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Abstract. A formula for the first positive eigenvalue of a one-dimensional
elliptic transmission problem is derived. The eigenvalue problem arises during
the spectral analysis of a Laplacian on the disc with angular transmission
conditions. The formula for the first eigenvalue provides an explicit link to the
transmission conditions in the problem.

In this note, we determine the first eigenvalue of the one-dimensional system

(ψ(i))′′(ϕ) = −κ2ψ(i)(ϕ) for ϕ ∈ Ii, i ∈ {1, . . . , 4},

ψ(1)(0) = ψ(4)(2π), ε(1)(ψ(1))′(0) = ε(4)(ψ(4))′(2π),

ψ(1)(π2 ) = ψ(2)(π2 ), (ψ(1))′(π2 ) = (ψ(2))′(π2 ),

ψ(2)(π) = ψ(3)(π), (ψ(2))′(π) = (ψ(3))′(π),

ψ(3)( 3
2π) = ψ(4)( 3

2π), ε(1)(ψ(3))′( 3
2π) = ε(4)(ψ(4))′( 3

2π),

(1)

where

I1 := (0, π2 ), I2 := (π2 , π), I3 := (π, 3
2π), I4 := ( 3

2π, 2π),

and ε is a piecewise constant function on the partition I1 ∪ · · · ∪ I4. By f (i) we
denote the restriction of a function f ∈ L2(0, 2π) to the interval Ii, i ∈ {1, . . . , 4}.
We furthermore assume the relation

ε(1) = ε(2) = ε(3) 6= ε(4). (2)

System (1) naturally arises during the analysis of the Laplacian

∆u := 1
ε̃ div(ε̃∇u),

u ∈ D(∆) := {v ∈ H1
0 (D) | div(ε̃∇u) ∈ L2(D)}

on the unit disc D with transmission conditions, see [2, 3, 5, 1, 4] for instance. Here
ε̃(r, ϕ) := ε(ϕ) for r ∈ [0, 1] and ϕ ∈ [0, 2π). In fact, (1) corresponds to the angular
part of the eigenvalue problem for the Laplacian on the disc. Note that the final
result of this note in Lemma 2 is essential for the explicit nature of the regularity
results in [5].

In the next two lemmas, we calculate the first nonzero eigenvalue of (1). Due to
technical issues, we distinguish between two cases for the ratio ε(4)/ε(1).

Lemma 1. Let
ε(4)

ε(1) 6= 1− 2
cos( 15

7 π) sin( 6
7π)

cos( 12
7 π) sin( 9

7π)
.
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Then the first nonzero eigenvalue κ2
1 of (1) satisfies the identity

(ε(4) − ε(1))2

ε(4)ε(1) = − 4 sin2(κ1π)
sin(κ1

2 π) sin( 3
2κ1π)

. (3)

It has a one-dimensional eigenspace, and the next eigenvalue is greater than one.

Proof. 1) We first assume that λ ∈ (0, 1) is an eigenvalue of (1) with an associated
eigenfunction ψ 6= 0. The first line of (1) then implies the representation

ψ(i)(ϕ) = a(i) cos(
√
λϕ) + b(i) sin(

√
λϕ), a(i), b(i) ∈ R, ϕ ∈ Ii (4)

for i ∈ {1, . . . , 4}. The third and fourth line of (1) lead to the relations a(1) =
a(2) = a(3) and b(1) = b(2) = b(3). The second and fifth lines of (1) further result in
the formulas

a(1) = a(4) cos(
√
λ2π) + b(4) sin(

√
λ2π), (5)

b(1) = ε(4)

ε(1)

(
− a(4) sin(

√
λ2π) + b(4) cos(

√
λ2π)

)
,

a(4) cos(
√
λ 3

2π) + b(4) sin(
√
λ 3

2π) = a(1) cos(
√
λ 3

2π) + b(1) sin(
√
λ 3

2π)

= a(4) cos(
√
λ2π) cos(

√
λ 3

2π) + b(4) sin(
√
λ2π) cos(

√
λ 3

2π) (6)

− ε(4)

ε(1) a
(4) sin(

√
λ2π) sin(

√
λ 3

2π)

+ ε(4)

ε(1) b
(4) cos(

√
λ2π) sin(

√
λ 3

2π).

Reformulating the last identity, the equation

a(4)( cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λ 3

2π) + ε(4)

ε(1) sin(
√
λ2π) sin(

√
λ 3

2π)
)

= b(4)( sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ε(4)

ε(1) cos(
√
λ2π) sin(

√
λ 3

2π)
)

=: b(4)A1(λ) (7)

is derived. Relating the derivative condition in the fifth line of (1) to (5), we
conclude the formulas

a(4)(− ε(4) sin(
√
λ 3

2π) + ε(1) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(4) sin(
√
λ2π) cos(

√
λ 3

2π)
)

= b(4)(− ε(4) cos(
√
λ 3

2π)− ε(1) sin(
√
λ2π) sin(

√
λ 3

2π) + ε(4) cos(
√
λ2π) cos(

√
λ 3

2π)
)

=: b(4)A2(λ). (8)

2) We next show by contradiction that a(4) is nonzero. Assume hence that
a(4) = 0. Equations (5) and (7) then imply that b(4) is nonzero and that A1(λ)
vanishes. In the following, the numbers

ω := ε(4)/ε(1) − 1, ξ := ε(4) − ε(1)

are employed. Manipulating (7) by means of trigonometric identities, we infer the
relations

0 = A1(λ) = sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ( ε
(4)

ε(1) − 1) cos(
√
λ2π) sin(

√
λ 3

2π)

+ cos(
√
λ2π) sin(

√
λ 3

2π)

= ω cos(
√
λ2π) sin(

√
λ 3

2π) + 2 cos(
√
λ 5

2π) sin(
√
λπ).

Since the two summands in the last line have no common zeros on (0, 1), the last
line gives rise to the formula

ω = ω(λ) = −
2 cos(

√
λ 5

2π) sin(
√
λπ)

cos(
√
λ2π) sin(

√
λ 3

2π)
. (9)
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From (8) we further deduce that the expression A2(λ) vanishes. Manipulating
the defining relation for A2(λ) by means of trigonometric identities, the equations

0 = − ε
(4)

ε(1) cos(
√
λ 3

2π)− sin(
√
λ2π) sin(

√
λ 3

2π) + ε(4)

ε(1) cos(
√
λ2π) cos(

√
λ 3

2π)

= − ε
(4)

ε(1) cos(
√
λ 3

2π)− sin(
√
λ2π) sin(

√
λ 3

2π) + ω cos(
√
λ2π) cos(

√
λ 3

2π)

+ cos(
√
λ2π) cos(

√
λ 3

2π)

= − ε
(4)

ε(1) cos(
√
λ 3

2π) + cos(
√
λ 7

2π) + ω cos(
√
λ2π) cos(

√
λ 3

2π)

= −ω cos(
√
λ 3

2π)− 2 sin(
√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) cos(

√
λ 3

2π) (10)

follow. The right hand side is next multiplied with the factor cos(
√
λ2π) sin(

√
λ 3

2π).
Using also (9), we then infer the formulas

0 = −ω cos(
√
λ 3

2π) cos(
√
λ2π) sin(

√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

+ ω cos2(
√
λ2π) cos(

√
λ 3

2π) sin(
√
λ 3

2π)

= 2 cos(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

− 2 cos(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) cos(

√
λ 3

2π). (11)

We next divide (11) by sin(
√
λπ) 6= 0, and we use besides the angle sum formula

for cosine the trigonometric relations

cos(
√
λ 5

2π) cos(
√
λ 3

2π) = 1
2 (cos(

√
λ4π) + cos(

√
λπ)),

cos(
√
λ2π) cos(

√
λπ) = 1

2 (cos(
√
λ3π) + cos(

√
λπ)).

In this way, we arrive at the equations

0 = cos(
√
λ 5

2π) cos(
√
λ 3

2π)− sin(
√
λ 5

2π) cos(
√
λ2π) sin(

√
λ 3

2π)

− cos(
√
λ 5

2π) cos(
√
λ2π) cos(

√
λ 3

2π)

= cos(
√
λ 5

2π) cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λπ)

= 1
2 (cos(

√
λ4π)− cos(

√
λ3π)) = − sin(

√
λ 7

2π) sin(
√
λ 1

2π).

As sin(
√
λ 1

2π) 6= 0, we conclude that λ is an element of the set { 4
49 ,

16
49 ,

36
49}. Plugging

these values for λ into the formula (9) for ω(λ), we obtain, however, that
ω( 4

49 ) < ω( 16
49 ) < −1

(thus contradicting (2)), while ω(36/49) is excluded in the assumption. We conclude
that a(4) is different from zero.

3) Taking the results of part 2) into account, we can assume that a(4) = 1. In
the following, we distinguish the cases of A2(λ) being zero and nonzero, see (8).

3.i) Suppose A2(λ) = 0, and proceed similar to part 2). The formula for A2(λ)
in (8) is divided by ε(4), and the number

ω0 := 1 + ε(1)/ε(4)

is introduced. By means of trigonometric identities, the equations

0 = − cos(
√
λ 3

2π)− ε(1)

ε(4) sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ2π) cos(

√
λ 3

2π)

= − cos(
√
λ 3

2π)− ω0 sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ 1

2π)

= 2 sin(
√
λπ) sin(

√
λ 1

2π)− ω0 sin(
√
λ2π) sin(

√
λ 3

2π) (12)
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are then obtained. Since the summands on the right hand side of (12) have no
common zero on (0, 1), the formula

ω0 =
2 sin(

√
λπ) sin(

√
λ 1

2π)
sin(
√
λ2π) sin(

√
λ 3

2π)
(13)

follows. Treating the left hand side of (8) in the same way, we further arrive at

0 = −2 cos(
√
λπ) sin(

√
λ 1

2π) + ω0 cos(
√
λ2π) sin(

√
λ 3

2π).

Multiplying by sin(
√
λ2π) and inserting (13), we deduce

0 = −2 sin(
√
λ2π) cos(

√
λπ) sin(

√
λ 1

2π) + 2 cos(
√
λ2π) sin(

√
λπ) sin(

√
λ 1

2π).

Dividing by sin(
√
λ 1

2π) and using the sum formula for sine, we arrive at the identity
0 = sin(

√
λπ). Since λ is assumed to belong to (0, 1), this is a contradiction.

3.ii) In consideration of the results in 3.i), we infer that A2(λ) has to be nonzero.
Dividing in (8) by A2(λ), and using trigonometric identities as well as the number
ξ = ε(4) − ε(1), we then obtain the equations

b(4) =
−ε(4) sin(

√
λ 3

2π) + ε(1) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(4) sin(
√
λ2π) cos(

√
λ 3

2π)
−ε(4) cos(

√
λ 3

2π)− ε(1) sin(
√
λ2π) sin(

√
λ 3

2π) + ε(4) cos(
√
λ2π) cos(

√
λ 3

2π)

=
−ε(4) sin(

√
λ 3

2π) + ε(4) sin(
√
λ 7

2π)− ξ cos(
√
λ2π) sin(

√
λ 3

2π)
−ε(4) cos(

√
λ 3

2π) + ε(4) cos(
√
λ 7

2π) + ξ sin(
√
λ2π) sin(

√
λ 3

2π)

= −
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
2ε(4) sin(

√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) sin(

√
λ 3

2π)
. (14)

We next reformulate (7) algebraically with the number ω = ε(4)/ε(1)−1 and the
relation a(4) = 1. We derive the identities

0 = cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λ 3

2π) + ε(4)

ε(1) sin(
√
λ2π) sin(

√
λ 3

2π)

− b(4)( sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ε(4)

ε(1) cos(
√
λ2π) sin(

√
λ 3

2π)
)

= cos(
√
λ 3

2π)− cos(
√
λ 7

2π) + ω sin(
√
λ2π) sin(

√
λ 3

2π)

− b(4)(− sin(
√
λ 3

2π) + sin(
√
λ 7

2π) + ω cos(
√
λ2π) sin(

√
λ 3

2π)
)

= 2 sin(
√
λ 5

2π) sin(
√
λπ) + ω sin(

√
λ2π) sin(

√
λ 3

2π)

− b(4)(2 cos(
√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)
. (15)

The representation (14) for b(4) is next inserted into the right hand side of (15),
and all arising expressions are multiplied with the denominator in (14). In this way,
we deduce the equations

0 = 4ε(4) sin2(
√
λ 5

2π) sin2(
√
λπ) + 2ωε(4) sin(

√
λ2π) sin(

√
λ 3

2π) sin(
√
λ 5

2π) sin(
√
λπ)

− 2ξ sin(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) sin(

√
λ 3

2π)− ωξ sin2(
√
λ2π) sin2(

√
λ 3

2π)

+ 4ε(4) cos2(
√
λ 5

2π) sin2(
√
λπ)− 2ξ cos(

√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

+ 2ωε(4) cos(
√
λ2π) sin(

√
λ 3

2π) cos(
√
λ 5

2π) sin(
√
λπ)

− ωξ cos2(
√
λ2π) sin2(

√
λ 3

2π) (16)

= 4ε(4) sin2(
√
λπ) + 2(ωε(4) − ξ) cos(

√
λ 1

2π) sin(
√
λπ) sin(

√
λ 3

2π)

− ωξ sin2(
√
λ 3

2π). (17)
To further simplify the expressions on the right hand side, we use the formulas

cos(
√
λ 1

2π) sin(
√
λπ) = 1

2 (sin(
√
λ 1

2π) + sin(
√
λ 3

2π)),
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ωε(4) − ξ = (ε(4))2

ε(1) − 2ε(4) + ε(1) = (ε(4)−ε(1))2

ε(1) = ( ε
(4)

ε(1) − 1)(ε(4) − ε(1))
= ωξ.

Inserting these relations in (17), we arrive at the identities

0 = 4ε(4) sin2(
√
λπ) + 2ωξ cos(

√
λ 1

2π) sin(
√
λπ) sin(

√
λ 3

2π)− ωξ sin2(
√
λ 3

2π)

= 4ε(4) sin2(
√
λπ) + ωξ sin(

√
λ 1

2π) sin(
√
λ 3

2π).

As the two summands on the right hand side have no common zeros on (0, 1), we
conclude the representation

(ε(4) − ε(1))2

ε(1) = ωξ = − 4ε(4) sin2(
√
λπ)

sin(
√
λ 1

2π) sin(
√
λ 3

2π)
. (18)

Note that λ is uniquely determined by (18). Altogether, there is at most one eigen-
value of (1) in (0, 1). The associated eigenspace is furthermore one-dimensional.

4) Let λ ∈ (4/9, 1) satisfy (18). It remains to show that λ is indeed an eigenvalue
of (1). Let ψ be given by (4) with numbers a(i), b(i) that have to be determined.

4.i) We first consider the case A2(λ) = 0. Due to the choice of λ, (16) is still
valid. Rewriting (16) in product formula, we then deduce the identities

0 =
(
2 sin(

√
λ 5

2π) sin(
√
λπ) + ω sin(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4) sin(

√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) sin(

√
λ 3

2π)
)

+
(
2 cos(

√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
)

=
(
2 cos(

√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
)

= A1(λ) ·
(
2ε(4) cos(

√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
)
. (19)

In case A1(λ) = 0, the arguments in part 2) lead to a contradiction. Hence, the
second factor on the right hand side of (19) is zero. The trigonometric manipulations
in (14) now lead to

0 = −ε(4) sin(
√
λ 3

2π) + ε(1) cos(
√
λ2π) sin(

√
λ 3

2π) + ε(4) sin(
√
λ2π) cos(

√
λ 3

2π).

This means that (8) is true. We now define a(4) := 1 and

b(4) :=
cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λ 3

2π) + ε(4)

ε(1) sin(
√
λ2π) sin(

√
λ 3

2π)
A1(λ) .

Consequently, (7) is valid. Choosing a(1) = a(2) = a(3) and b(1) = b(2) = b(3) by
(5), ψ is an eigenfunction of (1) with eigenvalue λ.

4.ii) We finally treat the case A2(λ) 6= 0. We then define b(4) according to (14),
set a(4) = 1, and define a(1) = a(2) = a(3) as well as b(1) = b(2) = b(3) by (5). The
function ψ is chosen as in (4).

Altogether, it only remains to validate the required transmission conditions for
ψ. By definition of b(4), formula (8) is satisfied. Due to the choice of λ, identity
(17) is also true. Dividing the right hand side of (17) by A2(λ), we then conclude
that (15) holds. This finally means that also the first transmission condition (7) is
fulfilled. �

Based on Lemma 1, we can now conclude formula (3) without an additional
restriction on the ratio ε(4)/ε(1).
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Lemma 2. Let ε satisfy (2). Then the statements of Lemma 1 on the first positive
eigenvalue κ2

1 of (1) are valid.

Proof. 1) In view of Lemma 1, it remains to treat the case

ε(4)

ε(1) = 1− 2
cos( 15

7 π) sin( 6
7π)

cos( 12
7 π) sin( 9

7π)
.

Assume first that λ ∈ (0, 1) is an eigenvalue of (1) with associated eigenfunction
ψ 6= 0. The reasoning in part 1) of the proof for Lemma 1 applies also here, whence
we employ the constructions and formulas from there.

2) We first show by contradiction that the second factor on the left hand side of
(8) is not zero. So assume it is zero. We then arrive at the formula

ε(4)

ε(1) = −
cos(
√
λ2π) sin(

√
λ 3

2π)
sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π)
. (20)

With (8) we further conclude that b(4) = 0 or A2(λ) = 0. We distinguish between
these cases.

2.i) Let first b(4) = 0. From (7) we then conclude the relation

ε(4)

ε(1) =
cos(
√
λ 3

2π)(cos(
√
λ2π)− 1)

sin(
√
λ2π) sin(

√
λ 3

2π)
. (21)

Studying the signs of the right hand side expressions in (20) and (21), we infer that
λ ∈ (4/9, 1). Then the right hand side of (20) is, however, smaller than 1, and we
obtain a contradiction to (2).

2.ii) Let A2(λ) = 0. Then (10) is again valid and leads to the relation

ω =
2 sin(

√
λ 5

2π) sin(
√
λπ)

(cos(
√
λ2π)− 1) cos(

√
λ 3

2π)
(22)

for the number ω = ε(4)/ε(1)−1. In consideration of the signs of the expressions on
the right hand side of (20) and (22), we deduce λ ∈ (16/25, 1). Again the right hand
side of (20) is now smaller than 1, and we arrive at a contradiction. Altogether,
the second factor on the left hand side of (8) is not zero.

3) We next show by contradiction that the expression A2(λ) from (8) is zero. So,
assume A2(λ) 6= 0. Relation (8) then shows that a(4) and b(4) are not zero, whence
we can choose a(4) = 1 without loss of generality. The arguments in part 3.ii) of the
proof for Lemma 1 are then also valid in the current setting, and lead to relation
(18). The assumption on ε(4)/ε(1) then implies that λ = 36

49 , and that relation (9) is
valid. Reversing the reasoning in part 2) of the proof for Lemma 1, we additionally
infer that formula (11) holds true. Dividing (11) by cos(

√
λ2π) sin(

√
λ 3

2π), we then
conclude that A2(λ) = 0, see (10). This leads to a contradiction.

4) By part 3), A2(λ) = 0 and a(4) = 0. The reasoning in part 2) of the proof
for Lemma 1 then implies that λ = 36/49. Taking the assumption on ε(4)/ε(1) into
account, formula (3) is valid for κ1 =

√
λ.

5) It remains to show that λ = 36/49 is indeed an eigenvalue of (1). The above
reasoning in this proof already implies that the associated eigenspace is then one-
dimensional. We choose a(4) = 0, b(4) = 1, and define a(1) = a(2) = a(3) as well as
b(1) = b(2) = b(3) by (5). A desired eigenfunction ψ of (1) is defined via (4).

It then remains to show that ψ satisfies the transmission condition in the fifth
line of (1). This is equivalent to the validity of (7) and (8). Due to the assumption
on ε(4)/ε(1), relation (9) is valid, implying that A1(λ) = 0. As a(4) = 0, we infer
that (7) is true. As λ = 36/49, we obtain that also A2(λ) = 0 by repeating the
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arguments in part 2) of the proof for Lemma 1 in reverse order. Thus, also (8) is
fulfilled. �
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