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CHAPTER 2

INTRODUCTION

One of the greatest challenges for humanity in the 21st century is the mitigation of

the climate crisis. Mitigating climate change requires a strong reduction of green-

house gases (IPCC, 2021) and thus the replacement of various existing fossil-fuel

based technologies and processes. In many cases, the most viable and economic sub-

stitutes are technologies and processes, which run on CO2 free electricity. These novel

technologies, like heat pumps, electric vehicles, and electrolyzers, use large amounts

of electricity, and are, therefore, strongly linked with the electricity system. Given

the already complex nature of the electricity system, and the additional challenges

introduced by volatile renewable electricity generation, it is of utmost importance to

integrate these novel technologies in a way that minimizes societal costs. To achieve

this, current electricity tariffs – the prevalent mechanisms that economically connect

electricity users and technologies to the rest of the system – need to be analyzed and

updated for the era of integrated energy systems. Electricity tariffs can be seen as

“[...] the nervous system of the power sector, helping coordinate the diverse inter-

ests of the dispersed actors engaging with the world’s most complex machine — the

power grid.” (Burger, 2019, p. 21). More concretely, tariffs are sets of rules that

define how customers are charged for their electricity consumption. The theoretical

tenets of economically efficient tariff design are well-known, yet tariffs applied in

practice mostly remain inefficient. Inefficient tariffs have been shown to strongly

increase societal costs of the electricity system (Borenstein, 2005; Faruqui et al.,

2010; Itron, 2017), even in the ending fossil-fuel era. These effects will be greatly

amplified and complicated with the disruptive uptake and integration of new tech-

nologies: “The growing integration [of energy technologies] increases the importance

3
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of well-designed economic signals and the ramifications of poorly designed signals”

(Pérez-Arriaga and Knittle, 2016, p. 75). Therefore, well-engineered tariffs are cru-

cial for a successful integration of new technologies in the energy system, and for a

successful mitigation of the climate crisis.

2.1 Motivation

Currently, around three-quarters of greenhouse gas (GHG) emissions are caused

by the burning of fossil fuels (International Energy Agency, 2021a). The by far most

important sectors that cause fossil fuel combustion are buildings, transport, and

industry. Their combined emissions have still risen in recent decades and amount

to almost 30 Gigatonnes CO2 as of 2019 (Figure 2.1). To get these sectors to zero

emissions, existing fossil-fuel based technologies and processes must be replaced by

novel ones that allow the usage of CO2 free electricity.

Figure 2.1.: Development of global CO2 emissions from fuel combustion by sector (stacked)
(International Energy Agency, 2021a)

In the building sector, the greatest electrification opportunity consists of con-

verting gas and oil heaters to electric heat pumps (International Energy Agency,

2021c). For the electricity production for heat pumps, roof-top solar photovoltaic

(PV) plants, oftentimes combined with home battery storage systems, will play a

large role. Solar PV, batteries, and heat pumps have already seen a rapid uptake

in recent years. Figure 2.2 displays the installations for the building sector in Ger-

many. After strong growth in recent years, there are about one million solar PV

plants, 300,000 residential batteries, and 1.1 million heat pumps in Germany as of
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Figure 2.2.: Diffusion of various energy technologies in Germany. Own representation,
based on Schulz and Hufendiek (2021). Data from Bundesnetzagentur
(2021), Institut für Stromrichtertechnik und Elektrische Antriebe (2019), Bun-
desverband Energiespeicher (2021), Bundesverband Wärmepumpe (2021), and
Kraftfahrt-Bundesamt (2021).

2020. The growth of adoption will further accelerate, if net zero GHG emissions are

to be reached. For example, if Germany wants to be climate neutral by 2045, it is

estimated that 5.5 million heat pumps need to be installed by 2030 (Kemmler et al.,

2021). Globally, annual sales of around 60 million heat pumps are needed in order

to achieve net zero by 2050 (International Energy Agency, 2021c).

In the transport sector, emissions are mainly caused by passenger road vehicles and

road freight vehicles (International Energy Agency, 2019b). For substituting those,

battery electric vehicles (BEVs) and, for long distance transportation, fuel cell elec-

tric vehicles (FCEVs) powered by electrolytic hydrogen are the key technologies that

enable electrification and thus zero emissions (Ueckerdt et al., 2021; International

Energy Agency, 2021c). The diffusion of BEVs has accelerated in recent years, as

Figure 2.2 shows. Currently, there are around 137,000 BEVs on German roads. Sim-

ilar to solar PV plants, batteries, and heat pumps, BEVs are set to see further strong

growth: 16 million electric cars will be needed in Germany by 2030 on the path to cli-

mate neutrality in 2045 (Kemmler et al., 2021). Worldwide, an estimated 1.6 billion

electric cars are needed by 2050 to reach net zero climate emissions (International

Energy Agency, 2021c).
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Figure 2.3.: Diffusion (historical and scheduled) of electrolysis capacity in Germany. Based
on Heymann et al. (2021) and own research (see Table A.1 in the Appendix).

In the energy intensive industry, some processes are difficult or impossible to elec-

trify directly. Here, the use of hydrogen produced by electrolysis with GHG-free

electricity is a key technology to reach climate neutrality (Ueckerdt et al., 2021;

International Energy Agency, 2021c). Installed electrolysis capacity is experiencing

strong growth, reaching an estimated total of 58.7 MW in 2021 in Germany (Figure

2.3). This growth is set to accelerate, with forecasted capacities of 6,500 - 9,500 MW

in Germany by 2030 (Kemmler et al., 2021; SPD, BÜNDNIS 90 / DIE GRÜNEN

and FDP, 2021; vom Scheidt et al., 2022).

Since heat pumps, electric vehicles, and electrolyzers have high electricity de-

mands, they inevitably strongly interact with the electricity system. Depending on

how they are adopted and operated, new technologies can either decrease or increase

grid congestion (Staudt et al., 2018a; vom Scheidt et al., 2022; Salah et al., 2015),

emissions (Huber et al., 2021; Itron, 2017; vom Scheidt et al., 2022), and usage of

renewable electricity (Schuller et al., 2015).

This creates the challenge to analyze current economic mechanisms that impact

the integration of new electricity consumption, generation and storage technologies,

and to update them adequately. The prevalent mechanism for this task is the

electricity tariff. Given the important role of tariffs, there is already a large body

of related research on tariff effects in conventional electricity systems without inno-
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vative, energy-intensive technologies. Well-designed tariffs are known to incentivize

both efficient utilization of existing generation and transmission infrastructure as

well as to send efficient investment signals for new infrastructure (Borenstein, 2005).

On the other hand, ill-designed tariffs can incentivize inefficient adoption of roof-top

solar PV (Simshauser, 2016), increase costs for society (Imelda et al., 2018) and

increase emissions (Itron, 2017), thus significantly hindering the energy transition.

In terms of economic savings, Borenstein (2005) estimates that improving tariff

design could save 5% - 10% of electricity costs in California in the long run, and

Faruqui et al. (2010) estimate that moving to dynamic tariffs in the European

Union (EU) could save around 50 billion Euro annually.

The substantial effects of tariff design, either positive or negative, can be expected

to multiply with the advent of new, electricity based technologies (Pérez-Arriaga and

Knittle, 2016). Consequently, policy makers as well as energy companies have called

for more consumer-centric electricity markets (European Commission, 2017a,b; Elia

Group, 2021). The European Agency for the Cooperation of Energy Regulators has

explicitly asked the national regulatory authorities to “enable consumers to receive

appropriate price signals” that incentivize system-beneficial integration of new

technologies in the electricity system (European Union Agency for the Cooperation

of Energy Regulators, 2021).

With this thesis, I contribute to our knowledge of the interplay of tariff engi-

neering and technology integration through multiple rigorous quantitative analyses,

and I derive concrete implications and recommendations for residential consumers,

energy retailers, customer advocates, regulators, and politicians. The thesis has a

global scope, with case studies for Germany, the UK, and the USA, and is logically

structured into two parts.

The first part addresses the integration of small-scale energy technologies at the

local level, i.e. the interplay of tariffs and residential heat pumps, electric vehicles,

roof-top solar PV panels, and residential batteries. In the status quo, these technolo-

gies are commonly facing time-invariant “flat” volumetric household tariffs. Such flat

tariffs set inefficient economic signals that obscure the underlying value of electricity,

whereas tariffs with time-variant pricing can increase efficiency and societal welfare
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(Joskow, 2007; Borenstein and Holland, 2003; Desai and Dutta, 2013). Despite their

clear economic benefits for the system, new tariff designs are not popular among

residential customers and electricity retailers in Europe. Only in 11 of 27 states in

the EU, electricity consumers even have the option to choose a real-time or hourly

tariff (European Union Agency for the Cooperation of Energy Regulators, 2021).

In Germany, less than 0.1% of standard load profile customers (which include all

regular residential customers) have the electricity metering infrastructure required

to use dynamic tariffs (Bundesnetzagentur and Bundeskartellamt, 2021). To facil-

itate the uptake of time-varying tariffs, I engineer and evaluate decision support

tools and forecasts that support customers to select and use individually optimal

electricity tariffs, and even bundles of tariffs, smart meters, and energy technologies.

The results uncover substantial synergies of time-varying tariffs and flexible new

energy technologies, which unlock much higher cost reductions for customers than

tariff-switching alone. Besides, with innovative Machine Learning algorithms that

make use of short smart meter data fragments, reliable individual tariff-technology

bundle recommendations can be given to customers one year in advance. To enable

the optimal operation of these technologies once they are installed, I review, design,

and evaluate forecasts that deliver valuable information about short-term future net

electricity loads and serve as crucial inputs for the a priori scheduling of technologies

under different tariffs. In combination, these forecasts and decision support tools

can facilitate the uptake of new technologies and efficient tariffs amongst residential

customers.

Zooming out from the local, residential customer level, the second part of this

thesis addresses the integration of large-scale electrolyzers at the system level and

the effects of electricity tariffs, thereon. On the system level, both the temporal

and the spatial dimension of tariff signals can play a large role. Hence, I engineer

tariffs with different temporal and spatial resolutions and assess their effects on

the optimal hydrogen supply chains, end-use hydrogen costs, and the integration

of hydrogen in the electricity system, in the form of grid congestion management

costs, and CO2 emissions. The results show that the integration of electrolyzers in

the German system under current uniform price regulation causes a large increase in

congestion management costs of over one billion Euro per year, and a large increase

in emissions of about two Megatons (Mt) CO2 per year. This is contrasted with a
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case of efficient spatial economic tariff signals, which incentivize much more system-

friendly integration, causing a decrease in congestion management costs of over one

billion Euro per year (i.e. a delta of over two billion Euro annually), and a decrease

in emissions of over three Mt CO2 (i.e. a delta of over five Mt annually). The

largest cost reduction can be achieved when the tariff contains both spatial and

temporal information. These new findings deliver important information to policy

makers in single-price electricity markets, such as Germany, as they demonstrate

the considerable benefits of spatially differentiating the economic signals for the

thousands of Megawatts of electrolyzer capacity that are to be built in this decade.

In summary, this dissertation proposes, evaluates and discusses efficient tariff

designs and related tools for well-integrated energy systems at the distribution and

the transmission grid level. It thus provides guidance for energy retailers, customer

advocates, regulators, and policy makers to make well-informed decisions that

increase societal welfare. This way, I aim to contribute to a successful transition to

more sustainable energy systems and global climate neutrality.

2.2 Research Questions

The high potential benefits of dynamic tariffs, and their extremely low adoption

rates amongst residential customers motivate the search for a reliable tariff recom-

mendation tool that can foster the uptake of innovative, system-beneficial tariffs by

individual consumers in the easiest way. Therefore, Research Question 1 refers to

the recommendation of tariffs to end-consumers with a naive approach. Research

Question 2 covers the consequences for customers’ electricity bills of such recommen-

dations.

Research Question 1 What is the performance of a naive tariff recommendation

approach based on historical data?

Research Question 2 What are the economic consequences of these recommenda-

tions for customers?

The answers to these research questions regarding statistical performance and eco-

nomic saving potentials uncover the need for recommendation methods that are more



10 Introduction

sophisticated and combine the recommendation of tariffs and technologies. There-

fore, Research Question 3 addresses the performance of Machine Learning methods

for recommending such bundles. Research Question 4 again addresses the financial

consequences for customers that follow the developed recommendations.

Research Question 3 What is the performance of Machine Learning based meth-

ods for recommending bundles of tariffs and technologies to end-consumers?

Research Question 4 What are the economic consequences of these recommenda-

tions for customers?

Tariffs and technologies find the highest synergies when tariffs set the right price

signals while technologies are operated in a cost-optimized fashion. To plan such

operation in advance, proper forecasting of future household electricity demand is

very important. Therefore, the status quo of electric load forecasting is reviewed.

The findings answer Research Question 5. Based on the insights from this review, a

forecasting model is developed and applied to a relevant case study, concerning the

performance of load forecasts at household level. To answer Research Question 6, it

is then analyzed how the quality of such forecasts differs for households with novel

energy technologies.

Research Question 5 What are state of the art methodological approaches for elec-

tric load forecasting in the literature?

Research Question 6 What is the performance of Machine Learning sequence

models for forecasting residential electric loads in the presence of roof-top solar and

electric heating installations?

The above questions target small-scale technologies at the local level. On a larger

scale, and more concentrated, electrolysis technology will be installed. Hydrogen,

produced via electrolysis, can be expected to introduce new large loads to the elec-

tricity transmission grid. Uniquely, hydrogen can be used as a transportable energy

carrier itself. This raises the question whether it should be produced at the locations

of end-use (i.e. next to hydrogen consumers), or at the locations where cheap elec-

tricity is available. To showcase and quantify this trade-off, a comprehensive model
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of the German electricity and hydrogen system in 2030 is developed, and evalu-

ated. First, the supply chain’s volume and its optimal technologies are identified

in response to Research Question 7. To analyze the effect of tariffs in this context,

Research Question 8 is posed. Since hydrogen will also have considerable feedback

effects on the electricity system, Research Question 9 analyzes how the hydrogen

supply chains that emerge under different tariffs impact wholesale electricity prices,

congestion management costs, and emissions.

Research Question 7 What is the cost-minimal supply chain design using elec-

trolytic hydrogen production for the combined hydrogen demand from all major rele-

vant sectors in 2030 in Germany?

Research Question 8 What is the effect of electricity tariffs on cost-minimal lo-

cations of electrolyzers and hydrogen costs?

Research Question 9 How does hydrogen production change electricity wholesale

prices, congestion management costs, and CO2 emissions under different tariffs?

The thesis puts a particular focus on data-driven analyses and employs methods

from mathematical optimization and Machine Learning. Thus, it delivers quantita-

tive answers to most posed research questions.

2.3 Thesis Structure

This thesis is structured as depicted in Figure 2.4. First, after this introduction

(Chapter 2), the fundamentals of electricity markets and tariffs are presented, to

provide the necessary background knowledge for the subsequent chapters. Chapter

3 has two sections. In the first, the principles of wholesale electricity markets are

introduced. In the second, the fundamentals of electricity retail markets and the

status quo of the German retail market are described. In Chapter 4, the fundamentals

of electricity tariffs are outlined. This constitutes Part I.

Then, the two main parts of the thesis follow, structured according to the two

different analyzed levels of the power system. For the end customer level, Part II

covers the design of time-varying electricity tariffs and recommendation solutions

for the integration of roof-top solar PV plants, home batteries, electric cars, and
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Figure 2.4.: The structure of this thesis

residential heat pumps (Chapter 5 and 6). Besides, state-of-the-art data analytics

methods for forecasting of residential loads are reviewed (Chapter 7) and a novel

forecasting method is presented for residential loads that are influenced by solar PV

plants and heat pumps (Chapter 8).

For larger-scale technology at the system level, Part III puts the focus on the role

of spatially differentiated electricity tariffs for the integration of large-scale hydrogen

infrastructure (Chapter 9).

Finally, in Part IV, the answers to the research questions are summarized and the

key contributions of this thesis are distilled (Chapter 10). Furthermore, an outlook

for further research is provided (Chapter 11).

Chapters 5 to 9 rely on or comprise published articles, or working papers. In all

cases, I disclaim this clearly at the beginning of the respective chapters. Within

those chapters, I consistently refer to the authors as “we”, since I collaborated with

fellow researchers for these articles.



CHAPTER 3

ELECTRICITY MARKETS

Electricity is an important good that affects many essential areas of society and

economy (Petermann et al., 2010). Electricity systems can be represented by two

layers: a technical layer and an economic layer.

The stylized technical value chain in the electricity system can be structured into

the following four steps. First, there is the generation of electricity. The electric-

ity is then transported in transmission grids and distribution grids to the point of

consumption.

Electricity generation implies the transformation of non-electric energy – such as

solar radiation, kinetic energy, chemical energy, and thermal energy – into electri-

cal energy. In order to mitigate climate change, the generation technology portfolio

needs to switch from fossil fuel based sources like lignite, hard coal, and natural gas,

to emission free technologies like solar PV, wind, and hydro power. In the German

system, fossil fuel based electricity generation accounted for 40.9% in 2021, renew-

able electricity generation accounted for 45.8%, and nuclear electricity generation

accounted for 13.3% (Fraunhofer, 2022).

Transmission and distribution refers to the delivery of electricity in lines. In Ger-

many, the transmission grid is operated at voltage levels of 380 kilovolt (kV), and

220 kV, whereas the distribution grid is operated at 110 kV or lower. The German

transmission grid is split up into four zones, operated by four different Transmission

System Operators (TSOs). They are responsible for the stable and secure oper-

ation of their grids, which includes performing redispatch measures, when needed

(Bundesnetzagentur and Bundeskartellamt, 2021). The distribution grid has a much

13
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higher number of actors, with 878 Distribution System Operators (DSOs) as of 2021

(Bundesnetzagentur and Bundeskartellamt, 2021). TSOs and DSOs typically have

natural monopolies in their grid area and are therefore regulated by the German

federal network agency “Bundesnetzagentur” (Bundesnetzagentur and Bundeskartel-

lamt, 2015), the equivalent to the Federal Energy Regulatory Commission (FERC)

in the USA.

Most of the final consumers (>99.99%) are connected to the distribution grid:

about 49,137,900 residential customers and 2,856,400 industrial and commercial

customers. Approximately 500 larger industrial customers are directly connected

to the transmissions grid. In terms of electricity consumption, large consumers

with over 2 GWh consumption per year make up 47% of the totally consumed

460.2 TWh in 2021. Medium consumers with annual consumption between 10

MWh and 2 GWh make up another 26%. Small consumers with under 10 MWh

consumption per year represent 27% of the total consumption (Bundesnetzagentur

and Bundeskartellamt, 2021).

Besides this technical layer, there is an economic layer that addresses the respec-

tive transactions of electricity. In unbundled electricity systems, generators typically

sell the electricity to large industrial consumers and intermediaries on the wholesale

market. These intermediaries then resell the electricity to small industrial, commer-

cial and residential consumers on retail markets. Since electricity tariffs are price

mechanisms for end consumers, electricity tariff engineering is mainly connected to

the retail market. However, through intermediaries and feedback effects, tariffs are

also connected to the wholesale markets. Therefore, to lay the foundation for the

research presented in Part II and Part III, this chapter outlines the theoretical fun-

damentals of wholesale and retail markets, provides an analysis of the status quo

of the German and European retail market, and derives consequences for electricity

tariff engineering.

3.1 Electricity wholesale markets

Electricity wholesale markets are designed with the goal of ensuring supply of

electricity in a way that is economically efficient – both in the short-run regarding

dispatch and in the long-run regarding new investments – and reliable. Besides, there
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are sub-objectives such as simplicity, transparency, and fairness (Cramton, 2017).

Two archetypal electricity wholesale market designs have evolved worldwide: The

integrated pool model – e.g. in Argentina, Chile, and California – and the exchange

model – e.g. in Canada, Germany, and Japan (Mathiesen, 2011; Barroso et al.,

2005; Maurer et al., 2018).

At the center of pool systems, there is an Independent System Operator (ISO),

who has the role of both market and system operator and centrally schedules

the dispatch of generation. At high computational expense, the ISO determines

individual prices for each node in the power system for each point in time. These

nodal prices (also called Locational Marginal Prices) explicitly take into account the

local supply and demand for electricity, as well as network constraints and losses.

Therefore, nodal prices correspond to the current value of a unit of electricity at the

corresponding node (Schweppe et al., 1988; Weibelzahl, 2017).

In exchange based systems, grid operations and market operations are decoupled.

Power generators, retailers, and large consumers can trade electricity at the wholesale

market independently of the underlying technical grid constraints within the market

zone. Thus, the market clears with a single price for the entire market zone, rather

than with individual prices for each node. The market design does however consider

grid constraints of electricity lines between the respective zone and its neighboring

zones (Weibelzahl, 2017). In some countries, like Norway and Sweden, regulators

have therefore divided the market area into multiple zones, to cater for structural

regional imbalances (Bjørndal et al., 2013).1

One example for an exchange based system is Europe, where the European Power

Exchange (EPEX) is one of the most important wholesale markets. At the EPEX,

electricity is traded in day-ahead and intraday auctions, besides additional long-

term products and bilateral intraday trading. Day-ahead and intraday auctions

1Note that wholesale market design includes a number of additional considerations that are outside
of the scope of this thesis. These considerations include long-term generation adequacy (i.e.
energy-only markets vs. capacity mechanisms), ancillary services, and forward markets (Bublitz
et al., 2019; Cramton and Ockenfels, 2016; Hogan et al., 2005). These aspects can affect tariff
designs, as, e.g. costs for generation capacity mechanisms and ancillary services can be recovered
via respective regulated charges within consumption tariffs (Burger et al., 2020; Lobato Miguélez
et al., 2008), and retailers can use forward markets to hedge risks.
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are cleared through a single-price auction for each zone (Graf and Wozabal, 2013).

Market zones oftentimes correspond to European countries (European Network of

Transmission System Operators for Electricity, 2022). The resulting uniform price

for the respective market zone is determined by the bid of the marginal generator

in the respective hour (day-ahead market) or 15 minute interval (intraday market)

(Zou et al., 2015). It has been shown that (large industrial) electricity consumers

respond to the temporal variations in wholesale prices (Hirth et al., 2022). However,

the trading process ignores technical grid constraints within the market zone. If the

market outcome leads to a higher power flow on a transmission line than is allowed

according to thermal limits or the regulatory n-1 criterion (Holttinen et al., 2011),

“grid congestion” (Stoft, 2002) occurs, and post-trade corrective actions, such as re-

dispatch by grid operators can be required to maintain grid stability. Depending

on the frequency of such events and the cost structure of the system’s generation

portfolio, such congestion management measures can lead to high costs. For ex-

ample, in the exchange based German system, the demand for electricity and the

supply of electricity with low marginal costs diverge spatially (Egerer et al., 2016;

Staudt and Oren, 2021). This is not reflected in wholesale price signals, leading to

congestion management costs of over one billion Euro in 2020 (Bundesnetzagentur

and Bundeskartellamt, 2021).

This inherent problem of exchange based systems might be further aggravated

with the rise of new large electricity consumers, such as electrolyzers. As uniform

prices do not send any locational signals for the installation of new electricity

consuming technologies, there is the risk of electrolyzers being placed in locations

where they strongly increase grid congestion. If regulators want to stick to exchange

based wholesale market designs – as for example proclaimed by the European

Network of Transmission System Operators for Electricity (European Network of

Transmission System Operators for Electricity, 2021) – other spatial mechanisms

are urgently needed, such as dedicated nodal hydrogen tariffs (see Part III).

Unlike large consumers, residential end consumers mostly do not engage directly

in the wholesale market at this time (European Union Agency for the Cooperation

of Energy Regulators, 2021). Instead, retailing companies work as intermediaries.

They purchase electricity from generators at the wholesale market and then resell it
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to end consumers at the retail market.

3.2 Electricity retail markets

In this chapter, an overview of liberalized retail electricity markets for residential

customers is provided, structured along the established Market Engineering frame-

work (Weinhardt and Gimpel, 2006). Figure 3.1 depicts this framework. It consists

of five main components: The socio-economic and legal environment, the transac-

tion object, the market structure, the agent behavior, and the market outcome. The

market structure itself consists of three sub-components, namely the micro structure,

the (IT-)infrastructure and the business structure.

Economic and Legal Environment

Transaction Object

Market Structure

Micro Structure (IT) Infrastructure Business Structure

Agent Behaviour

Market Outcome
(Performance)

Figure 3.1.: The Market Engineering Framework by Weinhardt and Gimpel (2006)

In the following subsections, each market component is separately defined and

analyzed. For this, current regulatory and academic literature is reviewed, and

expert interviews with 15 stakeholders of the retail market in Germany are evaluated.

These stakeholders include:

• Ten retailers, thereof four local utility retailers, two dedicated green electricity

retailers, and four startups with innovative tariff models

• Two tariff comparison platforms
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• One tariff switching service provider

• Two consumer rights agencies

The interviews were conducted via telephone or in written form, between June

2020 and May 2021. The interview questions are listed in Appendix B. The interview

analysis does not aim to be representative of the stakeholders of the German retail

market. Instead, it aims at complementing the review of literature by identifying key

challenges and opportunities of innovative and conventional retailers, and revealing

trends that might strongly influence the retail market in the future, but are not yet

detectable in the reports published by German and European regulatory agencies.

3.2.1 Economic and legal environment

From a legal, regulatory point of view, two main types of retail electricity markets

can be differentiated. Retail markets can be either liberalized or fully regulated.

This section focuses on liberalized retail markets, which are the prevalent market de-

sign in Europe (European Union Agency for the Cooperation of Energy Regulators,

2021). The idea of liberalized retail markets is to allow and support competition

between multiple retail companies which shall lead to low electricity costs and good

services for consumers (European Union Agency for the Cooperation of Energy

Regulators, 2021).2

Between 2016 and 2019, the EU introduced the Clean Energy for all Europeans

Package, which comprehensively updates the market design of retail markets in the

EU (European Commission, 2016; European Union Agency for the Cooperation of

Energy Regulators, 2021). The package consists of eight laws, i.e. four regulations

and four directives. For retail markets, the most relevant directive is Directive (EU)

2019/944 16 (European Commission, 2019).3

This directive recognizes supplier switching as one of the key issues in the current

retail markets in the EU and therefore proclaims that by 2026, the technical process

2For fundamentals of regulated retail markets and companies, see Bonbright (1961), for a current
perspective see Pérez-Arriaga and Knittle (2016).

3Note that the directive stipulates further rules that are not discussed here, as they are not the
primary focus of this thesis, e.g. referring to consumer protection and energy poverty.
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of switching one’s retailer must not take longer than 24 hours. This will be a consid-

erable reduction compared to the current regulation that requires switching within

three weeks (European Union Agency for the Cooperation of Energy Regulators,

2021). Therefore, this measure will reduce transaction costs for consumers and is

thereby likely to increase switching rates and thus competition in the retail markets

(European Commission, 2019). Faster switching procedures will require retailers to

update their internal administrative processes. This can be a challenge for retailers,

as one interviewed retailer calls for less bureaucracy around the switching process,

and claims that they already face non-trivial transaction costs behind the scenes for

switching customers (Expert 9).

Interestingly, some customer advocates and tariff comparison platform providers

in Germany claim that currently, large energy retailers would try to hinder

customers to switch retailers (Expert 3) and that frequently, retailers would not

meet switching deadlines and delay switching processes (Expert 15). This would

harm the customers and therefore, non-compliant retailers should be penalized

more (Expert 15). Other stakeholders state that there are many good laws, rules,

and court decisions in the German retail market that define how retailers should

treat customers. However, they see that administrative authorities do not control

rigorously enough, and call for higher financial penalties, for example, in the case

of non-transparent price increases (Expert 10). In general, multiple stakeholders

urge regulators to provide more market transparency for consumers, in order to

guarantee an open, fully liberalized retail market.

Increasing information transparency for consumers is also demanded by the laws

adopted as part of the Clean Energy for all Europeans Package. Amongst oth-

ers, consumers’ electricity bills shall contain information about actual electricity

consumption, comparisons with past consumption levels and with average users,

the current price and a breakdown of this price, contact information for consumer

organisations, supplier information, complaint services, and switching information

(European Union Agency for the Cooperation of Energy Regulators, 2021).

To further improve transparency, Directive (EU) 2019/944 16 stipulates the need

for tariff comparison tools: “Member States shall ensure that at least household

customers [...], have access, free of charge, to at least one tool comparing the offers
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of suppliers, including offers for dynamic electricity price contracts.” (European

Commission, 2019). Such tools might be especially beneficial for customers who

currently have a tariff contract from a primary supplier (“Grundversorger”), as

default tariffs are oftentimes overpriced, as interview Expert 13 notes. However,

cheaper retailers that aim for very competitive low offers might pose other risks

for end consumers. European retailers that buy electricity at the wholesale market

currently face extraordinarily high purchase prices (Bundesnetzagentur, 2022).

These uncommonly high purchase prices have increased financial pressure on

retailers that struggle to serve their end customers under long-term fixed price

contracts. In Germany, 39 retailers – often smaller “discount” suppliers with

particularly competitive offers – stopped operation in 2021, oftentimes referring

to high wholesale prices (Groeneveld, 2022). Therefore, the current economic

environment of retail markets reveals that the widespread retailer business model

based on price competition, high sign-up bonuses, and low margins (as uncovered in

Subsection 3.2.4) bears risk and indicates that other business models (as presented

and discussed in Subsection 3.2.3) might be favorable in the future. The German

Minister for Economic Affairs has recognized this and proclaims that the discounter

retail business model is not resilient and that new regulation is needed to avoid such

situations in the future (Matthes, 2022).

Another major trend surrounding retail markets is the increasing diffusion of

smart meters. In this regard, Directive (EU) 2019/944 16 reiterates that “Member

States shall ensure the deployment in their territories of smart metering systems that

assist the active participation of customers in the electricity market.” (European

Commission, 2019). This topic seems to be one of the major pain points for

innovative retailers in Germany. Several stakeholders called for less strict regulation

regarding the roll-out (Expert 1, 2, 14). They state that currently, the expenses

and waiting times for certifications of software and hardware exceed the utility of

the new smart meters (Expert 2). Improved regulation is hoped to facilitate the

roll-out of advanced metering infrastructure, to reduce costs (Expert 2) and thus

to enable innovation (Expert 14) and innovative business models (Expert 5). One

expert complains that because of the high number of regulations and requirements,

the first smart meter gateways could not be certified (Expert 1). With less strict
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regulation, more retailers might offer innovative tariff models, which would facilitate

the energy transition, says one of the few retailers who offers real-time pricing

(RTP) tariffs today (Expert 1). These new innovative business models are also

needed to convey the usefulness of smart meters. One consumer rights agency does

not see the usefulness of smart meters right now and thus is hesitant regarding

a quick roll-out of more expensive smart meters for residential customers (Expert 13).

A point that is often raised in the interviews is high bureaucracy. Multiple

retailers specifically call for simplifying the German law for renewable energy

(Expert 4, 7, 9), as well as reducing bureaucratic effort in the retail market in

general (Expert 7, 9). Besides, stakeholders call for updating the legal environment

regarding regulated parts of electricity tariffs. Specifically, they ask for re-designing

grid tariffs to improve the integration of distributed generation capacity, enabling

the establishment of new products like the marketing of flexibility options, and

integrating prosumers in a way that relieves the distribution grid (Expert 2).

Moreover, they request emission certificate prices that reflect the externalities of

electricity generation (Expert 6), reduction of charges and fees (Expert 8, 11), and

changes to the current fixed feed-in tariffs for residential solar PV panels that enable

more innovative business models for small-scale electricity generators (Expert 5).4

In summary, the stakeholder interviews uncover numerous regulatory hurdles for

reliable and efficient retail markets. Some of those are addressed by the current EU

Clean Energy for all Europeans Package. The announced changes to the legal frame-

work in EU retail markets aim to simplify retailer switching, increase availability

of comparison tools, and strengthen the diffusion of smart meters. In combination,

these trends can be expected to facilitate the uptake of dynamic tariffs in retail

markets. Attention should be given to the administrative effort of retailers, who

already complain about high levels of bureaucracy that might be further increased

with additional laws.

4Notably, one retailer requested the undoing of the unbundling of retail and generation companies
(Expert 11).
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3.2.2 Transaction object

The transaction object of retail markets is electricity. Electricity is physically a

homogeneous good. Nevertheless, the contracts between retailer and consumer can

further specify how this good is priced, where it comes from, which technical prop-

erties it has, how associated risks are allocated, and what infrastructure is required

or supplied for the contract (Salah et al., 2017). These criteria are subject to the

respective contract under which the good electricity is provided to the consumer and

they are therefore discussed in more detail in the following Subsection 3.2.3

3.2.3 Micro structure

The microstructure defines the market mechanism, under which resources are allo-

cated and priced (Dauer et al., 2017). In the context of retail markets, electricity

tariffs are the prevalent micro structure.

Tariffs can be differentiated regarding various criteria: pricing, technical prop-

erties, risk allocation, add-on products and services, communication medium, and

give-aways.5

Regarding pricing, tariffs can contain prices with different temporal and spatial

granularity, different timing of price change announcements (a priori vs. real-time),

different calculation concepts (e.g. per-kilowatthour (kWh) billing vs. fixed flat

rates), and different calculation units (paying for kWh vs. paying for km travelled

with an electric vehicle (EV)). The most prevalent tariff type in Europe and in

many other geographies worldwide, is the Flat tariff with a time invariant per-kWh

price (European Union Agency for the Cooperation of Energy Regulators, 2021; U.S.

Energy Information Administration, 2021). Alternatives with time-varying prices are

time-of-use (TOU) tariffs, real-time pricing (RTP) tariffs, and critical peak pricing

(CPP) tariffs. These tariffs hold large potential system-benefits, as they better reflect

the actual value of electricity (see Chapter 4 for details on tariff design theory). In

the 28 countries of the ACER 2020 report (EU and Norway), Flat tariffs are available

in all countries, whereas TOU tariffs are only available in 14, RTP in 11, and CPP in

5Besides tariffs offered on the free retail market, there are regulated cheaper social electricity
tariffs for financially vulnerable consumers in some countries (European Union Agency for the
Cooperation of Energy Regulators, 2021).
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Figure 3.2.: Types of electricity tariffs available in the 27 EU states and Norway in 2020
(European Union Agency for the Cooperation of Energy Regulators, 2021)

5 countries (compare Figure 3.2). In the USA, 322 utilities (i.e. 34.89%) offer TOU

tariffs for residential customers, 33 (3.58%) offer RTP tariffs, and 42 (4.56%) offer

tariffs with peak pricing (U.S. Energy Information Administration, 2021).6 Among

those are large ones like San Diego Gas & Electric Co. (with 1,017,718 customers

enrolled), Pacific Gas & Electric Co. (731,254 customers), and Ohio Power Co.

(723,452 customers) (U.S. Energy Information Administration, 2021).

With respect to the technical properties of electricity, tariffs can specify the energy

source (e.g. renewable electricity), the location of generation (e.g. regional genera-

tion or a specific individual generation plant), and power quality (e.g. commercial

or industrial customers that require a certain sensitive voltage interval) (Salah et al.,

2017; European Union Agency for the Cooperation of Energy Regulators, 2021).

Regarding risk allocation, tariff contracts determine if and how retailers or third

parties are allowed to reduce, interrupt, or shift electricity delivery (Salah et al.,

2017).

Regarding add-on products and services, today, electricity tariffs are oftentimes

sold together with tariffs for water, natural gas, heating oil, wood pellets, and district

heating (Bundesnetzagentur and Bundeskartellamt, 2021). In the future, tariffs can

come with additional metering and communication devices, energy technologies, and

related services. This represents a big trend, as the interviews with the retail mar-

ket experts reveal. The experts expect that in the upcoming years, more and more

retailers will offer not only tariffs, but also additional energy products and services.

6Peak pricing here includes Variable Peak Pricing, Critical Peak Pricing, and Critical Peak Time
Rebate tariffs.
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14 out of 15 interviewed experts see high or very high potential for cross-selling.

For cross-selling, the experts name energy related hardware products, such as smart

meters, PV plants, BEVs, heat pumps, batteries, wallboxes for BEVs, combined heat

and power plants, non-energy hardware products such as household devices, telecom-

munication devices, and tickets for events, as well as services payment solutions for

public BEV charging, device maintenance, and other add-on energy services. This

hints at the emergence of new potential for customers to optimize switching of tariff

together with residential energy technologies.

Furthermore, tariffs can be differentiated by medium of communication between

customers and retailers (e.g. purely digital bills and online customer service), and

give-aways such as monetary sign-up bonuses, or vouchers for other products.

The most frequently offered tariff type in Europe is a Flat, online, 100% green

tariff that offers a give-away such as a sign-up bonus (European Union Agency for

the Cooperation of Energy Regulators, 2021). This is mirrored by the statements

of the interviewed experts. Asked about their impression on tariff characteristics

that are important to the customers, the most frequently mentioned factors were

transparency and understandability (9 mentions), simplicity (7), price guarantee

(6), the origin and source of electricity (5), and the quality of service and the digital

customer experience (5). Further mentions are contracts that are short and flexibly

terminable (4), trust and fair treatment (3), available cooperations with hardware

suppliers (1), customized tariffs (1), volume and frequency of pre-payments (3), and

data security (1).

As a specialty of some retail markets’ micro structure, there is a default alloca-

tion, meaning that customers have a default tariff assigned to them based on their

location (“Grundversorgung”). This default takes effect, e.g. when customers move,

or when customers cannot find another retailer willing to supply them (e.g. due to

their credit history) and ensures that every citizen has access to electricity. However,

these default tariffs from the primary suppliers are often more expensive. In Ger-

many, residential customers supplied with the default tariff paid on average 33.80

ct/kWh in 2021, whereas they paid 31.89 ct/kWh for non-default tariffs from the

primary supplier, and 32.70 ct/kWh for tariffs from other retailers (Bundesnetza-
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gentur and Bundeskartellamt, 2021). Hence, residential customers with an annual

consumption of 3,500 kWh, who are currently supplied under a default tariff could

save about 67 Euro per year on average by switching their tariff (Bundesnetzagen-

tur and Bundeskartellamt, 2021). Some retail experts claim that default tariffs are

overpriced (Experts 6 and 13). To lower prices in default tariffs, two experts pro-

pose changes to this aspect of the current micro structure of retail markets: Either,

primary suppliers could be randomly assigned to customers from a pool of retailers

(Expert 10), or the role could be auctioned off every five years (Expert 13).

3.2.4 Business structure

The business structure comprises the business model and the pricing model, as well

as explicit transaction costs (such as trading fees in auctions) (Dauer et al., 2017).

In the context of retail markets, this typically includes the revenue margin, sign-up

fees or bonuses, termination fees, and commissions that retailers pay to comparison

platforms, switching service providers, and partnering companies for bringing in

customers.

Since historically, retailers only sold the homogeneous product electricity, many

retailers aim for price leadership and use sign-up bonuses as a key measure. In Ger-

many, the average sign-up bonus in 2020 was 56 Euro for a non-default tariff contract

with the primary supplier and 70 Euro for a tariff contract with another retailer (Bun-

desnetzagentur and Bundeskartellamt, 2021). Some retailers would deliberately offer

high sign-up bonuses and later increase prices to improve their margins, hoping that

customers would not switch again, says one interviewed expert (Expert 5). However,

some experts see a convergence, where too many retailers aim for price leadership

(Expert 12) and some customers have learnt to switch regularly to take advantage

of high bonuses (Expert 5, 8, 12). The intensive level of price competition might

be one of the key reasons why numerous retailers filed for bankruptcy during the

wholesale price rally in late 2021 (Groeneveld, 2022).

Termination fees are forbidden in many European countries by law, except for

very specific cases. For example, in Germany, a non energy specific law applies that

forbids companies to include contractual penalties for the termination of a contract

in their terms and conditions. Only in the case of an early termination of the contract
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before the end of the duration period specified in the contract, it may be legal to

charge the resulting “damages” to the consumers (European Union Agency for the

Cooperation of Energy Regulators, 2021).

For most retailers, partnerships with other companies play a big role for sales

(Expert 1, 2) and are expected to further gain importance (Expert 4, 9, 11, 12,

13, 15). Types of partners include hardware providers for smart meters, solar PV

plants, or mobility (Expert 1, 2, 4, 12), but also sales partnerships with cinemas,

sustainable supermarkets, sports clubs, and public transport companies (Expert 6,

9), as well as energy service providers for energy efficiency certification, insurance

etc. (Expert 11). Other retailers report that they have partnerships, and currently

see limited direct impact on sales (Expert 5, 6), but a high impact on reputation

building (Expert 5). This indicates that commissions might become increasingly

important as the number of partnerships for retailers will rise.

3.2.5 IT infrastructure

The retail market’s IT infrastructure contains the hardware and software that is

required in order for markets to function on a technical level (Dauer et al., 2017). It

plays a crucial role in the retail market, as many retailers and comparison platform

providers interact with their prospective customers digitally – either partly (Expert

2, 3, 4, 5, 6, 9, 11, 14), or exclusively (7, 10, 15).

For the selection of tariffs, web portals and mobile applications are needed (Dauer

et al. (2017), Expert 2). In terms of software, this requires, amongst others, data

bases of offered tariffs (both for retailers and for platforms) and payment applica-

tions. In terms of hardware, this requires (web) servers and consumer end devices

(computers, smart phones).

Once tariffs are selected, IT infrastructure is needed for metering and communica-

tion between retailer and customer. For instance, smart meters, adequate communi-

cation protocols, encryption mechanisms and firewalls are needed to ensure reliable

system operation (Dauer et al., 2017).

Notably, standards for hardware and software can support the integration of dif-

ferent devices and technologies (Dauer et al., 2017). However, too strict certification

processes can also slow down the adoption of new technologies, as the example of
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the German smart meter roll-out demonstrates (see Subsection 3.2.1).

3.2.6 Agent behavior

Agent behavior addresses the interaction of sellers and buyers on the market and

results in the market outcome. The agents in this context are retail companies and

residential, commercial, and small and medium industrial electricity customers. The

participation of residential customers in the market can be most directly seen in their

supplier switching behavior (European Union Agency for the Cooperation of Energy

Regulators, 2021). Cramton (2017) proclaims that “most retail customers are poor

electricity shoppers”. However, it seems relevant to assess if customers can generally

be simply divided into “good” and “poor” customers. To assess the heterogeneity of

customer agents on the retail market in more detail, stakeholders were asked into

which archetypes customers can be categorized according to their experience. The

interviewed experts offer the following classifications:

• The non-switchers, and the switchers

• The non-switchers, the self-switchers, and the assisted switchers

• The technology-oriented, the ecologically oriented, the parsimonious, and the

inert mass

• The parsimonious professionals (“price hoppers”), the ecologically oriented, the

loyal price optimizers (i.e. internal switchers), the passive customers on default

tariffs, the ’switchers by chance’ (for whom switching is done by price concerned

relatives, or who switch spontaneously at public retailer sales booths)

• A range between extreme price hoppers and loyal customers

• The bonus hoppers, the unhurried customers, and the sleepers

• The lazy, ignorant, and careless ones, the parsimonious, and the smart ones

• The eco purists, the frequent switchers, and the careless ones

• The non-switchers on default tariffs, the solid switchers, and the bonus hoppers
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From these answers it can be derived that a variety of agent types exists. These

answers also mirror some of the aspects that customers were reported to value in

a tariff, as described in Chapter 3.2.3, as simplicity, price guarantees, source of en-

ergy, and short contracts. Moreover, they hint at additional aspects that different

customers value, such as low prices, high sign-up bonuses, low switching effort, tech-

nological innovation, loyalty and reliability.

This can lead to very heterogeneous behavior of agents on the market. For market

engineers that aim to improve efficiency of the retail market (by increasing switching

rates), this finding indicates that there might not be one single reason for customers

(not) to switch, but actually, a variety of reasons that take effect. As Schneider

and Sunstein (2017) comment, the switching decision might for example be affected

by behavioral inertia, by a sheer lack of information, the urge for simplicity, or by

a (perceived) bad cost/benefit ratio. In order to switch away from their current

tariff, consumers must gather information, weigh numerous tariff options, and fill

out contracts. In addition, humans often “perceive a default to be the recommended

option”, especially when they are “unfamiliar with the respective context” (Schneider

and Sunstein, 2017).

To this end, tariff recommendation tools appear as a key mechanism for reducing

biases and transaction costs, and thus facilitating tariff switching. An interviewed

customer rights agency confirms this, stating that transaction costs would certainly

influence the probability and frequency of switching, and that comparison tools can

help reduce transaction costs by reducing search costs. Therefore, that customer

rights agency generally encourages customers to use such tools. However, existing

comparison tools seem insufficient, as the majority of customers are not using them

(compare Chapter 3.2.7), they rarely include dynamic tariff offers, and seem not to

substantially simplify tariff comparison (European Union Agency for the Coopera-

tion of Energy Regulators, 2021). Moreover, current implementations of such tools

lead to new problems, as they do not always present tariffs in a consumer-friendly

way. For example, if many settings have to be set up by the platform user, the

complexity of switching can still be high. Moreover, if tariff advertisements are dis-

played above the actual search results, disguised as a very good search result, this

can mislead consumers (Expert 13).

In summary, tariff recommendation tools seem to be desperately needed, but cur-
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rent implementations are not fully adequate and sufficient to motivate large shares

of residential customers to switch, and moreover switch to system-beneficial time-

varying tariffs.

3.2.7 Market outcome

The market outcome constitutes the result of the market’s economic and legal envi-

ronment, its market structure and the agent behavior. It can be measured by various

indicators and enables evaluation and comparison of markets. For this thesis, elec-

tricity retail markets are evaluated regarding their competitiveness and efficiency.

High competitiveness and efficiency are thereby characterized by three indicators,

namely a high number of participants, low market concentration and power, and a

high rate of transactions, i.e. switching of supplier.

Number of retailers

In European electricity retail markets, the number of nationwide participating re-

tail companies varies strongly by country. Most retailers exist in Spain and Italy,

with 292, and 175 active nationwide suppliers, respectively. On average, 47 nation-

wide retailers of electricity exist in EU countries. In most countries, the number

of retailers has increased from 2019 to 2020. Exceptions are, e.g. Great Britain,

and Finland (European Union Agency for the Cooperation of Energy Regulators,

2021). In Germany, customers could on average choose from 162 retailers (142 for

residential customers) per grid area in 2020, a small increase from 156 (138) in 2019

(Bundesnetzagentur and Bundeskartellamt, 2021). The number of retailers therefore

indicates sufficient competition in the German retail market. This is also the opinion

of one interviewed customer rights agency that explicitly proclaims that there is a

sufficient number of retail companies (Expert 13). However, only three retailers offer

tariffs with dynamic pricing (Bundesnetzagentur and Bundeskartellamt, 2021).

Market concentration and market power

One relevant metric for market performance is the degree of market concentration.

Low market concentration is generally desirable, as it limits the ability of single actors

to exercise market power, and encourages innovation and good customer service
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(European Union Agency for the Cooperation of Energy Regulators, 2021). Two

common measures for market concentration are the Herfindahl-Hirschman Index

(HHI) and the Concentration Ratio (CR).

The HHI equals the sum of the squared market shares of all market participants,

multiplied by 100 (Rhoades, 1993). In the electricity retail market, the market share

of a company can be regarded as the number of that company’s electricity metering

points, divided by all metering points in the residential electricity retail market. The

European Union Agency for the Cooperation of Energy Regulators (2021) defines

an HHI above 2,000 as an indicator for a highly concentrated market. As of 2020,

one third of European states had low concentration levels, and two thirds had high

concentration levels. In most countries, the HHI has decreased between 2018 and

2020. Especially high HHI values are observed in Latvia, Hungary, and Luxemburg.

The HHI is lowest in the Nordic countries Norway, Sweden, and Finland.

Another common measure is the CP, the sum of the market shares of the largest

companies in the respective market. For example, CP3 stands for the aggregated

market share of the three largest companies in a market. In Europe, the CP3 varies

between 38 and 100 depending on the country and is generally highly correlated

with the HHI. In Germany, the CP4 is reported by the Bundesnetzagentur and

Bundeskartellamt (2021). In 2020, the CP4 was 42.8%, indicating some, but no ex-

treme market concentration. The Bundesnetzagentur and Bundeskartellamt (2021)

proclaims that no single retailer has a dominant market position.

Furthermore, one interviewed retailer proclaims explicitly that they did not see

any signs of cartels (Expert 6).

Switching rates

The annual switching rate of consumers is another important indicator of efficiently

functioning retail markets. In Europe, switching rates differ strongly between coun-

tries. In 2020, the highest (“external”) retailer switching rates, i.e. 21%, existed

in Belgium and Norway. The lowest external switching rates could be observed in

Hungary (0.2%) and Poland (0.7%) (European Union Agency for the Cooperation

of Energy Regulators, 2021). This indicates that there is still large potential for

increasing switching rates and thus the efficiency of the retail markets in Europe. In
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Germany, 62% of customers are still with their primary supplier (Bundesnetzagentur

and Bundeskartellamt, 2021).

Internal switching rates, i.e. the share of customers switching from one tariff

to another tariff offered by the same retailer, can differ from external rates, and

range from 0.9% in Luxembourg to 25.2% in Romania. Overall, switching rates

tend to be higher among consumers with higher electricity consumption (European

Union Agency for the Cooperation of Energy Regulators, 2021). This might hint at

the fact that higher financial savings potential motivates more customers to switch.

While in some countries, switching rates rose from 2019 to 2020, in others, rates

declined. No overall European trend can be observed (European Union Agency for

the Cooperation of Energy Regulators, 2021).

In Germany, 10.9% of residential customers switched their retailer in 2020, an

increase of one percentage point, compared to 2019. Another 3.6% of customers

switched to a new tariff, but stayed with their retailer (Bundesnetzagentur and

Bundeskartellamt, 2021). Still, a majority of electricity is consumed via tariffs from

the primary supplier - 25% from the default tariff and another 37% from other tariffs

offered by the primary supplier (Bundesnetzagentur and Bundeskartellamt, 2021).

Interestingly, the interviewed experts see a generally well functioning retail market

(Expert 13), with high competition and low margins (Expert 9). However, multiple

experts note one big exception. That exception concerns primary suppliers who

still have many customers, despite above-average pricing. One retailer contemplates

that this might be because some customers are too lazy to switch or do not want

to occupy themselves with the task of switching (Expert 6). One customer rights

agency mentions that this is to the customers’ own disadvantage, as default tariffs

are oftentimes overpriced (Expert 13). To increase competition, the primary supplier

role could be auctioned off, or randomly assigned from a pool of retailers in fixed time

intervals (Expert 10, Expert 13). This could increase competition among retailers

for customers, who are on default tariffs and improve the overall efficiency of the

market.

3.3 Summary

Summing up the results of Chapter 3, five key points become evident. First, due to

the uniform pricing wholesale market design in Germany and many other European
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countries, end-consumer electricity tariffs do not contain spatially differentiated en-

ergy price components, which can have negative effects on grid congestion and costs.

Second, retailers need to innovate and diversify their business models, e.g. through

cross-selling, as the retail market is highly competitive and mere price competition

with low margins currently drives bankruptcies. Third, there is a prevailing lack

of time-varying tariff offers for residential customers. Fourth, residential customers

need to be better supported in switching tariffs and retailers. For this, new kinds of

recommendation tools are needed, as existing tools are often insufficient. Fifth, once

tariffs are adopted, continuous engagement of customers, e.g. through automated

response to price signals, is needed in order to unlock the potential of consumer-

centric electricity markets, as envisioned by the EU. These insights motivate the

development of new solutions that make it easier for customers to switch to and use

time-varying tariffs, as well as create new business opportunities for retailers based

on time-varying tariffs. Such solutions are presented in Part II. The role of spatial

tariffs in integrated energy systems is later investigated in Part III. The subsequent

Chapter 4 presents the theoretical foundations of electricity tariffs and further es-

tablishes the benefits of tariffs that vary temporally, and spatially.



CHAPTER 4

ELECTRICITY TARIFF ENGINEERING

An electricity tariff can be defined as a set of rules that defines how individual

customers are charged for their electricity consumption. I define electricity tariff

engineering as the continuous process of analyzing and (re-)designing electricity

tariffs and tariff related products and services with the objective of aligning the

interests of electricity consumers, retailers, and society in a way that increases the

economic efficiency, sustainability, and security of supply of the energy system.

From the system point of view, the tariff is the mechanism that decides how

electricity system costs are distributed amongst all users that are connected to the

system. There are multiple types of costs that have to be recovered. Typically,

five cost categories can be differentiated: Energy costs (for electricity generation,

capacity and ancillary services), network costs (for transmission and distribution

grids), charges and levies for renewable energy subsidies, other energy related taxes

and charges, and value added tax (European Union Agency for the Cooperation of

Energy Regulators, 2021).

In many countries, e.g. most countries in Europe, the energy costs category makes

up the largest share in residential electricity tariffs (European Union Agency for

the Cooperation of Energy Regulators, 2021; Pérez-Arriaga and Knittle, 2016). In

liberalized retail markets, energy costs are the one category that varies from retailer

to retailer, and thus is the one category that customers can influence by switching

to a different retailer.

33
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For these two reasons, this thesis focuses primarily on energy costs.7 Energy

costs in general fluctuate over time and space because of changes in marginal power

generation, the physical laws of electric flows in transmission and distribution grids,

and the technical requirement of balancing electricity supply and demand at all

times and locations (Schweppe et al., 1988). The economically efficient energy price

can be defined as the short run marginal value of electricity at a given location

at a given time, adjusted for network losses, congestion, and the potential for

scarcity. These so-called Locational Marginal Prices (also known as nodal prices)

reflect variations of the value of the marginal unit of electricity at different times

and locations that are caused by changes in demand and supply, and the physical

layout of the grid. If these prices are not passed on to consumers, but instead

blurred in a linear (“Flat”) per-kWh charge, the outcome will be economically

inefficient (Joskow, 2007). While more beneficial outcomes can be achieved by

tariff designs employing LMPs, they have some drawbacks, as they are complex

to calculate, contain increased risks for investors, and face political opposition.

Therefore, nodal prices historically have often been approximated by uniform or

zonal time-varying tariffs, in the form of RTP, TOU, and CPP. Notwithstanding

the lacking spatial granularity, those time-varying tariffs can considerably improve

economic efficiency compared to Flat tariffs, by incentivizing customers to adjust

their consumption in a system-benefiting way, based on the prices they see (Burger

et al., 2020; Burger, 2019). For example, higher prices during certain times can

motivate customers to reduce their demand (Faruqui et al., 2017), thus reduc-

ing the system peak and capacity costs (Faruqui et al., 2010). In the following

paragraphs, these three most common types of time-varying tariffs are characterized.

In contrast to a Flat tariff, in which the energy price is constant, Time of Use

tariffs have energy prices which vary by time of day, and in some cases by weekday

or season (European Union Agency for the Cooperation of Energy Regulators, 2021).

TOU tariffs are proxies of the more granular RTP, as they typically have fewer price

variations. The second key difference is that unlike RTP tariffs, TOU prices are set

in advance, with no further real time adjustment. Once prices have been determined,

7For two recent dissertations with a focus on other cost categories, the interested reader is referred
to Burger (2019) and Schittekatte (2019).
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Figure 4.1.: Archetypal Flat tariff and TOU tariffs

they are valid for a longer period of time, until the regulator chooses to review them

(Faruqui and Palmer, 2011). On the one hand, the a priori fixing and the lower

temporal granularity decrease economic efficiency (Borenstein, 2005). On the other

hand, these characteristics lead to TOU tariffs being perceived as simpler and less

risky than RTP and CPP (Faruqui and Palmer, 2011). Another benefit of the TOU

tariff is that it can be implemented with less complex information and communication

technology. These might be reasons why TOU tariffs are the most widely used of

all time-varying tariffs. In some European countries, such as Italy, Croatia and the

Netherlands, the majority of residential customers are using a TOU tariff (European

Union Agency for the Cooperation of Energy Regulators, 2016). Figure 4.1 shows

a typical example of two TOU tariffs - one with two (TOU-2), and one with three

different price periods within a day (TOU-3). In general, TOU tariffs with any

number of price levels could be implemented, but a limited number of price levels

maintains a certain simplicity and understandability.

Unlike TOU tariffs, Real-time pricing tariffs are typically derived directly from

wholesale energy prices and thus change every 15 - 60 minutes (see Chapter 3). Fig-

ure 4.2 shows an exemplary RTP tariff with an hourly resolution. RTP tariffs send

more economical efficient tariff signals than TOU, CPP, and Flat tariffs, because

they better reflect the actual wholesale electricity prices. In fact, for the PJM mar-
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Figure 4.2.: Archetypal Flat tariff and RTP tariff

ket in the US, Hogan (2014) found a “substantial difference in efficiency between

even the best TOU design and RTP”. However, human behavioral biases can affect

actual electricity consumption decisions. Inattention, decision fatigue, present bias

or hidden costs could lead to customers not responding to RTPs as neo-classical

economics would expect (Schneider and Sunstein, 2017). Besides, transaction costs

(e.g. for smart meters, or for planning ahead and manually turning on household

appliances in times of low prices) can be higher than the resulting savings. Since

TOU tariffs have less volatile prices and price levels are fixed for typically at least a

year, they can actually lead to similar, or even higher economic efficiency in practice,

under some assumptions (Schneider and Sunstein, 2017).

Critical peak pricing tariffs commonly use a baseline Flat, or TOU energy price

in combination with peak prices during extremely critical periods (Hu et al., 2015;

Burger et al., 2020). Those peak prices are typically announced on short notice,

e.g. 24 hours ahead of the critical event period. Critical periods only occur a few

times per year and prices can be “several multiples” of the off-peak price (Faruqui

et al., 2017). Figure 4.3 exemplifies a CPP structure in which a peak price is set at

5-7pm on a peak event day, with a peak to off-peak ratio of 5. Since peak prices lead

to higher revenues for the utility during critical hours, the price for the rest of the

hours is typically lower than on a standard Flat tariff (Burger et al., 2020). CPP

tariffs give especially strong incentives for demand reduction in critical hours. They

typically induce a larger demand response from residential customers than TOU

tariffs. Faruqui et al. (2017) perform a meta-analysis of 63 dynamic pricing pilots
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Figure 4.3.: Archetypal Flat tariff and CPP tariff

from nine countries on four continents. They find that peak reduction increases

with the peak to off-peak ratio. During peak events, CPP tariffs have a significantly

higher peak to off-peak ratio than TOU tariffs. This can lead to overall greater

demand adjustments, bill changes and socio-economic impacts.

To summarize, Figure 4.4 displays the design options for electricity tariffs, regard-

ing their temporal and spatial granularity. Whereas the spatial dimension is typically

subject to central regulatory decisions, the decision about temporal granularity is

– within regulatory limitations – up to retailers and consumers in liberalized retail

markets. In the spatial dimension, design options are single-zone prices, multi-zone

prices, and nodal prices. In the temporal dimension, design options are flat, invari-

ant prices, time-of-use prices, critical peak prices, and real-time prices. This thesis

addresses both dimensions, i.e. the temporal dimension in Part II, and the spatial

dimension in Part III.

Past tariff design research has robustly established the theoretical efficiency bene-

fits of higher temporal and spatial granularity of the energy components in electricity

tariffs, compared to prevailing Uniform Flat tariffs. Moreover, empirical studies have

confirmed that consumers have positive price elasticities and that a widespread use

of economically efficient tariffs has system-beneficial effects.

Yet, the status quo review in Chapter 3 uncovers that this potential is not captured

in practice. This calls for new solutions in the field of electricity tariff engineering.

Tariffs and tariff related tools need to be updated to better align the interests of
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Figure 4.4.: Design options for the energy component of electricity tariffs

electricity consumers, retailers, and society in integrated energy system and unlock

their great potential regarding societal costs, sustainability, and security of supply.

To facilitate the proliferation and use of time-varying tariffs, the customer-focused

Part II of this thesis develops tools that foster adoption of such tariffs, and tariff

based demand response.



Part II.

Customer Level





INTRODUCTION TO PART II

As outlined in Part I, residential customers are becoming a more important part

of the electricity system due to the electrification of private energy consumption,

which further increases the importance of electricity tariffs to steer system-efficient

consumption. The proliferation of innovative, economically efficient tariffs for resi-

dential customers can yield considerable system benefits (see Chapter 4). However,

in liberalized electricity retail markets, tariffs are selected by the individual cus-

tomer, and adoption rates of time-varying tariffs and smart meters are still low (see

Chapter 3).

Hence, it is important to research methods, which enable residential customers

to select system-beneficial time-varying tariffs, which are also beneficial for the cus-

tomers themselves. In Part II, I develop decision support tools for tariff selection

(Chapter 5), and for tariff-technology bundle selection (Chapter 6). I also model

optimized automated demand response to tariffs (Chapter 6) and develop net load

forecasting models that can serve as inputs for such optimization (Chapter 7 and 8).
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CHAPTER 5

ASSESSING THE ECONOMICS OF RESIDEN-

TIAL ELECTRICITY TARIFF SELECTION

In this chapter, I assess the economic potential of tariff switching for residential

consumers and evaluate a naive method for selecting the cost-minimal tariff. For

this, I design a set of five time-varying tariffs and one benchmark Flat tariff. By

applying these tariffs to one-year consumption time series data of more than 100,000

customers, I calculate the electricity bills of customers under the different tariffs.

I find that for the majority of customers, bill variations are small, but for a small

number of customers, bills vary considerably. Furthermore, I propose a naive tariff

selection approach based on individual consumption data of one month. Finally, I

assess the economic consequences of selecting a sub-optimal tariff.

This chapter comprises the published article: F. vom Scheidt, P. Staudt, C. Wein-

hardt, Assessing the Economics of Residential Electricity Tariff Selection, 2019 In-

ternational Conference on Smart Energy Systems and Technologies (SEST), 2019.

5.1 Introduction

The transformation of the European electricity sector increases the importance

of residential electricity tariffs -– the prices and charges that residential customers

pay for consuming electricity. In the course of its Clean Energy For All Europeans

package, the EU sets out to strengthen the role of consumers within an increasingly

decentralized system (European Commission, 2016). As part of this, EU legislation

requires electricity providers to offer more time-varying tariff options for residential

customers (de Clercq, 2018; Bundesministerium für Wirtschaft und Energie, 2019).

Simultaneously, current improvements and cost-decreases in advanced metering in-
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frastructure and communication technologies permit real-time metering, price com-

munication and demand response, thus enabling the effective implementation of new

residential tariffs. In the EU, it is estimated that as of 2020, 123 million smart meters

were installed, corresponding to a share of 43% of electricity consumers (European

Union Agency for the Cooperation of Energy Regulators, 2021).

It has been shown that when confronted with efficient time-varying price signals,

households adapt and consume electricity in a more system-beneficial way (Faruqui

et al., 2017, 2010). Large scale application of time-varying tariffs holds the potential

to reduce system costs by several billion Euros in the EU (Faruqui et al., 2010).

Thus, the introduction of new, economically efficient electricity tariffs for residential

customers can make a significant contribution to the transformation of the Euro-

pean energy system. However, while system benefits are positive, each individual

household’s private benefit or loss highly depends on the household’s consumption

profile and the respective tariff. An increasing number of households in the EU

is equipped with digital electricity meters allowing consumption measurements in

real-time (European Commission, 2018). Alas, in locations where households are

free to choose whether to install a smart meter or not, like Germany and Portugal,

installation rates are oftentimes low (European Commission, 2014). Moreover, in

locations where smart meter adoption is mandatory, time-varying tariffs are often

still unpopular (Hu et al., 2015; European Union Agency for the Cooperation of

Energy Regulators, 2016; U.S. Energy Information Administration, 2021). This

shows the need for new methods to support consumers in their tariff selection process.

Several studies on tariff recommendation and selection exist. Ramchurn et al.

(2013) introduce an agent based platform for simulating electricity tariff selection.

The platform forecasts hourly electricity consumption and makes load shifting rec-

ommendations based on individual loads of households. The authors use a Gaussian

process, which combines both long-term consumption data of an average household

and short-term consumption of the individual household. The model is evaluated

on a consumption data set of 18 households. Results show that the model slightly

outperforms two naive benchmarks. The study mentions that the model could be

useful for identifying saving opportunities from time-varying tariffs, but does not

explicitly calculate those.
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Fischer et al. (2013) use the same model and find that in a small sample of ten

households, annual savings between £35 and £391 can be achieved by switching from

a Flat to the cheapest TOU tariff. Savings are predicted based on a three-month

data sample. User interviews indicate that reliability of the recommendations is a

big concern for the participants. This further motivates assessing the reliability of

tariff recommendations in our study.

Ericson (2011) address some retailers’ concern that time-varying tariffs may in-

duce self-selection of consumers who benefit only because they have a well-fitting

consumption pattern, and not because they change their consumption behavior in

a system-benefiting manner. The authors model tariff selection as a function of

compensating welfare measures. The study examines self-selection of customers into

a CPP tariff. The findings indicate that consumption patterns have no significant

influence on selection of the CPP tariff, but customers with higher flexibility are

more inclined to select it. The authors also suggest that informing customers about

the cost saving potentials of new tariffs may lead to an increased self-selection of

price responsive households. This supports the motivation of our work, which is to

quantify the economic risks and opportunities of tariff selections.

Luo et al. (2019) propose an electricity tariff recommender system for residential

customers. From each customer’s data, key electricity consumption features are

extracted. Then, customers with similar features are identified. Last, a tariff is

recommended to each customer, based on the tariff choices of customers with similar

features. The classification method does not consider individual bills, but works

with several simplifications, such as: “Users with large seasonal energy consumption

deviations would prefer to choose the fixed rate plan; otherwise, the users would

prefer the variable rate plan.” The model is evaluated on 1,000 customers and three

tariffs. Results show that the model outperforms a naive benchmark.

In summary, the existing body of literature on one hand demonstrates the

academic interest in the topic of tariff recommendation and selection, and on the

other hand leaves ample space for further meaningful contributions regarding the

development of concrete recommendation methods and evaluation metrics.

To address aforementioned issues, this chapter employs a uniquely large electricity

consumption data set. We design six tariffs based on empirical data. Next, we calcu-
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late and analyze customers’ bills under those tariffs, thus quantifying the potential

individual economic consequences of tariff selection. Finally, we propose a naive

solution for tariff selection under limited information and evaluate its performance

statistically and economically. Thus, this chapter a) assesses the economic conse-

quences of residential tariff selection and b) introduces and evaluates a benchmark

method for tariff selection.

5.2 Data and Methods

The following subsections present the data set used and the tariffs designed for

this case study. The nomenclature for all tariffs is displayed in Table 5.1.

5.2.1 Data

The residential electricity consumption data used in this case study is acquired from

Commonwealth Edison (hereafter: ComEd). ComEd is one of the biggest electric

utilities in the United States of America, serving over four million customers in the

state of Illinois (Exelon, 2018). The data set contains the anonymized electricity

consumption data of 100,170 residential customers for the entire year of 2016. The

electricity consumption is measured with smart meters and reported in 30-minute

intervals. A detailed description of the data set and preprocessing is given in Burger

et al. (2019).

One of the key principles in tariff design is full cost recovery (Bonbright, 1961).

This means that the retailer should be able to recover all its costs through its tariffs.

In order to ensure full cost recovery and to achieve realistic results, we design all

tariffs in this chapter to be revenue neutral compared to the existing ComEd default

tariff. Vertically unbundled utilities who act as electricity retailers can only influence

one component of a tariff directly: the energy costs, which include all costs for

procuring electricity. For ComEd’s residential customers, the energy related costs

account for 41% of total costs. All other tariff components are determined in a

regulatory process (e.g. grid fees) or relative to other components (e.g. electricity

taxes). In this chapter the latter two categories are intentionally kept the same

under all tariffs, because the retailer cannot influence them directly. For energy

costs, which can be influenced by the retailer, this chapter explores three different
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allocation methods, namely Flat, TOU, and RTP.

5.2.2 Flat tariff

Flat tariffs are the most common residential tariff design in many countries (see

Section 3.2). The Flat tariff that we design for this case study is an exact replica

of the actual Flat tariff from the ComEd territory. It allocates energy costs via an

invariant, volumetric $/kWh charge. 95.8% of ComEd’s residential customers were

served under this tariff in 2016.

5.2.3 Time-of-Use tariff

TOU tariffs employ prices, which are set in advance with no further real-time ad-

justment. In Europe, TOU is by far the most widespread version of time-varying

tariffs (see Section 3.2). Opting for a design similar to practice, a three level TOU

design is designed for this case study (TOU-3). Results of TOU tariff calculations

are naturally sensitive to the selection of time periods and price levels during those

time periods. To account for some of this sensitivity, we consider three possible

designs of a TOU-3 tariff. The TOU-3 energy prices are determined based on the

annual average of the hourly load zone LMPs in the ComEd territory from 2016.

These average hourly prices are depicted in Figure 5.1 as black points. By averaging

several of these hourly prices within a certain time period of the day, the TOU-3

energy prices are determined, depicted as colored lines in Figure 5.1. In between the

three versions (TOU-3a, TOU-3b, and TOU-3c), the lengths of the three TOU-levels

(base, shoulder and peak) are varied. Apart from the energy charges, the rest of the

tariff remains unchanged compared to the Flat tariff. In line with all other tariffs in

this chapter, each TOU tariff version is designed in a way that the same revenue as

under the existing Flat tariff is recovered. To reach this goal, the initially calculated

TOU price levels are multiplied by a common revenue factor rf . Thus, the ratio

between the TOU price levels is kept constant. This approach follows related tariff

studies (Borenstein, 2006, 2013). For the three TOU-3 versions, prices are deter-

mined based on the average price within each level, as stated in Equation 5.1, with

real-time price RTP , hour h, and the revenue requirement factor rf .8

8rf is 1.77 for TOU-3a, 1.78 for TOU-3b, and 1.79 for TOU-3c respectively.
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Figure 5.1.: Average hourly ComEd load zone LMPs in 2016 and derived 3-level TOU prices.

pTOU−3,level =

∑

h∈level(
∑

366

d=1
RTPh,d

366
)

|h|level
· rf ∀level ∈ {base, shoulder, peak} (5.1)

Note that with this design, TOU prices are the same on every day of the year. In

addition to the TOU-3 tariffs, a 24-level TOU tariff (TOU-24) is designed. Here, for

each single hour, the average RTP in a month is calculated and set as the respective

energy price in that hour. Therefore, the TOU-24 prices change by hour, but are

the same every day of a month. Again, hourly prices are adjusted in order to reach

revenue neutrality. This is achieved by adding a fixed sum to the volumetric charge,

as shown in Equation 5.2. Hence, the hourly TOU-24 energy price is defined by

Equation 5.2, with RTP as the real-time price, H as the set of all hours h in a day,

D as the set of all days d in a month, M as the set of all months m in a year, and

the revenue requirement adder ra.9

pTOU−24,h,m =

∑

d∈D RTPh,d

|D|m
+ ra ∀d ∈ D, ∀h ∈ H, ∀m ∈ M (5.2)

9ra is 0.02 $/kWh for the TOU-24 tariff.
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Table 5.1.: Nomenclature

p energy price $/kWh
RTP ComEd residential real-time price $/kWh
|h|level number of hours in price level −
rf revenue requirement factor −
ra revenue requirement adder $/kWh
h hour −
H set of all hours h in a day −
d day −
D set of all days d in a month −
m month −
M set of all months m in a year −

5.2.4 Real-time price tariff

RTP tariffs have seen less practical application than other time-varying tariffs (see

Section 3.2). However, RTP tariffs represent a more economically efficient method of

allocating energy costs than TOU, because they better reflect the marginal costs of

generation and consumption of electricity (see Section 4). RTP tariffs thus promise

the largest system benefits. Hence, adequately recommending their adoption is of

high relevance. We base the price of the RTP tariff on the average of the hourly load

zone LMPs in the ComEd territory. An exemplary price profile for one day can be

seen in Figure 5.2.

To this price, a fixed factor is added in order to render the tariff revenue neutral,

as noted in Equation 5.3. Note that unlike the TOU prices, the real-time prices

change both by hour and by day. The energy price of the RTP tariff is defined in

Equation 5.3 with real-time price RTP , hour h, and revenue adder ra.10

ph = RTPh + ra (5.3)

5.2.5 Tariff selection method

Reliably forecasting a household’s savings potential from switching to a time-varying

tariff could incentivize self-selection into those tariffs. Since certain time-varying

tariffs are only available with smart meters, such saving forecasts can in addition

10ra is 0.02 $/kWh for the RTP tariff.
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Figure 5.2.: The hourly load zone average LMP for the 24 hours of January 1st.

incentivize the adoption of smart meters. The limited availability of smart meters

motivates exploring the question of how customers can make well-informed tariff

selection decisions under limited consumption data availability. We propose using

the electricity bill information of one month to determine the cheapest tariff. This

requires high-resolution consumption data for one month. To get this data without

smart meters, various inexpensive technologies can be used by customers or service

providers. Existing solutions rely on webcams, which optically record readings from

analogue electricity meters and optical character recognition software to extract the

data (pixolus GmbH, 2019; Anyline GmbH, 2019). Data from simple digital meters

can be accessed via commercially available infrared receivers. The scenario in this

study is as follows: After recording consumption data for one month, the potential

monthly bills under all available tariffs are calculated. The tariff, which yields the

lowest monthly bill is recommended for selection. To assess the performance of

this naive classification method, we subsequently calculate the customers’ annual

bills under all available tariffs and compare the results. Note that we repeat the

classification for each of the twelve months and average the results for each household.

We then average the results over all households.
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5.3 Results

For this analysis, we are interested in the monthly and annual bills of residential

customers under each of the six designed tariffs. Assuming no short-term demand

response, we calculate the respective bills for each of the 100,170 households. Un-

der the default Flat tariff, customers’ annual expenditures range from $141.14 to

$8,612.92. The mean annual bill is $778.92.

5.3.1 Spread in electricity bills

Next, we quantify the potential individual economic impacts of the tariff selection

decision. From the annual bills, we derive the spread between the most and the least

expensive tariff option for each household. Note that the Flat tariff is included in this

analysis. Both switching to a sub-optimal new tariff and staying with a sub-optimal

(Flat) tariff yields unnecessary costs for customers.

For the majority of customers, only small annual bill differences are identified,

as Figure 5.3 displays. In fact, over 90% of customers have a spread of less than

$25. For a small share of customers substantial absolute differences exist. 9,411

households (equivalent to 9.40%) have a spread above $25. 3.58% (i.e. 3,586

households) have a spread of above $50 and 1.73% (1,732) have a spread above $100

per year.

5.3.2 Tariff selection

The calculated cost spreads show that identifying the cost-minimal tariff can yield

substantial savings for certain customers. Table 5.2 presents the probabilities that a

certain tariff is the cost-optimal tariff for a household, based on the yearly electricity

bill. For most customers (52.38%), TOU-24 is optimal on a yearly basis (column

“TOU-24”, row “Total”). For 26.34% of customers, the default Flat tariff is cost-

optimal. There are comparably fewer cases in which each TOU-3a, TOU-3b, and

TOU-3c are optimal. This is presumably due to these three tariffs being fairly

similar to each other. Besides, Table 5.2 also shows the instances in which a tariff is

identified as cost-optimal based on the monthly measurement. For example, across
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Figure 5.3.: Sorted maximum difference in annual electricity expenditures

all customers, RTP is the cost-optimal tariff in 38.22% of months (row “RTP”, column

“Total”). However, it is only the cost-optimal yearly option for 11.89% of customers.

This indicates that when customers select a new tariff based on information from

only one month, they are prone to select a tariff that is not cost-optimal on an annual

basis. We refer to this as tariff confusion. As visible in Table 5.2, the probabilities

of confusion vary strongly by tariff combination.

Table 5.2.: Probabilities of tariff confusion
Cost-optimal annual tariff

Cost-optimal monthly tariff Flat TOU-3a TOU-3b TOU-3c TOU-24 RTP Total
Flat 0.1435 0.0130 0.0076 0.0083 0.1930 0.0398 0.4051

TOU-3a 0.0006 0.0082 0.0005 0.0006 0.0303 0.0080 0.0482
TOU-3b 0.0024 0.0016 0.0026 0.0003 0.0266 0.0072 0.0408
TOU-3c 0.0027 0.0014 0.0002 0.0020 0.0140 0.0034 0.0238
TOU-24 0.0187 0.0066 0.0029 0.0022 0.0602 0.0092 0.0999

RTP 0.0954 0.0191 0.0085 0.0082 0.1996 0.0513 0.3822

Total 0.2634 0.0500 0.0223 0.0216 0.5238 0.1189 1.000

In order to further assess the naive classifier’s performance across tariffs, we calcu-

late precision (Equation 5.4) and recall (Equation 5.5). We define True Positives as

all cases in which the tariff is correctly recommended by the method. True Negatives

are all cases in which the method rightfully does not recommend a tariff. A False

Positive describes a case in which a tariff is the cost-optimal monthly tariff (method
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recommends this tariff), but not the cost-optimal annual tariff (and therefore should

not be recommended). A False Negative is defined as a case in which a tariff is not

the cost-optimal monthly tariff (method does not recommend this tariff), but is the

cost-optimal annual tariff (should be recommended).

Precision =
#TruePositives

#TruePositives+#FalsePositives
(5.4)

Recall =
#TruePositives

#TruePositives+#FalseNegatives
(5.5)

Table 5.3 displays precision and recall of choosing tariffs based on one month of

information. TOU-24 has the highest precision of all tariffs, due to relatively few

false positives (compare Table 5.2). Flat and RTP have the highest recall.

Table 5.3.: Results of monthly tariff recommendation

Tariff Precision Recall F1-score

Flat 0.35 0.54 0.43
TOU-3a 0.17 0.16 0.17
TOU-3b 0.06 0.12 0.08
TOU-3c 0.09 0.09 0.09
TOU-24 0.60 0.11 0.19
RTP 0.13 0.43 0.20

From a customer’s point of view, both precision and recall are important. High

precision is desirable as falsely selecting a tariff could cause high costs. High recall

is desirable as an undetected optimal tariff leads to missed saving opportunities.

Therefore, we calculate the F1-score, which combines precision and recall as shown

in Equation 5.6. The greater the F1-score, the better a classifier’s performance.

False positives and false negatives penalize the F1-score symmetrically.

F1 =
2 ·Recall · Precision

Recall + Precision
(5.6)

Table 5.3 shows that while TOU-24 and RTP have very different precision (0.60

vs. 0.13) and recall (0.11 vs. 0.43), their F1-scores are similar. The Flat tariff

has the highest F1-score (0.43). The three TOU-3 variants have the lowest F1-score.

Together with the relatively high confusion values among these tariffs (compare Table

5.2, consider conditional probabilities), this result indicates that if a larger number
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Table 5.4.: Median and 95%-quantile of costs of tariff confusion [$/kWh]
Cost-optimal annual tariff

Cost-optimal monthly tariff Flat TOU-3a TOU-3b TOU-3c TOU-24 RTP
Flat 0.0 (0.0) 7.4 (25.7) 3.7 (15.3) 2.8 (12.2) 4.6 (17.7) 8.7 (38.4)

TOU3a 3.0 (10.6) 0.0 (0.0) 0.2 (1.1) 0.2 (1.1) 2.8 (9.5) 4.2 (17.2)
TOU3b 4.1 (12.9) 0.3 (1.5) 0.0 (0.0) 0.6 (2.2) 3.3 (11.0) 4.5 (18.2)
TOU3c 3.8 (12.1) 0.4 (1.9) 0.5 (2.1) 0.0 (0.0) 3.3 (10.8) 4.8 (18.4)
TOU24 5.5 (18.7) 1.3 (5.8) 1.3 (6.3) 1.6 (6.9) 0.0 (0.0) 0.4 (2.4)
RTP 12.1 (29.2) 5.3 (15.1) 6.8 (17.5) 7.7 (17.6) 2.5 (8.7) 0.0 (0.0)

of similar tariffs is available, selecting the optimal tariff becomes more difficult.

In turn, we expect that the more similar tariffs are available, the lower the financial

costs of tariff confusion. Therefore, in a final step, the economic consequences are

analyzed. We calculate the costs of false positives and false negatives for each tariff.

The median value as well as the 95%-quantile value are displayed in Table 5.4. For

example, if the Flat tariff is selected, but the RTP tariff is the actual cost-optimal

annual tariff, the median household affected by this case would face additional annual

costs of $8.7, and the 95%-quantile household would experience additional annual

costs of $38.4. This shows that the economic consequences of tariff selection vary

substantially among households and tariffs. The results for TOU-3a, TOU-3b, and

TOU-3c indicate that if more similar tariffs are available, costs of tariff confusion

decrease.

5.4 Discussion

The findings in this chapter regarding total bill spread are subject to the follow-

ing assumptions. First, we design all tariffs to be revenue neutral for the retailer,

given the consumption profiles of all 100,170 customers. We do this to avoid an

unbalanced data set in which all customers are better off by selecting one dominant

tariff. In reality, retailers would not have this information a priori and therefore,

additional saving opportunities for customers are likely. Second, the tariff analysis

does not consider the effects of demand response and might therefore underestimate

the benefits of time-varying tariffs. It is therefore worthwhile to simulate demand

response in future studies to uncover the true potential of time-varying tariffs (see

Chapter 6). Third, the validity of our findings can be improved by assessing data

sets from other regions, and additional tariffs and input time periods.
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5.5 Conclusion

This chapter contributes to the transformation of the electricity system by

assessing the economic consequences of residential tariff selection. We quantify

the savings potential for individual households. We find that for a share of the

population tariff selection yields substantial economic consequences even under con-

servative assumptions. We present and evaluate an application-oriented approach

for cost-optimal tariff selection based on bill information of one month. Results

show that the performance of this naive classifier differs strongly between tariffs.

The 24-level TOU tariff shows the highest precision. Highest recall is achieved for

the Flat tariff, followed by the RTP tariff. We analyze costs of tariff confusion and

find that the RTP tariff is especially prone to high costs through false selections.

Moreover, our results indicate that availability of more similar tariffs decrease the

performance of the tariff classifier, but also the costs of tariff confusion. The logical

next step for research is therefore to use the methods and results of this chapter

as a benchmark, and to develop more sophisticated tariff selection methods such

as Machine Learning classification algorithms. Another interesting pathway for

future research lays in behavioral experiments to assess under which circumstances

customers follow recommendations.

This chapter shows that the performance of a naive recommendation method dif-

fers between tariffs. The TOU-24 tariff and RTP tariff have the highest confusion

probabilities. For no tariff, the naive approach achieves a precision or recall higher

than 60%, which can limit trust in the recommendation amongst consumers. This

motivates the development of more complex methods to achieve higher tariff recom-

mendation accuracies. Moreover, the results indicate that the economic consequences

of the naive recommendations are small for most customers. The median annual ex-

tra costs for selecting sub-optimal tariffs are in the range of 0.2$ to 12.1$, depending

on the recommended tariff. Wrongfully selecting the RTP tariff leads to the highest

median extra costs. Importantly, the small size of economic consequences is not

caused by the accuracy of the recommendations, but rather by the limited total

difference in electric bills under different tariffs. This encourages future research,

which expands tariff-only recommendations to recommendations of tariffs and asso-
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ciated residential energy technologies in one bundle, which might increase potential

customer savings.

This chapter thus showcases the application of a basic method and fundamental

metrics for individual tariff recommendation and uncovers two directions of promis-

ing future research. These directions are pursued in the subsequent Chapter 6.



CHAPTER 6

A RECOMMENDATION TOOL FOR TARIFF-

TECHNOLOGY SERVICE BUNDLES

Electricity retailers in European markets often face strong price competition and

lately the disruption of their conventional business model, i.e. selling electricity

for a invariant price per kilowatt-hour, through increasing self-generation of their

customers. However, the widespread uptake of technologies such as smart meters,

rooftop solar PV plants, batteries, heat pumps, and electric vehicles by residential

customers also represents the chance for retailers to diversify their portfolio and un-

lock new revenue streams. The major trends for companies in the retail market,

as identified in Chapter 3, include simplifying tariff switching for customers, cross-

selling of hardware, and servitization. To this end, this chapter presents a novel

data-driven model and corresponding case study for the recommendation of ser-

vice bundles of technologies and tariffs to residential customers, based on individual

household characteristics.

The results reveal large saving potentials through such bundles, compared to tar-

iff switching alone. Time-varying electricity tariffs make energy technologies more

financially attractive for many customers, and likewise, flexible energy technologies

make time-varying tariffs more financially attractive. In terms of recommendation

accuracy, the developed Machine Learning recommendation models outperform a

defined naive benchmark clearly. They also enable better savings for customers, on

average. Finally, it is demonstrated that ’collaborative data’, i.e. four week ex-

cerpts of smart meter data that the customers provide to the retailer, improve the

mean accuracy of recommendations. In summary, this chapter thus presents multi-

ple promising methodological and conceptual approaches for retailing time-varying

57
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electricity tariffs in integrated energy systems.

This chapter comprises the unpublished article: F. vom Scheidt, P. Staudt, A

Data-Driven Recommendation Tool for Sustainable Energy Service Bundles, Working

Paper, 2022.

6.1 Introduction

The worldwide transition of energy systems forces electricity retailers to fun-

damentally change their business model. The traditional business model relies

to a large extend on selling electricity for an invariant per-kilowatt-hour (kWh)

tariff. This model is disrupted by new competitors, and the proliferation of rooftop

solar PV and home battery storage systems, with some scholars and practitioners

projecting a “utility death spiral” (Pérez-Arriaga and Knittle, 2016). However, cost

reductions in sustainable energy technologies like PV, battery storage, heat pumps

(HPs), and BEVs, together with improvements in information and computation

technology and novel time-varying tariffs also represent a chance for retail com-

panies. They can enable retailers to diversify their product and service portfolio,

thus differentiating their offer in a highly competitive market and unlocking new

revenue opportunities (compare Chapter 3). For retail customers, tariff switching

commonly comes at the cost of searching information, comparing offers, and filling

out contracts. These costs are set-off by relatively small savings that can be achieved

by tariff switching (see Gottwalt et al. (2011); Arora and Taylor (2016); Zhang et al.

(2019); vom Scheidt et al. (2019) and Chapter 3 and 5). A bundle recommendation

tool can decrease the switching costs and at the same time increase the potential

savings for customers. In the big picture, this can lead to an increased adoption and

use of system-beneficial time-varying electricity tariffs, smart meters, and electric

technologies that substitute fossil fuel based heaters and cars. This can yield large

societal benefits by reducing system costs and emissions (see Chapter 2 and 4).

In summary, electricity retailers, their customers, and society as a whole could

benefit strongly from the combined, optimized sales of tariff-technology bundles.

This poses the challenge to design a corresponding recommendation tool for energy

service bundles that unlocks reliable cost savings to customers and cross-selling

opportunities for electricity retailers.
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To this end, we present a novel Machine Learning classification model for recom-

mending cost-minimal service bundles of technology leases and tariffs to residential

customers. The model uses household characteristics and sparse historical data as

inputs. The preceding labelling of the data set is done based on a smart home

energy management system optimization. We apply this approach to a set of 292

households from London, UK to demonstrate its performance. Our results show

considerable saving opportunities for customers compared to past studies, which

focused on tariff switching alone. The best recommendation model achieves a

mean accuracy of 77% and thus largely improves the accuracy of recommendations

compared to a designed naive benchmark. Most interestingly, we find that the

recommendations can be further improved if customers provide short time series of

their historical load data. This encourages retailers and consumers to collaborate in

finding the best service bundles.

The remainder of this chapter proceeds as follows: In Section 6.2, we provide a

structured overview of related research and identify an important lack of bundle

recommendation research in the energy context. In Section 6.3, we present the

methodology, including the optimization of technology operation under different set-

ups, subsequent label generation, and finally, the classification algorithms used for

recommending service bundles. In Section 6.4, we introduce the data set used in the

case study, including data on electricity consumption, mobility, electricity prices,

and weather. In Section 6.5, we present the case study results. In Section 6.6, we

discuss these results, methodical limitations, and potential extensions to our work.

Finally, in Section 6.7, we summarize the main scientific conclusions and practical

implications for electricity retail managers.

6.2 Related Work

Service bundling describes a marketing strategy in which companies offer a combi-

nation of services in one set. Bundling is used in various industries, including commu-

nication service providers, e-commerce websites, online movie and music streaming

businesses, and video game distribution platforms (Bai et al., 2019; Li et al., 2020).

Compared to single item sale, bundling can lead to increased transaction volume

and benefit both customers and sellers (Bai et al., 2019). Nevertheless, the major-
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ity of recommender research focuses on recommending single products or services,

not bundles thereof (Li et al., 2020; Chen et al., 2019). This is also true for rec-

ommendation research regarding electricity retail markets. Therefore, we structure

this section into two subsections. In the first subsection, we review existing bundle

recommendation research in different sectors. In the second subsection, we zoom in

on the energy sector, where studies have focused on electricity tariff switching and,

so far, neglected bundle recommendations.

6.2.1 Service Bundle Recommendation

Classical bundle recommendation uses customers’ historical purchase data and ex-

ternal data to predict their preference for a bundle of items.

Deng et al. (2014) present a recommendation model for a consumer goods shopping

website. Their model is based on an extended random walk that uses the social

network structure of the website to incorporate the degree of trust between different

users. They find that this approach outperforms existing benchmarks in quality and

speed.

Pathak et al. (2017) address personalized bundle generation and recommendation

on video game distribution platforms. For that, they utilize both data on single item

purchases and data on bundle purchases and combine traditional matrix factoriza-

tion techniques with bundle-specific aspects such as bundle size and item compatibil-

ity. This enables them to make robust recommendations via Bayesian Personalized

Ranking even for bundles that contain items, which are not contained in any of the

training set bundles.

Similarly, Chen et al. (2019) address the issue of limited number of user-bundle

transactions. They present a model for collaborative bundle recommendation based

on Deep Attention Networks. They apply their model to two case studies: music

and books. The authors find that their model outperforms benchmarks and performs

best when a) single item embeddings are aggregated in order to obtain a bundle’s

representation and b) multi-task learning is conducted by integrating user-bundle

interactions and user-item interactions with the goal to overcome the limited number

of user-bundle interactions.

Bai et al. (2019) cover the case of an online retailer that needs to create bundles
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from a wide range of different consumer products in order to then recommend a

personalized list of diverse bundles. The authors present a neural network based

approach for generating and then recommending bundles. Testing their model on

public and industrial data sets, they find that their approach improves precision

while creating highest diversity among recommended bundles, an aspect that can

further increase total transactions.

Ettl et al. (2020) assess data-driven recommendation models for online retail shop-

ping and airline travel booking that include personalized bundle pricing and take

into account the sellers inventory. They find that their models increase revenues

by 2%–7% compared to current industry pricing strategies and their best model

achieves 92% of the revenues of a full-knowledge perfect foresight strategy. More-

over, they find that the largest revenue increase comes from customers with lower

price sensitivities, and that the increase in sales volume depends on the product

category.

Li et al. (2020) present a literature review of personalized bundle recommendation.

They emphasize the increasing importance of bundle recommendation in many peo-

ple’s lives. Besides, they highlight that compared to single item recommendation,

bundle sparsity and cold start issues are specific challenges, since customers usually

only interact with a small number of bundles, which makes it more difficult to train

a well-performing recommendation model.

In summary, multiple studies on service bundle recommendation exist, usually

addressing digital products and services. No study in the energy domain can be

identified. State of the art methods often rely on Machine Learning approaches.

Several studies highlight the cold-start problem of bundle recommendation, which

describes that customers with few or no past transactions cannot receive good rec-

ommendations (Deng et al., 2014). This problem is common in markets with low

purchasing frequency (Backhaus et al., 2010) and thus applies to energy service

bundles.

6.2.2 Energy Service Recommendation

Compared to the markets addressed in past studies, the market for energy ser-

vices has several specific challenges, like a much smaller set of products that can be
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combined, lower purchasing frequency, and relatively high transaction volume per

purchase. These might be the reasons why so far, no study has examined service

bundle recommendation in the context of electricity retailing. Instead, studies of

energy service recommendation research have focused on the question whether cus-

tomers should keep their electricity tariff, or switch. Therefore, we briefly review

these studies in the following paragraphs.

Ericson (2011) investigates the self-selection of consumers into a CPP tariff. The

results indicate that the selection of the CPP tariff depends more on a customer’s

demand response (i.e. their ability to change their electricity consumption behav-

ior in accordance to the tariff) than on their original consumption patterns. This

showcases the need to consider customers’ demand response when recommending

tariffs.

Arora and Taylor (2016) estimate probability densities for residential electricity

consumption and use it to derive electricity cost estimates under different time-

varying tariffs. Their approach enables cost savings for the majority of 1,000 cus-

tomers in a data set from Ireland. Albeit, the magnitude of savings is limited, with

around two Euros per customer over a four week period. The study also neglects

demand response by customers.

Ramchurn et al. (2013) and Fischer et al. (2013) present an agent based plat-

form for electricity tariff selection. They use historical electricity consumption data

from individual households to forecast their hourly consumption, which can then

be used for making tariff switching recommendations. For forecasting, Ramchurn

et al. (2013) use a Gaussian process approach, which slightly outperforms a naive

benchmark that forecasts the mean energy usage from the training data as future

values for the test data. In addition, the authors perform load disaggregation for a

dishwasher and provide load shifting recommendations for this appliance. However,

they quantify neither the financial effects of tariff recommendation, nor of demand

response.

Fischer et al. (2013) use a sample of ten households and find that potential yearly

savings of £35 - £391 can be achieved by customers if they switch their tariff op-

timally. User interviews show important barriers for tariff recommendation. First,

consumers note that the potential savings they could achieve by following the tariff

recommendation system’s advice are not high enough for them compared to the ef-
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fort of switching. Customers said £40-60 per year were too low, but £300 were high

enough for considering switching. Second, manual shifting is perceived as a large

disutility and not worth the effort. Both these points call for an approach that in-

cludes automated control of energy-intensive technologies. Moreover, the accuracy of

the recommendations is a big concern (Fischer et al., 2013). This is particularly im-

portant, since many residential electricity customers are loss-averse (Nicolson et al.,

2017a), which significantly decreases their willingness to adopt time-varying tariffs

(Nicolson et al., 2017a).

To shed more light on the topic, Chapter 5 already analyzed the statistical and

financial effects of switching to time-varying tariffs. The applied approach recom-

mends the cheapest tariff on the grounds of one month of consumption data. The

results show that the reliability of the classifier differs strongly between tariffs, e.g.

achieving few false negatives in the case of the Flat tariff and the RTP tariff. The

cost associated with picking a non-optimal tariff are especially high for the RTP

tariff. In addition, Chapter 5 concludes that more similar tariffs (e.g. different three

level TOU tariffs) are more likely to be confused by the recommender, but the costs

of confusing such similar tariffs are relatively low. This calls for more sophisticated

tariff recommendation methods, e.g. based on Machine Learning.

Luo et al. (2019), Li et al. (2019), and Zhang et al. (2019) propose tariff recom-

mender methods for residential customers based on collaborative filtering, using key

electricity consumption features of customers. Evaluating their models across dif-

ferent data sets, the studies find that collaborative filtering outperforms naive (Luo

et al., 2019; Zhang et al., 2019) and cluster based (Zhang et al., 2019) benchmarks.

The studies do not consider energy intensive low-carbon technologies and note this

as an important direction of future research (Zhang et al., 2019). An important

reason for this is, as noted by earlier studies, the low savings potential of residential

customers without energy intensive technologies (Zhang et al., 2019).

In summary, past energy service recommendation research has focused on recom-

mendations for tariff switching. Studies have shown that savings are often too low

to motivate consumers to switch, if no demand response, or only manual demand

response is considered. This strongly motivates to expand the existing scope of tariff

recommendation to bundles of tariffs and sustainable energy technologies like so-

lar PV, batteries, heat pumps, and BEVs, and to include demand response from



64 A Recommendation Tool for Tariff-Technology Service Bundles

those technologies. This notion is further supported by the finding that the ability

to perform automated demand response has a positive effect on the willingness to

adopt time-varying tariffs (Nicolson et al., 2018). In the case of BEVs, this effect has

been shown to be strongest right after the BEV purchase, which further motivates a

joint recommendation of technology and tariff (Nicolson et al., 2017b). Besides, the

accuracy of recommendations is important, since customers are risk-averse and fear

negative consequences of their choices (Nicolson et al., 2017b).

6.2.3 Research Gap

In summary, the review of related work uncovers a key gap in the existing body of

research. Previous research has not analyzed bundle recommendations in the en-

ergy sector. Multiple studies have focused on tariff recommendation and found that

savings from tariff switching alone are too low to motivate consumers to switch.

Households with energy-intensive technologies however, show higher willingness to

switch tariffs. Thus, it is promising to include energy-intensive technologies and

their automated demand response in the recommendation step, i.e. develop a rec-

ommendation tool for sustainable energy services bundles.

Compared to traditional tariff-only recommendation approaches, this poses several

novel challenges. The additional volatility and unique characteristics of PV, HPs,

and BEVs need to be captured by novel data analytics solutions (vom Scheidt et al.,

2020, 2021). Corresponding models thus face considerable additional complexity

compared to a tariff-only recommendation model and thus should be tackled with

state-of-the-art Machine Learning models.

Furthermore, the adoption of such bundles might have much larger economic im-

pacts for residential customers than tariff switching alone. Higher savings could

improve the cost/benefit ratio of switching tariffs. Therefore, it is important to

quantify the economic consequences of these recommendations.

Even more importantly, no study to date has assessed the role of input data on

the quality of recommendations. It is therefore interesting to differentiate between

easy-to-obtain data, like the direction of the customer’s roof, and more sensitive

customer data recorded by smart meters. This way, it can be identified if customers

can benefit from sharing their smart meter data with the retail company and in
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turn receive improved recommendations that are more reliable and enable higher

savings for them.

To address these gaps, we next present and evaluate the first data-driven deci-

sion support tool for recommendations of energy service bundles, incorporating cus-

tomers’ consumption data. The approach assumes that all bundles deliver the same

value to each customer, i.e. meeting their needs for electricity, heating and mobility,

but come at different costs. Our goal is to identify and then recommend the bundle

with the lowest annual costs for each individual customer, based on household and

consumption characteristics. This approach is described in detail in the following

section.

6.3 Methodology

In this section, the chapter’s applied methodology is presented which is aimed

at recommending cost minimal energy service bundles is presented. A bundle

consists of a heating technology, a mobility technology, an electricity tariff, as well

as optionally a solar PV plant and a battery storage. Importantly, the usage period

of the recommended service bundle is one year: All technologies are leased for the

duration of one year and the contract period of the tariff is also one year. Figure

6.1 shows the overall methodology. First, the sample set is generated. Second,

the operation of various technology and tariff combinations in a household’s home

energy management system is optimized. Third, the resulting optimal operation

costs and additional capital costs are used to generate the class labels for all sam-

ples. The class samples are the optimal service-tariff bundles for each household.

Fourth, we develop and evaluate Machine Learning models that recommend optimal

tariff-service bundles, i.e. derive the optimal class of each sample a priori, only

using easy-to-obtain customer data and, in an alternative scenario, additional sparse

historical consumption data.
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Figure 6.1.: Method overview

6.3.1 Sample Set Generation

Many traditional recommender systems rely on large data sets from frequent cus-

tomer transactions (Li et al., 2020) and try to identify a bundle that delivers maxi-

mum value to a customer. Due to the cold-start problem (compare Section 6.2), tra-

ditional approaches are inadequate for our use case. Instead, innovative approaches

are needed to create a labelled data set. Therefore, we conduct a dedicated smart

home energy management optimization to create samples and labels.

This study is carried out on the basis of data from individual households. Each

household is characterized by an empirical electricity load profile that comprises its

base electricity consumption over two years at an hourly resolution, and an empirical

driving profile that captures the exact driving behaviour over one week. In addition,

each household is characterized by individual circumstances that influence if it can

adopt a certain energy technology.

The most important distributed energy technologies include rooftop solar PV

for the on-site generation of sustainable electricity, electric heating and electric

vehicles for the direct use of electricity for domestic heating and mobility needs,

and home batteries for the local storage of electricity (see International Energy

Agency (2021b)). These technologies are therefore considered in the case study. The
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relevant household parameters thus include the general binary technical feasibility

of an electric vehicle or electric heating in a household. For example, it could be

infeasible for customers to adopt an EV because they live in an apartment and have

no charging option. Besides these two parameters, households are characterized by

the binary availability and azimuth (East, South, or West) of the house’s rooftop,

and the driving routine type (existence of a commuter in the household or not).

Table 6.1 summarizes these external parameters. By combining all given load

profiles with all potential external parameter combinations, we expand and diversify

the original data set and the number of samples, which enables us to derive more

insights about the determining factors of optimal tariff-service bundles.

Table 6.1.: Morphological box of externally given circumstances

Parameter Values

Azimuth No solar possible 90 180 270
Driving routine Non-commuter Commuter
Vehicle EV impossible EV possible
Heating HP impossible HP possible

Since the mere feasibility of a certain technology does not automatically mean

that its use is cost-optimal for a household, we explore a number of different bundle

options for each household under the given external restrictions. Each bundle

includes an electricity tariff, a heating technology (heat pump vs. gas heating), a

mobility technology (EV vs. combustion engine car), and can include an optional

roof-top solar PV system, and an optional home battery storage. The tariff options

include the four most common kinds of electricity tariffs in research and practice.

These are a standard Flat tariff, a time-of-use tariff with two price levels (TOU-2),

a time-of-use tariff with three price levels (TOU-3), and an RTP tariff. While Flat

tariffs represent the predominant reference tariff for most residential customers (Eu-

ropean Union Agency for the Cooperation of Energy Regulators, 2016), RTP tariffs

link consumers’ electricity prices directly to wholesale prices and thus incorporate

both the risk of increasing, and the chance for reduced bills (vom Scheidt et al.,

2019; Burger et al., 2020). Under TOU tariffs, the price levels are determined in

advance and repeated at different times of the day, days of the week or seasons

and act as a proxy of RTP tariffs. Table 6.2 summarizes these bundle design options.
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Table 6.2.: Morphological box of service bundle design options

Service Design options

Tariff Flat TOU-2 TOU-3 RTP
PV PV system No PV system
Heating Heat pump Gas heating
Mobility Electric vehicle Combustion engine vehicle
Storage Battery storage No storage

6.3.2 Optimization

To determine the costs of operating different tariff-service bundles for a household,

we model the technology operating strategy as an optimization problem. The opti-

mization problem minimizes the costs under each of the possible electricity tariffs

that result from serving a given electricity consumption profile and the electricity

demands of the HP and the EV, if applicable. For this purpose, the optimization

makes use of the temporal flexibility of the applied technologies. Our optimization

model is executed for all possible combinations of external circumstances and

potential technologies. For example, if the external circumstances forbid usage of

an EV, only bundles without EVs are considered in the optimization for the given

household. For modelling purposes, we assume perfect foresight within one day, as

there are various well-performing methods for short-term forecasting of electricity

generation, loads and prices (see vom Scheidt et al. (2020) and Chapter 7 and 8),

car trips (Huber et al., 2020), and weather (Fathi et al., 2021). Besides, electricity

prices for customers are often known in advance if based on day-ahead wholesale

prices (like in our RTP tariff) or fixed for longer periods (like in the Flat and TOU

tariffs). We furthermore assume no manual adjustment of base consumption (e.g.

switching on the dishwasher at a certain time of the day), because transaction

costs of behavioral change can render manual demand response non-profitable and

empirical programs have found substantially higher electricity demand elasticity for

households with automated technology (Schneider and Sunstein, 2017). Capital

costs are not considered in the optimization, but are later added for each bundle

(see Subsection 6.3.3).
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The optimization uses an hourly time resolution and is performed over an entire

year, for each year individually. The objective function minimizes the sum of the

costs for meeting the electricity demand over all hours within the respective year (see

Equation 6.1). Here, griddemandh is the amount of externally sourced electricity

in hour h in kWh. It is multiplied with the price of one kWh of electricity eptariffh ,

which depends on the type of tariff and hour h. The model considers remuneration

for the feed-in of PV-generated electricity, where supplyh is the amount of electricity

in kWh fed into the grid in hour h, and epfeedin−tariff is the invariable feed-in tariff

in £/kWh.11 This compensation is subtracted from the costs of externally sourced

electricity.

min
8759
∑

h=0

griddemandh · ep
tariff
h − gridsupplyh · ep

feedin−tariff (6.1)

The total hourly electricity demand consist of the inelastic base electricity use cbaseh ,

the electricity consumed by the heat pump chph , the electricity needed for charging the

electric vehicle chev
h and the battery storage chstorage

h , and the part of the solar plant’s

generation that is fed into the grid gridsupplyh. Equation 6.2 guarantees that the

total energy demand in every hour h within the one-year period is met by the sum of

the purchased electricity griddemandh, the solar PV based self-generation pvh and

the energy discharged from the battery storage unit dcstorageh . It therefore ensures

that electricity demand and supply are always balanced. Moreover, the equation

ensures that PV based electricity is either directly consumed, fed into the household

battery for later use, or fed into the grid at a fixed feed-in remuneration. For all

bundles without electric heating or electric mobility, we add the costs of the non-

electric alternative, i.e. natural gas for bundles with gas heating, and gasoline for

bundles with internal combustion engine vehicles, after the optimization.

cbaseh + chph + chev
h + chstorage

h + gridsupplyh

≤ pvh + dchstorage
h + griddemandh, ∀h ∈ [0, 8759]

(6.2)

In Equations 6.3 to 6.4, the charging state of the EV stateevh is defined and con-

11Note that, because the electricity consumption data set is from London, UK (see Section 6.4.1),
we perform all financial calculations in British Pounds.
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strained. evbih−1 is a binary parameter and determines if charging of the battery is

possible in hour h− 1. This is the case, if the EV is parked at home throughout the

entire hour. For each hour in which the EV leaves for a trip, the required energy for

that trip is specified via dchev
h . In hours in which the EV does not leave for a trip,

the required energy dchev
h is zero.

stateevh = stateevh−1 − dchev
h−1 + evbih−1 · ch

ev
h−1, ∀h ∈ [1, 8759] (6.3)

As it is assumed that the BEV is only charged at home, stateev0 always needs to

be sufficiently high to provide the energy for the entire following trip (Equation 6.4).

stateevh ≥ dchev
h , ∀h ∈ [0, 8759] (6.4)

At time h = 0, the charging level of the car’s battery starts at stateev0 = 0 (Equa-

tion 6.5).

stateev0 = 0 (6.5)

The battery storage’s behaviour is similarly described in Equations 6.6 to 6.9.

statestorageh is the battery storage’s state of charge at hour h and depends on the

charge and discharge amounts chstorage
h−1 and dchstorage

h−1 in the previous time period

h − 1 and the previous state of charge. In the first hour, the initial charging state

statestorage0 of the battery storage is zero. Simultaneous charging and discharging of

the battery is forbidden.

statestorageh = statestorageh−1 + chstorage
h−1 − dchstorage

h−1 , ∀h ∈ [1, 8759] (6.6)

statestorage0 = 0 (6.7)

dchstorage
h ≤ statestorageh , ∀h ∈ [0, 8759] (6.8)

chstorage
h · dchstorage

h = 0, ∀h ∈ [0, 8759] (6.9)

The use of the heat pump is defined by Equations 6.10 to 6.14. Equation 6.10 en-

sures that the heating demand of each day (hdk) is always met. The heat production

in every hour of the corresponding day is hph. It depends primarily on the outdoor

temperature, which is reflected in the coefficient of performance COPh, as the effi-
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ciency of air heat pumps is lower at lower outside temperatures (Equation 6.13). For

reasons of simplification, we assume that the heat pump runs on full capacity, when

active. Heat generation therefore always generates a power consumption equal to

the heat pump’s maximum capacity hp_cap for every heating hour (Equation 6.12).

Whether heating takes place in hour h is described by the binary variable heatbih.

Losses in the switch-on and switch-off processes are generally not taken into account.

To reduce the potential impact of this limitation, Equation 6.11 ensures that heating

is always performed consecutively within a day. In other words, the heat pump is

only activated once a day. nheath specifies how many hours of heating are neces-

sary with a start in hour h to fulfill the daily heat demand hdk. Heating storage

is implicitly considered and is assumed to be operated such that the produced heat

energy is distributed over the corresponding day.

24k+23
∑

h=24k

heatprodh ≥ hdk, ∀k ∈ [0, 364] (6.10)

h+nheath
∑

x=h

heatbix ≥ nheath · (heatbih − heatbih−1), ∀h ∈ [1, 8752] (6.11)

chph = heatbih · hp_capa, ∀h ∈ [0, 8759] (6.12)

heatprodh = COPh · c
hp
h , ∀h ∈ [0, 8759] (6.13)

hp0 = 0 (6.14)

The grid feed-in cannot be larger than the electricity generated by the solar PV

system (Equation 6.15). Technical data and constraints of the electric vehicle and

battery storage are incorporated through Equations 6.16 to 6.19.

gridsupplyh ≤ pvh, ∀h ∈ [0, 8759] (6.15)

stateevh ≤ stateevmax, ∀h ∈ [0, 8759] (6.16)

chev
h ≤ chev

max, ∀h ∈ [0, 8759] (6.17)

statestorageh ≤ statestoragemax , ∀h ∈ [0, 8759] (6.18)

chstorage
h ≤ chstorage

max , ∀h ∈ [0, 8759] (6.19)
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Finally, the mathematical domain of all variables is set in Equations 6.20 - 6.23.

pvh, state
ev
h , statestorageh , griddemandh, gridsupplyh, ch, ch

ev
h ,

chstorage
h , chhp

h , dchev
h , dchstorage

h , heatprodh ≥ 0, ∀h ∈ [0, 8759]
(6.20)

evbih, heatbih,∈ {0, 1} ∀h ∈ [0, 8759] (6.21)

hdk ≥ 0, ∀k ∈ [0, 364] (6.22)

nheath ∈ N, ∀h ∈ [0, 8752] (6.23)

6.3.3 Label Generation

Within the optimization, only the operating costs are considered. To arrive at the

final total cost for each bundle, two additional steps are needed. First, capital costs

for the used technologies are incorporated (see Subsection 6.4.3). Second, for bundles

that include non-electric alternative technologies, fuel costs need are added to allow

full comparability. If an electric vehicle or a heat pump are not included in a bundle

in the optimization, costs for natural gas and gasoline have to be added to the

extent that the same heat load and driving mileage can be covered. This makes the

bundles fully comparable in regards to their costs. Based on this cost comparison, the

households’ cost-minimal tariff-service bundles are derived. Each household’s lowest-

cost bundle then represents that household’s label for the subsequent classification.

6.3.4 Service Bundle Recommendation

The derived labels serve as output vector of the recommendation models. Based

on specific input features, the models aim to recommend the cost-minimal bundle.

Here, the recommendation of technologies means that they should be leased for

the following year, and the recommendation of a tariff means that it should be

contracted for the following year.

We develop two models, namely an XGBoost model (XGB) and a feed-forward

artificial neural network model (ANN). We assess the models regarding statistical

performance, by calculating their accuracy and regarding economic performance, by

calculating mean annual costs for customers. Along these two metrics, the models
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are compared to the theoretical optimal result and to a naive benchmark that simply

recommends the most frequent optimal service bundle.

XGBoost is a gradient boosting based ensemble technique that has performed

well in many Machine Learning challenges and delivers very good results on differ-

ent problem types, including on imbalanced data sets like in our case as shown in

Subsection 6.5.1 (Nielsen, 2016; Chen and Guestrin, 2016; Hyndman and Athana-

sopoulos, 2018). A detailed description of the XGB model can be found in Chen and

Guestrin (2016). We tune three important hyperparameters via a grid search. The

parameters and the tested values are displayed in Table 6.3.

Table 6.3.: Tuned XBG hyperparameters

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Minimum child weight 1, 4, 7
Maximum depth 3, 6, 9

ANN models are used in many data analytics applications in the energy context

and show good performance in many cases (vom Scheidt et al., 2020). For the ANN

in our study, we use an architecture with one hidden layer with a relu activation

function, and an output layer with a softmax activation function. We use the Adam

optimizer and the categorical crossentropy loss function. Three hyperparameters are

tuned using grid search, as shown in Table 6.4.

Table 6.4.: Tuned ANN hyperparameters

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Batch size 32, 64, 128
Number of units in dense layers 10, 30, 50

After comparing the performance of the two models, we select the one with better

economic performance and use it to compare model performance under different

feature subsets (see Subsection 6.4.4). For the comparison, we train models with a)

only the easy-to-obtain data, b) easy-to-obtain data and additional weather data,

and c) easy-to-obtain data, weather data, and four-week excerpts of smart meter
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data at an hourly resolution. The goal of that comparison is to identify the value

of different data types. Furthermore, we assess four different times of the year for

smart meter data collection, i.e. February, May, August and November in order to

understand the benefits of data collection during specific times of the year.

6.4 Data

This section describes the data used within this case study in detail.

6.4.1 Electricity Consumption Profiles

The residential electricity consumption data comes from the Low Carbon London

project (kaggle, 2019). It includes electricity consumption profiles of 324 households

at half-hourly resolution from 2012 to 2013.12 Since only private households are

considered in our case study, we discard 32 outlier load profiles with an unusual

low (below 1,000 kWh) or high (above 10,000 kWh) annual consumption in the

first year’s data set. This results in a final data set of 292 electricity consumption

profiles. As described in Subsection 6.3.2, these electricity consumption profiles form

the basis for the construction of a total data set of 9,344 households. Figure 6.2

shows the development of the average daily electricity consumption in both years. A

clear seasonality can be observed, with higher electricity consumption in the colder

seasons. The data patterns are very similar over the two years, with the second year

showing an increased level in the first months of the year. The distribution of annual

electricity consumption per household is presented in Figure A.1 in Appendix C, also

showing great resemblances over both years.

6.4.2 Electricity Tariffs

The electricity tariffs applied within this chapter are designed based on the wholesale

electricity prices on the day-ahead market in the UK in 2018 and 2019 (ENTSO-E,

2021). The data sets have an hourly resolution. This subsection provides a short

overview of how the electricity tariffs for this analysis are engineered. A more

122012 was a leap year and thus includes data from February 29th. To achieve better transferability
and generalization of the data, the year is treated as if it was not a leap year and the corre-
sponding additional 29.02 data are deleted. The half-hourly data are transformed into hourly
values.
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Figure 6.2.: Average daily electricity consumption per household over the course of a year

detailed description can be found in Appendix C.2. Importantly, like in Chapter

5, all tariffs are designed to be revenue neutral ceteris paribus (i.e. before demand

response), as full cost recovery is a key principle in tariff design (Bonbright, 1961).

The electricity price in the Flat tariff epflat is designed by calculating the sum

of hourly wholesale prices wpd,h – with d being the day of the year, and h being

the hour of the day – weighted by the average hourly electricity consumption of

all consumption profiles in the corresponding hour yd,h, divided by the total annual

consumption. This results in a Flat tariff epflatt of 0.059 £/kWh for the first year,

and 0.045 £/kWh for the second year.

For TOU-2 and TOU-3, the tariffs are determined as weighted averages of whole-

sale prices and electricity consumption within the daily recurring time window.

For the TOU-2 tariff, there are two price levels, i.e. “low”, between 11pm - 5 am,

and “high”, between 6am - 10pm, with prices of 0.05 £/kWh (0.037 £/kWh in the

second year), and 0.062 £/kWh (0.048 £/kWh in the second year), respectively.

For the TOU-3 there are three price levels, i.e. “low” between 11pm - 5 am, “high”

from 6am - 3pm and again from 9pm - 10pm, and “peak”, between 4pm - 8pm, with

prices of 0.05 £/kWh (0.037 £/kWh in year two), 0.057 £/kWh (0.044 £/kWh), and

0.073 £/kWh (0.056 £/kWh), respectively.
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Figure 6.3.: Distribution of variable unit prices over electricity tariffs in the first year

The last tariff to determine is the RTP tariff eprtpt . Here, wholesale prices at every

hour of the year wpt are directly passed on to the consumers.

Once these wholesale based electricity prices are determined, grid fees, policy

charges and other charges are added in order to receive the final end-user prices. In

many geographies, this includes a fixed annual or monthly charge and a volumetric

per-kWh charge. Therefore, we add a fixed charge of 94 £ per year, based on the

actual charge in London in 2019 (UK National Statistics, 2021a), and a volumetric

charge of 0.0936 £ (0.1183 £ in year two), chosen so that the Flat tariff is equal

to the average variable unit price in the UK in 2018 and 2019, respectively (UK

National Statistics, 2021a). Figures 6.3 and 6.4 display the distribution of the final

electricity unit prices for each tariff type in the first and second year, respectively.

6.4.3 Technology Data

In this subsection, the techno-economic data regarding the different energy technolo-

gies are described.

Photovoltaics

The data on electricity generation from PV systems is simulated based on Renew-

ables.ninja (2021), using historical data on PV electricity generation in London in
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Figure 6.4.: Distribution of variable unit prices over electricity tariffs in the second year

2012 and 2013 with an hourly resolution. A standard tilt of 25 degrees is assumed

and a standard system size of 7.48 kWp is chosen, based on the average PV capacity

per system installed in Great Britain in 2020 (pv Europe, 2020).

The azimuth is varied according to Table 6.1, resulting in three different electricity

generation profiles.13

Battery storage

The size of the battery storage is adjusted to the average electricity consumption of

the households considered here, which lies under 4,000 kWh. Following the approach

by Henni et al. (2021), this results in an assumed battery capacity statestoragemax of 6

kWh. Its charging takes place at the standard charging power in the UK grid of

chstorage
max = 3 kWh.

Heating

For serving the customers’ needs for space heating and warm water, we consider

an electric air-to-water heat pump with a standard power PHP of 9 kW (Kümpel,

2021).

The total heating demand of households can be estimated based on the households’

13Following the procedure for the electricity consumption data, the data for February 29th 2012 is
deleted.
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annual electricity consumption in the first year and can be distributed over the year

based on outdoor temperature.

Thus, on heating days (i.e., days with a daily average temperature of under 12°C

(Recknagel et al., 2006)), the heat pump has to meet space heat and hot water

demand, whereas on non-heating days it only has to meet hot water demand.14

Mobility

For meeting the customers’ mobility needs, we consider an EV with current technical

data, i.e. a battery capacity stateevmax of 50 kWh, a maximum charging power of 11

kWh chev
max, and an electricity consumption of 20 kWh per 100 km (International

Energy Agency, 2018).

In order to simulate the electricity demand of an electric vehicle, it is necessary to

take mobility profiles of the households into account, which include the distances

traveled, times, and durations of trips by car. Since the respective mobility infor-

mation of the households is not available, it is constructed based on empirical data

from Ecke et al. (2019). In order to differentiate between different driving patterns,

we use a commuter and a non-commuter driving profile for each power consumption

profile (see Table 6.1).15

Capital Cost

For generating the final labels, capital costs of the technologies need to be added to

the operational costs before determining the cost-minimal bundles.

In cases where a time-varying electricity tariff (TOU or RTP) is applied, the use of

a smart meter is necessary. For this technology, residential customers are assumed

to pay a typical annual fee of 51 £ per year in line with Gausden (2021).

For a 7-8 kW PV system, the average capital costs in 2020 were 9,071 £ (Märtel,

2021).16 These costs are discounted over the assumed lifetime of twenty years (Ger-

man Ministry of Finance, 2000), assuming a weighted average cost of capital (WACC)

of 4%.

Similarly, the capital costs for the 6 kWh sized storage are estimated to be 2,400 £,

14More details can be found in Appendix C.3.
15More details can be found in Appendix C.4.
16using a EUR:GBP conversion rate of 1:0.854.
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following IRENA International Renewable Energy Agency (2017). These costs are

annualized based on a life time of ten years and a WACC of 4%.

Unlike PV and battery, the heat pump is a substitute for an existing technology, in

most cases conventional gas heating. Since similar costs can be assumed for both

kinds of technologies, no additional acquisition costs for the heat pump are assumed.

Similarly, it can be assumed that an electric vehicle is a substitute for a conventional

vehicle. Since the capital costs of an electric vehicle are often still higher than those

of a combustion engine car, we include additional capital costs of 4,000 £, based on

Yurday (2020, 2021). Moreover, since this case study assumes charging of the EV

at home, the installation of a wallbox is necessary. This results in additional costs

of 1,400 £ (500 £ material costs and 900 £ installation costs), based on Autokos-

tencheck (2021); Wallbox.com (2021). The total additional capital costs of 5,400 £

are discounted over ten years with a WACC of 4% and the discounted annual rates

are added to the optimization results, correspondingly.

Reference Technology Operation Costs

To enable a fair comparison, the operation costs of alternative, non-electrical tech-

nologies for heating and mobility need to be included at a level that meets the same

needs for heating and driving.

The heating costs of a gas heater can be calculated based on the average natural

gas prices in London in 2018 and 2019 mapped to the two considered years (UK

National Statistics, 2021b). Similarly to the electricity cost, they consist of a fixed

yearly price and a variable unit price. This leads to yearly fixed costs of 92.51 £ for

each household supplemented by operating costs of 0.0389 £/kWh in the first year

and fixed costs of 99.29 £ with a unit price of 0.0394 £/kWh in the second year. The

costs of operating an internal combustion engine vehicle are based on the average

London gasoline prices of 2020 of 1.14 £/liter (UK National Statistics, 2021c) and

an average consumption of 7.8 liters per 100 km (Kords, 2020).

6.4.4 Machine Learning Input Data

The Machine Learning models are trained based on various input data, i.e. features

that can be categorized into three groups.
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The first group consists of easy-to-obtain data. This includes the households’

external parameters, which are one-hot encoded, i.e. azimuth of roof, driving routine,

and feasibility of BEV and HP, as defined in Table 6.1.

The second group contains weather data from London (kaggle, 2019). We use

temperature, visibility and wind speed data at an hourly resolution. For each of the

three, we calculate the monthly mean, standard deviation, maximum, and median

value.

The third group consists of collaborative data that customers can choose to

make accessible to the retailer in order to enable them to make better recommenda-

tions. These data comprise hourly smart meter readings. To utilize those time-series

data, we engineer the following features: the mean, standard deviation, maximum,

and median consumption of the total time series. Additionally, the mean, maximum

and standard deviation for the hour-to-hour difference are calculated and included

in the feature set. Lastly, the mean for each hour of the day is aggregated to capture

daily patterns.

For the Machine Learning task, the data set is split into training, validation and

test sets. This split is done in two dimensions, i.e. by year and customers. All train-

ing and validation takes place on data of the first year. The subsequent evaluation

takes place on data of the second year. We control that all household samples with

the same underlying inelastic electricity consumption profile are assigned to only

one of the three data sets (training, validation, or test) to prevent the models from

learning patterns between customers that are based on the same consumption pro-

file. Under this limitation, 70% of customers are randomly assigned to the training

set, 15% are assigned to the validation set, and 15% are assigned to the test set. We

repeat the process of data splitting, model training, and evaluation three times, to

cross-validate our results.

The models are executed on a Windows computer with Intel i7 core, 1.80 GHz and

16 GB RAM. The computation time for training, validating and testing the XGB

model is on average 164 seconds. In comparison, the average computation time for

the ANN model is 169 seconds.
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6.5 Results

In this section, the results of the optimization and of the recommendation tool are

presented.

6.5.1 Smart Home Energy Management Results - Label Distribution

In this subsection, we evaluate the distribution of the resulting cost minimal tariff-

service bundles amongst customers.

Bundle frequency

The combination of the four potential technology options with the four tariffs

means that 64 bundle labels are generally possible. However, most of these bundles

are never optimal and thus do not occur as label. Within the first year’s optimal

solution, 17 different service bundles appear (23 in the second year). The most

common bundle is a Flat tariff in combination with no technology, with 3,932 cases

(42.08%) in the first year and 4,433 cases (47.44%) in the second year. This large

share is driven by the fact that we deliberately design and include customer samples

for whom it is externally impossible to use a PV plant, a BEV, and a heat pump (see

Subsection 6.3.1). The second most common bundle with 1,710 (18.30%) cases (1,751

or 18.74% in year 2) features the use of an RTP tariff in combination with an electric

vehicle. The third most frequent bundle constitutes the application of a heat pump

under the RTP tariff with 1,513 customers (16.19%) in year 1 and 516 customers

(5.52%) in year 2. An overview of these and all further bundles and their occurrences

can be found in Table 6.5. A “1” in the respective technology’s column means

that that technology is part of the optimal bundle, whereas a “0” means that it is not.

Individual Technology and Tariff frequency

Regarding the different technologies, the installation of a PV plant, independent of

its azimuth, is part of the most profitable service bundle in 18.8% (27.8% in the

second year) of the possible cases. Of these cases, about half include a south-facing

PV system, and about a quarter each includes east and west facing orientation,



82 A Recommendation Tool for Tariff-Technology Service Bundles

Table 6.5.: Frequency of bundle occurrence in both years’ data

Bundle (Label) Frequency

PV HP Storage BEV Tariff Year 1 Year 2

0 0 0 0 Flat 3,932 4,433
0 0 0 1 RTP 1,710 1,751
0 1 0 0 RTP 1,513 516
0 1 0 1 RTP 671 231
1 1 1 1 RTP 551 660
1 1 1 0 RTP 511 755
1 0 1 1 RTP 183 296
0 0 0 1 Flat 52 60
0 0 1 1 RTP 42 151
0 0 0 0 RTP 40 24
0 1 1 0 RTP 36 101
1 0 0 1 RTP 33 78
1 0 1 0 RTP 29 89
0 0 1 0 RTP 15 24
0 1 1 1 RTP 14 48
1 0 0 1 Flat 9 42
1 1 0 1 RTP 3 2
0 0 0 0 TOU-3 0 40
1 0 1 0 Flat 0 14
1 0 0 0 Flat 0 12
0 0 0 0 TOU-2 0 12
0 0 0 1 TOU-3 0 4
1 0 0 1 TOU-2 0 1

respectively. The electric vehicle is part of the optimal bundle in roughly 70% of

the cases in which it is externally possible, in both years. The majority of these

cases belongs to customers with commuter driving profiles, which indicates that

differentiating regarding driving profile types can be relevant for optimal bundle

selection. The heat pump’s usage is part of the optimal bundle in 70.6% (49.5%

in the second year) of the possible cases. The installation of a battery storage is

always possible and occurs in 14.8% (22.9%) of the cases. In the vast majority of

these cases, the battery is combined with a PV system, which hints at the saving

potentials from self-consumption. Nevertheless, in 7.75% (15.15%) of the cases in

which a battery is used, it is used without a PV system, but with the RTP tariff. In
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these cases, the advantage of the battery storage results solely from charging it with

grid electricity in low-price hours that is later supplied to the customer behind the

meter.

The standard Flat tariff finds application in 42.6% (48.8%) of the most profitable

service bundles. 57.4% (50.6%), and thus the majority of cases, contain the RTP-

tariff. This shows the high potential of this electricity tariff. While in most cases,

the combined usage of technologies renders the RTP tariff beneficial, in a few cases

(0.43% in year 1 and 0.26% in year 2), the customer’s electricity consumption profile

alone allows the household to benefit from the RTP tariff even without additional

technologies. Besides, it becomes evident that the TOU tariffs are not attractive in

this model setting. TOU-2 and TOU-3 are not part of any cost-optimal bundle in

the first year. In the second year, all tariffs occur, but TOU tariffs only occur in

0.61% of the optimal bundles.17

Effects of bundling on technology selection

To isolate the effect of combining electricity tariffs and technologies in bundles on

optimal recommendation, we compare these results to a scenario in which the given

Flat tariff is the only possible tariff option. This artificial limitation leads to results

that differ in varying degrees from the tariff-service bundle recommendations. In

the absence of time-varying tariffs, PV systems are chosen in 23.8% (36.6%) of the

cases, constituting a small, but considerable increase. Batteries find application in

11.2% (11.8%) of the most profitable service bundles, constituting a small decrease.

Notably, the use of batteries now takes place exclusively in combination with an

installed PV system, since the absence of time-varying prices prohibits other appli-

cations than maximization of self-consumption. The absence of time-varying prices

furthermore decreases the occurrence of BEVs in the optimal bundle from roughly

70% to 65% in both years, and the occurrence of heat pumps (which have even more

flexibility) to 32.5% (22.0% in the second year) from 70.6% (49.5%) of cases, which

constitutes a reduction of more than 50%. In summary, these comparisons demon-

strate the synergies between innovative tariffs and distributed energy technologies

and strongly motivate their bundled recommendation.

17In practice, additional factors such as transaction costs, simplicity, and acceptance might increase
the attractiveness of TOU tariffs, compared to RTP.
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Label distribution

The retrieved optimal bundle for each household is also the label for the subsequent

Machine Learning classification task. The distribution of labels is imbalanced,

because some labels occur much more frequently than others. In particular, it can

be a challenge to adequately recommend bundles that only occur very rarely or not

at all in the training set of year 1.

6.5.2 Service Bundle Recommendation

This subsection presents the results of the different recommendation methods. In

the first paragraph, the three described Machine Learning methods are compared. In

the second paragraph, three models based on different feature subsets are compared.

The accuracy is evaluated as it is the most intuitive measure to understand the

classifiers performance. As the underlying data set is imbalanced, the accuracy

must be evaluated in comparison to the baseline model. Besides accuracy, the mean

economic performance is evaluated as it is the natural target metric of the economic

case presented and therefore the given recommendation shows the actual performance

of a method on that task.

Comparison of methods

First, we compare the performance of the two Machine Learning methods, the

naive benchmark, and the optimum. The calculated mean energy costs (economic

evaluation) and the classification accuracies are given in Table 6.6. The table

shows that the XGB model and the ANN model outperform the dummy classifier

regarding classification accuracy. The ANN model achieves 77% accuracy, the

XGB model 73%, and the naive benchmark 56%. Besides, both Machine Learning

models achieve cost reductions, compared to the naive benchmark. The ANN model

achieves mean annual energy costs reductions of 323 £, while the XGB model even

results in savings of 334 £. Economically, the models perform close to the theoretic

optimum, with a delta of 16 £ (XGB), and 27 £ (ANN) compared to the optimal

bundles. This represents a very good economic performance, even if accuracies are

not close to 100%. A potential reason for this is that the costs of some sub-optimal
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bundles are close to those of the optimal bundle. The fact that the ANN achieves

slightly better accuracy, but slightly worse cost results indicates that accuracy is not

a perfect proxy for economic performance. This motivates a further investigation

with methods that utilize the cost associated to the bundles during the training

process, i.e. Learn to Rank approaches.

Table 6.6.: Accuracy and mean energy costs for different methods

Method Mean energy cost Classification accuracy

Naive 2,972 £ 56%
ANN 2,649 £ 77%
XGB 2,639 £ 73%
Optimum 2,622 £ 100%

Comparison of feature subsets

Second, we compare the performance of using different feature subsets. As described

in Subsection 6.4.4, there is a different level of difficulty in obtaining different fea-

tures. Therefore, the performance with and without harder to obtain data is crucial

to understanding their value. Table 6.7 shows the performance of the XGB model

based on the easy-to-obtain (basic) features, the weather features and the smart me-

ter consumption features. While the XGB model achieves an accuracy of 73% when

using all features, it achieves only 59% without the smart meter data. Given that

the naive classifier achieves an accuracy of 56%, the results show that most of the

correct classifications beyond the majority class are made possible by smart meter

consumption data. The mean costs with and without harder to obtain features differ

by 20 £. This shows that smart meter data provides additional value, whereas the

weather data alone does not. It also indicates that, while the smart meter data are

often necessary to find the actual optimal bundle, the easy-to-obtain data are enough

to prevent the model from making very cost inefficient predictions.

6.6 Discussion

In this section, limitations of the research presented in this chapter are described,

proposals for future work are given and practical implications are discussed.
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Table 6.7.: Accuracy and mean energy costs of the XGB model with different input feature
sets

Features Mean energy cost Classification accuracy

Basic 2,659 £ 59%
Basic + weather 2,659 £ 59%
Basic + weather + smart meter 2,639 £ 73%

This chapter is based on a data set that is subject to several limitations. All house-

holds are assumed to make use of a private car and the driving profiles are randomly

assigned to the households. It is recommended to collect and use actual household

specific data regarding power consumption, mobility behaviour and heating demand

in future work. For all technologies, assumptions and simplifications are made that

might in some cases not be directly transferable to reality. Among others, the indi-

vidual empirical heat consumption behavior of households is not taken into account

when calculating heating requirements. Instead, average values are used. Different

insulation and heat losses of the households are also not taken into account. Ad-

ditionally, the technology costs assumed here are based on current state-of-the-art

data and might vary in the future and be different in other geographies. Future work

could expand our approach by including customized sizing of technologies based on

household characteristics like number of inhabitants, house insulation, etc. Sensi-

tivity analyses are recommended to be conducted in future work varying technology

costs and their WACC.

The optimization is also subject to limitations. It only takes demand response into

account for the electricity consumption of newly installed technology. In addition,

we focus on costs as the only metric for identifying optimal tariff-service bundles and

for making recommendations. Therefore, transaction costs and behavioral consider-

ations that might influence customers’ decisions are ignored (Staudt et al., 2019a).

For both evaluated metrics (accuracy and annual costs), we focus on the mean

value. We do this, because in an real-world setting, a service bundle provider might

choose to guarantee certain cost savings for their customers and internally average

the losses and gains of individual customers. Such a novel business model could

address risk-aversion among consumers and further facilitate the uptake of the rec-

ommended bundles. This chapter’s theoretical findings can be supplemented by
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empirical experiments regarding acceptance of recommendations made with intro-

duced decision support tools. The detailed design of retailers’ business models based

on this decision support tool is also subject to future research. The generated labels

are presumably highly dependant on the applied regulation. Consequently, changes

in regulation or the application to other countries make it necessary to retrain the

models. Transferring previously trained models to new settings can overcome these

problems (Torrey and Shavlik, 2010).

Our study does not consider manual demand response, as it typically represents a

smaller potential than the automated demand response of technologies such as elec-

tric vehicles and heat pumps in our study. As Schneider and Sunstein (2017) point

out, it can be beneficial to use RTP tariffs for technologies with automated demand

response and in parallel TOU tariffs for all manually operated electricity consump-

tion. Such manual demand response could be modelled according to Gottwalt et al.

(2011) in future expansions of this study.

Moreover, the chance of increased electricity bills resulting from non-optimal rec-

ommendations can limit the practical acceptance of the decision support tool im-

mensely. A guarantee of non-increased costs by applying bill protection can eliminate

this issue (Nicolson et al., 2018). This can be part of a robust business model that

retailers may build based on the developed decision support tool.

6.7 Conclusions

In this section, we summarize the findings of this study and outline management

implications.

Our results demonstrate the large benefits of energy service bundles that com-

bine time-varying electricity tariffs with flexible sustainable technologies. We find

considerable saving potentials that by far exceed the savings that customers can

achieve from tariff switching alone (compare also Chapter 5). The availability of

time-varying electricity tariffs makes energy technologies more financially attractive

for many households. In the vast majority of cases, the optimal bundles include not

only a change of tariff.

Furthermore, our results show that the developed Machine Learning recommen-

dation models achieve accuracies of 73%-77% and thus outperform the naive bench-

mark (56%). Similarly, they achieve better economic performance, by reducing mean
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energy costs to 2,639-2,649 £, compared to 2,972£ under the naive benchmark.

Moreover, we find that using ’collaborative data’, i.e. four week excerpts of smart

meter data that the customers provide to the retailer, improves the mean accuracy

of recommendations from 59% to 73% for the XGB model. It also increases the

savings potential, by lowering mean energy costs from 2,659£ to 2,639£. Overall, we

see good potential for a collaboration between customers and retailers, where data

sharing leads to added value on both sides.

This developed decision support tool can help customers to find a personalized

tariff-service bundle that lets them benefit from cost savings. At the same time,

this increases the diffusion of sustainable energy technologies, tariffs and smart

meters, which can be a strong support for the energy transition. The tool may help

electricity retailers in their business model transition, highlighting investments that

are beneficial and helping them to profit from the ongoing decentralization of the

energy sector. Based on our results, we see great potential for further development

and application of Machine Learning based recommendation systems, combining

the recommendation of tariffs and services as a bundle.

Besides these key results, this chapter also demonstrated that a crucial ingredient

for the integration of technologies at the customer level is the operation of batteries,

heat pumps, and BEVs in accordance to tariffs. In order to optimize such operation

in advance, appropriate short-term forecasts (i.e. forecasts with a horizon of up

to one week) of residential electricity loads and generation are needed. Therefore,

state of the art methods of short-term forecasting of residential loads are reviewed

in Chapter 7 and a new forecasting model is developed in Chapter 8.



CHAPTER 7

THE STATE OF THE ART OF SHORT-TERM RES-

IDENTIAL LOAD FORECASTING

This chapter analyzes the state-of-the-art approaches in the forecasting literature,

with regard to model performance, complexity and running speed, as well as used

data sets, feature selection methods, benchmarks methods, and evaluation metrics.

Finally, the findings are distilled and guidelines for the development of forecasting

models for smart home energy management systems are derived.

Section 7.2, 7.3, and 7.4 of this chapter comprise parts of the published article: F.

vom Scheidt, H. Medinová, N. Ludwig, B. Richter, P. Staudt, C. Weinhardt, Data

analytics in the electricity sector – A quantitative and qualitative literature review,

Energy and AI, Volume 1, 2020.

7.1 Introduction

The rising numbers of prosumers with own volatile solar PV generation, and large,

varying electricity consumption from heat pumps and electric vehicles, creates the

need for smart home energy management systems that make use of sophisticated data

analytics solutions, including (net) load forecasts. As a consequence, the number of

published research articles in this field has been growing strongly, and methods are

becoming increasingly complex and specialized. To identify the state of the art of

forecasting individual households’ electricity consumption, this chapter qualitatively

reviews high impact studies in this field, thus identifying best performing methods,

best practices, and promising pathways for future research.18

18In this thesis, the terms “consumption forecasting” and “load forecasting” are used interchange-
ably.

89



90 The State of the Art of Short-Term Residential Load Forecasting

To achieve these goals, this chapter builds on the comprehensive literature review

of data analytics in the electricity sector conducted by vom Scheidt et al. (2020).

Section 7.2 introduces the dimensions along which the reviewed studies are cate-

gorized. In Section 7.3, the methodology used for searching and selecting relevant

articles is outlined. Then, catering to the focus on this thesis, the level of analysis

is narrowed to the category of “short-term forecasting of individual loads” and a

structured in-depth review of the most influential studies in this category is given in

Section 7.4. In Section 7.5, the review findings are summarized and best practices for

the design of forecasting models in the context of smart home energy management

systems are derived.

7.2 Dimensions of Analysis

The review is structured along three dimensions: area, application and approach,

which are described in more detail in the following.

7.2.1 Area

The electricity system value chain can be structured into the following components:

(i) Generation, (ii) Trading, (iii) Transmission and Distribution, (iv) Consumption,

and (v) System. Generation refers to the transformation of other forms of energy to

electric energy. Trading refers to the buying and selling of electricity on wholesale

or retail markets. Transmission and Distribution denotes the delivery of electricity

via grids. Consumption is the demand and end-usage of electricity. Studies that

contemplate the system as a whole and simultaneously assess multiple areas are

grouped in the System area.

7.2.2 Application

This chapter defines application as the specific task or activity on which an inves-

tigation focuses. Based on typical applications from Data Analytics literature, four

categories are defined: (i) Forecasting and Prediction (Supervised Data Analytics),

(ii) Clustering (Unsupervised Data Analytics), (iii) Monitoring and Controlling (both

supervised and unsupervised), and (iv) Other. Forecasting and Prediction are both

concerned with the estimation of outcomes for unseen data. In addition, because
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the terms ’prediction’ and ’forecasting’ are used as synonyms by many authors, the

first category comprises both applications. Clustering, on the other hand, is the

aggregation of objects into homogeneous groups. As for Monitoring and Control-

ling, both terms are related and involve a process of observation and measurement

of performance in order to take corrective action, if necessary.

7.2.3 Approach

To compress the exceptionally large amount of single and combined methods ex-

isting in Data Analytics research, this review defines eight groups of approaches

that represent the third perspective of analysis of each reviewed paper: (i) Time

Series, (ii) Regression, (iii) Neural Network, (iv) Support Vector Machine, (v) Tree

based Approaches, (vi) Clustering Approaches, (vii) Hybrid Approaches, (viii) Other

Approaches, and (ix) literature reviews. This chapter categorizes an approach as

Time Series if it falls into one of the following families: autoregressive integrated

moving average (ARIMA), generalized autoregressive conditional heteroskedasticity

(GARCH), Kalman filtering, Grey system theory, exponential smoothing, or transfer

functions. Regression can be defined as an approach used to identify a functional

relationship between the explanatory and the dependent variables (Mat Daut et al.,

2017). Apart from the support vector regression (SVR) and the regression tree, all

types of regressions – including linear, logistic, logic, and quantile regression – belong

to this category. Artificial Neural Networks (ANN) are Machine Learning approaches

inspired by cells in the human brain. Similar to brain neurons, artificial neurons are

connected with each other in multiple layers, forming a network Mat Daut et al.

(2017). The network can adopt multiple architectural forms. The Support Vector

Machine (SVM) is a Machine Learning approach for classification and regression

problems (Mat Daut et al., 2017). When used for regression, it is known as SVR.

Tree based approaches function by developing a tree to predict an output from input

variables. They can be used for classification and regression. Related approaches

are, e.g. random forests, boosting and bagging as well as Extra Trees. Clustering

approaches aggregate objects in homogeneous groups, in other words, clusters. Two

clustering families exist – hierarchical and partitioning approaches. We categorize an

approach as a Hybrid if it combines two or more approaches from the classes defined
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above. This excludes models which use a second approach only for pre-processing.

If an approach cannot be allocated to any category, it is defined as Other Approach.

Figure 7.1 gives an overview of the relationships among these three dimensions,

together with examples. A typical study considered in this chapter uses real-world

data from an area, introduces a certain application use case and presents one or

more approaches. The results give new insights on both the respective area and the

performance of the approach.

Figure 7.1.: The three dimensions of analysis and their interaction.

7.3 Methodology

In order to identify the main streams of relevant literature, we follow the fun-

damental three steps suggested by Webster and Watson (2002): (1) identify major

contributions, (2) search backwards, and (3) search forwards. The scope of the origi-

nal review (vom Scheidt et al., 2020) is very broad compared to other review articles.

Therefore, we enhance the conventional first manual step of identifying major contri-

butions with a database query search and automatic filtering based on data mining.

Our methodology is presented in detail below to ensure transparency and validity.

Figure 7.2 gives an overview of the steps described in this section.

7.3.1 Selection of Initial Paper Pool

The starting point for identifying literature for the review is a manual selection

of highly relevant papers. Selection is performed with the help of experts in the

field, taking into account the number of citations of a paper and the journal rank
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Figure 7.2.: Overview of the methodology used for searching and selecting relevant papers.

in terms of h-index and impact factor. The result of this step is the Initial Pool,

consisting of 50 studies (see references Ahmad (2017); Almeshaiei and Soltan (2011);

Amjady (2001, 2006, 2007); Azadeh et al. (2008); Biscarri et al. (2017); Mabel and

Fernandez (2008); Catalão et al. (2007); Chicco (2012); Chicco et al. (2006); Conejo

et al. (2005); Figueiredo et al. (2005); Foley et al. (2012); Gross and Galiana (1987);

Haben et al. (2016); Hong et al. (2016); Hong and Fan (2016a); Hong and Hsiao

(2002); Hor et al. (2005); Hyndman and Fan (2010); Kalogirou (2001); Kankal et al.

(2011); Kavaklioglu (2011); Kaytez et al. (2015); Keles et al. (2016); Khuntia and

Panda (2012); Kwac et al. (2014); Lago et al. (2018); Nagi et al. (2010); Nizar

et al. (2008); Nogales et al. (2002); Pappachen and Peer Fathima (2017); P. Gross

et al. (2006); Reikard (2009); Sfetsos and Coonick (2000); Shayeghi et al. (2007);

Sidhu et al. (1995); Singhal and Swarup (2011); Staudt et al. (2018b); Suganthi and

Samuel (2012); Szkuta et al. (1999); Tascikaraoglu and Uzunoglu (2014); Taylor and

McSharry (2007); Tso and Yau (2007); Viegas et al. (2017); Voyant et al. (2017);

Weron (2006, 2014); Zhou et al. (2010)).

7.3.2 Evaluation and Selection of Most Appropriate Database and Query

The second step in capturing high-impact literature for the review is an online

database search. To this end, we evaluate different databases and search queries,

and select the one best-suited to the purpose. For the database selection, the decid-

ing factor is the number of studies of the initial paper tool it contains. This number

must be maximized. We evaluate the established databases Web of Science, Scopus,

Science Direct, IEEE Xplore, and Wiley Online Directory. We select Web of Science,

because it is the database which contains the highest number of studies, i.e. 44 of
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the 50 studies listed in the Initial Pool.

Next, a search string is constructed that searches the titles and abstracts of all

articles in the respective database. When constructing the search string, three as-

pects are taken into account: the consistency of the query, the number of papers

of the Initial Pool found with it, and the total number of papers retrieved by it.

After assessing 10 different queries, a query that best balances the three aspects is

selected.

The search string is composed of four parts, which are linked with the logical

AND. The first part of keywords refers to the general object of analysis in a paper,

such as electricity. The second part refers to the area or subtopic, for instance

transmission. In the third part, the keywords refer to the application of the study,

e.g. load frequency control (LFC). Finally, the fourth part consists of approaches

that might be used, such as neural networks. The keywords within each part are

linked with the logical OR.19

(electric* OR energy OR power OR load OR radiation OR “smart meter$” OR lines

OR voltage) AND

(customer$ OR consum* OR demand OR generation OR transmission OR

distribution OR retail OR “short term” OR “long term” OR loss* OR stability OR

system$ OR solar OR price$) AND

(cluster* OR segment* OR forecast* OR predict* OR detect* OR analy* OR

simulat* OR applicat* OR implement* OR monitor* OR control* OR characteriz*

OR “LFC”) AND

(technique$ OR model OR data OR “artificial intelligence” OR “learning machine”

OR “machine learning” OR “time series” OR “regression analysis” OR “decision tree”

OR “neural network$” OR “ANN” OR “support vector” OR “deep learning” OR “data

mining” OR “ARIMA” OR “ARMA” OR “ANFIS”)

The search is performed using the selected string on the chosen database in Febru-

ary 2019. In total, 7,708 papers are retrieved.

19$ indicates that a keyword can be singular or plural. * is a placeholder for any combination of
letters; “consum*” e.g. captures “consumer” and “consumption”.
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7.3.3 Automatic Filtering

Of the retrieved articles, those most relevant and suited are identified using a text

mining algorithm. The algorithm’s goal is to determine the most relevant documents

in relation to the given search query and it is implemented using the programming

language R.

Firstly, the search string is disaggregated into a list of 20,834 queries that contains

all possible combinations resulting from the selection of one keyword per category

block of the aggregated query. Secondly, a Vector Space Model is constructed, using

the disaggregated search strings and the abstracts of the 7,708 documents retrieved

in the previous step. The Vector Space Model is an algebraic model that involves

two steps: the representation of each document as a vector of the words that occur

within it and the transformation of the vectors into a numerical format. When

breaking the documents into vectors, preprocessing steps are applied in order to

remove stop words, numbers, any extra white spaces and punctuation, and to reduce

the remaining words to their word stem. For the second part of the Vector Space

Model, a Term Document Matrix is constructed. This is a method of representing

document vectors in a matrix format, where rows stand for all the terms present in

at least one of the documents, and columns represent the document vectors across

all terms. In this case, a cell value in the matrix is filled with the number of times

the particular term is present in the particular document. If the term is not present

in the document, then the cell value contains the number 0.

We define articles as relevant when they have a high similarity to the search string.

Because documents and queries are represented as vectors, the angle θ between the

vectors can be used as a similarity measure. The cosine similarity between two

documents on the Vector Space is a measure that calculates the cosine of the angle

between them, according to 7.1.

similarity = cos(θ) =
AB

‖A‖‖B‖
=

∑n

i=1 AiBi
√

∑n

i=1 (Ai)2
√

∑n

i=1 (Bi)2
(7.1)

This metric is a measure of orientation and not magnitude, since it focuses on the

angle between the documents, and not the magnitude of each word count. In this

sense, the cosine similarity is advantageous because even if two similar documents
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are far apart according to the Euclidean distance - due to the difference in size - they

will still be oriented close together. However, a document containing only the words

from a string vector several times will not be closer to that vector than a document

with the same words appearing just once.

After the calculation of the cosine similarity between each paper vector and each

search string vector, each document is assigned its highest obtained score, i.e. the

highest cosine similarity obtained with any of the string vectors. As a result of this

first step of filtering, the top 1,000 papers with the overall highest similarity score

are selected.

7.3.4 Abstract Filtering

A second manual step of filtering is performed by reading and evaluating the ab-

stracts of the top 1,000 documents. Firstly, we exclude studies which use only

physical or engineering methods. In addition, we rule out studies that cover the

application of Data Analytics in an energy sector that does not include electricity.

Following this step, 514 papers remain, which form the Quantitative Analysis Pool

depicted in Figure 7.2 used to carry out the quantitative analysis of electricity ana-

lytics research.20 The pool is later refined for the qualitative analysis, as described

in the paragraphs below.

7.3.5 Manual Filtering

In order to conduct a qualitative analysis of the studies in this area, a more fine-

tuned pool of literature is needed. With this objective, the papers are grouped by

area and year. Within each group, they are then ordered according to their number

of citations. The amount of studies to select from each group is defined according

to the proportion that each one represents in relation to the Quantitative Analysis

Pool. The grouping thus has two purposes: to control the influence that the year

of publication has on the number of citations, and to ensure that the proportion of

articles in each area remains the same as before. Based on these criteria, the docu-

ments with the highest number of citations are selected from each group. Following

this second step of filtering, 147 studies remain.

20See vom Scheidt et al. (2020).



Qualitative review of short-term forecasting of individual consumption 97

7.3.6 Backward and Forward Search

To ensure that the most relevant literature is analyzed, backward and forward

searches are conducted. The backward search is the revision of papers cited by

the articles that are currently part of the literature list, thus determining prior stud-

ies that also should be included. The forward search, on the other hand, is the

identification of papers that cite the articles that are included in the literature list,

thus determining subsequent studies that should be included. As part of the back-

ward search, all papers that are cited by at least 10 of the articles on the current

literature list are included. Following this step, 9 new studies are added to the list.

For the forward search, papers that cite the articles on the current literature list,

and have an above average number of citations in relation to them, are included. In

the course of this step, 16 new studies are added to the list. Finally, the literature

list is merged with the Initial Pool, excluding duplicates.

The resulting Qualitative Analysis Pool includes a total of 205 studies. Of these

205, 24 are categorized into the category “Short-term forecasting of individual con-

sumption”. The review of these studies is presented in Section 7.4. For qualitative

reviews of studies in the other areas, and quantitative analyses of the paper pool,

the interested reader is referred to vom Scheidt et al. (2020).

It should be noted that due to the broad scope of the attempted review, we

concentrate on the most important studies and fields of research with the highest

impact. Other studies related to Data Analytics in the electricity sector exist, but

have not been at the center of discussion at the time the review was conducted.

7.4 Qualitative review of short-term forecasting of

individual consumption

In an electricity system with multiple distributed technologies such as rooftop solar

PV panels, home battery storage, smart meters, and controllable smart home ap-

pliances, the need as well as options for forecasting individual consumption increase

compared to the status quo. Potential use cases are efficient building operation and

optimization Deb et al. (2017) as well as smart storage operation. Compared with

system-wide forecasting, the forecasting of individual consumption is a more recent

stream of research. We classify 13 studies, plus eleven reviews in this category. All
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studies forecast the total consumption of households in a given time interval for a

short-term horizon. Fan et al. (2014) also forecast daily peak values.

7.4.1 Approach overview

Most high-impact studies that forecast short-term individual consumption use ANN

(Kalogirou, 2000, 2001; Neto and Fiorelli, 2008; Zhao and Magoulès, 2012; Quilumba

et al., 2015; Cai et al., 2019; Ahmad et al., 2018) or ANN based hybrid approaches

(Zhao and Magoulès, 2012; Fan et al., 2014; Ahmad et al., 2014; Li et al., 2015; Dong

et al., 2016; Deb et al., 2017; Mat Daut et al., 2017; Muralitharan et al., 2018; Li

et al., 2018; Almalaq and Zhang, 2019). In addition, SVR (Jain et al., 2014; Ahmad

et al., 2014; Dong et al., 2016; Zhang et al., 2016; Mat Daut et al., 2017; Ahmad

et al., 2018), SVR based hybrid approaches (Mat Daut et al., 2017), and Bayesian

Networks (Singh and Yassine, 2018) are used.

7.4.2 Data sets

The data for these studies come from office buildings (Neto and Fiorelli, 2008),

residential buildings (Jain et al., 2014; Quilumba et al., 2015; Dong et al., 2016;

Singh and Yassine, 2018; Almalaq and Zhang, 2019), commercial buildings (Li et al.,

2018; Cai et al., 2019), public sector buildings (Li et al., 2015; Zhang et al., 2016;

Almalaq and Zhang, 2019; Cai et al., 2019), private BEVs (de Cauwer et al., 2015),

and mixed-use buildings (Fan et al., 2014). Most studies use one type of data set

to evaluate their method. The length of the time series used varies depending on

the study and ranges from ten days (Zhang et al., 2016) to five years (Almalaq and

Zhang, 2019). Time granularity of data is usually between 15 minutes and one hour.

Several studies utilize very granular consumption data in the range of one to five

minutes (Almalaq and Zhang, 2019; Singh and Yassine, 2018; Dong et al., 2016).

Notably, Singh and Yassine (2018) use appliance-level data measured at six-second

intervals. Available data sets are usually split up into training and test sets and

sometimes an additional validation set. Typically, training sets contain 60-80% of

the data. The largest training set share is used by Cai et al. (2019) with 90%. In

general, accuracy tends to increase with the training set – in (Singh and Yassine,

2018) for example from 82% at 25%, to 86% at 50%, and 90% at 75%. Compared
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with system-wide consumption forecasting, training set shares tend to be larger.

This might indicate additional difficulty in forecasting individual consumption.

7.4.3 Feature selection

All forecasting studies that focus on buildings use historical consumption data as

an input feature. Multivariate models utilize additional external variables as input

features. The most common are temperature-related (6), followed by type of day

(4), month or season (4), and solar radiation (3). When using external variables,

studies should ensure that only information is used that in reality would be available

at the time of forecasting. This aspect poses a notable limitation to the study by

Cai et al. (2019), which uses actual “future” weather data as an external input,

and not the weather forecast. The authors add “white noise” cases for robustness

analysis, but this still assumes that weather forecasting errors follow a Gaussian

distribution, which impacts practical usability. We recommend choosing one of three

other methods to integrate weather data in consumption forecasts, in line with Hong

et al. (2016). Forecasters could either (a) use historical weather forecasts directly,

(b) rearrange the original historical weather data with e.g. bootstrap methods, or

(c) create a mathematical weather forecasting model and use its output as input for

the consumption forecast.

The BEV forecasting study (de Cauwer et al., 2015) represents a special case, as

it does not use historical consumption data as input, but instead relies on kinematic

parameters of trips – such as distance, travel time, and temperature – and cars –

such as acceleration.

In general, a higher number of features tends to improve forecasting accuracy, but

also the risk of over-fitting. Some studies pay special attention to feature selection.

Neto and Fiorelli (2008) employ Recursive Feature Elimination for feature selection.

Li et al. (2015) utilize principal component analysis. Cai et al. (2019) and Fan et al.

(2014) select external features based on the Pearson Correlation Coefficient and the

Coefficient of Determination of feature values and consumption values, respectively.

Another promising approach is to utilize variables from similar surrounding buildings

via cross correlation, or mutual entropy methods (Yildiz et al., 2017).
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7.4.4 Benchmark approaches

All building forecasting studies benchmark their proposed approach against others.

Benchmarks can range from naive baseline persistence models to more advanced

physical, statistical and Machine Learning approaches. Notably, some studies com-

pare a wider selection of approaches from different categories (Fan et al., 2014; Dong

et al., 2016; Almalaq and Zhang, 2019).

7.4.5 Evaluation metrics

The 13 reviewed studies of individual consumption forecasting do not show a com-

mon, default error measure. Instead, a variety of measures can be observed, including

Mean Absolute Percentage Error (MAPE) (6), Root Mean Squared Error (RMSE)

(5), Coefficient of Variation (5), Mean Absolute Error (MAE) (4), and a long tail of

twelve other measures. One key reason for this variety is that certain conventional

error metrics like MAPE become impossible to calculate when values are zero and

very high when values are close to zero – which are likely to occur for individual

consumption. The resulting diversity in measures limits the comparability of stud-

ies. Therefore, reporting multiple error metrics is advisable. Forecasters should also

be aware that MAPE, RMSE, and MAE are point-wise measures, which double-

penalize models, which forecast the shape of the consumption curve well, but get the

timing wrong. For applications which have a certain tolerance for mistiming, it can

therefore be more appropriate to conduct a restricted permutation of the original

forecast and select the one that minimizes the error (Yildiz et al., 2017). Last, prob-

abilistic forecasts demand new evaluation metrics. The pinnball loss function has

seen widespread use and provides easy implementation and communication (Hong

et al., 2016).

7.4.6 Complexity and running speed

Only few studies explicitly state the complexity and computational efficiency of

their models. In the reported cases, most models can be trained and run in a

matter of minutes on standard personal computers. Nevertheless, the time needed

for building and training models can vary substantially. For training, times might

vary between two seconds and five minutes depending on the approach Fan et al.
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(2014). Similarly, comprehensive feature selection takes additional time – Fan et al.

(2018) report between nine seconds and 50 minutes. On the upside, reducing the

number of features can decrease training time of the model. In ensemble models, the

weighting step takes additional time.

As the computational and modelling effort can be highly significant in real-world

use cases, authors are encouraged to report them. Furthermore, authors who wish

to demonstrate the usability of their approaches for real-time applications are en-

couraged to report training times.

7.4.7 Notable approaches

Firstly, it has been shown that ANN models can perform better when trained sepa-

rately for working days and non-working days, i.e. weekends and holidays. The ANN

models in Neto and Fiorelli (2008) achieve average errors of 10.8 (working days) and

10.5 (non-working days) compared with 21.0 for a combined model.

Secondly, hybrid approaches tend to outperform their individual component ap-

proaches both for total energy consumption and peak power forecasting (Fan et al.,

2014; Almalaq and Zhang, 2019). On the downside, hybrid approaches demand

higher computational and modelling effort. This should be weighted against the

gains in accuracy, especially when those gains are minor, as reported by Zhang et al.

(2016).

Thirdly, current Deep Learning Approaches such as Deep Belief Networks can

outperform many advanced approaches such as ANN, ELM, and SVR (Li et al.,

2018; Amasyali and El-Gohary, 2018).

7.4.8 Summary

In decentralized electricity systems, forecasting short-term consumption at a dis-

tributed level gains importance. This new challenge can be tackled with tailored

solutions, as the various approaches reviewed in this section show. The selected

forecasting time horizon can influence the suitability of approaches (Muralitharan

et al., 2018). The state-of-the-art in short-term forecasting of individual consumption

includes careful feature selection, hybrid approaches and deep learning approaches,

all of which come at higher modelling and computation costs than conventional ap-
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proaches, which must be weighted against accuracy improvements for each use case.

In comparison with system-wide consumption forecasting, no studies use ARIMA

based models, training sets tend to be larger, and more attention is awarded to fea-

ture selection. When used as benchmarks, ARIMA based models are outperformed

by others. This suggests that ARIMA based models might be less suitable for cap-

turing the higher volatility in individual consumption profiles. The larger training

sets and more sophisticated feature selection methods indicate higher requirements

of individual consumption forecasting.

In addition, no default error measures exist. We propose using the mean absolute

scaled error (MASE), as it does not rely on division by the actual consumption

value – and thus is very suitable for individual consumption values, which can be

close to zero at times –, enables comparability across data sets and scales, penalizes

positive and negative errors equally, and can be easily interpreted. In cases, where

large errors in forecasting lead to over-proportionally large losses it is adequate to

also report non-linear loss metrics like the root of the average squared error. For

applications, where the shape of the consumption curve is more important than the

timing, we propose conducting a restricted permutation of the original forecast, and

selecting the error minimizing forecast.

Most studies use one type of data set to evaluate their method, which limits the

generalizability of their findings. We therefore encourage authors to a) assess various

approaches, b) apply their model to a reference data set, which has been used by

other studies in the past, c) report accuracy, computational setup and running time

as well as model building effort, and d) calculate and present multiple common error

measures for evaluation. This way, future studies can provide valuable new insights

for the forecasting community and foster convergence of research in this field.

The field of peak consumption forecasting is relatively small and offers future

potential, for example with respect to demand response, as electricity tariffs with

peak demand and peak capacity charges gain attention (Burger et al., 2019). For this

and further use cases, probabilistic forecasting can be expected to play a large role as

individual consumption exhibits higher volatility and uncertainty than system-wide

consumption.
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7.5 Conclusion

The presented review reveals multiple key takeaways for the development of a state

of the art forecasting model. First, for high performance, Machine Learning models,

and probabilistic approaches appear favourable compared to conventional statistical

methods and non-probabilistic models. Second, features should be selected carefully

and tailored to the problem context. Third, for research rigour, various approaches

should be developed and compared on the same data set, public reference data sets

should be used, and common error measures should be used. These key findings

motivate the design of a novel forecasting model that is presented in Chapter 8.





CHAPTER 8

LOAD FORECASTING FOR INTEGRATED

HOME ENERGY SYSTEMS

Roof-top solar PV plants, residential electric heating, and other distributed energy

technologies, together with time-varying tariffs, create demand for smart home en-

ergy management systems. These systems rely on accurate forecasts of electricity

generation and consumption in order to calculate optimized operation schedules for

all technologies. In recent years, first probabilistic load forecasting models for house-

holds have been developed, with growing model complexity and performance. In

comparison to point forecasts, probabilistic models provide more information about

future uncertainties (Wang et al., 2019), and thus can be more useful for smart home

energy management systems. However, past probabilistic forecasting research has

largely ignored the influence of new technologies on forecasts. To address this impor-

tant gap, this chapter presents a dedicated net load forecasting model for households

with solar PV plants, electric heating, or both.

Informed by the review conducted in Chapter 7, a probabilistic forecasting model

based on an Artificial Neural Network with Gated Recurrent Units (GRUs) is devel-

oped. The model specifically uses data from weather forecasts as external features,

in contrast to the commonly used actual weather data. Further following best prac-

tices of assuring comparability and replicability, the model is applied to an openly

available data set, and compared to three benchmark models. The results show that

a quantile Long Short-term Memory (LSTM) model from literature performs best

for households without the aforementioned technologies, but the proposed quantile

GRU model performs best for households with solar PV plants, electric heating, or

both. In general, forecasting losses are lowest for households with solar PV, and
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highest for households with electric heating. These findings lead to the conclusion

that the increasing adoption of distributed energy technologies is likely to affect the

quality of existing forecasting tools.

This chapter comprises the published article: F. vom Scheidt, X. Dong, A. Bartos,

P. Staudt, C. Weinhardt, Probabilistic Forecasting of Household Loads: Effects of

Distributed Energy Technologies on Forecast Quality, Proceedings of the Twelfth

ACM International Conference on Future Energy Systems, 2021.

8.1 Introduction

In electricity systems with increasing numbers of distributed energy technologies

(DETs), appropriate short-term forecasting of load at a granular level gains impor-

tance (Wang et al., 2019; vom Scheidt et al., 2020). Probabilistic load forecasting

models for households provide more information about future uncertainties than

point forecasts (Wang et al., 2019), but have been focused on ’conventional’ resi-

dential load, and have largely neglected the influence of distributed energy technolo-

gies. Therefore, this chapter makes the following contributions: First, it provides a

new semi-synthetic residential data set, which contains the net load profiles of 40

households, differentiated by heating type (electric space heating, no electric space

heating), and rooftop solar PV installation (solar, no solar). This unique data set is

used to analyze how well probabilistic forecasting models perform over various types

of households with DETs. Second, it presents a probabilistic forecasting model based

on Gated Recurrent Units that includes data from weather forecasts and calendar

variables as external features. This model is compared to three benchmark models,

one of them a recently proposed model based on Long Short-term Memory networks

(Wang et al., 2019). The chapter thus sheds light on the so-far neglected role of DETs

in residential probabilistic load forecasting, proposes a new forecasting model that

is compared to state-of-the-art benchmark models, and provides a new benchmark

data set for future research in this area.21

21Code and data are available at https://github.com/FVS-energy/prob_forecasting.
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8.2 Related work

Unlike point forecasting, which provides a single predicted value at each time

step, probabilistic forecasting makes it possible to express the uncertainty in a pre-

diction, which is a crucial component for optimal decision making (Gneiting and

Katzfuss, 2014). For electrical load, probabilistic forecasting generates a distribu-

tion of the future load, thus capturing characteristics of a load profile’s volatility. As

suggested by Hong and Fan (2016b), probabilistic load forecasts can be conducted in

terms of quantile forecasting, interval forecasting and density forecasting. In recent

years, there has been growing interest in probabilistic load forecasting on city level

or system level. A structured overview of probabilistic load forecasting studies is

provided in Table 8.1. The overview shows that studies have investigated a wide

range of new methods, including kernel methods (Arora and Taylor, 2016), neural

networks (Elvers et al., 2019; Wang et al., 2019; Van der Meer et al., 2018b; Vossen

et al., 2018; Gan et al., 2017), Gaussian process (Shepero et al., 2018; Van der Meer

et al., 2018a,b), additive quantile regression (Taieb et al., 2016), and ensemble mod-

els (Munkhammar et al., 2021; Afrasiabi et al., 2020). However, most studies have

applied these methods to regular households’ loads. Regarding household load influ-

enced by DETs, Van der Meer et al. (2018b) address probabilistic forecasting of net

loads of houses with rooftop solar PV. They propose a dynamic Gaussian Process

that produces sharper prediction intervals at significant lower computational effort

than the provided benchmarks. However, there is a trade-off with the ability to

capture sharp peaks. The authors also find that indirectly forecasting net demand

(i.e. through forecasting both demand and self-generation) leads to wider predic-

tion intervals with higher coverage probability. In a following work, Van der Meer

et al. (2018a) find that net load forecasts have improved sharpness and reliability

of prediction intervals, when several households are aggregated. This hints at the

specific challenges of individual load forecasting. However, neither of the two studies

compares households with different technology set-ups. Besides probabilistic house-

hold load forecasting, studies have developed specialized probabilistic forecasts for

flexibilities of electric vehicles (Huber et al., 2020), or rooftop solar PV generation

(Afrasiabi et al., 2020), but without integrating these into residential load forecasts.

In summary, past research has focused on the development of models for household
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Table 8.1.: Overview of probabilistic individual load forecasting literature

Study Main method(s) Input
features

Data Evaluation
metric

Load
scenarios

This study GRU, LSTM net load,
calendar,
weather

1 year at
1 h resolution

Average pinball loss Household (HH),
HH with solar,
HH with heating,
HH with solar +
heating

Munkhammar et al. 2021 Markov-chain mixture
distribution model

load 3 years at
30 min resolution

Reliability MAE, PINAW,
normalized CRPS

HH

Afrasiabi et al. 2020 Ensemble of CNNs,
GRU, MDN

load,
weather

1 year at
30 min resolution

RMSE, MAPE, CRPS,
CE

HH

Zhang et al. 2020b Ensemble of GRU,
GBRT, RF, LightGBM

load,
calendar

1.5 years at
30 min resolution

CRPS HH

Elvers et al. 2019 CNN load,
calendar,
weather

2 years at
15-60 min resolution

Pinball loss HH

Wang et al. 2019 LSTM load,
calendar

1.5 years at
30 min resolution

Average pinball loss HH

Shepero et al. 2018 Gaussian process,
log-normal process

load,
calendar

3 years at
30 min resolution

MAE, RMSE, PINAW,
PICP

HH

Van der Meer et al. 2018a Static + dynamic
Gaussian Process

net load 3 years at
30 min resolution

MAE, MAPE, NRMSE,
PICP, PINAW, NCRPS

HH with solar

Van der Meer et al. 2018b Dynamic Gaussian
Process, Quantile
regression

net load 3 years at
30 min resolution

PICP, PINAW, NCRPS HH with solar

Vossen et al. 2018 MDN, Softmax
Regression Networks

load,
calendar

three different
data sets

CRPS HH

Gan et al. 2017 LSTM load 500 d at
30 min resolution

Average quantile score HH

Taieb et al. 2016 Boosting additive
quantile estimation

load 1.5 years at
30 min resolution

CRPS HH

Arora and Taylor 2016 Conditional kernel
density estimation

load 8 mo at
30 min resolution

CRPS, unconditional
coverage

HH

CE: Cross-entropy, CNN: Convolutional neural network, GBRT: Gradient boosting regression tree, RF: random

forest, LGBM: Light gradient boosting machine, CPRS: Continuous Ranked Probability Score, MAE: Mean

average error, MAPE: Mean average percentage error, MDN: Mixed density networks, NRMSE: Normalized

root mean squared error, PICP: Prediction interval coverage probability, PINAW: Prediction interval normalized

average width, NCRPS: Normalized continuous ranked probability score, RMSE: Root mean squared error

load, or specific single technologies. An important gap prevails regarding probabilis-

tic load forecasting for consumers with different types of DETs that are about to

“disrupt the traditional load profiles” (Wang et al., 2019).

8.3 Methodology

This section introduces the structure of the proposed forecasting model. Addi-

tionally, it describes benchmark methods, the selected loss metric, hyperparameter

tuning, and cross-validation.
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8.3.1 Long Short-Term Memory Networks and Gated Recurrent Units

Unlike traditional neural networks, which learn the relationships of inputs and

outputs based on provided training data for every instance, recurrent neural

networks (RNNs) are able to learn dependencies within sequential input data such

as time series. However, conventional RNNs can practically only learn short-term

dependencies due to the problem of vanishing gradients. As a remedy, LSTM

networks have been developed, which are able to learn long-term dependencies

(Hochreiter and Schmidhuber, 1997; Gers et al., 1999). There are three gates in an

LSTM unit, which control the flow of information in the network. However, LSTMs

can suffer from slow training since parameters for three gates have to be estimated.

Compared to LSTMs, GRUs have one less parameter that needs to be estimated.

In other contexts, GRUs have shown similar performance as LSTMs, with shorter

computational times (Chung et al., 2014; Ke et al., 2019). Therefore, in this chapter,

we present a probabilistic forecasting model based on quantile forecasts with GRUs.

The inner structure of a GRU unit is illustrated in Figure 8.1. The two gates

of a GRU are called update gate zt and reset gate rt. The update gate zt controls

how much information from the previous state should be passed in the future. It is

determined by the hidden state of the last time step ht−1 and the current input ht, as

shown in Equation 8.1. Similarly, the reset gate rt controls, which information from

past steps should be forgotten, as shown in Equation 8.2. A candidate hidden state

h̃t stores relevant previous information using a reset gate (Equation 8.3). Last, the

current hidden state ht is determined, denoting what information should be passed

from the candidate hidden state. ht is calculated as shown in Equation 8.4.

zt = σ(Wz · [ht−1, Xt]) (8.1)

rt = σ(Wr · [ht−1, Xt]) (8.2)

h̃t = tanh(W · [rt · ht−1, Xt]) (8.3)

ht = (1− zt) · ht−1 + zt · h̃t (8.4)
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1-

tanh

Figure 8.1.: Inner structure of a GRU unit

8.3.2 Network structure

The quantile GRU model (QGRU) includes four steps. A visual representation is

displayed in Figure 8.2.

The first step takes historical load data as input. t refers to the predicted time

step. ni is the number of input steps, i.e. the length of the input time series. no

denotes the number of output steps, defining the prediction horizon. The previous

load profile goes through two GRU layers and one dense layer. This layer passes

on the last hidden state ht. In the second step, the calendar data, i.e. the features

weekday and time of day, are one-hot encoded. In the third step, weather data are

introduced. Each variable, i.e. temperature, wind speed, and relative humidity, is

normalized. The fourth step concatenates the output of the three previous steps.

Then, the resulting input vector is passed through two fully-connected dense layers,

which finally generate five quantile forecasts.

8.3.3 Pinball loss for quantile forecasting

Pinball loss is an established evaluation metric for probabilistic forecasts in the en-

ergy sector. It is used as the single deciding error measure in the Global Energy

Forecasting Competition (Hong et al., 2016), as well as in studies on probabilistic

household load forecasting (Wang et al., 2019; Elvers et al., 2019). Pinball loss eval-

uates the forecasts of each quantile individually, as formulated by Equation 8.5. The

core idea of the pinball loss is the asymmetric penalization of forecast errors, depend-
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Figure 8.2.: Network structure of the QGRU forecasting model

ing on the quantile. This is represented in Figure 8.3. If a forecasted quantile value

is smaller than the actual observation, it is penalized stronger for higher quantiles, as

the quantile loss is the product of the quantile and the absolute error. The proposed

QGRU model (and all benchmark models) predict five values at each time step for

q ∈ [10%, 25%, 50%, 75%, 90%]. The aim of the training process is to minimize the

average pinball loss of all five quantiles, as formulated by Equation 8.6.

Lq,t(yt, ŷ
q
t ) =

{

(1− q)(ŷqt − yt), ŷqt ≥ yt

q(yt − ŷqt ), ŷqt < yt
(8.5)

yt: real observation at time step t

ŷqt : the qth quantile forecast at time step t

minL =
∑

q

T
∑

t=1

Lq,t, q ∈ [10%, 25%, 50%, 75%, 90%] (8.6)
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Figure 8.3.: Pinball loss. Own depiction, based on Wang et al. (2019)

8.3.4 Benchmarks

To adequately evaluate the performance of the proposed model, we compare it to

three other quantile load forecasting models. The first benchmark is a quantile LSTM

(QLSTM) model. It employs LSTM layers instead of GRU layers and thus has the

same network architecture as the QGRU model and the same modelling effort. The

second benchmark is a quantile regression neural network (QREGNN) model with

four dense layers. Both QLSTM and QREGNN take the same input features as

the QGRU. We use these two benchmarks to evaluate the QGRU’s performance

against other models using the same input data. The third benchmark is a quantile

LSTM model that does not use weather input features (QLSTM_noWeather). It

corresponds to the model proposed by Wang et al. (2019). We use it to measure how

the weather features affect the forecast loss and to provide an established benchmark.

For all three benchmark models, hyperparameter tuning and cross-validation are

performed, to allow for an adequate comparison.

8.3.5 Hyperparameter tuning

Since there are individual models for each household, hyperparameter tuning is done

for each model individually. For QGRU, QLSTM, and QLSTM_noWeather, we tune

the learning rate, the number of units in the recurrent layers and the number of units

in the dense layers. For the QREGNN, we tune the learning rate and the number of

units in the dense layers. The tested values are shown in Table 8.2.
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Table 8.2.: Values of Hyperparameters

Hyperparameter Values

Learning rate 0.001, 0.01, 0.1
Number of units in recurrent layers 4, 8, 12
Number of units in dense layers 10, 30, 50

8.3.6 Cross-validation

Due to the time series character and the limited time range of the data (one year),

a two-fold rolling window approach is conducted to cross-validate the models. First,

we train, validate and test our models only on the first 80% of data, i.e. with

a train-validation-test split of 40-20-20. Second, we expand the training window,

resulting in a 60-20-20 split. For the final evaluation, we average the test losses from

step one and two. Rolling window cross-validation is a common approach in energy

forecasting (Huber, 2020; Van der Meer et al., 2018b). It improves the generalisation

of our findings, amongst others because it better captures seasonality effects.

8.4 Data

This section introduces the data pre-processing steps and the final input data set

for the load forecasting task.

8.4.1 Load data

The residential electricity load data was collected by Commonwealth Edison

(ComEd), a large electric utility in the US (Exelon, 2018). The data set contains

anonymous smart meter data of residential customers in and around the city of

Chicago for the year of 2016. Each smart meter provides half-hourly load data,

which leads to 16,128 observations for every household. For each customer ID, the

delivery service class is stated, which describes the housing type (single family homes

and multi family homes), as well as the heating type (electric space heating and no

electric space heating). For more information and other applications of the original

data set, we refer to Burger et al. (2020) and vom Scheidt et al. (2019). For our pur-

pose, we focus on households in single family homes. From those, we randomly draw

ten customers with electric space heating and ten without electric space heating.
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8.4.2 Solar data

For solar PV data, we use the Python tool pvlib Holmgren et al. (2018). Following the

approach from Burger (2019) and Brown and O’Sullivan (2020), we simulate power

generation from rooftop solar PV systems based on given weather and irradiation

data from 2016. We simulate PV systems with three different azimuths of 135 (south-

east), 180 (south), and 225 (south-west) degrees. Each solar PV system is sized to a

capacity of 6.9 kW, following Feldman et al. (2021). We randomly assign an azimuth

to each household. The assigned solar generation curve is subtracted from the load

curve, resulting in the net load. As the forecasts are meant to serve as an input for

smart home energy management systems, the forecasts are targeted at the original

net consumption of households prior to any potential demand response.

Finally, the data set comprises the net load data for 40 households, i.e. for ten

households without electric space heating or solar PV (Figure 8.4a in the appendix),

for ten households with electric space heating, but no solar (Figure 8.4b), for ten

households without electric space heating, but solar (Figure 8.4c), and for ten house-

holds with both electric space heating and solar (Figure 8.4d).

8.4.3 Weather data

When using external input features for forecasting, it should be ensured that only

data are used that in reality would be available at the time of forecasting (vom

Scheidt et al., 2020). It has been shown that the errors inherent in weather fore-

casts increase load forecast errors on system level (Alireza Khotanzad et al., 1997).

Therefore, we acquire historical weather forecast data for 2016.

The US ”National Oceanic and Atmospheric Institute” provides historical weather

forecasts with a sufficiently long history via the Climate Forecast System Version

2 (Saha et al., 2014). In this data base, forecasts for more than 50 variables are

stored in six hour intervals. We select air temperature, specific humidity and wind

speed, since they are the most frequently used weather variables for load forecasting

(Feinberg and Genethliou, 2005) and have a large influence on thermal comfort

(Hippert et al., 2001), which presumably plays a crucial role for the load forecasts of

households with electric heating. The data sets are provided via a HTTPS file server

(National Oceanic and Atmospheric Institute, 2019). From this server, the data can
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(a) HH with no technology
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(b) HH with electric heating
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(c) HH with solar
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(d) HH with electric heating and solar

Figure 8.4.: Average daily net load curves of the ten households in each group

be downloaded in the Grib2 format and transformed for use in the forecasting task

with the Python Package cfgrib. The grid node with the closest spatial proximity

to the smart meter area is selected (42.05◦, -87.2◦). Last, we interpolate the data

to hourly values using a cubic regression spline as proposed by Hyndman and Fan

(2010).

8.4.4 Calendar data

Electricity consumption patterns on public holidays are usually different from normal

days (He, 2017). Past studies have either simply considered all public holidays as

weekends (Lusis et al., 2017) or used more sophisticated rules to label public holidays

and surrounding days (Hong et al., 2013). We follow the latter approach and re-label

special days according to the rules outlined in Table 8.3.
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Table 8.3.: Modification of Special Days

Original weekday Date Special day New label

Friday 2016-01-01 New Years Day Saturday
Saturday 2016-01-02 after New Years Day Saturday
Sunday 2016-05-29 before Memorial Day Saturday
Monday 2016-05-30 Memorial Day Sunday
Tuesday 2016-05-31 after Memorial Day Monday
Monday 2016-07-04 Independence Day Sunday
Monday 2016-09-05 Labor Day Sunday
Tuesday 2016-09-06 after Labor Day Monday
Thursday 2016-11-24 Thanksgiving Saturday
Friday 2016-11-25 after Thanksgiving Saturday
Monday 2016-12-24 Christmas Day Sunday
Tuesday 2016-12-25 after Christmas Day Monday

8.4.5 Final input data set

Since other data are given at hourly intervals, the smart meter data sets are aggre-

gated from a half-hourly to an hourly resolution, resulting in 24 observations per day.

The final data set for the case study contains three categorical variables (Customer

ID, DET set-up, Date), and six input variables for the forecast (Hourly net load,

Weekday, Time of day, Hourly temperature forecast, Hourly wind speed forecast,

Hourly relative humidity forecast).

8.5 Case study

For the case study, the net load of the next hour is forecasted.22 For each of the

40 households, an individual model is trained. The last 336 hours (i.e. two weeks)

of net load are used as lagged input features. The proposed models are implemented

in Python, using Keras. The models are run on a GPU on Google Colaboratory

(Google, 2021).23

To provide detailed insights into the performance of the models, Figure 8.5 shows

22Depending on the use case, this case study could be extended to further output horizons, such
as one-day ahead. Testing and comparing multiple output horizons is outside of the scope of
this chapter.

23Since the allocation of computing resources in Google Colaboratory is not fully transparent,
reporting and comparing run times of the models is futile.
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a scatter plot of each household’s average pinball loss under QGRU, compared to

the benchmark models. The line y=x represents the performance of the QGRU.

All points under this line indicate a case in which the QGRU outperforms the re-

spective benchmark model. 67.5% of points are under the line, demonstrating the

overall superior performance of the proposed QGRU model. More specifically, the

QGRU model outperforms the QLSTM in 60.0%, the QREGNN in 72.5%, and the

QLSTM_noWeather in 70.0% of cases.

Figure 8.5.: Comparison of pinball loss between QGRU and benchmark models for all cus-
tomers

In Table 8.4, the performance of the proposed QGRU and the three benchmarks

methods, is presented, averaged across customers. The proposed QGRU achieves

the lowest pinball losses, overall. It achieves the lowest loss for three of the four

customer groups, namely households with electric heating, households with solar

PV, and households with both technologies. Only in the case of households without

any technology, the benchmark QLSTM model without additional weather input

data (as proposed by Wang et al. (2019)) outperforms the QGRU on average. Our

results thus confirm the good performance of this model on standard households,

but also show that it is outperformed by the QGRU model for households with

energy technologies that have atypical electricity net load profiles. This underlines

the importance of tailoring forecasting models to the specific case.
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Table 8.4.: Average Pinball loss [kWh] of tested methods for different customer types

QGRU QLSTM QREGNN QLSTM_noWeather Average

HH 0.1989 0.2019 0.2373 0.1902 0.2070
HH with heating 0.2060 0.2116 0.2602 0.2061 0.2211
HH with solar 0.1366 0.1386 0.1367 0.1387 0.1376
HH with heating & solar 0.1347 0.1394 0.1564 0.1509 0.1453
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Figure 8.6.: Net load and QGRU pinball loss

All models show the highest average loss for households with electric heating.

Figure 8.6 shows the average pinball loss of the QGRU model versus the annual net

consumption for each household. The respective figures for the benchmark models

can be found in Appendix D. Households with electric heating tend to have higher

loads and higher losses. Although differences among models exist, all models show

a very high pinball loss for at least one customer from the set of households with

electric heating. This finding might indicate that for the tested models, a training

set of less than one year, which only includes one heating period is inadequate for

learning the households’ heating behavior, which is important to consider in the

development of future models.

All models achieve the lowest pinball loss on the net load profiles of households

with solar generation. Notably, this finding seems to hold independent of these

households’ total annual net loads, as Figure 8.6 shows. This is surprising and
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Figure 8.7.: Standard deviation and QGRU pinball loss

indicates that the forecasting models are able to adequately capture the periodicity

of net loads that include solar generation. This notion is supported by the comparison

of households with no technology and of households with both solar PV and electric

heating. These groups have similar mean net consumption, but pinball losses are

lower for the latter.

Last, we observe the effect of net load curves’ standard deviation on forecast

performance in Figure 8.7. Again, the respective figures for the benchmark models

can be found in Appendix D. We find that standard deviation is smallest for standard

households without DETs and largest for households with both electric heating and

solar, reflecting their more variable load curve (see also Figure 8.4d). Notably, the

standard deviation does not seem to impact the pinball loss visibly.

Since no literature on probabilistic forecasts of net loads with DET influence exists,

we cannot yet benchmark our results against literature. However, we compare our

results for households without DETs to Wang et al. (2019), who use a pinball loss

guided LSTM without weather data. We find that the QLSTM_noWeather model

in our case study achieves an average pinball loss about twice as high as in the case

study in (Wang et al., 2019): 0.2019, compared to 0.0963. We assume this difference

is due to the higher number of data points per customer in the data set used in Wang

et al. (2019): 26,000 data points per customer, compared to 8,783 in our data set.
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This indicates the positive effect of more training data on forecasting performance.

Future work could enhance our approach by including other distributed energy

technologies, such as electric vehicles and residential batteries. Besides, it can utilize

the forecasts by integrating them into the operation of home energy management

systems. For this, the code and data published with this study can be used.

8.6 Conclusion

In this chapter, we argue that increasing adoption of distributed energy tech-

nologies affects the quality of existing forecasting tools for individual households’

net loads. We present a pinball loss guided GRU model that produces quantile

forecasts of net loads. We develop a new, semi-synthetic residential net load data

set that includes standard customers without distributed energy technologies as

well as customers with electric heating, rooftop solar PV, and both technologies.

We apply the proposed model and three benchmark models to this data set. We

find that the proposed quantile GRU model outperforms the benchmark models

for customers with distributed energy technologies, independent of technology.

However, the quantile GRU model is outperformed for the group of standard

households by a quantile LSTM model that ignores weather data. All models

perform best for households with own solar generation, and worst for households

with electric heating. We thus provide first fundamental insights for probabilistic

forecasting of household load under the influence of distributed energy technologies.

This chapter concludes Part II of this thesis. In this Part, I investigate and

evaluate naive and advanced decision support methods for the selection of time-

varying electricity tariffs as well as bundles of tariffs and technologies. For the

subsequent optimal operation of technologies in response to the tariff, I analyze the

state of the art of load forecasting and develop a novel probabilistic forecasting model

for residential net loads. Together, these forecasts and decision support methods can

facilitate the proliferation of time-varying electricity tariffs and more climate-friendly

technologies amongst residential consumers.

The following Part III broadens the scope from electricity tariff engineering for res-

idential customers and the integration of small-scale technologies to tariff effects on

the system level and the integration of large-scale technologies, such as electrolyzers.



Part III.

System level
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Electricity tariffs do not only have an impact on residential consumers, but also on

large consumers in the system. For both the temporal granularity of the electricity

tariffs is relevant, as it can incentivize system-beneficial consumption of electricity.

Specifically for new, large consumers, the spatial granularity of tariffs is important,

too, because it can influence, where in the system the large consumers are being

placed. A large key technology that needs to be integrated in electricity systems

in the near future, is hydrogen. Hydrogen, produced in electrolyzers with GHG

free electricity, is a critical energy carrier for emission reduction in the industry and

transportation sectors. Numerous governments are developing support schemes for

the scale-up of infrastructure for the production, conversion, transportation, and

storage of hydrogen. Since hydrogen electrolysis uses large amounts of electricity,

electricity tariffs will have a considerable effect on the setup of this infrastructure

and the resulting costs for society. Therefore, it is timely and important to analyze

the effects of current tariffs on hydrogen infrastructure and its feedback effects on

the electricity grid, as well as to engineer new, more efficient tariffs to foster the

integration of hydrogen into the energy system of the future.





CHAPTER 9

EFFECTS OF SPATIALLY DIFFERENTIATED

TARIFFS ON HYDROGEN INTEGRATION

In this chapter, the interplay of tariffs on the electricity system level and hydrogen

supply chains is analyzed. For this, a novel electrolytic hydrogen supply chain model

is developed. This model is then linked to an electricity system dispatch model. For

a detailed analysis and case study, two new comprehensive data sets for the German

electricity system and the hydrogen demand in 2030 are constructed. Together, this

allows the evaluation of the effects of tariffs with spatial and temporal price signals

on hydrogen infrastructure, and its feedback effects on the electric system.

This chapter comprises the following published articles and data sets:

• F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt,

Integrating Hydrogen in Single-Price Electricity Systems: The Effects of Spatial

Economic Signals, Energy Policy, 2022.

• F. vom Scheidt, J. Qu, P. Staudt, D. S. Mallapragada, and C. Weinhardt, The

effects of electricity tariffs on cost-minimal hydrogen supply chains and their

impact on electricity prices and redispatch costs, 54th Hawaii International

Conference on System Sciences, 2021.

• F. vom Scheidt, and P. Staudt, Spatially Resolved Hydrogen Demand for Ger-

many in 2030, Mendeley Data, doi: 10.17632/8kyxj9khvv.1, 2021.

• F. vom Scheidt, C. Müller, P. Staudt, C. Weinhardt, The German Electricity

System in 2030: Data on Consumption, Generation, and the Grid, Repository

KITopen, doi: 10.5445/IR/1000125576, 2020.
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Nomenclature

Sets and indices

C Set of consumption locations c

D Set of all days d in a year

P = PProduction

⋃

PImport Set of domestic production locations and import

locations p

S ∈ {LH2, GH2, LOHC} Set of hydrogen transportation states s

Decision variables

Xp ∈ {0, 1} Hydrogen production/import at location p (1), or

not (0)

HPp ∈ [0,∞) Daily amount of hydrogen production at p

[kgH2
/day]

Yp,c ∈ {0, 1} Hydrogen transport from p to c (1), or not (0)

HTp,c ∈ [0,∞) Daily amount of hydrogen transportation from p to

c [kgH2
/day]

Objective function parameters

PCCp Annual production capital cost at p [EUR]

POCp Annual production operating cost at p [EUR]

CCCp,s Annual conversion capital cost of s at p [EUR]

COCp,s Annual conversion operating cost of s at p [EUR]

TCCs Annual transportation capital cost of s [EUR]

TOCs Annual transportation operating cost of s [EUR]

SCCs Annual fueling station capital cost of s [EUR]

SOCs Annual fueling station operating cost of s [EUR]

Exogenous parameters

a Depreciation period [years]

AF Annuity factor [%]

CAPImport Import capacity [kgH2
/day]
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CAPProduction,max Maximum production capacity [kgH2
/day]

CAPProduction,min Minimum production capacity [kgH2
/day]

CAPTrailers Capacity of delivery trailer for state s [kgH2
]

DISTp,c Air-line distance between p and c [km]

DF Detour factor [-]

DS Driving speed [km/h]

DTs Sum of driving time of delivery trucks [hours]

EC Electricity consumption [kWhel/kgH2
]

ED Energy density of hydrogen [kWhH2
/kgH2

]

EE Electric efficiency of electrolysis [kWhH2
/kWhel]

EP Uniform single electricity price [EUR/kWhel]

EPp Electricity price at p [EUR/kWhel]

FC Fuel consumption of delivery truck [liter/km]

FLHElectrolyzer Full load hours of electrolyzers [hours]

FP Fuel price [EUR/kgH2
]

FSC Fuel station capacity [kg/day]

FTC Fuel and toll costs [EUR]

NGCs Natural gas consumption of fuel station of hydrogen

state s [kWhNG/kgH2
]

HDc Daily hydrogen demand at location c [kgH2
/day]

HIC Hydrogen import costs [EUR/kgH2
]

ICConversions Investment costs of conversion equipment [EUR]

ICElectrolyzer Capacity-dependent investment costs of electrolyzer

[EUR/kWel]

ICStations Investment cost per fuel station for state s [EUR]

ICTrailerss Investment cost per trailer for state s [EUR]

ICTrucks Investment cost per truck [EUR]

ISs Investment cost per fuel station of state s [EUR]

LC Labor costs [EUR]

LTs Duration of loading and unloading one delivery

trailer of state s [hours]

NS Number of fuel stations [-]

NGP Natural gas price [EUR/kWhNG]
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NTs Number of trucks for state s [-]

O&M Operation and maintenance cost factor [%]

T Toll [EUR/km]

W Wage [EUR/hour]

WACC Weighted average cost of capital [%]

9.1 Introduction

Hydrogen produced from low-carbon sources can contribute substantially to

mitigating emissions in sectors that are difficult or impossible to electrify directly.

Governments worldwide and in particular in Europe, have announced strategies and

billions of public funding to develop large-scale hydrogen infrastructure that is cen-

tered on electrolytic hydrogen supply (Hydrogen Council and McKinsey & Company,

2021). Since hydrogen production from electrolysis uses large amounts of electricity,

a future hydrogen sector will introduce new interdependencies with the electricity

sector. While electricity prices influence the cost-minimal installation (vom Scheidt

et al., 2021) and operation (Guerra et al., 2019) of electrolyzers, these electrolyzers

in turn introduce new electricity demand into the power system, influencing in

the short term the usage of renewable energy (Ruhnau, 2020; Bødal et al., 2020)

as well as congestion of power grids (vom Scheidt et al., 2021; Xiong et al., 2021)

and in the long term the need for electricity generation and transmission capacity

(Bødal et al., 2020). Most importantly, the effects of these interdependencies will

be strong and will prevail for a long time, because electrolyzers are large-scale, sta-

tionary consumers with typical lifetimes of ten years and more (Schmidt et al., 2017).

The integration of electrolyzers in European grids raises some unique questions

as European wholesale power markets are designed as single-price zonal markets

that overlook intra-zonal transmission capacities and nodal price variations. Such

single-price zonal market designs are already leading to rising congestion man-

agement costs in many electricity systems (Staudt et al., 2017). In Germany, the

costs for congestion management have risen to around a billion Euro annually, and

especially the curtailment of renewable energy plants is increasing (Xiong et al.,

2021). Yet, political decision makers have repeatedly proclaimed that nodal pricing
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will not be introduced in Germany or Europe, any time soon (CDU, CSU und

SPD, 2018; European Network of Transmission System Operators for Electricity,

2021). Without appropriate policy to guide system-beneficial integration, hydrogen

production might strongly aggravate these effects. While the importance of market

cost-reflective price regulation and subsidization of electrolyzers has been voiced

in the political sphere (European Commission, 2020), there is a prevailing lack of

energy policy research to guide efficient integration of hydrogen infrastructure into

the electricity sector.

Therefore, in this chapter, we link an electrolytic hydrogen supply chain model

with an electricity system dispatch model to analyze the cost-minimal hydrogen

infrastructure setup under different electricity price signals, using Germany as a case

study. We find that under current regulation with uniform single electricity prices,

the cost-minimal solution is to produce hydrogen close to locations of consumption.

These locations partly coincide with high locational marginal electricity costs.

Consequently, our results also show how hydrogen production aggravates the

inefficiencies of single-price markets and how it increases congestion management

costs substantially, by increasing the need for redispatch.

We compare this benchmark scenario to a case in which electrolyzers are offered

dedicated nodal tariffs, based on the Locational Marginal Prices that would form

in a nodal pricing system. We find that such nodal signals lead to higher shares

of hydrogen production at low-price nodes, longer transport distances, and lower

total costs for hydrogen. This demonstrates the sensitivity of hydrogen supply

chains to spatial prices or subsidies. Moreover, in this scenario, the integration of

hydrogen leads to congestion management costs that are substantially lower than

in the benchmark scenario and even below the baseline scenario without hydrogen.

Interestingly, these avoided redispatch costs could effectively cover the subsidies a

regulator would have to pay to mimic nodal prices for hydrogen electrolysis within

the existing single-price zonal market design. Moreover, the system-wide CO2

emissions decrease in the nodal tariff scenario, as electrolyzers are placed closer to

renewable generation capacity.
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Thus, in a time in which many policy makers and regulators in single-price zonal

markets are planning future hydrogen supply systems, electricity tariff designs for

electrolyzers, and subsidies for hydrogen infrastructure, our study demonstrates and

quantifies the considerable benefits of differentiating these economic signals with

respect to spatial criteria.

9.2 Background

Several past studies address the spatial aspects of hydrogen supply chains that

use grid electricity for hydrogen production. Robinius et al. (2017), Reuß et al.

(2019), and Emonts et al. (2019) present related models that link a hydrogen supply

chain with a national electricity grid. The authors apply their model to the case of

hydrogen fueled passenger cars in Germany in 2050 and identify favorable regions

for hydrogen production in Germany. The studies do not explicitly consider effects

of (spatial) economic signals, but rather take a technical supply chain perspective.

Runge et al. (2019) optimize supply chains for synthetic fuels, including hydrogen

stored in liquid organic hydrogen carrier (LOHC) material. Besides considering uni-

form single-prices, the authors also present a case in which they calculate state-level

representative nodal prices for two exemplary states in Germany (NUTS-2 level)

and allow transportation of hydrogen between the two states. This causes increased

hydrogen production in the state with lower prices. The authors acknowledge the

importance of future work analyzing feedback effects on the electricity system. Ad-

dressing this identified research gap is one of the contributions of our study.

Zhang et al. (2020a) analyze the flexible operation of electrolyzers that produce

hydrogen for light, medium- and heavy-duty fuel cell electric vehicles (FCEVs) in the

Western United States of America. They find evidence that increasing electrolyzer

flexibility lowers hydrogen and electricity generation costs and CO2 emissions. With

a similar focus on temporal aspects, it has been demonstrated that flexibility of

electrolytic hydrogen production enables more renewable integration for case studies

in Texas, USA (Bødal et al., 2020), the Northeastern US (He et al., 2021) and

Germany (Ruhnau, 2020).

Rose and Neumann (2020) focus on hydrogen supply for heavy-duty trucks from

on-site electrolysis at highway fuel stations. They jointly optimize the infrastruc-

ture of fuel stations and the electricity system. They find that fully using hydrogen
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fueled heavy-duty trucks in Germany in 2050 would increase the total electricity de-

mand by about 60 TWh and cause additional infrastructure costs of about 12 billion

Euro per year. They note that nodal prices contain important information about

”cost-effective energy consumption from a system perspective” and that investors in

hydrogen infrastructure should consider the system perspective. This idea is ex-

panded and implemented by vom Scheidt et al. (2021). The authors link a hydrogen

supply chain optimization model and a nodal electricity system dispatch model and

observe their interdependence in an initial case study of hydrogen-fueled trucks and

passenger cars. They find that compared to current zonal uniform prices, nodal

prices would lead to more hydrogen generation at low-price nodes. This in turn

causes substantially lower congestion management costs. However, their analysis,

like all previous ones, focuses on a small subset of hydrogen demand, i.e. demand

from the transport sector.

Xiong et al. (2021) provide another perspective on the topic of hydrogen integra-

tion in single-price electricity markets. They do not consider the effects of hydrogen

production on day-ahead energy wholesale markets, but analyze how Power-to-Gas

plants (e.g. electrolyzers) can serve as a redispatch option. They find that curtail-

ment of renewable generation can be reduced by 12% when electrolyzers are installed

for performing redispatch at a few frequently curtailed nodes in the German grid of

2015. The study thus showcases the importance of spatial consideration in hydrogen

infrastructure planning. However, the study ignores spatial aspects of the hydrogen

supply chain and disregards how policy makers could incentivize investors to build

electrolyzers at the identified nodes. Moreover, the direct political applicability of

the study is restricted, because future hydrogen volumes, shares of renewable and

conventional generation, and spatial distribution of generation will be very different

than in the used scenario from 2015.

In summary, past research indicates that the spatial dimension of hydrogen inte-

gration matters. Within the limitations of single sector analyses or a reduced network

consideration, studies have demonstrated that electrolyzer locations influence grid

congestion. However, to the best of our knowledge, no past study has evaluated the

cost-optimal hydrogen supply chain for electrolytic hydrogen for a broad range of

hydrogen demand sectors, namely steel, ammonia, methanol, refineries, and trans-

portation, considered the effect of alternative electricity price signals, and assessed
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the feedback effects of the resulting supply chains on the electricity system. Such

an analysis is timely from a policy perspective, given the prospect of significant

electrolyzer capacity integration over the next decade in the German and European

power grid.

9.3 Methods

To address this topic, we model the hydrogen supply chain and the electricity sys-

tem and link both models through their respective inputs and outputs. As shown in

Figure 9.1, we proceed in three steps. First, we parametrize an electricity system dis-

patch model without hydrogen and compute uniform prices, nodal prices, redispatch

costs, and CO2 emissions. Second, utilizing the computed electricity prices, we run

the hydrogen model to identify the cost-minimal spatial siting of electrolyzers, their

capacities, and the form of hydrogen transportation.24 We consider a scenario with

uniform zonal prices to reflect current regulation and a scenario with nodal prices

to reflect a more efficient solution. For both scenarios, we calculate a case of static

electrolyzer operation and a case of dynamic, i.e. flexible operation. Third, we feed

back the resulting locations and capacities of the electrolyzers as additional regional

loads into the electricity model. We calculate consequential changes in wholesale

electricity prices and congestion management costs. Both models are implemented

in Python 3.7.3, and solved using the Gurobi solver 8.1.1.

9.3.1 Hydrogen supply chain model

In the following, we describe the details of the hydrogen supply chain model. It

represents an enhanced version of the model in vom Scheidt et al. (2021). Due

to the temporal uncertainty in demand from end-use sectors, the model assumes

time-invariant hydrogen consumption.

24Note that we neglect non-energy components of tariffs, such as grid charges, taxes and other
charges, because they are assumed to not affect the placing and operation of electrolyzers.
Therefore, we assume that the calculated electricity prices equal the final tariff paid by the
electrolyzer operator.
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Figure 9.1.: Method overview: Models for the hydrogen and the electricity system, linked
through inputs and outputs

Objective function

The model minimizes the total annual end-use costs of hydrogen, which consist of

capital costs and operating costs for electrolytic production (PCC, POC), conver-

sion (CCC, COC) and transportation (TCC, TOC) of hydrogen, and, in the case of

hydrogen use in the transportation sector, the fueling stations (SCC, SOC) (Equa-

tion 9.1). For this, the model optimizes the location and size of electrolyzers and the

amount of hydrogen that is transported from each electrolyzer to each location of con-

sumption. There are four decision variables. (i) Xp is a binary variable that indicates

whether an electrolyzer is installed at a location p (1) or not (0). (ii) HPp ∈ [0,∞)

denotes the amount of hydrogen produced at p in kgH2
per day. (iii) Yp,c is binary

and indicates whether hydrogen is transported from a production location p to a

consumption location c (1) or not (0). (iv) HTp,c ∈ [0,∞) denotes the amount of

hydrogen transported from p to c in kgH2
per day. P and C represent the set of all

potential electrolyzer plant locations p, and consumption locations c, respectively.

Thus, the model outputs the cost-minimal locations of electrolyzers, their individual

daily production, the transportation volume between each electrolyzer and point of
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consumption, and the resulting end-use costs of hydrogen.

min
Xp,HPp,Yp,c

(
∑

p∈P

PCCp(Xp,HPp) +
∑

p∈P

∑

d∈D

POCp(Xp,HPp)

+
∑

p∈P

CCCp,s +
∑

p∈P

COCp,s(Xp,HPp)

+TCCs +
∑

p∈P

∑

c∈C

TOCp,c,s(Yp,c,HTp,c)

+SCCs + SOCs)

(9.1)

The model can be parametrized for three possible hydrogen states s of trans-

portation via delivery trailers: liquefied (LH2), compressed gaseous (GH2), and

bound in LOHC. These three states require different technologies for conversion,

transportation and fueling stations and thus cause different costs. The annota-

tion of decision variables, indices and input variables is provided in the nomenclature.

The four components of capital costs include specific annual operation and man-

agement costs (O&M) and annuity factors (AF ). The annuity factors account for

the depreciation of one-time investments over multiple years and depend on the

weighted average cost of capital (WACC [%]) and depreciation periods (a [years])

(Eq. 9.2).

AF =
(1 +WACC)a ·WACC

(1 +WACC)a − 1
(9.2)

Production capital costs occur at a location only if an electrolyzer is placed there,

and depend on the daily hydrogen output capacity (Eq. 9.3).

PCCp = Xp ·
HPp · ED · ICElectrolyzer

FLH · EE
· (1 +O&MElectrolyzer)

·AFElectrolyzer ∀p ∈ PProduction

(9.3)

Production operating costs depend on the amount of hydrogen that is produced,

the efficiency of the electrolyzer, and the electricity price EPp (Eq. 9.4). Note that

this price varies with location p.

POCp = HPp · ECProduction · EPp · 365 ∀p ∈ PProduction (9.4)
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In addition to domestic hydrogen production, the model also includes overseas

imports. Imports do not incur any capital costs for production (Eq. 9.5), but

specific production operating costs (Eq. 9.6).

PCCImport = 0 (9.5)

POCImport = HPImport ·HIC · 365 (9.6)

Moreover, conversion capital costs are assumed to occur in bulk (depending on

the total amount of hydrogen that needs to be converted daily) and independently

of the location (Eq. 9.7). They do, however, depend on the state in which hydrogen

is to be transported afterwards, namely gaseous, liquefied, or stored in LOHC.

CCCs = ICConversions · (1 +O&MConversions) · AFConversions ∀s ∈ S (9.7)

Furthermore, the model includes the operating costs of converting hydrogen. For

liquid delivery, hydrogen needs to be liquefied and later evaporated at the location

of consumption, which requires electricity (Eq. 9.8).

COCp,LH2 = (
∑

p∈PProduction

HPp · ECLiquefaction · EPp · (1 + LossLiquefaction))

+(
∑

p∈P

HPp · ECEvaporation · EP · (1 + LossEvaporation)) · 365
(9.8)

In the case of gaseous delivery, hydrogen is compressed as specified in (Eq. 9.9).

COCp,GH2 =
∑

p∈PProduction

HPp · ECCompression · EPp · (1 + LossCompression) · 365

(9.9)

For LOHC delivery, the carrier material needs to be hydrogenated and later de-

hydrogenated at the location of consumption (Eq. 9.10). Electricity is required for
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both steps. Additionaly, natural gas is required for dehydrogenation.

COCp,LOHC = (
∑

p∈P\Import

HPp · ECHydrogenation · EPp · (1 + LossHydrogenation))

+(
∑

p∈P

HPp · (EP · ECDehydrogenation +NGP ·NGCDehydrogenation)

·(1 + LossDehydrogenation)) · 365

(9.10)

For LH2 and LOHC, we assume that imports already arrive in the respective form

and thus do not require the first conversion step for domestic delivery. After initial

conversion, hydrogen is transported to the consumption sinks. In general, hydrogen

can be transported via tube trailers mounted onto delivery trucks or via pipelines.

Since related work indicates that transport via pipelines only becomes economically

viable for long transport distances in high demand scenarios (Reuß et al., 2019;

Robinius et al., 2017; Tlili et al., 2020), our model focuses on transport via tube

trailers on delivery trucks.25 Thus, transport capital costs depend on the investment

costs for hydrogen trailers and the respective transport trucks, as well as the number

of trailers and trucks. Each truck carries one trailer.

TCCs = ICTrucks ·NTs · (1 +O&MTrucks) · AFTrucks + ICTrailerss ·NTs

·(1 +O&MTrailerss) · AFTrailers ∀s ∈ S
(9.11)

Transport operating costs consist of costs for labor LC as well as fuel and toll

FTC (Eq. 9.12).

TOCs = (LC + FTC) · 365 (9.12)

Daily labor costs depend on the drivers’ wage W , and the time that drivers spend

loading and unloading (LTs) as well as driving (DTs) the delivery trailers (Eq. 9.13).

25Future work could expand our model by including both truck based and pipeline based hydrogen
transportation. This could lead to lower end-use hydrogen costs. However, it would likely
not affect this study’s findings regarding optimal electrolyzer locations and redispatch in a
substantial manner, because hydrogen transportation costs have a much smaller impact on total
costs and thus optimal locations than hydrogen production costs (compare 9.6). Therefore, even
if transportation costs were lower in a pipeline scenario, this would not lead to different results
regarding the cost-optimal location of electrolyzers, redispatch, and emissions.
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A fixed loading and unloading time per delivery is assumed.

LC = (DTs + LTs ·NTs) ·W (9.13)

Daily round-trip driving time is determined by the distance between connected

production plants and points of consumption (DISTp,c) as well as the driving speed

DS. Transport distances are approximated via air-line distance, multiplied with

a detour factor DF of 1.3, in line with Reuß (2019). Since the daily capacity of

fueling stations is assumed to be smaller than the capacity of one delivery trailer, we

multiply the distances to fueling stations with a frequency factor HDc/CAPTrailers

(Eq. 9.14) simulating that they are not provided with hydrogen on a daily basis.

This also applies to daily fuel and toll costs (Eq. 9.15).

DTs =
2 ·DF

DS
· (
∑

p∈P

∑

c∈CIndustry

Yp,c ·DISTp, c

+
∑

p∈P

∑

c∈CStations

Yp,c ·DISTp,c ·
HDc

CAPTrailers

)

(9.14)

FTC = 2 · (FCTruck · FP + T ) ·DF · ((
∑

p∈P

∑

c∈CIndustry

Yp,c ·DISTp, c)

+(
∑

p∈P

∑

c∈CStations

Yp,c ·DISTp,c ·
HDc

CAPTrailers

))
(9.15)

For hydrogen that is to be used to refuel fuel cell trucks or passenger cars, one

additional supply chain step is modelled: the fuel station. The capital costs for fuel

stations depend on the investment costs per station and the total number of stations

(Eq. 9.16).

SCCs = ICStations ·NS · (1 +O&MStation) · AFStation ∀s ∈ S (9.16)

The operating costs depend on the required consumption of electricity and natural

gas and their respective prices (Eq. 9.17).

SOCs = (ECStations · EP +NGCStations ·NGP )

·(1 + LossStations) ·
∑

c∈CStations

HDc · 365
(9.17)
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Constraints

The model includes both domestic production and an exogenously given import at

one fixed node. The sum of daily domestic and imported hydrogen production HP

must satisfy the sum of the exogenously given daily demand HD (Eq. 9.18). The

model assumes a constant daily demand at each node.

∑

p∈P

HPp =
∑

c∈C

HDc (9.18)

Daily hydrogen output HPp of each electrolyzer is limited by its maximum and

minimum daily production capacity (Eq. 9.19 and Eq. 9.20).

HPp ≥ CAPProduction,min ·Xp ∀p ∈ PProduction (9.19)

HPp ≤ CAPProduction,max ·Xp ∀p ∈ PProduction (9.20)

The import nodes and their capacity are exogenously set in Eq. 9.21 and 9.22.

Xp = 1 ∀p ∈ PImport (9.21)

HPp = CAPImport ·Xp ∀p ∈ PImport (9.22)

In sum, the daily amount of hydrogen transported from a hydrogen source (elec-

trolyzer or import) must not exceed the available hydrogen at that node (Eq. 9.23).

∑

c∈C

HTp,c ≤ HPp ∀p ∈ P (9.23)

The daily amount transported to a consumer must meet its daily demand (Eq.

9.24).

∑

p∈P

HTp,c ≥ HDc ∀c ∈ C (9.24)

Positive transport volume from a plant p to a consumption location c is only

possible if the delivery connection is established via the binary variable Yp,c (Eq.



Methods 139

9.25).

HTp,c = 0, if Yp,c = 0 ∀c ∈ C, ∀p ∈ P

HTp,c > 0, if Yp,c = 1 ∀c ∈ C, ∀p ∈ P
(9.25)

Thus, one limitation of the model is that it does not consider short term or long

term temporal variations in hydrogen transportation or consumption and thus ne-

glects storage. While out of scope of this study, future work could attempt to iden-

tify short term and long term temporal patterns of hydrogen demand from industry

and transportation.26 We do assess a sensitivity case in which transportation and

consumption remain continuous, but the production is temporally flexible and can

exploit low electricity prices in certain hours. This allows us to identify an optimistic

estimate of the potential cost savings that flexible electrolyzer operation can yield.

9.3.2 Electricity system model

Next, we model the electricity system to calculate electricity prices, redispatch costs,

and emissions.

For the uniform price scenario, we adapt a stylized merit-order and redispatch

model from Staudt and Oren (2020). For each hour, the model minimizes the

marginal generation costs for the entire single-price market zone (Eq. 9.26). The

model’s constraints ensure that demand and supply are balanced (Eq. 9.27) subject

to the constraints that limit available generation capacity (Eq. 9.28). The annota-

tion for the electricity system model is given in Table 9.2.

min (
T
∑

t=1

N
∑

n=1

G
∑

g=1

qn,g,t · pn,g) (9.26)

s.t.
N
∑

n=1

dn,t =
N
∑

n=1

G
∑

g=1

qn,g,t ∀t ∈ T (9.27)

qn,g,t ≤ cn,g,t ∀g ∈ G, ∀n ∈ N, ∀t ∈ T (9.28)

26Regarding long term storage, techno-economic parameters are presented by Reuß et al. (2019)
and locations with high geological potential for hydrogen storage are presented by Caglayan
et al. (2020).



140 Effects of Spatially Differentiated Tariffs on Hydrogen Integration

Complying with the market designs of single-price markets, this model does not

consider grid constraints. Therefore, the resulting market allocation can be tech-

nically infeasible, in which case redispatch measures ensue, modelled by Eq. 9.29

to 9.33. The cost based redispatch mechanism begins with the existing market al-

location and activates and deactivates generation capacity in the system until the

cost-minimal solution is found that respects grid constraints, which in the optimal

case is equivalent to the nodal pricing solution (Staudt, 2019). Generators that are

activated through this procedure are compensated based on their operating costs.

The additional costs caused by this procedure are referred to as redispatch costs.

In the considered idealized case, they are equivalent to the congestion management

costs.

min (
N
∑

n=1

G
∑

g=1

q∆n,g,t · pn,g) ∀t ∈ T (9.29)

s.t.
N
∑

n=1

G
∑

g=1

q∆n,g,t = 0 ∀t ∈ T (9.30)

q∆n,g,t + qn,g,t ≤ cn,g,t ∀n ∈ N, ∀g ∈ G, ∀t ∈ T (9.31)

q∆n,g,t + qn,g,t ≥ 0 ∀n ∈ N, ∀g ∈ G, ∀t ∈ T (9.32)

|
N
∑

n=1

G
∑

g=1

(((qn,g,t + q∆n,g,t)− dn,t) ·Hl,n)| ≤ τl∀l ∈ L, ∀t ∈ T (9.33)

For the nodal price scenario, we use a nodal model with a DC-load flow approx-

imation. This model simultaneously takes into account generation capacities and

costs (Eq. 9.26 to 9.28), as well as capacity constraints (Eq. 9.34).

|
N
∑

n=1

G
∑

g=1

((qn,g,t − dn,t) ·Hl,n)| ≤ τl ∀l ∈ L, ∀t ∈ T (9.34)

Both models optimize each hour step-wise, independently of other hours. They

thus neglect generation ramping and storage. Last, emissions are calculated based

on the resulting electricity generation of the individual plants and their average

emissions factor (vom Scheidt et al., 2020).
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Table 9.2.: Notation for electricity system model

qn,g,t Generation of unit g at node n at time t
q∆n,g,t Redispatch of unit g at node n at time t
pn,g Marginal generation costs of unit g at node n
dn,t Demand at node n at time t
cn,g,t Generation capacity of unit g at node n (at time t for renewables)
τl Transmission capacity of line l
H Matrix of power distribution factors
N Number of nodes n
G Number of generation units g
L Number of lines l

9.4 Case study

To demonstrate the functioning of the hydrogen model and the electricity model,

we apply it to a case study. For this, we parametrize the models with data for the

German electricity system and hydrogen demand in 2030.

9.4.1 Hydrogen data

In this subsection, we present all data sources, preprocessing steps, and assump-

tions used for creating the input data sets for demand, production, conversion, and

transportation of hydrogen.

Hydrogen demand

In the following paragraphs, we describe data acquisition and preprocessing for the

German hydrogen net demand in 2030. Hydrogen demand is assumed to come from

the six following sectors: steel, ammonia, methanol, refinery, road transportation,

and individual mobility. First, each demand sector is presented with general as-

sumptions about future hydrogen demand and potential. Subsequently, the relevant

locations and volumes of hydrogen demand in the respective sector in 2030 are iden-

tified. Table A.1 in Appendix F shows the numeric values and conversion factors

used for the hydrogen demand calculations. For steel, ammonia, methanol, and re-

fineries, 100% availability of the production facilities is assumed. Correspondingly,

quantities that have been calculated down to hours are multiplied by 8,760 to get
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Table 9.3.: Estimated hydrogen demand of ammonia producers in Germany, 2030

Ammonia producer Hydrogen net demand [TWh]

BASF Ludwigshafen 5.18
INEOS Köln 2.25
SKW Stickstoffwerke Piesteritz 5.62
YARA Brunsbüttel 4.44

Total 17.49

the respective annual quantity. For details on data acquisition and processing, we

refer to Appendix E. All data is available at vom Scheidt and Staudt (2021).

Ammonia. Ammonia (NH3) is produced using the Haber-Bosch process and

requires the input components hydrogen (H2) and nitrogen (N2) (Hermann et al.,

2014). The potential for CO2 emissions reduction lies in replacing fossil fuel based

hydrogen with electricity based hydrogen. Today, hydrogen is mostly produced from

steam methane reforming, with the by-product CO2. This byproduct can be used

for processes in material composites, such as the production of urea (Hebling et al.,

2019). Nevertheless, our estimation assumes a complete switch of ammonia pro-

duction to electricity based hydrogen in order to define an upper limit of hydrogen

demand in the ammonia industry. Table 9.3 summarises the hydrogen demand from

electrolysis of the ammonia industry. Based on the assumptions made, the total

hydrogen demand is 17.49 TWh, distributed over four plants.

Steel. Steel production in Germany offers a large potential for the use of hydrogen

in industry by switching to hydrogen based processes. In general, a distinction is

made in steel production between primary and secondary steel as well as between

blast furnace and electric arc routes (Hebling et al., 2019). Today, primary steel

production is mainly based on coal- or coke based processes to reduce iron ore in

the blast furnace, resulting in large amounts of carbon emissions (Wilms et al.,

2018). An alternative to the blast furnace is direct reduction, in which the iron ore

is reduced by natural gas or hydrogen, avoiding CO2 emissions (Hebling et al., 2019).

The directly reduced iron is further processed into steel in an electric arc furnace. If

hydrogen is produced by electrolysis with electricity from renewable energy and used

instead of coal in the direct reduction process, up to 95% of CO2 emissions could be

avoided on the way to primary steel (Berger, 2020). In addition to the possibility of
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Table 9.4.: Estimated hydrogen net demand of primary steel producers in Germany, 2030

Steel producer Hydrogen net demand [TWh]

ArcelorMittal Bremen 0.0
ArcelorMittal Duisburg 0.0
ArcelorMittal Eisenhüttenstadt 0.0
ArcelorMittal Hamburg 2.67
ROGESA (Dillinger & Saarstahl) 2.16
HKM Duisburg 0.0
Salzgitter Peine 2.25
Thyssenkrupp Steel Europe Duisburg 6.17

Total 13.25

switching to direct reduction, CO2 emission reductions can be achieved by blowing

in hydrogen as a substitute reducing agent. The basic idea is to reduce the amount

of injection coal required and to replace it with hydrogen, in order to reduce CO2

emissions (Thyssenkrupp, 2019). Depending on the operating conditions, emissions

can be reduced by 21.4 - 28.5 % compared to a reference case with today’s standard

operating mode (Yilmaz, 2018).

We identify all steel plants with potential for hydrogen use in 2030 through an

extensive review of industry reports and press releases, as elaborated in Appendix

A. Table 9.4 summarizes the hydrogen net demand of the steel industry. Based on

the assumptions made, the total hydrogen net demand for 2030 amounts to 13.25

TWh and is distributed over Hamburg, Dillingen/Saar, Peine and Duisburg.

Methanol. Currently, methanol is commonly produced using synthesis processes

with CO2 emissions, which, in the future, can be switched to hydrogen based pro-

cesses (Michalski et al., 2019). Table 9.5 summarises the hydrogen demand of the

methanol industry. Based on the assumptions made, the total hydrogen demand is

11.73 TWh and is distributed over four sites.

Refineries. In refineries, hydrogen is used on a large scale to desulfurize fuels

and to refine heavy residues with hydrogen via hydrocracking (Hermann et al., 2014).

The hydrogen needed for crude oil processing is supplied from internal and external

sources. This means that refineries are partly self-sufficient, since hydrogen is a by-

product of other processing operations (ENCON.Europe GmbH, 2018). In this study,

a 22 % net demand for hydrogen is assumed, analogous to Wilms et al. (2018). This
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Table 9.5.: Estimated hydrogen net demand of methanol producers in Germany, 2030

Methanol producer Hydrogen net demand [TWh]

BASF Ludwigshafen 2.83
Shell Rheinland Raffinerie - Süd 2.74
Ruhr Oel - BP Gelsenkirchen 1.76
Total Raffinerie Mitteldeutschland 4.40

Total 11.73

Table 9.6.: Estimated hydrogen net demand of refineries in Germany, 2030

Refinery Hydrogen net demand [TWh]

Bayernoil Raffineriegesellschaft 0.19
BP Raffinerie Lingen 0.21
Gunvor Raffinerie Ingolstadt 0.22
Holborn Europa Raffinerie 0.23
MiRO Mineraloelraffinerie Oberrhein 0.66
Nynas 0.08
OMV Deutschland 0.16
PCK Raffinerie 0.51
Raffinerie Heide 0.19
Ruhr Oel - BP Gelsenkirchen 0.57
Shell Rheinland Raffinerie Werk Nord 0.41
Shell Rheinland Raffinerie Werk Süd 0.32
Total Raffinerie Mitteldeutschland 0.53

Total 4.29

hydrogen net demand is assumed to be entirely served by electricity based hydrogen

in 2030, in line with Prognos AG (2020b). Table 9.6 summarises the hydrogen net

demand of the refineries in Germany 2030. The estimated total hydrogen net demand

is 4.29 TWh and is distributed over thirteen sites in Germany.

Transportation sector. In the first step, we estimate the total national hydrogen

demand in the transport sector and the number of fueling stations required to satisfy

the demand. For this, we calculate a main scenario with fuel cell trucks, and a

sensitivity scenario with additional fuel cell passenger cars. In the second step, we

spatially disaggregate this total demand and determine potential sites for fueling

stations.
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Table 9.7.: Hydrogen fuel station assumptions

LH2 GH2 LOHC

α [−] 0.6 0.7 0.66
β [−] 0.06 0.06 0.06
γ [−] 0.9 0.6 1.4
ECs [kWhel/kgH2

] 0.6 1.6 4.4
NGCs [kWhNG/kgH2

] 0 0 11.7
Depreciation years [a] 10 10 10
O&M [%] 5 5 5

To determine the hydrogen demand for fuel cell trucks and passenger cars in Ger-

many in 2030, we use the mean estimates from Fraunhofer-Institut (2019), namely

1.00 TWh for trucks and 3.50 TWh for cars. For a sensitivity scenario without hy-

drogen demand for cars, see Appendix G. We assume that heavy-duty trucks with a

total weight above 12,000 kg (European Alternative Fuels Observatory, 2020) will be

responsible for all truck based demand, because they have particularly high carbon

emission savings potential and the fuel cell based version has stronger advantages

compared to their battery based counterparts, i.e. heavier payloads, longer ranges,

and shorter recharging times (Weger et al., 2020). We assume the consumption of

trucks to decrease to 8 kgH2
/100km until 2030, and that of fuel cell passenger cars to

decrease to 0.63 kg/100km, in line with Grube and Stolten (2018), FCH-JU (2017),

and Hyundai (2020).27 We assume that by 2030 all hydrogen stations will become

L-size (International Energy Agency, 2015) with a capacity of 1,000 kg/day. Accord-

ing to Reuß et al. (2019), station investment cost is estimated considering scaling

and learning effects, based on Equation (9.35). With NS, the total number of fuel

stations determined in our model, a capacity of each fuel station of FSC = 1,000

kg/day, and the exogenous parameters α, β, and γ presented in Table 9.7, we derive

the investment cost per station for each hydrogen transportation state s.

ISs = 1.3 · 600, 000EUR · γ · (
FSC

212kg/day
)α · (1− β)log2(

FSC·NS
212kg/day·400

)
(9.35)

Next, we identify the number and locations of fueling stations. Since passenger

27This translates to approximately 1.2 million fuel cell cars, and approximately 11,000 fuel cell
trucks.
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cars and trucks have different driving and refueling patterns, we separately select

their fuel station locations.

For passenger cars, we assume a fuel station utilization of 70% and thus a turnover

of 700 kgH2
per day, in line with Reuß et al. (2019). This results in 412 fueling

stations for cars. We then first disaggregate the total demand to the >400 German

NUTS-2 regions proportionally to the NUTS-2 gross domestic product (GDP). Since

no more granular GDP data exists, we further break down the hydrogen demand to

the over 10,000 NUTS-3 regions in Germany proportionally to the population in

that NUTS-3 region. As of October 2019, there are 72 hydrogen fueling stations

in Germany (H2 MOBILITY, 2019). Since these will not suffice to satisfy demand

in 2030, we assume that additional fueling stations will be installed at the same

locations as existing gasoline stations. Therefore, we use the 11,285 gasoline stations

from OpenStreetMap as further potential sites (OpenStreetMap Contributors, 2020).

For each of these stations, we calculate the distance to the closest NUTS-3 region

center. For each NUTS-3 region, we then select stations with the shortest distance

to its center, until its demand is covered.

For trucks, Rose and Neumann (2020) determine optimal hydrogen fuel station lo-

cations along highways under consideration of traffic flow and capacity limits. From

these locations, we adopt those with highest utilization rate, which leads to 97 sta-

tions. We assume all fuel stations have 1,000 kg/day capacity and have the same

turnover. Thus, to meet the demand from fuel cell heavy-duty trucks, the turnover

of each fuel station is 847.42 kgH2
per day.

Summary of hydrogen demand. The total hydrogen net demand in 2030

is estimated to be 51.26 TWh. Figure 9.2 displays the hydrogen net demands of

the individual sectors. The map in Figure 9.3 shows the geographic distribution

of the hydrogen demand, with the size of the markers corresponding to demand

volume. The corresponding final hydrogen demand data with volumes and locations

is available in vom Scheidt and Staudt (2021)
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Figure 9.2.: Estimated hydrogen net demand per sector in Germany, 2030

Hydrogen demand

Figure 9.3.: Spatial distribution of estimated hydrogen net demand in Germany, 2030
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Hydrogen production and import data

Electrolysis is the main pillar of political strategies for hydrogen supply in Germany

(Bundesregierung, 2020) and the EU (European Commission, 2020). Among the

different electrolysis technologies, proton exchange membrane (PEM) electrolysis is

projected to have the lowest CAPEX and highest efficiency in 2030 (Böhm et al.,

2020). Therefore, we focus on PEM electrolysis for hydrogen production. As input

for the hydrogen supply chain model, we assume investment costs ICElectrolyzer of 604

EUR/kWel, depreciation over 10 years, O&M costs of 4% of investment costs and

electricity consumption EC of 47.6 kWhel per kgH2 (Schmidt et al., 2017; Brown

et al., 2018; Reuß et al., 2019). Electrolyzer efficiency EE is set to 70% (Heymann

et al., 2021; Robinius et al., 2017; Reuß et al., 2019). We set the minimum capacity

CAPProduction,min to 10 MW and the maximum capacity CAPProduction,max to 100

MW.28 Regarding operation, we analyze two different cases. In the main case, all

electrolyzers are assumed to operate continuously under a Flat tariff at 70% of full

capacity, which is within typical ranges (Robinius et al., 2017; Guerra et al., 2019;

Ruhnau, 2020). In a sensitivity case, all electrolyzers are assumed to operate under

a real-time tariff and have temporal flexibility, which allows them to shift their

operation to hours with cheap prices. In this case, we assume they run at 100%

during the 70% cheapest hours. Thus, in both cases, the total volume of produced

hydrogen is the same.

The potential locations for electrolyzers are equal to the set of transmission grid

nodes from our electricity system model (compare Section 9.4.2).29 Additionally, we

include hydrogen imports from overseas into our model, since they are a key part

of the German hydrogen strategy (Bundesregierung, 2020). For these imports, we

assume a fixed, exogenous amount of daily available imported hydrogen of 27.40

GWh and costs of 3.48 EUR/kgH2
, in line with the mean values reported by Runge

et al. (2020). Furthermore, we assume that all imports to Germany will occur at one

28This range is determined based on a review of power-to-gas projects that are scheduled to be
commissioned after 2021 in Germany (ELEMENT EINS, Energiepark Bad Lauchstädt, GET H2
Nukleus, HydroHub Fenne, GreenHydroChem Mitteldeutschland, Westküste100). All of them
are in the range of 10-100 MW.

29Such large-scale electrolyzers might be complemented by smaller, on-site electrolyzers (see, e.g.
Rose and Neumann (2020); Golla et al. (2020)) in practice. Such on-site electrolyzers would be
connected to the distribution grid. Analyzing congestion consequences at distribution grid level
is out of scope of this study.
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Table 9.8.: Conversion assumptions, based on Reuß et al. (2019); Nexant et al. (2008). x

denotes daily hydrogen output.

Investment costs [EUR]
Depreciation
years

O&M
ECConversion

[kWhel/kgH2
]

NGCConversion

[kWhNG/kgH2
]

Loss [%]

Compressor 15 · 103EUR
kW

· x0.6089 · 3 15 4% calculated 0 0.5
Liquefaction 105 · 106EUR · ( x

50
tH2

day

)0.66 20 4% 6.78 0 1.65

Evaporation 3 · 103EUR · x
1,000

10 3% 0.6 0 0

Hydrogenation 40 · 106EUR · ( x

300
tH2

day

)0.66 20 3% 0.37 0 1

Dehydrogenation 30 · 106EUR · ( x

300
tH2

day

)0.66 20 3% 0.37 11.7 1

large port, i.e. Bremerhaven, in line with Runge et al. (2020).

Hydrogen conversion data

Hydrogen can be converted to a liquefied state (LH2), compressed state (GH2),

or stored into chemicals (LOHC) for transportation via tube trailers. Notably, for

LH2 and LOHC, there are capital and operating costs at the point of hydrogen

production (for liquefaction, and hydrogenation, respectively) and at the point of

hydrogen consumption (evaporation, and dehydrogenation, respectively).

The assumptions regarding investment costs, depreciation years, O&M costs, elec-

tricity and natural gas consumption, and losses are displayed in Table 9.8.

Hydrogen transportation data

Transportation costs include costs for fuel, toll, and the drivers’ wages. We as-

sume that delivery trucks are fueled with hydrogen. The consumption is set to

5.19 kgH2
/100km and the fuel price to 7.91 EUR/kg, including a value added tax

of 19% (Fraunhofer ISI, 2017). In line with Reuß (2019), we make the following

cost assumptions. Toll is set to 0.15 EUR/km. Drivers’ wage is set to 35 EUR/h.

Average driving speed is set to 50 km/h. Truck investment costs are set to 174,000

EUR (Fraunhofer ISI, 2017), with depreciation over eight years and 12% O&M costs.

For tube trailers, investment costs and capacities per trailer are technology specific.

They are set to 860,000 EUR and 4,300 kgH2
for liquefied hydrogen (LH2), 660,000

EUR and 1,100 kgH2
for gaseous hydrogen (GH2), and to 150,000 EUR and 1,620

kgH2
for LOHC. Besides, we assume depreciation over twelve years and O&M costs

of 2%, adopted from Reuß et al. (2019).
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9.4.2 Electricity system data

We parametrize both the uniform zonal price and the nodal price electricity model

with data for generation, consumption and the transmission grid in 2030. For this,

we utilize the data set published by vom Scheidt et al. (2020). In the following,

we briefly describe this data set. All data are more elaborately documented and

available for free use under a Creative Commons license in vom Scheidt et al. (2020).

Transmission grid data

The transmission grid in 2030 is constructed from a reference model of the existing

grid, which is enhanced with all the expansions and new installations until 2030 that

have been announced by the German Federal Network Agency. The resulting final

grid representation consists of 485 nodes and 663 lines. The transmission capacity

of all 220 kV lines is set to 490 MW, and that of all 380 kV lines to 1700 MW, based

on Egerer (2016) and Kießling et al. (2011).

Electricity demand data

For consumption, the hourly consumption forecast scenario EUCO30 is used

(European Network of Transmission System Operators for Electricity, 2018). To

improve consistency of grid and consumption data, these hourly values are re-scaled

so that the annual total (577 TWh) matches the sum used in the official grid

development plan (544 TWh) by the German regulator Bundesnetzagentur (2019a).

Next, these re-scaled hourly demand values are spatially disaggregated to NUTS-3

levels. For this disaggregation, the gross domestic product (GDP) and the population

of a region serve as proxies for its future electricity consumption. The resulting

NUTS-3 consumption time series are assigned to the nearest grid node.

Electricity generation data

For generation, estimation is differentiated between renewable, i.e. non-dispatchable

generation and dispatchable generation.

For renewable generation, i.e. solar PV and wind, historical hourly generation
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data from the four national grid operators is used (Bundesnetzagentur, 2018). For

the baseline scenario with no hydrogen, these hourly values are re-scaled so that the

annual total generation from each generation technology matches the sum used in

the grid development plan (Bundesnetzagentur, 2019a). This results in an annual

generation of 86.7 TWh from solar PV (compared to a mean of 35.34 TWh over 2016-

2018), and of 247.4 TWh from wind (compared to a mean of 108.6 TWh over 2016-

2018). For the scenarios with hydrogen, we factor in the current discussion about

”additionality” (Pototschnig, 2021), by further scaling up the capacity of solar PV and

wind proportionally to the additional electricity demand for hydrogen production.

Last, the re-scaled hourly generation values are spatially disaggregated. For this,

we use the installed generation capacity per ZIP code as provided by the German

TSOs (Deutsche Übertragungsnetzbetreiber, 2018). For a sensitivity scenario that

considers a regional quota for new wind generation capacity, see Appendix G.

For dispatchable electricity generation capacity, all relevant plants for 2030 from

the power plant list of the German grid regulator are used (Bundesnetzagentur,

2019b). For each plant, marginal costs are calculated, based on fuel type, esti-

mated efficiency, and emission costs. A CO2 price of 60 EUR/ton is assumed (Bun-

desregierung, 2019).

Both renewable generation time series and dispatchable power plants, along with

their marginal costs are assigned to the nearest grid node. Note that this approach

provides high spatial granularity, but comes at the costs of treating Germany as an

isolated system without cross-border electricity lines. This can affect the results for

electricity prices and redispatch in both directions, as noted by Xiong et al. (2021).

Therefore, a geographic expansion – e.g. a European model – can be worthwhile

future work, but requires substantial additional data procurement efforts if the high

spatial granularity is to be upheld.30

9.5 Results and Discussion

Upon parametrizing the models presented in Chapter 9.3 with the case study data

presented in Chapter 9.4, we run the models sequentially in three steps. First, we

derive baseline results for the electricity system without hydrogen, including whole-

30A starting point could be the open network model PyPSA-Eur-Sec-30 that works with one node
per country (Victoria et al., 2019).
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Figure 9.4.: Wholesale price duration curve in Germany, 2030 [EUR/MWh]

sale uniform zonal prices, nodal prices and congestion management costs (Chapter

9.5.1). Second, based on the resulting electricity tariffs, we derive information about

the optimal hydrogen supply chains, including total end-use costs of hydrogen, as

well as number, capacities and locations of electrolyzers (Chapter 9.5.2). Third,

we observe the effects of integrating these hydrogen supply chains in the electricity

system, including changes in total electricity demand, wholesale prices, redispatch

costs, and CO2 emissions (Chapter 9.5.3).

9.5.1 Baseline electricity system results

Without the integration of hydrogen, the resulting annual mean of the wholesale

uniform price is 62.61 EUR/MWh. Figure 9.4 shows the price duration curve. The

annual redispatch costs amount to 6.16 Billion EUR.

The resulting annual means of nodal prices vary between -54.30 and +221.00

EUR/MWh, with a median value of 67.80 EUR/MWh. Figure 9.5 shows the spatial

distribution of nodal prices. Low prices are predominantly found in the North-

East and North-West of the country, driven by high renewable generation and low

demand. This finding is in line with Robinius et al. (2017), who analyze residual

loads on county level and find negative residual loads predominantly in the North-

East and North-West.31

31Neuhoff et al. (2013) calculate nodal prices for the year 2008 and find that prices vary between
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Figure 9.5.: Nodal prices in Germany, 2030 [EUR/MWh]

9.5.2 Hydrogen supply chain results

The resulting end-use costs for hydrogen are represented in Figure 9.6. As noted

above, it is assumed that the tariff equals the wholesale electricity price, omitting

grid fees, taxes, and other charges. In the uniform Flat scenario, which implies

static electrolyzer operation under a time-invariant price, the final hydrogen costs

for industry applications are 3.91 EUR/kgH2
for LH2, 5.39 EUR/kgH2

for GH2, and

4.21 EUR/kgH2
for LOHC. For fuel cell trucks and cars, costs for fueling stations

need to be added, resulting in final hydrogen costs of 4.01 EUR/kgH2
for LH2, 5.53

EUR/kgH2
for GH2, and 5.36 EUR/kgH2

for LOHC. The largest share of costs is

caused by production operation in all cases. These are largely driven by electricity

costs (compare Eq. 9.4), which highlights the large role of electricity prices for the

10 and 100 EUR/MWh. The geographic disparity in the German generation system strongly
increases from 2008 to 2030 due to a complete shut-down of all nuclear power plants, the partial
shut-down of coal power plants, a strong renewable expansion especially in the North, and the
introduction of a carbon emission price. This presumably causes the prices in our 2030 case
study to have a larger (geographic) variance.
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Figure 9.6.: End-use hydrogen costs by component and scenario: Effects of delivery form

end-use costs of electrolytic hydrogen.

This is also reflected by the results under the nodal tariff. In this case, the lower

electricity costs for electrolyzers lead to much lower total hydrogen costs, i.e. to

2.45 (2.55 for fuel cell trucks and cars) EUR/kgH2
for LH2, 3.13 (3.26) EUR/kgH2

for GH2, and 2.94 (4.09) EUR/kgH2
for LOHC.

For the cheapest delivery form, i.e. LH2, we additionally compute the scenarios

with flexible operation. In these scenarios, electrolysis is shifted to hours with the

lowest prices. For the uniform flexible case, electrolyzers are assumed to run at 100%

capacity during the 70% cheapest hours at the wholesale market. For the nodal

flexible case, electrolyzers are similarly assumed to run at 100% capacity during the

70% cheapest hours of the respective node.

This flexible operation enables electrolyzers to use cheaper electricity and thus

leads to overall lower hydrogen costs, as Figure 9.7 shows. In the uniform case,

flexible operation decreases total costs by 0.38 EUR/kgH2
. In the nodal case,

moving from static to flexible operation decreases costs by 0.58 EUR/kgH2
.

The cost-minimal locations of electrolyzers are depicted in Figures 9.8 and 9.9.
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The size of the markers corresponds to production volume. The largest marker in

the North-West depicts overseas imports, which are exogenously determined (com-

pare Chapter 9.4.1) and thus occur equally in all scenarios. In terms of domestic

production, 9.50 GWel of electrolysis capacity are installed in all scenarios with de-

mand from industry, trucks, and cars.

Under uniform zonal tariffs with LH2, 101 domestic electrolyzers are placed. They

are predominantly placed close to points of consumption, in order to minimize trans-

portation costs (Figure 9.8). Half of the installed electrolyzers (52) have the maximal

possible capacity of 100 MW. The siting is very similar for GH2 and LOHC, with

97, and 106 electrolyzers placed, respectively.

Under nodal tariffs, electrolyzers are placed further away from consumption, but

at nodes with low electricity prices (Figure 9.9). This indicates that the cheaper

electricity costs outweigh the higher transportation operating costs. This effect is

stable across the three delivery states, and is in line with the findings from vom

Scheidt et al. (2021), Robinius et al. (2017), and Jentsch et al. (2014). In the LH2

nodal case, 76 electrolyzers are placed, of which 63 have maximal possible capacity.

Again, the siting is very similar for GH2 (69 electrolyzers), and LOHC (72).

In both scenarios, there are small differences between the three delivery states,

which are caused by the different trailer capacities, different per-kg transport oper-

ating costs (see Eq. 9.12 to 9.15) and conversion operating costs (see Eq. 9.8 to 9.9).

These in turn affect the optimal location of electrolyzers (compare Eq. 9.1).

9.5.3 Integration results

From the locations and capacities of electrolyzers presented above, we calculate the

additional electricity demand from hydrogen production at each grid node. With

this new input, we recalculate electricity prices and congestion management costs to

identify the effects of hydrogen on the electricity system. For these calculations we

assume LH2 delivery, since it is the cost-minimal hydrogen supply chain set-up in

all scenarios, for both industry and transportation applications.

Table 9.9 summarizes the key results. The electrolytic production of hydrogen

creates considerable new electricity demand of 72.49 TWh per year that increases

the total national electricity demand by about 13%. Since this demand is assumed to
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Figure 9.7.: End-use hydrogen costs by component and scenario: Effects of static versus
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Figure 9.8.: Optimal electrolyzer locations under uniform tariff
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Figure 9.9.: Optimal electrolyzer locations under nodal tariff (static operation)

be met by additionally installed solar PV and wind capacity, the average electricity

wholesale prices slightly decrease, by 4-7%, depending on the scenario.

If the hydrogen supply chain is optimized according to the uniform zonal tariff,

annual congestion management costs increase by 17-18%. This corresponds to an

increase of over one billion Euro per year. Interestingly, this increase is only slightly

smaller for the uniform tariff with flexible operation, compared to the uniform tariff

with static operation. This finding indicates that electrolyzers, which respond to

real-time wholesale prices, but are inefficiently placed from a system perspective,

might not be able to fully realize expected positive impacts regarding the actual use

of cheap renewable energy (see e.g. (Ruhnau, 2020)) due to grid constraints. A key

explanatory factor for this might be that wind generation, which to a large extend is

located in the North of Germany (Deutsche Übertragungsnetzbetreiber, 2018), has

been shown to drive wholesale prices down (Benhmad and Percebois, 2018) and at

the same time drives congestion in the transmission grid (Staudt et al., 2019b). This

finding is underlined by the fact that system-wide emissions increase under uniform

tariffs, despite the expansion of renewable generation capacity to meet the demand

from electrolyzers.

In contrast, when electrolyzers are placed and operated under nodal price signals,

they decrease congestion management costs by 17-20% compared to the reference
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scenario. This decrease corresponds to over one billion Euro per year. In addition,

nodal tariffs also lead to lower system emissions. The decrease in costs and emis-

sions is larger under the nodal tariff with flexible operation, which shows that the

combination of resolved spatial and temporal signals yields the largest benefits.

In summary, there is a delta of over two billion Euro and over five Megatons

(Mt) of CO2 per year between hydrogen integration under the status quo uniform

price scenarios and under the nodal price scenarios. In other terms, the production

of one kgH2
on average creates additional congestion costs of 0.68-0.72 Euro under

current regulation, whereas it reduces congestion costs by up to 0.82 Euro under

more efficient regulation. This means, a spatially differentiated subsidy for hydrogen

production – e.g. in the form of a per-kWh payment of the spread between uniform

prices and simulated nodal prices – could effectively be covered by saved redispatch

costs.

It is noteworthy, that the model does not assume that investors consider how

their electrolyzer installation will affect nodal prices. This would require iterative

calculation of both models, which is out of scope due to high computational effort.

Regarding practical implementability, the complex and potentially vulnerable na-

ture of nodal price signals represents another limitation. For hydrogen investors to

base their decisions on nodal price signals, they need to be able to forecast these

a priori, for which sufficient information and appropriate data analytics methods

need to be available (vom Scheidt et al., 2020). Furthermore, investors face the risk

of unforeseen expansion of grid or generation capacity that impacts nodal prices.

Therefore, policy makers could opt to assess less efficient price signals such as more

granular zonal tariffs and regionalized grid fees. Alternatively, non-price mechanisms

are conceivable, such as regional quotas or allowing grid operators to curtail elec-

trolyzers before performing the regular redispatch measures, in case of congestion.

While such mechanisms typically forego some of the efficiency gains from nodal sig-

nals, they provide advantages regarding simplicity and associated risks. Therefore,

it is desirable that future studies investigate the advantages and disadvantages of

different (spatial) regulatory instruments.32

32For related analyzes regarding the integration of generation see e.g. Bertsch et al. (2015); Grimm
et al. (2019); Schmidt and Zinke (2020). For a comprehensive review of locational investment
signals for generation capacity that are applied in practice see Eicke et al. (2020).
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Table 9.9.: Electricity demand, wholesale price and congestion management costs in 2030

Scenario
Mean wholesale
price [EUR/MWh]

Congestion management
costs [MEUR/year]

CO2 emissions
[Mt/year]

Baseline without H2 62.61 6,163.96 59.1

With H2, Uniform Tariff, Static operation 58.51 (-6.55%) 7,253.56 (+17.68%) 60.8 (+2.93%)
With H2, Uniform Tariff, Flexible operation 59.91 (-4.31%) 7,203.11 (+16.86%) 61.3 (+3.73%)
With H2, Nodal Tariff, Static operation 58.51 (-6.55%) 5,100.84 (-17.25%) 58.4 (-1.26%)
With H2, Nodal Tariff, Flexible operation 59.24 (-5.38%) 4,915.41 (-20.26%) 55.6 (-5.85%)

Last, the generalizability of our findings to certain other geographies is limited by

the focus on one technology for hydrogen production, i.e. electrolysis. Hydrogen from

steam methane reforming with carbon capture and storage and rigorous methane

leakage prevention represents a (transitional) alternative of producing hydrogen with

net neutral emissions and can be an economic alternative to electrolytic hydrogen,

depending on political and geographic circumstances (see e.g. Bødal et al. (2020)).

In the German case, however, political action is strongly focused on electrolysis

(Bundesregierung, 2020).

9.6 Conclusions and Policy Implications

Policymakers in dozens of countries are currently planning public funding for the

development of future hydrogen infrastructure, with growing interest in electricity

based hydrogen production. The large-scale deployment of electrolytic hydrogen is

likely to have a large effect on the planning and operation of electricity systems.

Our study sheds light on the spatial interaction between hydrogen infrastructure

reliant on electrolytic hydrogen and the power system.

For this, we propose a three-step methodology based on linking an electricity

system dispatch model and a hydrogen supply chain model, both with granular

spatial resolution. We apply this methodology to a case study of the German system

in 2030.

In the first step, we use an electricity system dispatch model to simulate uniform

zonal electricity prices – representing current German regulation – and nodal prices,

without considering hydrogen demand and production.

In the second step, we feed those prices into the hydrogen model, together with
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additional techno-economic parameters for capital and operation costs. This way,

we determine the optimal spatial design of hydrogen supply chains under current

uniform regulation and a regulation with efficient spatial price signals. We identify

liquefied hydrogen as the most economical form of truck based hydrogen delivery in

all scenarios. Furthermore, we find that under the existing uniform zonal electric-

ity pricing paradigm, electrolyzers are cost-minimally placed close to consumption

points, such as industry plants and large cities. In the nodal pricing scenario, we

find that the price differences among nodes are large enough to move hydrogen pro-

duction to low-cost nodes that are further away from consumption points and closer

to low-cost electricity generation capacity.

In the third step, we feed back the resulting electric loads from electrolyzers

into the electricity system dispatch model. The results show that the integration

of hydrogen under current uniform prices causes a large increase in congestion

management costs of about 17%, or one billion Euro per year. Moreover, emissions

are increased by 3-4%, or about two Megatons per year. Thus, our analysis

shows that the existing inefficiencies of single-price zonal markets can be strongly

aggravated by hydrogen. Given efficient spatial economic signals, electrolyzers are

integrated in a much more system-friendly way, causing a decrease in congestion

management costs of up to 20%, or about 1.1 billion Euro per year, compared to the

benchmark scenario without hydrogen. Moreover, CO2 emissions are decreased by

up to 6%. When comparing the impacts of spatial (uniform vs. nodal) vs. temporal

(static vs. flexible) signals on congestion management costs, our results indicate

that introducing spatial variance in price signals has substantially higher benefits.

The largest cost reduction can be achieved when both dimensions are combined, i.e.

in a nodal real-time price signal that incentivizes flexible operation.

This is important information for policy makers in single-price zonal electricity

markets, such as Germany, that intend to subsidize electrolytic hydrogen produc-

tion, as our results demonstrate the considerable benefits of spatially differentiated

subsidies. In fact, the subsidies a regulator would have to pay to mimic nodal

prices for hydrogen within the existing single-price market design could effectively

be covered from avoided redispatch costs.
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Given prevailing political barriers to introducing nodal pricing markets in Europe

(European Network of Transmission System Operators for Electricity, 2021), it

is important to note that policy makers can incorporate our findings within the

existing single-price zonal markets. For instance, they could design a specific nodal

tariff, which bills electrolyzers based on shadow nodal prices instead of wholesale

prices. Alternatively, per-kWh subsidies (see (Bundesregierung, 2020)), can be

differentiated by grid node, mimicking the spread between uniform prices and

simulated nodal prices. Other locational incentives like regional quotas, regionalized

grid fees, or allowing grid operators to curtail electrolyzers before performing the

regular redispatch measures should be analyzed in future work regarding their

economic efficiency and other politically relevant criteria. As our study quantifies

the large potential benefits of a holistic integration of hydrogen in single-price zonal

electricity systems, it also motivates future investigations into the solution space of

regulatory mechanisms.

In summary, this Part III complements the prior Part II in two important aspects.

First, it demonstrates that tariffs do not only affect technology integration at the

customer level, but also cause important effects on the system. Second, it showcases

the considerable benefits of tariffs with temporal and spatial granularity.





Part IV.

Finale





CHAPTER 10

CONTRIBUTIONS AND IMPLICATIONS

Depending on their design, electricity tariffs can have large effects, both positive or

negative, on the societal costs of energy systems. These effects will be amplified by

the transition to an electrified energy system. To facilitate a successful integration

of new electric technologies, I conduct various analyses that extend our knowledge

about the interplay of tariffs and technology integration. For this, I engineer tariffs

and tariff recommendation methods and evaluate them in quantitative case studies.

In this chapter, I summarize the answers to the nine research questions posed in

Chapter 2 and distill the core contributions and implications for stakeholders in

electricity markets.

The high potential benefits of economically efficient residential electricity tariffs,

together with their low adoption rates in many geographies motivate the development

and assessment of tariff recommendation methods. Research questions 1-4 address

this challenge.

With respect to Research Question 1 (“What is the performance of a naive tariff

recommendation approach based on historical data?”), the performance of the rec-

ommendation approach is evaluated by precision, recall, and F1-score on a data set

of residential customers from Chicago, USA. All measures differ depending on the

analyzed tariff. Precision or recall are never higher than 0.60. The F1-score, which

combines precision and recall, is between 0.08 and 0.43 and thus, far from the po-

tential maximum value of 1. By introducing a tariff confusion matrix, it is found

that the hourly TOU (“TOU-24”) and the RTP tariff are most likely to be confused.

In summary, the performance of the naive approach is unsatisfying, as it can cause

increased (opportunity) costs for consumers and therefore reduce trust in the recom-
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mendation. The answer to Research Question 1 therefore motivates further research

that applies more sophisticated methods to increase tariff recommendation quality,

as addressed in Research Question 3 and 4.

Regarding Research Question 2 (“What are the economic consequences of these

recommendations for customers?”), findings show that the economic consequences

of tariff selection based on the naive approach are small for most customers. The me-

dian extra costs for selecting sub-optimal tariffs vary from 0.2 to 10.6 Euro per year.

The highest extra costs occur for consumers who wrongfully select the RTP tariff.

However, the small size of economic consequences is not necessarily due to the quality

of recommendation, but rather the general limited spread in electricity bills under

different tariffs. For instance, over 90% of customers have a total savings potential

of under 22 Euro per year. This motivates future research that expands tariff-only

recommendations to tariff-and-technology bundle recommendations to increase po-

tential customer savings. Besides, one central methodical limitation is that price

response is ignored, which limits the savings potential. Therefore, price response

is incorporated in the method of the subsequent chapter that addresses Research

Question 3 and 4.33

Building on the insights from the answers to Research Question 1, I address Re-

search Question 3 (“What is the performance of Machine Learning based methods for

recommending bundles of tariffs and technologies to end-consumers?”). For a case

study of residential customers from London, UK, I find that the developed Machine

Learning methods achieve accuracies of 73-76% for recommendations of bundles that

consist of tariffs and residential electric technologies. Thus, these methods largely

outperform the naive benchmark that achieves an accuracy of 56%. Moreover, the

results demonstrate that using four week long excerpts of customers’ smart meter

data as input has a crucial impact on the performance of Machine Learning methods.

For instance, the XGBoost model’s accuracy is only slightly better than the naive

benchmark without the smart meter data (59%). Due to the prevailing lack of multi

year data sets, this analysis is based on one case study. This represents a limitation

and once more data sets become available, the developed recommendation model

can be applied to them to verify the model’s performance across a broader range of

33Results converted from US Dollar to Euro for better comparability. The conversion assumes an
exchange ratio of 1 USD = 0.879468 EUR.
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regions and time periods.

With respect to Research Question 4 (“What are the economic consequences of

these recommendations for customers?”), the results show that while the average

customer pays 3,535 Euro for their electricity, mobility, and heating per year in the

status quo, the best Machine Learning recommendation method can reduce this to

3,151 Euro per year. The delta, i.e. 384 Euro, is substantially larger than the delta

achieved by the naive tariff-only recommender. Similar to the statistical evaluation,

the economic evaluation shows that using four week long excerpts of customers’

smart meter data is beneficial. Without such data, average savings from the rec-

ommended bundles are 24 Euro lower. The holistic assessment of statistical and

economic performance uncovers that the chosen metric for the Machine Learning

models, i.e. accuracy, is not a perfect proxy for costs, since small accuracy improve-

ments over the naive method already capture the majority of the economic savings.

Therefore, future studies could develop a customized loss function for the bundle rec-

ommendation task to further improve the models’ performance regarding economic

consequences for customers.34

The analysis conducted to answer Research Question 4 also shows the high poten-

tial of operating residential electric technologies according to time-varying electricity

tariffs. One limitation of the technology scheduling model is the assumption that

a customer’s base load of the next 24 hours is known. To schedule technologies

in practice, adequate forecasting methods for residential loads are required. In that

respect, I address Research Question 5 (“What are state of the art methodological ap-

proaches for electric load forecasting in the literature?”) by reviewing the status quo

of short-term residential and building electricity consumption forecasting. The re-

view shows that the state of the art methodological approaches are Machine Learning

models and probabilistic approaches. Besides, to ensure research rigour and replica-

bility, forecasters should select input features carefully, compare various approaches

in their work, use (or create) public reference data sets, and apply prevalent error

measures.

Based on these findings, I develop a novel, pinball loss guided probabilistic

Machine Learning forecasting model based on Gated Recurrent Units. Since

34Results converted from British Pound to Euro for better comparability. The conversion assumes
an exchange ratio of 1 GBP = 1.18937 EUR.
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forecasting electricity consumption of households with distributed energy tech-

nologies represents an important gap in the existing body of literature, I apply

this model to a case study of US households with solar PV installations, electric

heating, and both. This enables me to answer Research Question 6 (“What is

the performance of Machine Learning sequence models for forecasting residential

electric loads in the presence of roof-top solar and electric heating installations? ”).

The results show that the forecasts have the best performance for households with

solar PV (mean pinball loss of 0.14 kWh), and worst performance for households

with electric heating (mean pinball loss of 0.22 kWh). The latter result could

be caused to the limited length of the training data set that only encompasses

one heating season. The novel proposed forecasting model performs better than

the benchmark models for customers with solar PV, electric heating, and both

technologies. These are the first academic findings for probabilistic forecasting of

household loads under the influence of distributed energy technologies and thus lay

important foundations. Future work can build on these foundations by replicating

the analysis on longer time series and by demonstrating the application of such fore-

casts in energy management systems like to one developed in Chapter 6 of this thesis.

In summary, the research in Part II of this thesis contributes multiple novel

insights into the role of electricity tariffs for integrated energy systems at the

customer level. Its key contributions are the development of novel, data-driven

methods for tariff recommendation and net load forecasting and the demonstration

of how they can foster the proliferation of more economically efficient electricity

tariffs and sustainable energy technologies amongst residential customers. This

has several concrete practical implications. The developed decision support tool

helps residential customers to find their personalized, cost-optimal energy service

bundle and thus enables individual cost savings. As time-varying tariffs set

more economically efficient signals for the operation of energy technologies than

conventional Flat tariffs, their adoption also yields benefits for the system, e.g.

by reducing peak loads and costs. To enable the scheduling of technologies in

practice, this thesis in addition develops the first probabilistic forecasting model

for net electricity loads of customers with novel residential electric technologies.

Besides, the bundle recommendation generally supports the diffusion of sustainable
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technologies and smart meters, which are important for the energy transition.

Moreover, the thesis shows how Machine Learning tools may help retailers in their

business model transition in a strongly competitive retail market, by unlocking new

cross-selling opportunities and facilitating the often criticized slow smart meter

roll-out (see Chapter 3). Last, since this thesis reveals that if customers disclose

certain individual data to their retailer, they can improve the accuracy of their

recommendations, it brings forward the innovative concept of collaboration between

customers and retailers for added value on both sides.

Research questions 1-6 concern the interplay of tariffs and small-scale technologies

at the local level. They are therefore complemented by Research Questions 7-9,

which concern the interplay of tariffs and large consumers at the system level and in

the particular analyzed case, hydrogen electrolysis capacity.

In order to assess the impact of tariffs on the hydrogen supply chain in Germany, I

first develop a comprehensive new hydrogen integration model and answer Research

Question 7 (“What is the cost-minimal supply chain design using electrolytic hydrogen

production for the combined hydrogen demand from all major relevant sectors in 2030

in Germany?”). The supply chain model includes hydrogen production, conversion,

truck based transportation, reconversion, and in the case of trucks and cars, fueling.

Hydrogen storage and pipeline transport are neglected, but can be added to the

model if it is to be applied to scenarios with higher hydrogen volumes beyond 2030.

The results show that 9.50 GWel of electrolysis capacity are required to meet the

estimated hydrogen demand from industry, trucks, and cars in 2030. This capacity

is distributed over 69-106 electrolyzers, depending on the scenario. Transporting

hydrogen in its liquefied state in delivery trucks is more economical than truck based

transport of hydrogen in its gaseous state or hydrogen that is bound in LOHC.

To analyze the effect of tariffs on hydrogen supply chains, Research Question 8

(“What is the effect of electricity tariffs on cost-minimal locations of electrolyzers

and hydrogen costs?”) is addressed. The analysis uncovers strong effects under

the assumption that investors are risk neutral and have perfect foresight. Under

uniform zonal tariffs, more, smaller electrolyzers are installed, and they are placed

close to points of consumption. In contrast, under nodal tariffs, electrolyzers are

instead placed at nodes with low electricity prices in all delivery scenarios. This
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demonstrates that the cheaper electricity costs at remote nodes realized by nodal

tariffs robustly outweigh the higher transportation operating costs.

Last, to analyze the impact of tariffs on the feedback effects of hydrogen supply

chains on the electricity system, Research Question 9 is answered (“How does

hydrogen production change electricity wholesale prices, congestion management

costs, and CO2 emissions under different tariffs?”). In this regard, the results

show that electrolytic production of hydrogen introduces a considerable additional

electricity demand of 72 TWh annually to the wholesale market. If this new demand

is fully covered by additionally installed solar PV and wind power capacity, average

wholesale prices are not affected strongly, and even slightly decrease. Large tariff

effects can be observed regarding congestion management costs and emissions.

With the uniform zonal tariff, hydrogen increases annual congestion management

costs by over one billion Euro and CO2 emissions by 1.7-2.2 Megatons. However, if

integrated according to the nodal tariff, hydrogen decreases congestion management

costs by over one billion Euro per year, and emissions decrease by 0.7-3.5 Megatons.

The findings indicate that for system integration, the location of electrolyzers is

crucial. The least-cost and least-emission integration is achieved when the tariff

contains both spatial and temporal signals.

In summary, the research in Part III of this thesis contributes multiple novel

insights into the role of electricity tariffs for integrated energy systems at the system

level. Its main contribution is the demonstration of the great value of spatially

resolved electricity tariffs for hydrogen integration. The thesis thus showcases

that efficient electricity tariffs are a powerful tool to align individual and societal

interests in integrated energy systems. This has important implications for policy

makers and regulators in dozens of single-price zonal electricity markets worldwide,

who are currently planning subsidy schemes for electrolytic hydrogen production.

The results clearly demonstrate the substantial benefits that policy makers and

regulators can achieve by differentiating such subsidies according to spatial criteria.

In the presented analysis of the German system, the required subsidies a regulator

would have to pay to mimic nodal prices for hydrogen could effectively be covered

from avoided redispatch costs.
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This dissertation purposefully enhances our knowledge about electricity tariffs with

a dedicated focus on the interplay of tariffs and novel electric technologies, such as

hydrogen, heat pumps, and electric vehicles. It demonstrates that electricity tariffs

with high temporal and spatial granularity for residential and industrial consumers

are key coordination mechanisms for the beginning era of consumer-centric, inte-

grated energy systems. It provides guidance for policy makers, market operators,

regulators, and retailers who aim to engineer the next generation of electricity tariffs

and related recommendation and forecasting tools.





CHAPTER 11

OUTLOOK

Based on the work provided in this thesis, promising pathways for future research

are uncovered.

With respect to residential tariff recommendation, three main avenues for future

work present themselves. First, customer acceptance of recommendations is an im-

portant issue. In reality, transaction costs and behavioral considerations influence

customers’ decisions of selecting tariffs or service bundles. For instance, behavioral

economics in other contexts has found that people tend to frame decisions in terms

of the default setting (i.e. a Flat tariff) and aim to avoid potential losses compared

to that benchmark default setting (Dinner et al., 2011). Therefore, it can be in-

teresting to evaluate the influence not only of the quality of the recommendation,

but also of its display and framing (i.e. non-monetary “nudges”) on tariff adoption

among consumers. Besides such non-financial mechanisms, this loss aversion of many

consumers also inspires the development of hedging mechanisms for service bundle

recommendations. For this, future research could investigate how a “bill protection”,

i.e. a guarantee for non-increased costs could improve customer acceptance and how

it could be best designed from the point of view of a retailer. Methodologically, these

questions could be addressed by conducting controlled laboratory experiments.

Second, the detailed design of a new energy retailer business model is a highly rele-

vant task, as uncovered in Chapter 3. For this, it is beneficial to extend this work by

investigating the “behind-the-scenes” processes at the retailer that are needed to real-

ize the presented new business model. For example, for customers who use real-time

tariffs, electricity retailers could use automated agents based on Deep Reinforcement
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Learning that manage the electricity procurement at the wholesale market in real-

time, based on measured live customer data. Other aspects to be investigated are the

lease of technologies in collaboration with hardware suppliers, and the collaboration

for data sharing with customers.

Third, field experiments with a Citizen Science approach can drive the developed

concept towards a real product for retail companies. For this, researchers could

cooperate with citizens and retailers. Together, they can set up small sensor devices

at the citizens’ homes and record electricity consumption from conventional meters

via optical interfaces. By using latest Transfer Learning approaches from the field

of Artificial Intelligence, the recommendation models trained in this thesis can be

applied even to small sets of measured empirical data, and real recommendations

can be made. Moreover, forecasts based on Machine Learning methods are to be

developed as inputs for the daily optimization of smart home energy systems. This

way, the technical implementation in real-world settings can be tested. Thus, the

idea conceived in this thesis can be realized in practice.

With respect to hydrogen regulation, I see three main directions in which this

work can be pursued further.

First, regarding mechanism design, nodal prices represent the theoretical optimal

mechanism for pricing electricity in an economically efficient manner. However, pol-

icy makers and regulators often aim to strike a balance between economic efficiency

and other relevant objectives such as distributional effects (Burger et al., 2020), sim-

plicity, investment risk, market power, and liquidity (Eicke and Schittekatte, 2022).

Therefore, it is valuable to broaden the assessment of hydrogen integration effects

to include such criteria and to assess how nodal tariffs and alternative mechanisms

perform across them. Common types of mechanisms in electricity systems are price

based mechanisms, volume based mechanisms, and direct control mechanisms. In

the case of electrolyzers, price based alternatives to nodal tariffs are more granular

zonal tariffs or regionalized grid fees that signal potential for congestion. Volume

based mechanisms could be implemented as a “Northeast Quota” in Germany, which

demands a minimum share of electrolysis capacity to be installed in northeastern

states. This corresponds to the existing "Southern Quota" for new wind turbine

installations (see Appendix G). Direct control mechanisms for electrolyzers could be
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realized by allowing grid operators to curtail electrolyzers before performing the reg-

ular redispatch measures, in case of congestion. Simulating and comparing a range

of mechanisms across multiple objectives will provide valuable guidance for policy

makers.

Second, methodically, the hydrogen supply chain model presented in this thesis

could be reformulated as an agent based model and linked to existing agent based

electricity system models (Weidlich and Veit, 2008). With such an approach, one

could capture the effects of various risk attitudes and incomplete information among

hydrogen infrastructure investors and system planners.

Third, the increasing regional integration of European electricity systems moti-

vates future work that expands the regional scope of the presented analysis. For

example, beyond 2030, there will likely be hydrogen trade between European coun-

tries. For such trade, alternative transportation means like ships and pipelines should

be assessed. In addition, at nodes that are not connected to the rest of the electric

grid, e.g. off-shore wind parks in the North Sea, hydrogen could be produced on-site

and filled into tankers or pipelines for transport. Such complex and geographically

extensive hydrogen supply chains will demand newly engineered economic mecha-

nisms. In addition, state of the art methods from the field of Artificial Intelligence

can deliver solutions for the newly evolving optimization and forecasting tasks. To-

gether, well-engineered mechanisms, optimization models, and forecasts can ensure

an economically efficient, sustainable, and secure energy system integration.

As this thesis demonstrates the importance of electricity tariffs for the beginning

era of integrated energy systems, it also motivates further research for unlocking

their full potential.
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APPENDIX A

ELECTROLYSIS CAPACITY IN GERMANY

Table A.1.: Installed and planned electrolysis capacity in Germany

Project name City/Region Techno-

logy

Commis-

sioning

year

Rated

capacity

[kW]

HYSOLAR Stuttgart AEC 1989 45.0

PHOEBUS Jülich Jülich AEC 1994 26.0

CUTE Hamburg AEC 2003 390.0

ARGE Wasserstoff-

Initiative-Vorpommern

Barth PEM 2005 62.0

VW Hydrogen filling

station

Isenbüttel PEM 2005 6.1

Hydrogen filling station

Holzmarktstraße

Berlin AEC 2010 310.0

Juwi laboratory plant Morbach Unknown 2011 25.0

Hybrid Power Plant

Prenzlau

Prenzlau AEC 2011 560.0

Prototype BTU Cottbus AEC 2012 140.0

H2 Move - Hydrogen

filling station

Freiburg PEM 2012 42.0

RH2-WKA Project Grapzow AEC 2012 1,000.0

Power-to-Gas Plant

Viessmann

Schwandorf PEM 2012 108.0

Hydrogen filling station

Talstraße (only cars)

Stuttgart AEC 2012 320.0
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Table A.1.: Installed and planned electrolysis capacity in Germany (continued)

Project name City/Region Techno-

logy

Commis-

sioning

year

Rated

capacity

[kW]

WindGas Falkenhagen Falkenhagen AEC 2013 2,000.0

Hydrogen filling station

HafenCity

Hamburg AEC 2013 600.0

CO2RRECT Niederaußem PEM 2013 300.0

Audi e-gas Werlte AEC 2013 6,300.0

Strom zu Gas-Anlage

(Thüga-Gruppe)

Frankfurt am

Main

PEM 2014 325.0

Hydrogen filling station

Talstraße (cars & trucks)

Stuttgart AEC 2014 320.0

BioPower2Gas Allendorf (Eder) PEM 2015 300.0

Smart Grid Solar Arzberg PEM 2015 75.0

Hydrogen filling station

H2BER

Berlin AEC 2015 650.0

Hydrogen filling station

Schnackenburgallee

Hamburg PEM 2015 180.0

PtG Ibbenbüren Ibbenbüren PEM 2015 200.0

SOPHIA Köln SOEC 2015 4.8

Energiepark Mainz Mainz PEM 2015 6,000.0

WindGas Hamburg Reitbrook PEM 2015 1,500.0

Stromlückenfüller Reußenköge PEM 2015 37.5

Exytron Rostock AEC 2015 21.0

Windgas Haßfurt Haßfurt PEM 2016 1,250.0

Direktmethanisierung von

Biogas

Bad Hersfeld PEM 2017 50.0

Hydrogen Feed-in Plant Freiburg PEM 2017 120.0

Hydrogen filling station

Erlachseeweg

Karlsruhe SOEC 2017 7.9

Stromlückenfüller

Expansion

Reußenköge PEM 2017 330.0
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Table A.1.: Installed and planned electrolysis capacity in Germany (continued)

Project name City/Region Techno-

logy

Commis-

sioning

year

Rated

capacity

[kW]

Projekt GrInHy 1.0

(Green Industry

Hydrogen)

Salzgitter SOEC 2017 200.0

Wind2Gas Energy

Wasserstoff Elektrolyse

Brunsbüttel PEM 2018 2,400.0

Carbon2Chem-Technikum Duisburg AEC 2018 2,000.0

Zero Emission Wohnpark

Alzey

Alzey AEC 2019 62.5

Klimafreundliches Wohnen

in Augsburg

Augsburg AEC 2019 62.5

HPEM2GAS Project Emden PEM 2019 200.0

Leuchtturmprojekt

Power-to-Gas

Grenzach-Wyhlen AEC 2019 1,000.0

LocalHy Sonneberg-

Heubisch

AEC 2019 75.0

Self-sufficient operating

site Westnetz

Metelen PEM 2019 14.6

Windgas Haurup Haurup PEM 2020 1,000.0

Projekt GrInHy 2.0

(Green Industry

Hydrogen)

Salzgitter SOEC 2020 720.0

Windwasserstoff Salzgitter Salzgitter PEM 2020 2,200.0

Bernsteinsee Hotel Sassenburg/Stüde AEC 2020 52.0

H2ORIZON Lampoldshausen PEM 2020 880.0

rSOC Project Dresden SOEC 2021 180.0

Clean Energy Conversion Haren PEM 2021 4,000.0

Öhringer Wasserstoffinsel Öhringen AEC 2021 300.0

Energiepark

Pirmasens-Winzeln

Pirmasens Unknown 2021 1,800.0
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Table A.1.: Installed and planned electrolysis capacity in Germany (continued)

Project name City/Region Techno-

logy

Commis-

sioning

year

Rated

capacity

[kW]

eFarm Project Reußenköge,

Bosbüll,

Langenhorn,

Dörpum

PEM 2021 1,650.0

REFHYNE Wesseling PEM 2021 10,000.0

H2-Project Ellhöft Westre/Ellhöft PEM 2021 330.0

Wunsiedler Energiepark Wunsiedel PEM 2021 6,000.0

ELEMENT EINS Diele

(recommended)

AEC 2022 100,000.0

Westküste100 Heide Unknown 2022 30,000.0

Energiepark Bad

Lauchstädt

Bad Lauchstädt Unknown 2023 35,000.0

GET H2 Nukleus Lingen Unknown 2023 100,000.0

HydroHub Fenne Fenne PEM 2024 17,500.0

GreenHydroChem

Mitteldeutschland

Leuna Unknown 2024 100,000.0



APPENDIX B

EXPERT INTERVIEW QUESTIONS

• "If you could wish for one change of regulation, what would it be?" (Original:

"Wenn Sie sich eine Regulierungsänderung wünschen könnten, welche wäre

das?)

• "Which possibilities do you see in the area of cross-selling of tariffs and tech-

nologies?" (Original: "Welche Möglichkeiten sehen Sie im Bereich Cross-Selling

von Tarifen und Technologien?)

• "Which possibilities do you see regarding servitization in the electricity retail

market and which services, as an add-on for the product electricity, are espe-

cially relevant and in demand?" (Original: "Welche Möglichkeiten sehen Sie

bezüglich Servitization im Endkundenmarkt für Strom und welche Dienstleis-

tungen, als Zusatz zum Produkt Strom sind für Stromkunden im Endkunden-

markt besonders relevant und gefragt?")

• "Which role do transaction costs play for the probability and frequency of

switching tariffs? How could such transaction costs be reduced?" (Original:

"Welche Rolle spielen Transaktionskosten für die Wechselwahrscheinlichkeit

und -häufigkeit bei Tarifen? Wie können solche Transaktionskosten reduziert

werden?)

• "Which role do online sales channels play compared to offline sales channels

in the retail market?" (Original: "Welche Rolle spielen Online-Vertriebskanäle

im Vergleich zu Offline-Vertriebskanälen im Endkundenmarkt?)

• "Besides fixed and flat price components, which characteristics of tariffs are
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important to retailers?" (Original: "Neben Grund- und Arbeitspreisen, welche

Eigenschaften eines Tarifes sind Anbietern wichtig?)

• "Besides fixed and flat price components, which characteristics of tariffs are im-

portant to customers?" (Original: "Neben Grund- und Arbeitspreisen, welche

Eigenschaften eines Tarifes sind Kunden wichtig?)

• "Into which types/groups of private customers can the retail market be di-

vided?" (Original: "In welche unterschiedlichen Typen/Gruppen von privaten

Kunden kann der Endkundenmarkt aufgeteilt werden?)

• "Which importance do partnerships with other companies have?" (Original:

"Welche Bedeutung haben Partnerschaften mit anderen Unternehmen?)

• "How does the interplay of processes for electricity purchasing and selling work

for the retailers? What role do Futures, Forwards, OTC, day ahead and in-

tra day trading play? Which particular complexity regarding these processes

evolves in the case of innovative tariffs (e.g. time-varying, eco)? How can one

automate the short-term procurement (e.g. in the day-ahead market)?" (Orig-

inal: "Wie funktioniert bei Anbietern das Zusammenspiel von Prozessen für

Stromeinkauf und -vertrieb? Welche Rollen spielen bei der Beschaffung jeweils

Futures, Forwards, OTC-, Dayahead- und Intraday-Handel? Welche besondere

Komplexität hinsichtlich dieser Prozesse entsteht bei neuartigen Tarifen (z.B.

zeitvariabel, Ökostrom)? Wie kann man die kurzfristigere Beschaffung (z.B.

am Day-Ahead Markt) für zeitvariable Tarife automatisieren?)



APPENDIX C

TARIFF RECOMMENDATION CASE STUDY DATA

C.1 Consumption Data

Among the electricity consumption profiles, a minimum annual consumption of

1,026.50 kWh and a maximum value of 9,753.05 kWh can be observed, in the first

year. In the second year, the annual consumption is between 1,001.91 kWh and

11,500.73 kWh. Figure A.1 display the distribution of the annual consumption values.
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Figure A.1.: Distribution of the annual electricity consumption of the households
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C.2 Electricity Tariffs

In the data of 2018, two data points are missing. In 2019, 26 data points are

missing. They are supplemented by linear interpolation. Figure A.2 shows the

distribution of wholesale electricity prices in 2018 across the hours of a day in the

form of box plots. Figure A.3 illustrates the distribution of the same data in 2019.

For the application, the price data of 2018 is linked to the consumption data of 2012

to form the first year’s data and the 2019 price data is linked to the 2013 consumption

data to form the second year’s data.
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Figure A.2.: First year’s hourly electricity wholesale prices in the UK throughout the day

Equation C.1 defines the calculation of the electricity price for the flat tariff epflat.

epflatt =

365
∑

d=1

24
∑

h=1

wpd,h · yd,h

365
∑

d=1

24
∑

h=1

yd,h

, t ∈ [1, 8760] (C.1)

For the TOU-2 tariff, the energy prices are determined according to C.2 and C.3.

Equation C.4 sets the time periods in which these prices occur.

eptou2,l1 =

365
∑

d=1

(
6
∑

h=1

wpd,h · yd,h +
24
∑

h=23

wpd,h · yd,h)

365
∑

d=1

(
6
∑

h=1

yd,h +
24
∑

h=23

yd,h)

(C.2)
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Figure A.3.: Second year’s hourly electricity wholesale prices in the UK throughout the day

eptou2,l2 =

365
∑

d=1

22
∑

h=7

wpd,h · yd,h

365
∑

d=1

22
∑

h=7

yd,h

(C.3)

eptou2t =


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
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

eptou2,l1, if t ∈ [24k + 1, 24k + 6]
⊔

[24k + 23, 24k + 24]

with k ∈ [0, 364]

eptou2,l2, if t ∈ [24k + 7, 24k + 22]

with k ∈ [0, 364]

(C.4)

The calculation of the three TOU-3 price levels is conducted similarly to the TOU-

2, as shown in Equations C.5, C.6, and C.7. Equation C.8 sets the time periods in

which these prices occur.

eptou3,l1 =

365
∑

d=1

(
6
∑

h=1

wpd,h · yd,h +
24
∑

h=23

wpd,h · yd,h)

365
∑

d=1

(
6
∑

h=1

yd,h +
24
∑

h=23

yd,h)

(C.5)
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eptou3,l2 =

365
∑

d=1

(
16
∑

h=7

wpd,h · yd,h +
22
∑

h=20

wpd,h · yd,h)

365
∑

d=1

(
16
∑

h=7

yd,h +
22
∑

h=20

yd,h)

(C.6)

eptou3,l3 =

365
∑

d=1

20
∑

h=17

wpd,h · yd,h

365
∑

d=1

20
∑

h=17

yd,h

(C.7)
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eptou3,l1, if t ∈ [24k + 1, 24k + 6]
⋃

[24k + 23, 24k + 24]

with k ∈ [0, 364]

eptou3,l2, if t ∈ [24k + 7, 24k + 16]
⋃

[24k + 21, 24k + 22]

with k ∈ [0, 364]

eptou3,l3, if t ∈ [24k + 17, 24k + 21]

with k ∈ [0, 364]

(C.8)

The last tariff to determine is the RTP tariff eprtpt . Here, wholesale prices at every

hour of the year wpt are directly passed on to the consumers, as shown in Equation

C.9.

eprtpt = wpt, t ∈ [1, 8760] (C.9)

C.3 Heating

The total heating demand of households can be estimated based on the number

of inhabitants and the size of the living space. Since this data is not included in the

original electricity consumption data set, it is estimated based on the households’

annual electricity consumption in the first year, divided by the average electricity

consumption in the UK (Topping, 2021; Clark, 2021). By multiplying the calculated

number of inhabitants with the average apartment size per person in London (33

m2), the living space of each household is determined (Coshand and Gleeson, 2020).

Taking the average annual heating demand per square meter of 133 kWh/m2a into

account, the annual heating capacity required is determined (Marcus, 2021). For
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water heat demand, the average water consumption of 40 liters per person and day

multiplied by the energy needed to heat it up to 40°C (von der Lühe, 2018).

The daily demand for hot water is assumed to be static over the year. The heating

demand for space heating needs to be distributed over time. For this, we take

advantage of historical, hourly resolved, temperature data from London in 2012 and

2013 (kaggle, 2019). We assume that space heat is only produced when temperatures

are below the heating limit with a daily average temperature of 12°C (in line with

Recknagel et al. (2006)). This leads to 214 heating days in the first year and 202

heating days in the second year. The space heat demand is then equally distributed

over the heating days.

C.4 Mobility

For this study, we use mobility data from the German Mobility Panel (Ecke et al.,

2019). It includes detailed driving profiles of private households in Germany in

everyday life during an ordinary week. The data collection includes various data

of which we use the ID, means of transportation, day of the week, departure time,

distance travelled, arrival time, and trip purpose. We only consider trips for which

a car is used as means of transportation.

From the panel’s extensive data collection, a commuter and a non-commuter driv-

ing profile is randomly assigned to each electricity consumption profile, which creates

two synthetic customers for each consumption profile and enables a comparison of

the two characteristics. A driving profile is considered to be a commuter profile if

the workplace is visited at least four times a week. We only consider profiles for

which the parking time of the car at home is always long enough to recharge the

car sufficiently to complete the subsequent trips until the car returns home. Finally,

the mobility profile is extended to the two year time frame of the case study, by

repeating the driving profiles.
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PROBABILISTIC FORECASTING BENCHMARK RE-

SULTS

10000 5000 0 5000 10000 15000 20000 25000
Annual net consumption [kWh]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

ho
ur

ly
 P

in
ba

ll 
Lo

ss
 [k
W
h]

Household
Household with heating
Household with solar
Household with heating and solar

Figure A.1.: Net load and QLSTM pinball loss
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Figure A.2.: Net load and QREGNN pinball loss
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Figure A.3.: Net load and QLSTM_noWeather pinball loss
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Figure A.4.: Standard deviation and QLSTM pinball loss
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Figure A.5.: Standard deviation and QREGNN pinball loss
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Figure A.6.: Standard deviation and QLSTM_noWeather pinball loss
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HYDROGEN DEMAND DATA

E.1 Steel

To identify all steel plants with potential for hydrogen use in 2030, we use the

statistical report of the steel industry (WV Stahl, 2020). Looking at future hydrogen

demand, only those 70 % of steel producers who manufacture via the blast furnace

route are relevant, as large quantities of CO2 are emitted here and can be avoided

by switching to the direct reduction route. In addition, the ArcelorMittal plant in

Hamburg is included, as it already uses a direct reduction approach (Hölling et al.,

2017). Table 9.4 lists the eight identified steel production sites.

The production volumes and relative shares of primary and secondary steel in Ger-

many have been approximately constant since 2012 (WV Stahl, 2020). Therefore,

and in line with Hebling et al. (2019), we use past production volume and distribu-

tion as 2030 estimates. In particular, we use 2017 values, as only those are available

in (WV Stahl, 2020). However, it can be assumed that not all steel producers will

switch to direct reduction by 2030, due to various reasons. For instance, the switch

is associated with high investment costs, is technically demanding (IKTS, 2020), and

comes with new uncertainties like future hydrogen costs (Agora Energiewende and

Wuppertal Institut, 2019). Correspondingly, steel producers are planning individ-

ual solutions for medium-term CO2 emission reduction to achieve reduction goals.

Therefore, all relevant plants must be analyzed individually, via online research and

direct communication with the relevant companies.

ArcelorMittal Hamburg has been operating a direct reduction plant since the mid-

1970s (Hölling et al., 2017). The reduction gas used today consists of about 60 %

hydrogen (ArcelorMittal, 2017). By 2030, steel production is planned to be com-

195



196 Hydrogen Demand Data

pletely CO2-neutral (ArcelorMittal, 2020a). Accordingly, we assume that there will

be a complete switch to the direct reduction route with 100 % hydrogen input by

2030. For the direct reduction route, we assume the specific hydrogen demand factor

80kgH2
/tsteel, based on Michalski et al. (2019). The hydrogen demand of Arcelor-

Mittal Hamburg for the year 2030 is estimated with Equation E.1.

HD = OutputtSteel
· specificDemandFactor · 33.33kWhH2

/kgH2
(E.1)

ArcelorMittal Eisenhüttenstadt and ArcelorMittal Duisburg have not publicly an-

nounced any plans to use hydrogen until 2030, but it has been indicated that long-

term adoption of hydrogen for the former plant will depend on the results of current

pilot projects of the ArcelorMittal group (ArcelorMittal, 2020b). Therefore, we as-

sume that these plants do not have any hydrogen demand in 2030.

ArcelorMittal Bremen is focusing on the use of hydrogen via the blast furnace

route to achieve the medium-term goals. However, the company already plans to

construct an electrolyser on-site (swb, 2020) that will be sufficient to fully meet

the hydrogen demand in 2030. Thus, the plant does not have any net demand for

hydrogen.

ROGESA, a subsidiary of Dillinger and Saarstahl, produces pig iron, which is sup-

plied to Dillinger and Saarstahl for the subsequent crude steel production (Dillinger,

2016). Therefore, Dillinger and Saarstahl are considered collectively for further cal-

culations. ROGESA operates two blast furnaces and plans to optimise both by

blowing in hydrogen as a reducing agent in order to achieve a reduction in CO2

emissions (Dillinger, 2019). According to a step-by-step plan of the Saarland-based

steel industry, both blast furnaces are to remain in operation until 2031 (Warscheid,

2020a). In addition, an electric furnace and a direct reduction plant are to be built,

which will initially only use natural gas to produce directly reduced iron from iron

ore (Warscheid, 2020a). Therefore, we assume that by 2030, both blast furnaces will

use the maximum amount of hydrogen. Both blast furnaces are technically able to

use a maximum of approximately 3,700 kgH2
/h (Warscheid, 2020b; ROGESA, 2016).

Thus, the hydrogen demand of ROGESA (Dillinger and Saarstahl) for the year 2030
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is estimated to be 2.1606 TWhH2
, based on Equation E.2. 35

HD = 2 · 3700kgH2
/h · 8760h · 33.33kWhH2

/kgH2
(E.2)

Hüttenwerke Krupp Mannesmann (HKM) is owned 50 % by Thyssenkrupp Steel

Europe AG, 30 % by Salzgitter Mannesmann GmbH and 20 % by Vallourec Tubes

S.A.S (HKM, 2020). Regarding the use of hydrogen in production, no press reports

were found. Consequently, it is assumed that due to the structure of the company,

no hydrogen will be used until 2030, as the shareholders might primarily concentrate

on their own production facilities and their optimisation.

Salzgitter is pursuing a gradual conversion to hydrogen-based steel production via

the direct reduction/electric arc furnace route. In the first stage of expansion, a

direct reduction plant and an electric arc furnace will be built (Redenius, 2020a).

This expansion stage will lead to a hydrogen use of 81,332 Nm3/h and a specific

hydrogen demand factor of 12.27 kgH2
/tsteel (Redenius, 2020b) for the overall plant

output. Thus, the hydrogen demand for 2030 can be calculated with equation E.1.

Thyssenkrupp plans to replace two blast furnaces with two direct reduction plants,

and to optimize one blast furnace by blowing in hydrogen until 2030 (Thyssenkrupp,

2020a). Current estimations indicate that around 200,000 tons of hydrogen per year

will be needed from 2030. A share of this will be supplied through a long-term

contract with RWE, from a 100 MW electrolyzer capable of supplying 1.7 tons of

hydrogen per hour (Thyssenkrupp, 2020b). This supply is deducted from the total

demand in order to calculate the hydrogen net demand for 2030 as shown in Equation

E.3.

HD = (200, 000, 000kgH2
− 1, 700kgH2

/h · 8, 760h) · 33.33kWhH2
/kgH2

(E.3)

35To validate the results, we also estimate the demand with Equation E.1, which returns 2.0668
TWhH2

and thus confirms the calculations. For all further calculations, we use 2.1606 TWhH2

as demand for the Dillinger and Saarstahl steel plants.
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E.2 Ammonia

The ideal specific hydrogen demand for ammonia synthesis is 3 moles of H2 for 2

moles of NH3 (Hermann et al., 2014), or 177.55 kgH2 per ton of ammonia.

We acquire a list of all ammonia producers in Germany from the Industrial Asso-

ciation Agrar (IVA, 2018). The production volumes of ammonia in Germany have

been approximately constant since 2012 (VCI, 2020). While, to the best of our

knowledge, no information on site-specific current ammonia production is publicly

available, we identify site-specific production capacities based on online research Pe-

ters and Thumann (2016); Bezirksregierung Köln (2017) and direct communication

with the companies. The sum of these capacities (2,955,000 t/a) is somewhat higher

than the current total ammonia production (2,415,327 in 2019). However, global

ammonia demand is assumed to increase by 2030 (Hebling et al., 2019; International

Energy Agency, 2019a). Therefore, in the following, the production capacities are

assumed as basis for the site-specific hydrogen demand estimation.

With the assumptions made above, the site-specific demand can be estimated with

Equation E.4.

HD = tAmmonia · 177.55kg/tAmmonia · 33.33kWhH2
/kgH2

(E.4)

E.3 Methanol

The specific hydrogen demand is estimated as 2 moles of H2 for 1 mole of CH3OH

(Hofbauer et al., 2016), or 188.73 kgH2 per ton of methanol. This is consistent with

the assumptions of Bazzanella and Ausfelder (2017) and Michalski et al. (2019). Cur-

rently, there are five relevant methanol plants in Germany (Fröhlich et al., 2019).

However, one of them has terminated production and is being liquidated, and there-

fore is disregarded for 2030.

In the next step, production capacities of the individual plants are identified

(Fleiter et al., 2013; Jendrischik, 2020; BP, 2019). The sum of current production of

1,398,146 t/a (VCI, 2020) is lower than the total production capacity of 1,865,000
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t/a. However, production has been rising in recent years, and global methanol de-

mand is assumed to increase by 2030 (Hebling et al., 2019; International Energy

Agency, 2019a). Correspondingly, as with the hydrogen estimate for ammonia, the

production capacity is used as basis for further calculations.

With the assumptions made above, the site-specific demand can be estimated with

Equation E.5.

HD = tMethanol · 188.73kg/tMethanol · 33.33kWhH2
/kgH2

(E.5)

E.4 Refineries

We use the list of all refineries and their output capacities from the German

Petroleum Industry Association (MWV, 2020). Mineral oil consumption will de-

crease by varying degrees by 2030, depending on assumptions about the demand for

liquid fuels (Michalski et al., 2019). Correspondingly, the current production volume

of 87,013,000 tons is distributed across the sites in proportion to their processing

capacity. Then, following Prognos AG (2020a), the assumption is made that the

demand for mineral oil will decrease by about 20 % until 2030.

The specific hydrogen net demand is assumed to be approximately 100 m3
H2

per ton

crude oil, based on Schweer et al. (2002). Thus, the site-specific hydrogen demand

for refineries can be estimated with Equation E.6.

HD = tOil,pq,2030 · 100m
3/tOil,pq,2030 · 0, 0841 · kWhH2

/kgH2
· 22% (E.6)





APPENDIX F

CONVERSION FACTORS

Table A.1.: Numeric values and conversion factors for H2

Lower heating value of hydrogen 33.33 kWh/kg
Conversion factor kg in m³ 11.89
Conversion factor m³ in kg 0.0841
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APPENDIX G

SENSITIVITY SCENARIOS

There is one sensitivity scenario for the hydrogen demand and one for the electricity

generation. For the sensitivity scenarios, it is assumed that a hydrogen delivery

truck has a consumption of 6.75 kg per 100 kilometers and investment costs of

174,000 EUR (Gnann and et al., 2017).

Since it is highly disputed and unclear if there will be relevant numbers of fuel cell

passenger cars in Germany in 2030 (He et al., 2021; Insider, 2020; Li et al., 2016;

Morrison et al., 2018), we calculate an alternative scenario without hydrogen fueled

cars.

Neglecting hydrogen cars reduces the electricity demand caused by hydrogen

production from 72.5 to 68.2 TWh/year. Since hydrogen car refueling stations would

be distributed across the country, neglecting them leads to a more concentrated

demand a fewer (industry) locations. Consequently, under the uniform tariff,

hydrogen integration without hydrogen cars increases redispatch costs to 7,282.38

MEUR/year (Flat, static operation), compared to 7,253.56 MEUR/year in the

case with hydrogen cars. Under the nodal tariff, redispatch costs decrease to

5,209.15 MEUR/year (Flat, static operation), compared to the benchmark without

hydrogen, but are higher than the 5,100.84 MEUR/year in the case with hydrogen

cars. Since in the nodal tariff case, hydrogen is produced at low cost nodes, lower

overall hydrogen demand leads to lower volumes of avoided redispatch.

As wind energy offers greater potential in northern Germany than southern Ger-

many, the majority of wind generation capacity is located in the North, leading to

203
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spatial imbalances of generation and demand. To address this, the Federal Ministry

for Economic Affairs and Energy introduced the so-called Southern Quota in the

renewable energy act of 2021. The quota reorganizes the distribution of subsidies

for new wind energy projects. A particular percentage of the financial subsidies is

exclusively available to the construction projects in southern counties (Bundesmin-

isterium für Wirtschaft und Energie, 2021). The percentage of the Southern Quota

for onshore wind turbines is set to 15% for 2021 to 2023 and to 20% for 2024 and

later. A list of the southern counties is shown in Bundesministerium für Wirtschaft

und Energie (2021). We calculate an alternative scenario that takes this quota into

account for all newly added onshore wind generation capacity until 2030.

Taking into account the Southern Quota affects the geographical distribution of

wind energy, and thus nodal electricity prices. These in turn impact the optimal

locations of electrolyzers and the integration effects. The baseline redispatch costs

without hydrogen are 5,622.82 MEUR/year (Flat, static operation). This is less

than the 6,163.96 MEUR/year in the case without the quota. Integrating hydrogen

under uniform tariffs increases redispatch costs to 6,648.89 MEUR/year (Flat, static

operation), which is less than the 7,253.56 MEUR/year in the case without the

quota. Integrating hydrogen under nodal tariffs decreases redispatch costs to 4,701.27

MEUR/year, which is again less than the 4,915.41 MEUR/MWh without the quota.

This shows that in addition to the positive effects of spatial signals for new electricity

demand (i.e. nodal tariffs for electrolyzers) it is also beneficial for the electricity

system to have spatial signals for new generation (i.e. regional quotas for wind

turbines).
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Lobato Miguélez, E., Egido Cortés, I., Rouco Rodŕıguez, L., and López Camino,
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Michalski, M., Altmann, M., Bünger, U., and Weindorf, W. (2019). Wasserstoffstudie

Nordrhein-Westfalen. Eine Expertiese für das Ministerium für Wirtschaft, Inno-

vation, Digitalisierung und Energie des Landes Nordrhein-Westfalen, Düsseldorf.

Morrison, G., Stevens, J., and Joseck, F. (2018). Relative economic competitiveness

of light-duty battery electric and fuel cell electric vehicles. Transportation Research

Part C: Emerging Technologies, 87:183–196.

Munkhammar, J., van der Meer, D., and Widén, J. (2021). Very short term load

forecasting of residential electricity consumption using the markov-chain mixture

distribution (mcm) model. Applied Energy, 282:116180.

Muralitharan, K., Sakthivel, R., and Vishnuvarthan, R. (2018). Neural network

based optimization approach for energy demand prediction in smart grid. Neuro-

computing, 273:199–208.

MWV (2020). Jahresbericht 2020. Retrieved from https://www.mwv.de/

wp-content/uploads/2020/09/MWV_Mineraloelwirtschaftsverband-e.V.

-Jahresbericht-2020-Webversion.pdf. Accessed 2020-11-03.
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