
1.  Introduction
Let's take a look at a possible future Germany that has reached its net-zero CO2 emissions goal by 2050. What are 
the measures that have contributed to reaching this net-zero system? And what kind of implementation efforts are 
associated with this portfolio of measures?

In this perspective, we outline how a carbon-neutral system for Germany in 2050 could look like, following three 
strategies of avoiding, reducing, and removing CO2 emissions. We envision a net-zero-2050 Germany by combin-
ing analysis from an energy system model with insights into approaches that allow for a higher carbon circularity 
in the German system, and first results from assessments of national carbon dioxide removal (CDR) potentials.  

Abstract  Germany 2050: For the first time Germany reached a balance between its sources of 
anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents 
a fictional future in which this goal was achieved by avoiding (∼645 Mt CO2), reducing (∼50 Mt CO2) and 
removing (∼60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, 
increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic 
energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink 
enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero 
CO2 system for Germany by 2050.

Plain Language Summary  Here a net-zero-2050 Germany is envisioned by combining analysis 
from an energy-system model with insights into approaches that allow for a higher carbon circularity in 
the German system, and first results from assessments of national carbon dioxide removal potentials. A 
back-casting perspective is applied on how net-zero Germany could look like in 2050. We are looking back 
from 2050, and analyzing how Germany for the first time reached a balance between its sources of CO2 to 
the atmosphere and the anthropogenic sinks created. This would consider full decarbonization in the entire 
energy sector and being entirely emission-free by 2050 within three priorities identified as being the most 
useful strategies for achieving net-zero: (a) Avoiding- (b) Reducing- (c) Removing emissions. This work is a 
collaboration of interdisciplinary scientists with the Net-Zero-2050 cluster of the Helmholtz Climate Initiative 
HI-CAM.
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Key Points:
•	 �The net-zero system shows that for 

countries like Germany, avoiding CO2 
emissions was the largest contribution 
to achieve net-zero CO2

•	 �With the three strategies of emissions 
avoidance, reduction, and removal, 
Germany has achieved its net-zero 
CO2 goal for the first time

•	 �In addition, to natural sink 
enhancement carbon dioxide removal 
(CDR) options, technological CDR 
measures combined with geological 
CO2 storage were necessary to reach 
net-zero CO2
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This work is a collaboration of interdisciplinary scientists with the Net-Zero-2050 cluster of the Helmholtz 
Climate Initiative (HI-CAM, 2021; Net-Zero-2050, 2021).

While previous studies illustrated several forward-looking pathways for Germany on how to reach a climate-neu-
tral or greenhouse-gas neutral Germany by 2050 (e.g., Duscha et  al.,  2019; Günther et  al.,  2019; Prognos 
et al., 2020), here we assume a possible, but still hypothetical, net-zero carbon future and look back on how this 
goal was achieved. This unique perspective allows us to take a novel, goal-oriented view on the challenge of 
net-zero CO2 emissions in Germany and accordingly enables discussions on how we (as a society) would like 
to achieve such a goal. This study brings together the different aspects needed to achieve net-zero CO2 across 
the energy, industry, agriculture, and transport sectors and provides the first expert estimates of German CDR 
potentials based on the most recent literature. Distinct from previous studies, we here include options of large-
scale CDR in the form of technological CDR—like bioenergy combined with carbon capture and storage as well 
as direct air carbon capture and storage (DACCS)—and natural carbon sinks enhancement—like soil carbon 
management, reforestation, peatland rewetting, and seagrass restoration.

This study concentrates on CO2 rather than CO2-equivalent emissions, following the scientific reasoning of (net) 
zero CO2 targets based on the transient climate response to cumulative CO2 emissions (Matthews et al., 2009; Rogelj 
et al., 2018). We also make sure to exclude any existing natural carbon sinks like existing forests, but concentrate on 
the potential of anthropogenic enhancement of carbon sinks, again following the best scientific evidence (Matthews 
et al., 2009; Rogelj et al., 2018). While this study takes into account the feasibility of CDR options with regard to 
possible scale of implementation within Germany and discusses implementation obstacles, we are not aiming to 
design a most cost-effective CDR implementation scenario. The summary of the article includes an overview of the 
net-zero CO2 system for Germany in 2050, illustrating the contributions of each single measure to reaching this goal.

With this study, we aim to highlight the potentials of net-zero options for Germany as an example case, the asso-
ciated implementation efforts needed for such a possible net-zero CO2 system as well as possible obstacles that 
need to be overcome. The epistemic value of this piece is the transparency of the underlying and often disregarded 
assumptions of future visions of net-zero.

2.  An Envisioned Net-Zero Germany in 2050
Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to 
the atmosphere and anthropogenic sinks created. Germany therefore is now in line with the target set by the 
UNFCCC back in 2015 (Paris Agreement, 2015). This target had been put into EU law in the early 2020s (Coun-
cil of the European Union, 2020).

Back in the early 2020s, there were heated debates on how rapidly Germany should decrease its emissions. 
Climate movements argued that industrialized countries like Germany need to take their global responsibility 
and ensure a just transition for all, while big fossil fuel companies argued for a longer transitioning time and 
compensation for stranded investments in the fossil economy (cf. e.g., Bals, 2018; FFF, 2021; France 24,  2019; 
ITUC, 2020; Wehrmann, 2021). This challenge of finding a balance of phasing out fossil fuels, for example, 
by increasing the price on carbon, without placing too much of a burden on workers within the fossil economy 
(Baber, 2019; Jetten et al., 2020), initially caused delays in climate action. Finally, in 2021 the political climate 
within Germany changed, making it impossible to further delay ambitious climate action and catalyzing the 
necessary system transformation (BMU, 2021).

Due to this delayed action, Germany's emitted carbon budget now, in 2050, is above what some consider Germa-
ny's fair share of emissions in terms of distribution per equal-per-capita approach or the scientific advice from for 
example, the Helmholtz Climate Initiative, which proposed a budget of 6.9 Gt CO2 from 2021 onward (Mengis 
et al., 2020).

2.1. But How Does Our Carbon-Neutral Society Look Like Today Compared to 2020?

Since 2020 we have seen a 5% decrease in German population while economic growth has continued along the 
long-term trends as projected back in 2020 (e.g., Kemmler et al., 2020; StBA, 2017). With 79 million inhabitants, 
Germany today generates about a third more gross domestic product (GDP real) compared to 2020. The decline 
in population has not been able to compensate for the trend toward single households, with the result that a rather 
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constant living space and number of households have to be supplied with heat. However, by continuing an ambi-
tious thermal insulation strategy and by high thermal standards for new buildings, the energy demand of buildings 
could be strongly reduced. The shift toward a service-oriented society has continued at the expense of industry 
and the primary sectors, for which production accordingly remains close to their 2020 levels. Furthermore, the 
upward economic trend has also led to an increase in freight transport. However, a reverse trend has been initiated 
for individual automobile transport, through a series of measures, such as improved public transport, car sharing, 
biking, and walking, as well as parking management in cities.

Germany finally achieved net-zero CO2 by pursuing three major strategies: (a) avoiding emissions by replac-
ing fossil fuel-based energy production with renewable energy (RE), but also increasing energy efficiency and 
extending energy storage systems; (b) reducing emissions from hard-to-abate sectors, such as the chemical, steel 
or cement industry, the transport sector, and agriculture—here, sector-specific efforts were undertaken to reduce 
remaining emissions; and finally (c) compensating residual emissions by removing CO2 from the system—
so-called CDR measures have been put in place, which range from natural carbon sink enhancement to creating 
anthropogenic sinks by technological carbon capture and permanent storage (see box 1 for more info).

The linear economy that we had followed until 2020, took fossil energy carriers to produce goods, and 
generate energy and heat. The resulting CO2 got dumped into the atmosphere (see yellow arrows in 
Figure 1). Considering that over 85% of CO2 emissions back in 2020 were caused by energy provision 
(see Figure 4), a net-zero carbon economy significantly depended on the reduction of energy demand and 
the substitution of fossil fuels and materials through renewables (“avoid”), the reduction of CO2 emis-
sions within sectors where avoidance was not possible, as well as the re-use of remaining CO2 emissions 
in circular carbon approaches (“reduce”), and the deposition of CO2 in carbon storage sites to compensate 
for any remaining positive emissions (“remove”) (Paris Agreement, 2015).
New technologies allowed us to change the linear approach into a circular one and even remove CO2 
from the atmosphere: DACCS combines technologies that first capture CO2 from the ambient air through 
chemical processes with carbon dioxide absorbing materials, and purify and concentrate this CO2 to 
sequester it in geological storage sites (producing negative emissions; e.g., HI-CAM, 2020). However, 
all these processes are energy intensive and put an additional strain on the energy system, thus they are 
effective if supplied by RE (HI-CAM, 2020).
In the case of direct air carbon capture and use, the captured CO2 is converted into hydrocarbon fuels and 
materials with the help of H2 and RE (e.g., Dittmeyer, et al., 2019). These fuels and materials can be used 
as substitutes for fossil carbon materials and fuels in industrial processes and even the aviation sector, 
thereby reducing emissions in sectors for which emissions are otherwise hard to abate (e.g., Airbus, 2020; 
Billig et al., 2019; Dittmeyer, et al., 2019).
Bioenergy and Carbon Capture and Storage (BECCS) is the process which combines generation of 
energy (e.g., electricity, heat, biofuels) from biomass with capturing and storing of the otherwise emitted 
CO2 in geological storage sites (e.g., Furre et al., 2019; Gluyas & Bagudu, 2020; Knopf & May, 2017; 
Porthos, 2019; Swennenhuis, et al., 2020). Since the carbon in the biomass is taken out of the atmosphere 
by the plant during their growth and then actively removed from the system through permanent storage, 
negative emissions are achieved.
In addition, we can manage or restore natural systems that allow us to reduce CO2 emissions from those 
systems or even enhance natural carbon sinks on land and the ocean. For example, by restoring drained 
peatlands through rewetting, CO2 emissions from these soils are avoided (e.g., Leifeld et  al.,  2019; 
Tanneberger et al., 2021). Changing our agricultural practices increases organic and inorganic soil carbon 
content (e.g., Al-Kaisi & Yin, 2005; Dold et al., 2017, 2019; Haddaway et al., 2017; Kell 2011; Sander-
man, 2012; Trost et al., 2013; Verma et al., 2005; Wei et al., 2021; Zornoza et al., 2016). And lastly, we 
can get the ocean to take up more carbon, by restoring or protecting seagrass meadows, allowing for their 
expansion (e.g, Alongi, 2018; Eriander, et al., 2016; Greiner, et al., 2013; Infantes et al., 2016; Infantes & 
Moksnes, 2018; Moksnes et al., 2018; Postlethwaite et al., 2018; Prentice et al., 2020).
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3.  Avoiding CO2 Emissions
Looking back from the year 2050, the most cost-effective strategy of reaching net-zero CO2 was avoiding emis-
sions from major emitters by transforming toward a more sustainable energy supply. The energy sector, which 
was the main emitter of CO2 emissions from the combustion of fossil fuels, managed to curb most of its annual 
660 Mt CO2 emissions from back in 2019 through massive transformation efforts. For that the energy system 
focused on three pillars: (a) reducing energy consumption, (b) electrification of heat, power, and transport supply, 
tapping the potential of sector coupling, and (c) supplying the necessary green hydrogen and hydrocarbons as 
renewable commodities and for long term energy storage.

3.1.  Reduction of Energy Demand Through Higher Energy Efficiency

Societal changes in Germany have led to a successful decoupling of economic growth and energy demand. 
Behavioral changes, avoiding rebound effects, and a more efficient energy use, were key to reduce the overall 
energy demand. For example, the ambitious strategy to substantially improve thermal insulation of the building 
stock and to introduce high-end thermal standards for new buildings contributed to a final energy demand reduc-
tion of around 50% by 2050 (Fritz et al., 2019; Pregger et al., 2013; see Supporting Information for scenario 
comparison). Other measures range from increasing efficiency in heating and waste heat use in industry to apply-
ing more efficient and electrified power trains in transport. Eventually, large shares of the efficiency potentials 
were implemented, saving roughly a third of final consumption while maintaining equal energy services (see 
Figure 2). Shifting efficiency losses to the power supply was avoided by a simultaneous transition toward effi-
cient and renewable power production.

Figure 1.  Illustration of historical linear carbon economy burning fossil carbon (yellow arrows), and novel approaches allowing for a more circular carbon economy 
(light blue arrows) and carbon dioxide removal measures (dark blue arrows) (source: Helmholtz Climate Initiative//Tanja Hildebrandt).
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3.2.  Transforming the Power, Heat and Transport Systems From Fossil 
to RE

Heat, power, and transport systems are now closely coupled to balance energy 
demand and supply. Thus, the energy system is now almost CO2 free and 
relies mainly on renewable power produced by wind, solar, hydro, sustainable 
biomass, and geothermal energy (see Figure 3). Significant direct electrifica-
tion of road and almost all rail transport has been achieved. Today, two-thirds 
of all passenger vehicles—more than 20 million—are electric. Freight trans-
port and rail transport without catenaries relies now significantly on indirect 
electrification for example, via fuel cells. Massive retrofit investments in the 
heat sector have led to a fundamental transformation in residential buildings. 
25% of residential heat is provided via heat grids (own calculations based on 
Fette et al., 2020; Kemmler et al., 2020; Zech et al., 2019). This integrates 
direct use of solar, geothermal, and biomass heat for base load with electric-
ity via large seasonal heat storages (Fette et al., 2020). In combination with 

heat grids, large volume subsurface heat storage contributes to reducing energy demand in residential areas and 
in large office buildings by more than 50% compared to 2020. By 2050, the development of deep geothermal 
energy and biomass for district heating has multiplied and became an important pillar of heat supply. Large 
efficiency improvements were the precondition for increasing utilization of heat pumps. Electricity has become 
the backbone of heat supply in buildings, providing direct electric heating, but also hydrogen and synthetic gas, 
where a retrofit was not possible. Coupling both the heat and power sectors thus provides mutual benefits (see 
also Gea-Bermúdez et al., 2021; Jimenez-Navarro et al., 2020; Zech et al., 2019).

Due to the necessary sector coupling, electricity consumption has more than doubled in recent decades (BMWi,  
2020a). The simultaneous decarbonization of electricity generation required a massive and accelerated expan-
sion of photovoltaic (PV) and wind power plants beyond any records held before 2020. The increase in capacity 
(average of 10 GW per year) for both PV and wind power plants lead to 240 GW of wind capacity and more than 
370 GW of PV capacity in 2050. Additional infrastructure was key to balancing the now almost completely renew-
able power sector: grid expansion, battery storage, demand side management, and increased power exchange in 
the European Transmission System predominantly compensate for short-term fluctuations.

3.3.  Green Hydrogen, Synthetic Energy Carriers and Biofuels for Energy Storage

Roughly half of the power system in Germany today is dedicated to the production of RE -based synthetic fuels—
hydrogen, synthetic methane (CH4), and liquid hydrocarbons (see “H2, syngas, synfuels” category in Figure 3). 
Green hydrogen is predominantly produced by electrolysis of water. Hydrocarbon fuels (also called electro-fuels) 
are made of green hydrogen and CO2 via so-called Power-to-Liquid processes (Agertet al., 2020; Kasten, 2020; 
Roeb et al., 2020).

The fluctuating and regionally unequally distributed RE supply within Germany, the regionally unequal provi-
sion of storage capacity as well as the necessary long-range transport of energy required an extensive and still 
continuing expansion of the power transmission grid by almost 90% relative to 2020 and the establishment of an 
infrastructure for the import, distribution and storage of synthetic fuels (see Supporting Information S1).

Given that Germany is geographically far from high solar irradiation areas, synthetic fuels are imported by 
already developed infrastructure (pipelines or commercial tankers) from North Africa and Middle East countries 
(Liebich et al., 2021). These fuels can be produced to a large extent by concentrated solar power which is coupled 
with thermochemical cycles or electricity generation and simultaneous water desalination (Olwig et al., 2012). 
For the import and trade of green hydrogen across the EU and its partners the certification “CertifHy” imple-
mented by the EU was essential, since it enabled a wide-ranging trade of green molecules (Veum et al., 2019; 
White et al., 2021).

Today, most of the infrastructure that had been used for natural gas back in 2020 was transformed to transport 
and store hydrogen. Most of the hydrogen grid was ready for use when the so-called hydrogen backbone was 
completed in the year 2040 (Wang et al., 2020).

Figure 2.  Final energy demand in 2050 and energy savings from efficiency 
measures relative to 2020 (own calculations based on Kemmler et al., 2020).
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Next to lithium-ion batteries and pumped hydro storage, which cover for short-term variability, synthetic meth-
ane and hydrogen are mainly used for intermediate and long-term storage in caverns, in the northern and central 
parts of Germany. Former hydrocarbon reservoirs in the southern part of Germany and pressure tanks are now 
the backbone for energy.

4.  Reducing CO2 Emissions
Although Germany has reached the goal of an overall carbon neutral society, some CO2 emissions remain even 
in 2050. The second strategy hence was to reduce emissions from all the sectors for which emissions are hard to 
abate, like industry, parts of the transport system, and agriculture. For each of those sectors, individual strategies 
were developed and implemented to reduce their CO2 emissions as far as possible.

4.1.  Solutions for Sectors With Hard-to-Abate Emissions - Industry and Transport

With the help of synthetic energy carriers like green hydrogen, synthetic methane, synthetic liquid hydrocarbons, 
and biofuels, emissions from otherwise unavoidable fuel demands could be reduced (IRENA, 2020; Sharmina 
et al., 2020). The necessary carbon for the production of synthetic fuels and gases now comes from remaining 
point source emitters, like cement or lime factories, for which inherent process-based emissions remain hard to 
abate (Plaza et al., 2020). Those facilities have been retro-fitted with CO2 capture modules.

In many industrial applications, hydrogen could be directly implemented to substitute fossil fuels (e.g., coal, 
crude oil, or natural gas) either as energy carriers or as raw material. For primary steel production, the coke-based 
blast-furnace route has first been replaced by hydrogen-based direct reduction (Bhaskar et al., 2020) and lately 
also by electricity-based electrowinning (Fischedick et al., 2014). Given that renewable electricity is used, this 
enabled to reduce emissions of German steel production by about 82% relative to the 2020s (Harpprecht et al., 
in preparation).

Figure 3.  Supply structure power system, including electricity supply to heat and transport sectors in Germany in 2050 (own 
calculations based on Fette et al., 2020; Kemmler et al., 2020; Zech et al., 2019).



Earth’s Future

MENGIS ET AL.

10.1029/2021EF002324

7 of 16

Ammonia production underwent a similar transition. In 2020, hydrogen required for ammonia was produced 
from natural gas via steam-reforming (DECHEMA, 2017). Nowadays, 100% of hydrogen demand for ammonia 
production is supplied through water electrolysis, which makes it completely emission-free (Dittrich et al., 2020).

For cement plants, emissions could be reduced by 64% relative to 2019 through the transition to RE, a reduced 
clinker to cement ratio, and novel carbon capture technologies (see Supporting Informationfor details). All 
newly built plants are now equipped with carbon capture technologies of oxyfuel (Schneider, 2019; Voldsund 
et al., 2019) and LEILAC (Low Emissions Intensity Lime & Cement; Hills et al., 2017; LEILAC, 2017). To 
substantially reduce process-based emissions, cement, and lime production sites needed to be linked to the CO2 
grid to permanently store 8.8 Mt CO2 each year.

Synthetic liquid hydrocarbons like gasoline, diesel, kerosene, methanol, or dimethyl ether not only supply the 
chemical industry (e.g., for polymer production), but also serve as a complementary solution in the transporta-
tion sector (for heavy freight, maritime transport, and aviation; Millinger et al., 2021). Electrified private and 
public transportation are now part of zero-emission city concepts. The bulk of rural transportation is also electri-
fied with larger ranges of electric vehicles and an improved charging stations infrastructure. In addition, public 
transportation in rural areas now relies mainly on demand responsive transport services (Sörensen et al., 2021). 
Nevertheless, mobile applications which cannot store energy in batteries (e.g., aviation, navigation, rail, and 
heavy duty), became users of green hydrogen or green fuels (Ehrenberger et al., 2021). Today, one-third of all 
passenger vehicles rely on hydrogen and biofuels, aircrafts for short and medium distances have been operated 
with hydrogen since the year 2035 (Airbus, 2020). In the same way, long-range cargo logistics transport still relies 
on carbon-based fuels.

4.2.  Solutions for Sectors With Hard-to-Abate Emissions - Agricultural and Organic Soils

4.2.1.  Agricultural Soils

Today, farmers extensively apply techniques such as the state-of-the-art fertilizer, tillage, and irrigation scheme 
in Germany. Organic fertilizers (OF) are now preferred over mineral fertilizers, because the latter have a larger 
carbon footprint, and the former return organic material back to the soil (Hasler et al., 2017). OF are applied on 
soils with highest carbon storage potential or traditionally low OF application, such as crop production areas in 
East Germany (Don et al., 2018; Lal et al., 2015). Thereby, farmers actively avoid CO2 emissions by preserving 
the carbon stock in the soils. Furthermore, biochar is applied to the soils to increase the amount of recalcitrant 
carbon (Bai et al., 2019; Smith, 2016). Where mineral fertilizer application is still required, acidifying nitro-
gen fertilizers are avoided or nitrification inhibitors are applied to allow continued carbonate weathering (Elrys 
et al., 2020; Liebig et al., 2018; Robertson, 2014). Precision farming with high-resolution soil maps support the 
effective distribution of fertilizer, so that they are now applied in optimized amounts and period of time. OF 
pelleting supports precision farming (Delin et al., 2018; Liu et al., 2017; Romano et al., 2014). Where applicable, 
conservation tillage was introduced to reduce CO2 emissions from the topsoil (Bai et al., 2019; Baker et al., 2007; 
Dold et al., 2019; Haddaway et al., 2017). Frequency, tillage depth, and tillage method were improved, and turn-
ing tillage with the mouldboard plow was avoided (Al-Kaisi & Yin, 2005). Regulated deficit irrigation and drip 
irrigation reduced CO2 emissions, because microbial activity is reduced under dry soil conditions, and carbonate 
weathering is accelerated (Sanderman, 2012; Trost et al., 2013; Wei et al., 2021; Zornoza et al., 2016). The use 
of carbonate-enriched irrigation water is avoided to reduce CO2 release from irrigation water (Sanderman, 2012; 
Verma et al., 2005). These changes in agricultural and land management practices reduced CO2 emissions by 
around 1.9 Mt CO2 annually in Germany relative to the 2020s.

4.2.2.  Peatland Rewetting

Back in the early 2020s, more than 98% of the organic soils (about 1.8 Mha) were drained mainly for agricultural 
use (Tanneberger et al., 2021; Trepel et al., 2017). Therefore, already in the late 20th century, efforts to raise the 
water table of peatlands to the surface were undertaken to avoid oxidation and the consequent CO2 release to 
the atmosphere (Joosten et al., 2017). Since 2020 about 50,000 ha of German peatlands were set to be gradually 
rewetted each year (Abel et al., 2019).
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The net annual CO2 fluxes in peatland ecosystems are strongly dependent on their management, and land use 
(Leifeld et al., 2019; Petrescu et al., 2015). New sustainable management approaches, like the implementation of 
paludicultures following the rewetting were applied to selected drained peatlands, allowing for continued utiliza-
tion of these areas for agriculture and forestry (Joosten et al., 2017). These management options were essential to 
turn our peatland ecosystems from a source of CO2 to a sink.

Rewetted peatlands today prevent about 15 Mt of CO2 emissions from previous agriculturally used areas (Buendia 
et al.et al., 2019), and even enable permanent carbon sequestration of 2.7 Mt CO2 per year (see Supporting Infor-
mation), in addition to advocating other co-benefits like biodiversity, water quality, and filtering out nutrients.

5.  Removing CO2

Despite all efforts to avoid and reduce CO2 emissions, net-zero-2050 CO2 emissions in Germany could only be 
reached because the remaining gross positive emissions released into the atmosphere are compensated by gross 
negative emission achieved by CDR. Two main strategies were followed to achieve negative emissions: (a) the 
enhancement of natural carbon sinks by restoring natural ecosystems across land and coastal sea and (b) the 
implementation of negative emission technologies combined with permanent carbon storage facilities. While the 
former provided additional benefits for biodiversity and ecosystem services and avoided substantial amounts of 
future emissions from ecosystem deterioration the latter mainly served as a necessary means to achieve net-zero 
CO2 emissions.

5.1.  Natural Sink Enhancement

5.1.1.  Agricultural Practices to Increase Organic Top-Soil Carbon

Today, in 2050, agricultural soils function as areas of CDR by increasing biomass production and hence increased 
CO2 uptake during carboxylation in the photosynthetic process of crops. Accordingly, soils are enriched with soil 
organic carbon over time, taking up additional CO2 until a new carbon equilibrium is reached. The effectiveness 
of soil for CDR is quantified as the ratio of carbon build-up and carbon inputs (Wiesmeier et al., 2020).

The challenge of the first approach was to intensify crop production for securing food security, while reducing 
CO2 emissions from agriculture and land-use (Bai et al., 2019; Lal, 2019; Taylor et al., 2016). Crop production 
systems that act as carbon sinks or carbon neutral are now used: For example, growers transitioned to improve 
crop rotations from C3 to C4 crops, which typically have higher net ecosystem production than C3 crops (Dold 
et al., 2017). For the 2020–2050 period measures to improve crop rotations stored additional 97 Mt CO2 in the 
soils. In addition to that, crop residues in the field were increased by preferring crop varieties with deep and dense 
root systems (Don et al., 2018; Kell, 2011). Cover crops with deep root system, high biomass production, and 
nitrogen-fixing symbiosis are now grown during the off-season of summer crops to prolong the period of photo-
synthetic carboxylation on the field (Bai et al., 2019; Don et al., 2018; Poeplau & Don, 2015), storing 44 Mt CO2 
in agricultural soils. Further, the use of agroforestry systems on 10% of the cropland increased soil carbon stocks 
by another 36 Mt CO2. Finally, the successful intensification of agricultural practices freed low-yielding field 
patches to be converted to pasture and forest, as they have higher carbon sequestration rates per land unit (Don 
et al., 2018; Morgan et al., 2010). The conversion of 10% of low-yielding cropland to each pasture and forests 
increased the carbon stock by 38 Mt CO2, and 41 Mt CO2, respectively.

5.1.2.  Seagrass Restoration and Recovery at the German Coast

To maximize their ability to sequester carbon, efforts to extend seagrass meadows area in Germany were imple-
mented already during the 2020s. While active restoration was conducted in the Baltic Sea, seagrass meadows 
in the North Sea were left to regenerate naturally after measures (like peatland rewetting) were implemented to 
improve water quality, the main stressor back in the 2020s (Dolch et al., 2017). Seagrass meadows reach maturity 
and therefore their maximum carbon sequestration rates after approximately 18 yr (Eriander et al., 2016; Infantes 
et al., 2016; Infantes & Moksnes, 2018; Marbà et al., 2015; Moksnes et al., 2018). In contrast to land-based plants, 
the burial potential of seagrass meadows thereafter remains at this high level, the stock does not saturate.

Today, over 80% of this theoretically habitable available area has mature seagrass meadows along the German 
coast, that is an additional 306,400 ha and 9,780 ha along the Baltic and North Sea coast, respectively. The 
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restored and now matured Zostera marina-dominated seagrass meadows in the Baltic Sea sequester carbon at a 
mature rate of 39.4 g C/m 2/yr (averaged from Greiner et al., 2013; Marbà et al., 2015; Prentice et al., 2020). The 
carbon sequestration in the North Sea is slightly less with 24 g C/m 2/yr for Zostera noltei-dominated meadows 
(averaged and adjusted from Alongi & Alongi, 2018; Postlethwaite et al., 2018; Prentice et al., 2020). Today, the 
total area of seagrass along the German coastlines (Baltic and North Sea) sequesters approximately up to 454 kt 
CO2/yr.

5.2.  Technological Carbon Dioxide Removal With Geological Carbon Storage

Bioenergy supported the energy transition in (a) providing flexible electricity to compensate for fluctuations 
coming from variable RE sources, such as wind and solar power, (b) renewable heat implementation, and (c) 
providing options for carbon capture and storage. Today, point source carbon capture at bioenergy power plants 
provides a bulk of the CO2 that is transported to permanent storage sites, and therefore produces negative emis-
sions. The main sources of biomass used for bioenergy generation are forestry and agricultural by-products 
and residues and organic waste which is predominantly generated within Germany (Billig et al., 2019; Thrän 
et al., 2020). Germany took advantage of its existing biogas plants system and supported retrofitting of biogas 
plants with CO2 capture units. This process allowed an annual removal of 11.3 Mt of biogenic CO2 from both 
biogas-fueled cogeneration plants (biogas CHP) as well as biomethane plants (Billig et al., 2019). A part of faded 
out coal-fired power plants was also converted to handle sustainable biomass sources as feedstock and retrofitted 
with carbon capture units (enervis,  2021; Wi,  2020b). They now serve as centralized sources of biogenic CO2 
for carbon removal providing roughly 16 Mt of biogenic CO2 as a negative emissions source.

Another source of CO2 for permanent carbon storage to achieve negative emissions are direct air capture facilities. 
These plants provide the option to produce concentrated CO2 taken directly from the atmosphere. However, since 
this process is rather energy-intensive (mostly heat but also power), and therefore inefficient in low insolation 
areas like Germany, another solution was found: Today, almost every big office or retail building has an air carbon 
capture unit integrated in the heating, ventilation and air-conditioning (HVAC) system capturing a total of 17 Mt 
CO2 (Dittmeyer et al., 2019; HI-CAM, 2020). The hotter summers caused an expansion in air conditioning needs 
for buildings, and this demand was used to retrofit existing HVAC-systems as well as install new HVAC-systems 
which are now included in the CO2 transportation and storage system. In total, technological CDR now needs to 
remove ∼50 Mt of CO2 each year to be stored permanently on and off-shore.

CO2 storage was a difficult topic in Germany back in 2020, but already in the mid-2020s, a number of success-
ful off-shore initiatives had been started in the Dutch, Norwegian and British North Sea corridors, providing 
the possibility of permanent CO2 storage in saline aquifers or depleted gas fields (Furre et al., 2019; Gluyas & 
Bagudu, 2020; Porthos, 2019; Swennenhuis et al., 2020). Back then, German CO2 was transported across borders 
and stored in sites belonging to neighboring countries. Initially, the transport was done via ships on federal water-
ways to limit new infrastructural impact. As the safe and lucrative operation of these forerunner off-shore storage 
sites became apparent to the German public and policymakers, steps were taken to make use of the 3.8–23.9 Gt 
of storage capacity offered by the German North Sea subsurface (Knopf & May, 2017).

Transport to those storage sites today is provided by a cost-optimized pipeline network dedicated to CO2 
connected to decarbonized industrial clusters and collection hubs (IEA Energy Technology Perspectives,  2020; 
Yeates et al., 2020). While ensuring the delivery of decentral negative emissions from bioenergy and HVAC 
direct air carbon capture plants to an offshore storage site, this network also allowed for transporting emissions 
from hard-to-abate industry point sources toward synfuel production plants.

Beyond that, off-shore projects had strengthened the confidence in CO2 storage technologies. Follow-up on-shore 
carbon storage projects were initiated within Germany, allowing underground storage of CO2 in a temporary 
manner in a number of disused, geological storage sites. Established underground storage capacities in porous 
aquifers amount 20.4–115.3 Gt CO2 (Knopf & May, 2017). Furthermore, favorable conditions for CO2 miner-
alization in geothermal plants such as demonstrated in Iceland (Gislason & Oelkers, 2014) have been proven in 
Germany as well (Banks et al., 2021). Technological development in this field had gained momentum and, with 
the large-scale industrial development of deep geothermal energy, it now contributes to the permanent storage of 
CO2 in Germany.
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6.  Summary - A Net-Zero CO2 System in Germany
So, which are the measures that contributed to our current net-zero system, 
in 2050? Following the three strategies of emissions avoidance, reduction, 
and removal, Germany has achieved its net-zero CO2 emissions goal for the 
first time this year (see Figure 4; see Supporting Information S1 for detailed 
information). This goal required a balance between anthropogenic sources 
and sinks, for which substantial efforts were undertaken: The increase in 
energy efficiency, electrification and sector coupling, and the introduction of 
synthetic energy carriers as green fuels and energy storage allowed us to avoid 
over 600 Mt of CO2 emissions per year from previous fossil fuel combustion 
activities. Energy is now provided by over 95% RE, which avoids emissions 
in all energy consuming industries, including manufacturing, construction, 
and transport. But even as increasing efficiency reduced energy demand by 
almost 3,000 PJ per year, the demand for renewable synthetic energy carriers 
and negative emission technologies increased by about as much. Furthermore, 
synthetic energy carriers and changes in manufacturing practices reduced 
the remaining emissions from industrial processes by over 25 Mt CO2 each 
year. Changes in agricultural practices and peatland-rewetting further reduced 
emissions from land use by about 20 Mt CO2 per year. That means that today 
Germany still emits about 60 Mt of gross positive CO2 emission.

The emissions come from remaining fuel combustion activities mainly waste 
combustion and industrial processes, as well as from land use and agricul-
tural practices. Those remaining emissions are now compensated by gross 

negative emissions. Measures that enhance natural sinks like agricultural practices to increase organic top-soil 
carbon, reforestation of vacated agricultural areas, peatland rewetting, and seagrass restoration and recovery 
are able to take up almost 12 Mt CO2 every year. This is in addition to a small amount of anthropogenic carbon 
sinks that had already existed back in 2020, like harvesting wood products. The remaining negative emissions 
are achieved through technological CDR measures combined with permanent carbon storage in German on-and 
off-shore sites. Bioenergy combined with carbon capture and storage contributes about 28 Mt CO2 each year, 
decentralized HVAC implemented DACCS systems provide 17 Mt CO2 each year.

The net-zero system shows clearly that for developed countries like Germany, avoiding CO2 emissions was the 
largest contribution for achieving net-zero CO2 emissions. The fact that over 85% of gross positive emissions back 
in 2019 were still emitted by fossil fuel combustion activities, shows the enormous potential of the transition to 
carbon-free energy sources. Beyond that any energy intensive technologies that allow for a higher carbon circu-
larity or carbon removal in our current 2050 system, were only realizable because sufficient carbon-free energy 
is available.

Natural-sink enhancement CDR solutions usually experience a higher acceptability than technological measures 
in Germany (Bertram & Merk, 2020; Braun et al., 2018; Merk et al., 2019), also because of positive co-benefits 
like biodiversity and ecosystem restoration. And while they significantly contribute to removing CO2 from the 
atmosphere today, they are not able to stem the whole burden left by hard-to-abate emissions by themselves. 
Accordingly, technological CDR measures including permanent carbon storage were required to achieve today's 
goal of net-zero CO2 emission in Germany. This is in direct contrast to the climate policy back in the 2020s, which 
exclusively referred to natural sink enhancement for negative emissions (BMU, 2012).

7.  Outlook - Obstacles That Need to Be Overcome for a Net-Zero CO2 in Germany by 
2050
In this backward-looking story, we imagined how a possible future Germany could look like, that achieved its 
net-zero CO2 emissions goal in the year 2050. Our fictional future focuses strongly on technological achieve-
ments rather than rapid societal transformations based on behavioral changes at the individual and collective level 
(e.g., animal husbandry, consumption, travel), or far-reaching international compensation (Anderson et al., 2020; 

Figure 4.  Comparison between CO2 emission systems in 2019 and 2050. 
Including illustrations of avoided, reduced, and removed emissions that led to 
achieving net-zero by 2050. LULUCF, land-use, land-use change and forestry; 
CDR, carbon dioxide removal.
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Kuhnhenn et al., 2020; Larkin et al., 2018; Paterson, 2020; Van Vuuren et al., 2018). Instead, we include ambitious 
transformations in the energy and industry sectors, in infrastructure for RE carriers as well as substantial changes 
in land-use and agricultural practices including peatland rewetting, as measures to reduce our gross positive CO2 
emissions by over 90%.

However, Germany does not currently have any unmanaged areas. Next to the area demand for the necessary and 
unpreceded increase in the volume of RE capacity and the substantial increase in the power grid that will have 
to be accommodated, any terrestrial CO2 reduction and removal measure will have to be achieved by changing 
land-use practices and management options rather than applying them to unused land. This is especially true 
for balancing area demand for agriculture, peatland rewetting, top-soil carbon enhancement, and reforestation 
(Boysen, Lucht, & Gerten, 2017; Boysen, Lucht, Gerten, Heck, et al., 2017), limiting the overall carbon removal 
potential by natural-sink enhancement for Germany to about 12 Mt CO2 per year. In contrast to what is envi-
sioned in the German Climate law, as well as in its Nouvella (BMU, 2021; Bundesministerium der Justiz und für 
Verbraucherschutz, 2019), nature-based solutions alone are not enough to compensate for the remaining positive 
emissions. In order to achieve net-zero, we include estimates for HVAC systems (which put an additional strain on 
the energy system) and existing biomass power plants to be equipped with carbon capture systems for permanent 
carbon storage.

Removal potential is, however, merely one side of the story. CDR options currently face a number of obstacles, 
including infrastructure needs, missing economic incentives as well as problematic public perception (Benrath 
et al., 2020; Schumann et al., 2014). Similar to the transformation needed for RE carriers, CDR with geological 
carbon storage would need an infrastructure for transporting and storing CO2. For large-scale CO2 transport over 
land, pipeline networks are known to be the most economical solution. All while minimizing the infrastructure 
impact by adhering to pre-existing gas pipeline layouts (Yeates et al., 2021), the CO2 network could also be seen 
as an opportunity to dynamize less-industrialized Federal states. As such, proximity to a CO2 pipeline route 
would become synonymous with net-zero industrial development. And while once built the infrastructure would 
be cost-efficient, the largest obstacle would be the initial investment. Paired with the substantial energy cost, the 
same is true for retro-fitting HVAC systems with DAC systems, and the retrofitting of existing bioenergy plants 
with carbon capture systems, which brings us to another obstacle for CDR options in general.

The European emissions trading system does not currently create incentives for removing CO2 from the atmos-
phere (Daggash & Mac Dowell, 2019). A revision of the EU-wide CO2 trading system to include CDR measures 
will be a challenge as CDR measures have different time spans of retention and bear diverse risks of unintended 
re-emission (Lomax et al., 2015) while the ETS creates a uniform price signal. Regulations not only need to 
reward the removal of CO2 emissions but also to financially penalize their intended and unintended re-emis-
sion to generate an efficient market outcome. To account for such differences, complementary technology-spe-
cific policy instruments (either market-based or regulatory instruments) could be implemented to correct for 
market distortions and create a level playing field for the competition between the different mitigation measures 
(Lehmann et  al.,  2020). However, in order to pay attention to the financial limitations of public households, 
carbon pricing should constitute the main driver for a cost-effective achievement of net-zero CO2 emissions in 
Germany allowing limiting state subsidization to remaining market distortions (Lehmann et al., 2020).

Finally, all net-zero options discussed in this article, including repurposing of areas within Germany infrastruc-
ture expansion, changed agricultural practices, and carbon storage, need public support. Ensuring a just transi-
tion out of the fossil economy that accounts for trade-offs and an equitable sharing of costs, seem to be critical 
in order to avoid societal conflicts (e.g., Bals, 2018; Wehrmann, 2021). Research on social acceptance shows 
that rather than a lack of knowledge, resistance to technology development can be better understood by more 
overarching concerns such as basic value conflicts, perceived fairness, and failures of trust in governing insti-
tutions such as regulatory authorities and technical advice bodies (Markusson et al., 2020; Waller et al., 2020; 
Winickoff, 2017). A good example for this is the previously successful public outreach concept for the Ketzin 
pilot CO2-storage project, where an open and transparent dialogue with all stakeholders was started from the 
very beginning (Martens et al., 2015). In another context, changes in mindsets and practices for farmers could 
be initiated by changes in the Common Agricultural Policy (CAP) of the EU. The CAP is currently undergoing a 
reform process. If set aside a large enough part of payments to farmers for eco-schemes that incentivize environ-
mental and climate action, more farmers would apply management practices that reduce CO2 emissions or even 
provide negative emissions (European Commission,  2019). Through the provision of comprehensive guiding 
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materials (Lampkin et al., 2020), as well as an open discussion process involving all relevant stakeholders (e.g., 
BMEL, 2019) to effectively implement such eco-schemes, climate actions could play an important role in future 
farming management. In this way acceptance of negative emission technologies including permanent carbon 
storage could be achieved by expanding public debates to develop common ways forward, while responsibly 
assessing and governing such emerging net-zero technologies (Winickoff, 2017).

With this piece, we aim to foster political and societal debates on how we want to achieve net-zero CO2 in 
Germany. Bold decisions need to be taken, be it for rapid societal transformations, far-reaching international 
compensation or investments into technological developments. Our vision for Germany in 2050 is one possible 
outcome. A different question is—do we describe a desirable net-zero-2050 future?
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