.5.
As expected, the composite strengths increase with increasing energy release
rate. However, the increase is nonlinear. For example, the transverse tensile
strength 𝑌T increases by just one megapascal with a tenfold increase in the
energy release rate from 𝐺f = 0.1 J m−2 to 𝐺f = 1 J m−2. The reason for
this lies in used damage model. As the energy release rate increases, the
damage will leads to a constant stress (see Section 3.3.2.4). Therefore, for
any combination of matrix strengths 𝑋T and 𝑋C, above a certain value for
the energy release rate, no increase in composite strength is achieved. On the
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Figure A.5: Resulting composite strength values𝑌T and𝑌C from micro-scale models at

different energy release rates

other hand, the composite strength decreases drastically with decreasing energy
release rate. Taking into account that the energy release rates determined in
the experiments for isotropic materials are subject to a natural scatter, this
variation in the simulation can lead to considerable differences in the resulting
composite strengths. Thus, the choice of material parameters for the matrix
is very dominant in determining the composite strengths. However, based on
the numerical results a most appropriate set of material parameters can be
identified by varying the different matrix strengths and energy release rates to
perform a virtual material characterization from the composite.
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A.3 Material Parameters

A.3.1 Matrix Material Parameters

Table A.3: Matrix elastic material properties and strength values

Young’s modulus Poisson’s ratio Tensile strength Compressive strength
𝐸 /GPa 𝜈 /− 𝑋T /MPa 𝑋C /MPa

2.8 0.435 87 211

Table A.4: Plasticity parameters for the matrix under tensile loads

Coupling term Yield onset Voce parameters Swift parameters
𝑚t /− 𝜎̄0t /MPa 𝜎̄st /MPa 𝐻0t /GPa 𝐴t /MPa 𝑛t /−
0.915 18.61 69.26 33.92 187.28 0.251

Table A.5: Plasticity parameters for the matrix under compression loads

Coupling term Yield onset Voce parameters Swift parameters
𝑚c /− 𝜎̄0c /MPa 𝜎̄sc /MPa 𝐻0c /GPa 𝐴c /MPa 𝑛c /−
0.852 36.47 121 73.62 439.17 0.481

Table A.6: Rate dependent plasticitiy parameters of the matrix and the direction-dependent en-
ergy release rates

Perzyna parameters Damage parameters
𝜇 /s ℎ /− 𝐺+f /J m−2 𝐺−f /J m−2

7.956 0.289 50 10
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A.3.2 Fiber Material Parameters

Table A.7: Fiber elastic material properties and strength values

Material parameter Value

Static Young’s modulus fiber direction 𝐸 f,init
1 /GPa 200

Young’s modulus fiber direction slope 𝑚f /TPa 6.2 [61]
Young’s modulus transverse direction 𝐸 f

2 /GPa 19
Poisson’s ratio 12-plane 𝜈f

12 /− 0.2
Shear modulus 12-plane 𝐺f

12 /GPa 22.5
Poisson’s ratio 23-plane 𝜈f

23 /− 0.4
Tensile strength 𝑋 f

T /MPa 3000
Compressive strength 𝑋 f

C /MPa 3000
Tensile energy release rate 𝐺+f /J m−2 30
Compressive energy release rate 𝐺−f /J m−2 30
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A.3.3 Composite Material Parameters

Table A.8: Linear elasticity material parameters

Material parameter Value

Matrix Young’s modulus 𝐸m /GPa 2.8
Matrix Poisson’s ratio 𝜈m /− 0.435
Fiber longitudinal static modulus 𝐸 f

1 /GPa 178
Fiber longitudinal modulus slope d𝐸1/d𝜀11 /TPa 2.15
Fiber transverse modulus 𝐸 f

2 /GPa 19
Fiber Poisson’s ratio 12-plane 𝜈f

12 /− 0.26
Fiber Shear modulus 12-plane 𝐺f

12 /GPa 22.5
Fiber Poisson’s ratio 23-plane 𝜈f

23 /− 0.4
Halpin-Tsai transverse modulus parameter 𝜁𝐸2 /− 2.5
Halpin-Tsai in-plane shear modulus parameter 𝜁𝐺12 /− 2.53
Halpin-Tsai out-of-plane shear modulus parameter 𝜁𝐺23 /− 1.3

Table A.9: Plasticity model parameters

Material parameter Value

Yield surface slope 𝛼ap /− 0.175
Ellipticity of the yield surface 𝑒ap /− 0.95
Dilatancy coefficient 𝛽ap /− 0
Flow rate parameter 𝑓ap /− 1.5
Yield onset 𝜏init

y /MPa 15.94
Voce saturation flow stress 𝜏s /GPa 45.87
Voce hardening modulus 𝐻0t,c /TPa 9.99
Swift hardening rate 𝐴t,c /MPa 108.57
Swift hardening decrement 𝑛t,c /− 0.207
Voce-Swift balance weight parameter 𝑚t,c /− 0.999
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A.3 Material Parameters

Table A.10: Failure and damage parameters

Material parameter Value

Fiber tensile strength 𝑋 f
T /MPa 2675

Fiber maximum longitudinal tensile strain 𝜀f
11,max /% 2.16

Fiber compressive strength ratio parameter 𝜙̄/𝛾y /− 1.346
Transverse tensile strength 𝑌T /MPa 60
Transverse compressive strength at 𝜑 = 50 % 𝑌C |𝜑=50 % /MPa 151.4
Transverse compressive strength slope over FVC d𝑌C/d𝜑 /MPa %−1 308
Shear strength at 𝜑 = 50 % 𝑆12 |𝜑=50 % /MPa 66.4
Shear strength slope over FVC d𝑆12/d𝜑 /MPa %−1 51.2
Incline parameter at 𝜑 = 50 % 𝑝 |𝜑=50 % /− 0.31
Incline parameter slope over FVC d𝑝/d𝜑 /%−1 0.569
Parameter impact of 𝑓FF on 𝑓IFF 𝑚 /- 0
Parameter impact of 𝑓FF on 𝑓IFF 𝑠 /- 0
Tensile energy release rate in fiber direction 𝐺+d /kJ m−2 240
Compressive energy release rate in fiber direction 𝐺−d /kJ m−2 30
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A.4 Further Numerical Firewall Results
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Figure A.6: Deviation of the ideal fiber direction angle for each ply of the (0◦4) unidi-
rectional laminate
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A.4 Further Numerical Firewall Results
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Figure A.7: Deviation of the ideal fiber direction angle for each ply of the (90◦4) unidi-
rectional laminate
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Figure A.8: Deviation of the ideal fiber direction angle for each ply of the (0◦/90◦) |s
cross-ply laminate
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Figure A.9: Distribution of the fiber volume content and the difference between adjacent
layers for a (0◦4) unidirectional laminate
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A.4 Further Numerical Firewall Results
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Figure A.10: Distribution of the fiber volume content and the difference between adja-
cent layers for a (90◦4) unidirectional laminate
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Figure A.11: Distribution of the fiber volume content and the difference between adja-
cent layers for a (0◦/90◦) |s cross-ply laminate
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A.4 Further Numerical Firewall Results
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Figure A.12: Areas with a predicted waviness for a (0◦4) unidirectional laminate
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Figure A.13: Areas with a predicted waviness for a (90◦4) unidirectional laminate
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Figure A.14: Areas with a predicted waviness for a (0◦/90◦) |s cross-ply laminate
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A.4 Further Numerical Firewall Results
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Figure A.15: Distribution of inter-fiber failure if the draping effects are neglected (left)
or considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (0◦4) unidirectional laminate
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Figure A.16: Distribution of fiber failure if the draping effects are neglected (left) or
considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (0◦4) unidirectional laminate

280



A.4 Further Numerical Firewall Results
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Figure A.17: Distribution of inter-fiber failure if the draping effects are neglected (left)
or considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (90◦4) unidirectional laminate
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Figure A.18: Distribution of fiber failure if the draping effects are neglected (left) or
considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (0◦4) unidirectional laminate
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A.4 Further Numerical Firewall Results
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Figure A.19: Distribution of inter-fiber failure if the draping effects are neglected (left)
or considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (0◦/90◦) |s cross-ply laminate
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Figure A.20: Distribution of fiber failure if the draping effects are neglected (left) or
considered (middle) and the corresponding difference of the inter-fiber
failure criterion for a (0◦/90◦) |s cross-ply laminate
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Stitch-Bonded Uni-Directional Carbon Fabrics

Technical Datasheet
ZOLTEK™ PX35 Uni-Directional Fabrics

DESCRIPTION
ZOLTEK PX35 Stitch-Bonded Uni-Directional Carbon Fabrics 
are produced from our ZOLTEK PX35 50K Continuous Tow 
Carbon Fiber. Unique fiber spreading techniques are utilized 
to obtain a wide range of UD fabric weights for a varied set 
of composite part applications. Quick composite part build-
up is cost effectively achieved with our diverse weight range 
of low-cost carbon fabric products.

MATERIAL 
OVERVIEW UD150 UD200 UD300 UD400 UD500 UD600 UD900V

0° Carbon 
ZOLTEK’S™ PX35 50K

158 200 309 403 500 600 865

90° Glass 
34 dtex 10 10 10 10 10 10 —

Polyester Veil — — — — — — 30

Polyester Stitch 76 
dtex 6 6 6 6 6 6 5

Total Fabric Weight 182 g/m2

5.37 oz/yd2
224 g/m2

6.61 oz/yd2
333 g/m2

9.82 oz/yd2
419 g/m2

12.36 oz/yd2
516 g/m2

15.22 oz/yd2
624 g/m2

18.40 oz/yd2
900 g/m2

26.54 oz/yd2

Average Values Shown
*Epoxy resin binder available upon customer request.

FABRIC 
CONSTRUCTION UD150 UD200 UD300 UD400 UD500 UD600 UD900V

Stitch Length A variety of stitch lengths are available to meet application requirements. 

Stitch Pattern A variety of stitch patterns are available to meet application requirements.

Cured Thickness/Ply .21 mm .25 mm .37 mm .46 mm .57 mm .69 mm 1.00 mm

Roll Width 30 cm - 61 cm - 122 cm 122 cm

Roll Length 100 m 50 m 30 m

Average Values Shown

ZOLTEK™ PX35

The properties listed in this datasheet do not constitute any warranty or guarantee of values. This information should only used for the 
purposes of material selection. Please contact us for more details.
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TYPICAL PACKAGING
Wound on cardboard cone, sealed in polyethylene bag, 
and placed in cardboard box. Rolls stacked horizontally on 
pallets when shipping.

+ Requirements other than standard widths and roll lengths 
should be specified by purchase order.

CERTIFICATION
ZOLTEK PX35 Fabrics are manufactured in accordance 
with ZOLTEK’S written and published data. A Certificate of 
Conformance is provided with each shipment.

SAFETY
Obtain, read, and understand the Material Safety Data 
Sheet (SDS) before use of this or any other ZOLTEK product.

APPROVAL
DNV-GL has granted approval to ZOLTEK PX35 Uni-
Directional Fabrics for use in wind energy applications. 

Approval No. WP 1030011 HH

COMPOSITE 
PROPERTIES SI US METHOD

Tensile Strength 1,600 MPa 232 ksi DIN EN ISO 527

Tensile Modulus 120 GPa 17.4 msi DIN EN ISO 527

Compressive Strength 1,000 MPa 145 ksi ASTM D694

Compressive Modulus 110 GPa 16.0 msi ASTM D695

Typical Fiber Volume Fraction (FVF) is 55%. 
Standard Epoxy Resin System

Stitch-Bonded Uni-Directional Carbon Fabrics

Technical Datasheet
ZOLTEK™ PX35 Uni-Directional Fabrics

ZOLTEK™ PX35

The properties listed in this datasheet do not constitute any warranty or guarantee of values. This information should only used for the 
purposes of material selection. Please contact us for more details.
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Product Data Sheet

Composite resin system

Biresin® CR170 and Biresin® CH150-3 Hardener

Areas of Application
Biresin® CR170/CH150-3 is especially suited to injection processes due to its viscosity range and reactivity. It 
can be used in areas where short cycle times are required, perhaps in the production of automotive parts.

Product Description
Biresin® CR170 resin (A) cured with Biresin® CH150-3 hardener (B) is an epoxy resin system suitable for the 
production of high performance fi bre reinforced components by the RTM process.

Processing and processing properties












The material and processing temperatures should be in the range 18 - 35°C.
The mixing ratio must be followed accurately to obtain best results. Deviating from the correct mix ratio will 
lead to lower performance. 
Before demoulding precuring of at least 2 h at 60°C is recommended.
The fi nal mechanical and thermal values are dependent on the applied postcuring cycles.
It is recommended to clean brushes or tools immediately after use with Sika Reinigungsmittel 5.
Additional information is available in “Processing Instructions for Composite Resins”.
.

Features / Advantages




Reduced cycle times for RTM processing are possible with this resin system especially where dynamic curing 
cycles are used.
Glass transition temperatures up to 143°C are possible depending on cure conditions

Individual Components Biresin® CR170 Biresin®  CH150-3

Mixing Ratio, parts by                                         Weight 100 24
Mixing Ratio, parts by                                        Volume 100 29
Colour translucent colourless
Viscosity, 25°C mPa.s ~13,000 ~20
Density, 25°C                              g/ml 1.14 0.94

Mixture
Potlife, 100 g / RT, approx. values     min 60
Mixed viscosity, 25°C, approx. mPa.s 1,600
Mixed viscosity, 60°C, approx. mPa.s 160
Mixed viscosity, 80°C, approx. mPa.s 90

Physical Data Resin (A) Hardener (B)
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Typical Mechanical Properties of Fully Cured Neat Resin 
Biresin®  CR170 resin (A)                      with hardener (B) Biresin®  CH150-3
Tensile strength ISO 527 MPa 87
Tensile E-Modulus ISO 527 MPa 2,700
Elongation at break ISO 527 % 6.6
Flexural strength ISO 178 MPa 133
Flexural E-Modulus ISO 178 MPa 2,800
Compressive Strength ISO 604 MPa 120
Density ISO 1183 g/cm³ 1.15
Shore hardness ISO 868 - D 84
Impact resistance ISO 179 kJ/m² 42

Typical Thermal Properties of Cured Neat Resin (approx. values after 4 h / 140°C)
Biresin®  CR170 resin (A)                     with hardener (B) Biresin®  CH150-3
Heat distortion temperature ISO 75B °C 139
Glass transition temperature ISO 11357 °C 143
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Biresin CR170 with Biresin CH150 3

Glass Transition Temperature vs. Cure Cycle

When curing a composite part, the whole of the part (including the very middle of the laminate) needs to see 
the cure temperature.
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Health and Safety Information
For information and advice on the safe handling, storage and disposal of chemical products, users shall 
refer to the most recent Safety Data Sheet (SDS) containing physical, ecological, toxicological and other 
safety related data.  

Disposal considerations
Product Recommendations:  Must be disposed of in a special waste disposal unit in accordance with the 
corresponding regulations.
Packaging Recommendations: Completely emptied packagings can be given for recycling. Packaging that 
cannot be cleaned should be disposed of as product waste.

Value Bases
All technical data stated in this Product Data Sheet are based on laboratory tests. Actual measured data may 
vary due to circumstan ces beyond our control.

Legal Notice
The information, and, in particular, the recommendations relating to the application and end-use of Sika 
products, are given in good faith based on Sika‘s current knowledge and experience of the products when 
properly stored, handled and applied under normal conditions in accordance with Sika‘s recommendations. In 
practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect 
of merchantability or of fi tness for a particular purpose, nor any liability arising out of any legal relationship 
whatsoever, can be inferred either from this information, or from any written recommendations, or from any 
other advice offered. The user of the product must test the product’s suitability for the intended application and 
purpose. Sika reserves the right to change the properties of its products. The proprietary rights of third parties 
must be observed. All orders are accepted subject to our current terms of sale and delivery. Users must always 
refer to the most recent issue of the local Product Data Sheet for the product concerned, copies of which will 
be supplied on request.

Storage






Minimum shelf life of Biresin® CR170 resin (A) is 24 month and of Biresin® CH150-3 hardener (B) is 
12 month under room conditions (18 - 25°C), when stored in original unopened containers.
After prolonged storage crystallisation of resin (A) may occur. This is easily removed by warming up for a 
suffi cient time at a minimum of 60°C.
Containers must be closed tightly immediately after use to prevent moisture ingress. The residual material
needs to be used up as soon as possible.

Packaging (net weight, kg)
Biresin® CR170 resin (A) 1,000 200 10
Biresin® CH150-3 hardener (B) 900 180 20 2.4

Further information available at:

Sika Deutschland GmbH
Subsidiary Bad Urach            Tel:           +49 (0) 7125 940 492
Stuttgarter Str. 139                 Fax:          +49 (0) 7125 940 401
D - 72574 Bad Urach              Email:       tooling@de.sika.com
Germany                                 Internet:    www.sika.com
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