KIT | KIT-Bibliothek | Impressum | Datenschutz

DeePOF: A hybrid approach of deep convolutional neural network and friendship to Point‐of‐Interest (POI) recommendation system in location‐based social networks

Safavi, Sadaf; Jalali, Mehrdad ORCID iD icon 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Today, millions of active users spend a percentage of their time on location-based social networks like Yelp and Gowalla and share their rich information. They can easily learn about their friends' behaviors and where they are visiting and be influenced by their style. As a result, the existence of personalized recommendations and the investigation of meaningful features of users and Point of Interests (POIs), given the challenges of rich contents and data sparsity, is a substantial task to accurately recommend the POIs and interests of users in location-based social networks (LBSNs). This work proposes a novel pipeline of POI recommendations named DeePOF based on deep learning and the convolutional neural network. This approach only takes into consideration the influence of the most similar pattern of friendship instead of the friendship of all users. The mean-shift clustering technique is used to detect similarity. The most similar friends' spatial and temporal features are fed into our deep CNN technique. The output of several proposed layers can predict latitude and longitude and the ID of subsequent appropriate places, and then using the friendship interval of a similar pattern, the lowest distance venues are chosen. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000144754
Veröffentlicht am 19.04.2022
Originalveröffentlichung
DOI: 10.1002/cpe.6981
Scopus
Zitationen: 29
Web of Science
Zitationen: 18
Dimensions
Zitationen: 32
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1532-0626, 1532-0634
KITopen-ID: 1000144754
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Concurrency and Computation: Practice and Experience
Verlag John Wiley and Sons
Band 34
Heft 15
Seiten Article: e6981
Vorab online veröffentlicht am 15.04.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page