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WELLPOSEDNESS OF NLS IN MODULATION SPACES

FRIEDRICH KLAUS

Abstract. We prove new local and global well-posedness results for the cubic

one-dimensional Nonlinear Schrödinger Equation in Modulation Spaces. Local

results are obtained via multilinear interpolation. Global results are proven
using conserved quantities from the integrability of the equation, persistence

of regularity and by separating off the time evolution of finitely many Picard

iterates.

1. Introduction

The last years have brought vast interest towards the dynamics of the cubic
Nonlinear Schrödinger Equation (NLS)

(1.1)

{
iut + uxx = ±2|u|2u,
u(0) = u0,

with initial data u0 either decaying very slowly or being not decaying at all. There
are several ways to tackle this problem. In this paper we investigate the behavior of
solutions to (1.1) when the initial data takes value in a one-dimensional Modulation
Space Ms

p,q(R).
Modulation Spaces Ms

p,q(R) were introduced by Feichtinger [16] and by now have
been used in the study of several different PDE, see also [27, 32]. One of the reasons
why they serve as interesting initial data is because their decay is comparable to
the one of functions in Lp. In particular the spaces with p = ∞ include non-
decaying initial data and provide them with an elegant function space framework. In
comparison to Lp spaces, the Schrödinger semigroup is bounded on any Modulation
Space Ms

p,q(R), and dispersive L∞ blow-up phenomena as constructed in [9] can be
ruled out. One of the major open problems in this context is whether a global result
in Ms

∞,q could hold for certain s, q. Just to name one of the many consequences an
affirmative answer would have, this would solve question whether the local solution
to

u0(x) = cos(x) + cos(
√

2x),

can be continued globally. While we are not able to give an answer to this question,
we are able to prove results with arbitrarily high p <∞. Among other results (see
Remark 5.15) we will show: In the defocusing case, if p < ∞ and if s ≥ 0 is large
enough, there is a unique global solution of (1.1) in Ms

p,q(R).
Local results for Nonlinear Schrödinger Equations with Modulation Spaces as

initial data space have first been proven in [31, 1, 5, 8]. These results rely on
boundedness of the Schrödinger operator and an algebra property which holds either
when q = 1 or when s > 1−1/q. Later [18, 26, 12] increased the range of admissible

Karlsruhe Institute of Technology, Englerstraße 2, 76131 Karlsruhe

E-mail address: friedrich.klaus@kit.edu.

1



2 WELLPOSEDNESS OF NLS IN MODULATION SPACES

p, q for s = 0 using enhanced trilinear estimates for p = 2, 2 ≤ q <∞ and an infinite
normal form reduction technique for 1 ≤ q ≤ 2, 2 ≤ p ≤ 10q′/(q′ + 6). Using
complete integrability of cubic one-dimensional NLS, [25] showed the solutions of
[18] to be global. Global solutions for initial data in Mp,p′ with p sufficiently close
to two were constructed in [11] though we note that these solutions were allowed
to live in different spaces Mp̃,q̃ for t > 0. Using decoupling techniques [29] recently
proved Lp smoothing estimates to extend the local well-posedness if p ∈ {4, 6} and
also, inspired by the work [15], gave global results for s > 3/2. Finally we want
to mention [28] which very recently considered the energy-critical NLS with initial
data in Modulation Spaces.

The goal of this work is twofold: On the one hand we want to give an overview
of local well-posedness results and to ‘clean up’ the local results for s = 0, which by
the consideration of Section 6 is sharp if we aim for analytic well-posedness. This
is done by a simple Banach fixed point argument using multilinear interpolation of
the estimates obtained in [18] and the trivial estimates for q = 1. From this we
obtain local well-posedness in a range of (p, q) containing all of the aforementioned
results for s = 0 except for (p, q) = (4, 2) from [29].

On the other hand, we aim to extend the global results, possibly for higher
regularity. To this end we first extend the almost conserved energies constructed
in [25] to the range p = 2, 1 ≤ q < 2 and then use the principle of persistence of
regularity to see that for a restricted range of 1 ≤ p, q ≤ 2, the newly constructed
local solutions are also global. Finally, we prove as in [29, 15] that in the defocusing
case when we take s ≥ 1, we obtain global solutions in M1

p,1 for any 2 < p <∞. In
fact, the same technique shows global well-posedness in Ms

p,q for any 2 < p <∞ if
s > 2− 1/q is high enough.

The paper is structured as follows: In Section 2 we state basic facts on Modu-
lation Spaces, in Section 3 we introduce the notion of quantitative well-posedness
which gives the analytic framework to obtain the local well-posedness in Section
4. In Section 5 we prove the global results first for p = 2, then for 1 ≤ p < 2
and finally for 2 < p < ∞. The well-posedness results are complemented with the
illposedness shown in Section 6.

Acknowledgements. The author wants to thank Peer Kunstmann and Robert
Schippa for helpful discussions. Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.

2. Modulation Spaces

In this section we recall the definition of Modulation Spaces and state some
results we need in the later sections. Modulation Spaces were introduced by Fe-
ichtinger [16] in 1983 and have found rising interest in recent years. They can be
introduced either via the short-time Fourier transform or equivalently via isometric
decomposition on the Fourier side which also shows their close connection to Besov
spaces. Modern introductions to Modulation Spaces are given in the books [17, 32],
and we also want to mention the PhD thesis [10]. We refer to these for proofs of
the following statements.
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Definition 2.1. The short-time Fourier transform of a function f with respect to
the window function g ∈ S(R) is defined as

Vgf(x, ξ) =

∫
R
e−iyξf(y)ḡ(y − x) dy.

The Modulation Space norm of a function f is defined as

‖f‖◦Ms
p,q

=
(∫

R

(∫
R

∣∣Vgf(x, ξ)
∣∣p dx) qp 〈ξ〉sq dξ) 1

q

.

With the usual modifications, this definition also includes p, q = ∞. We define
the Modulation Space Ms

p,q as the subset of S ′(R) which has finite Modulation
Space norm.

There is an equivalent way to define the Modulation Space norm. Let ρ ∈ S(R)
be a smooth radial bump function, that is 0 ≤ ρ ≤ 1, ρ(ξ) = 1 if |ξ| ≤ 1/2, ρ(ξ) = 0
if |ξ| ≥ 1. Let

ρk(ξ) = ρ(ξ − k), k ∈ Z.
Define Q0 = [−1/2, 1/2) and Qk = k +Q0. Define

σk(ξ) = ρk(ξ)
(∑
k∈Z

ρk(ξ)
)−1

, k ∈ Z.

Then, σk satisfy

(2.1)


|σk(ξ)| ≥ c, ∀ξ ∈ Qk,
supp(σk) ⊂ {|ξ − k| ≤ 1},∑
k∈Z σk(ξ) = 1, ∀ξ ∈ R,

|Dασk(ξ)| ≤ Cm, ∀ξ ∈ R, |α| ≤ m.

Definition 2.2. Given a sequence of functions σk satisfying (2.1), the sequence of
operators

�k = F−1σkF , k ∈ Z,
is called a family of isometric decomposition operators.

Definition 2.3. Given p, q ∈ [1,∞] and (�k)k a family of isometric decomposition
operators. The Modulation Space norm with respect to (�k)k is defined as

‖f‖Ms
p,q

=
∥∥〈k〉s‖�kf‖Lp(R)

∥∥
`qk(Z)

.

It can be shown that for any family of isometric decomposition operators, Ms
p,q

can be equivalently characterized as the subset of S ′(R) which has finite Modulation
Space norm ‖ · ‖Ms

p,q
, and the norms ‖ · ‖Ms

p,q
and ‖ · ‖◦Ms

p,q
are equivalent. Moreover

Schwartz functions S(R) are dense in Ms
p,q for any p, q ∈ [1,∞). If p =∞, density

fails. For instance we have continuous embeddings C2
b (R) ⊂M∞,1 ⊂ C0

b (R).
As a consequence of Hölder’s and Young’s convolutional inequality, we obtain

bilinear bounds. These imply in particular that the spaces Mp,1 as well as Mp,q ∩
M∞,1 are algebras under multiplication for all p, q ∈ [1,∞].

Lemma 2.4. The following inequalities hold true: If 1
p =

∑m
i=1

1
pi

and m−1+ 1
q =∑m

i=1
1
qi

then

(2.2)
∥∥∥ m∏
i=1

fi

∥∥∥
Mp,q

.
m∏
i=1

‖fi‖Mpi,qi
,
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and if s ≥ 0, 1
p = 1

p1
+ 1

p2
, 1 + 1

q = 1
q1

+ 1
q2

= 1
r1

+ 1
r2

then

(2.3) ‖fg‖Ms
p,q
. ‖f‖Ms

p1,q1
‖g‖Mp2,q2

+ ‖f‖Mp1,r1
‖g‖Ms

p2,r2
.

Proof. We give a short proof since [10, Theorem 4.3] only proves a similar statement.
If we use the notation l1 + l2 ≈ k for l1 + l2 = k + {−1, 0, 1}, then

�k(fg) = �k
(∑
l1

�l1f
)(∑

l2

�l2g
)

=
∑

k1+k2≈l

(�k�l1f)(�k�l2g).

The operators �k are bounded uniformly in k on Lpi . Hence

‖�k(fg)‖Lp .
∑

l1+l2≈k

‖�l1f‖Lp1‖�l2f‖Lp2 .

Consequently, (2.2) with m = 2 is obtained from Young’s convolutional inequality.
The case of general m follows by induction. For (2.3) we use Peetre’s inequality to
see

〈k〉s‖�k(fg)‖Lp .
∑

l1+l2≈k

〈l1〉s‖�l1f‖Lp1‖�l2f‖Lp2 + ‖�l1f‖Lp1 〈l2〉s‖�l2f‖Lp2 ,

and we conclude using Young’s inequality. �

The bilinear bound allows to handle algebraic nonlinearities in nonlinear PDE.
More complicated nonlinearities on the other hand can cause problems. In [27]
Ruzhansky-Sugimoto-Wang raised the question whether an inequality of the form

‖|f |αf‖Mp,1
. ‖f‖α+1

Mp,1

could also hold if α ∈ (0,∞) \ 2N. This was answered negatively by Bhimani-
Ratnakumar in [8]. In fact, they proved the stronger result that if a function
F : R2 → C operates in Mp,1 for some 1 ≤ p ≤ ∞, then F must be real analytic
on R2. This also shows that in general, neither implication between f ∈ Mp,1 and
|f | ∈Mp,1 holds.

The following theorem shows how Modulation Spaces are nested. The first in-
clusion is a consequence of Bernstein’s inequality and the embedding of `q spaces,
whereas the second is a consequence of Hölder’s inequality.

Theorem 2.5 (Embeddings). The following embeddings hold true:

• Ms1
p1,q1 ⊂M

s2
p2,q2 if p1 ≤ p2, q1 ≤ q2, s1 ≥ s2,

• Ms1
p,q1 ⊂M

s2
p,q2 if q1 > q2, s1 > s2, s1 − s2 >

1
q2
− 1

q1
.

The latter shows that we can trade regularity for lq summability. In one dimen-
sion, this gives for example H1/2 ⊂ M2,1+ respectively H1/2+ ⊂ M2,1. This is
sharp since M2,1 ⊂ L∞ whereas H1/2 6⊂ L∞. On the other hand, lq summability
does not gain regularity (see [19]):

Lemma 2.6. We have that Mp,q 6⊂ Bp,rε ∪B∞,∞ε for any 0 < ε� 1, 1 ≤ p, q, r ≤ ∞.

In particular an embedding of the form M2,1 ⊂ Hε can never hold for positive
regularity. The obstruction for this is l1 6⊂ l2s . Indeed, one can just consider the
sequence an = 1/k2 if n = 2k and an = 0 else, i.e. spreading out mass in l2 can be
done without any problems - in contrast to l2s .

It is useful to spell out the connections between Modulation Spaces, Besov Spaces
and Lp spaces:
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Theorem 2.7. The following embeddings hold true:

• Ms
2,2 = Hs(R), with equivalence of norms,

• Mp,1 ⊂ C0
b (R) ∩ Lp(R), if 1 < p ≤ ∞,

• Mp,p′ ⊂ Lp(R), if 2 ≤ p ≤ ∞,

• Mσ
p,q ⊂ Bp,q, if σ = max

(
0, 1

min(p,p′) −
1
q

)
,

• Bτp,q ⊂Mp,q, if τ = max
(

0, 1
q −

1
max(p,p′)

)
.

For example we see that B
1
2
2,1 ⊂M2,1 ⊂ L∞ ∩ L2.

We will make use of the following interpolation result.

Theorem 2.8. Let p0, p1 ∈ [1,∞] and q0, q1 ∈ [1,∞] such that q0 6=∞ or q1 6=∞.
Let s0, s1 ∈ R and θ ∈ (0, 1). Define

s = (1− θ)s0 + θs1,

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
,

with the usual convention in the extreme case pi, qi =∞. Then,

(2.4)
[
Mp0,q0
s0 (Rd),Mp1,q1

s1 (Rd)
]
θ

= Mp,q
s

(
Rd
)
,

in the sense of equality of spaces and equivalence of norms.

Finally, since the decomposition on the Fourier side is uniform, there is no clean
scaling relation for Modulation Spaces. Estimates still hold (see Theorem 3.2. in
[14]) and we use the ones for p = 2:

Lemma 2.9. We have the scaling inequalities

‖ψ(λ·))‖M2,q .

{
λ−1/2‖ψ‖M2,q

, if 1 ≤ q ≤ 2
λ1/q−1‖ψ‖M2,q , if 2 ≤ q ≤ ∞

and

‖ψ(λ·))‖M2,q
&

{
λ1/q−1‖ψ‖M2,q

, if 1 ≤ q ≤ 2
λ−1/2‖ψ‖M2,q

, if 2 ≤ q ≤ ∞

for all λ ≤ 1 and ψ ∈M2,q. Similarly,

‖ψ‖M2,q
.

{
λ1/2‖ψ(λ·))‖M2,q

, if 1 ≤ q ≤ 2
λ1−1/q‖ψ(λ·))‖M2,q

, if 2 ≤ q ≤ ∞

and

‖ψ‖M2,q &

{
λ1−1/q‖ψ(λ·))‖M2,q , if 1 ≤ q ≤ 2
λ1/2‖ψ(λ·))‖M2,q

, if 2 ≤ q ≤ ∞

for all λ ≥ 1 and ψ ∈M2,q.

If u is a solution of cubic NLS, then so is uλ(x, t) = λ−1u
(
λ−1x, λ−2t

)
for all

λ ∈ (0,∞). Choosing λ ≥ 1 we find that

‖uλ(x, λ2t)‖M2,q .

{
λ−

1
2 ‖u(x, t)‖M2,q , if 1 ≤ q ≤ 2,

λ−
1
q ‖u(x, t)‖M2,q

, if 2 ≤ q ≤ ∞,
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and

‖uλ(x, λ2t)‖M2,q &

{
λ−

1
q ‖u(x, t)‖M2,q , if 1 ≤ q ≤ 2,

λ−
1
2 ‖u(x, t)‖M2,q , if 2 ≤ q ≤ ∞.

In particular as long as q < ∞ we are in a subcritical range with respect to
scaling.

3. Quantitative Wellposedness

Following [2] we quickly introduce the notion of quantitative wellposedness.
While it is just a reformulation of the standard Picard iteration for homogeneous
algebraic nonlinearities in a more quantitative fashion, it gives us the means to sim-
ply show linear and multilinear estimates and immediately obtain well-posedness.
Our focus of application lies on cubic NLS (1.1) on the real line,{

iut + uxx = ±2|u|2u,
u(0) = f,

though the notion applies basically to any semilinear evolution equation with mul-
tilinear nonlinearity.

Definition 3.1. Let L be a linear and Nk be a multilinear operator. The equation

u = Lf +Nk(u, . . . , u)

is called quantitatively wellposed in the spaces D,X if the two estimates

‖Lf‖X ≤ C1‖f‖D,(3.1)

‖Nk(u1, . . . , uk)‖X ≤ C2

k∏
i=1

‖ui‖X(3.2)

hold for some constants C1, C2 > 0.

As a consequence of polarization identities, in order to show an estimate of the
form (3.2), or more generally

‖Nk(u1, . . . , uk)‖X .
k∏
i=1

‖ui‖Y ,

it is enough to show the estimate

‖Nk(u, . . . , u)‖X . ‖u‖kY .
Indeed it is not hard to see via polarization that this implies

‖Nk(u1, . . . , uk)‖X .
k∑
i=1

‖ui‖kY ,

and now putting ui = siũi with
∏
si = 1 and minimizing over si proves the

claim. This shows that for multilinear nonlinearities the contraction property of
the corresponding operator in the Banach fixed point argument usually follows from
being a self-mapping. In a similar manner one proves that the estimate

‖Nk(u, . . . , u)‖X .
k∏
i=1

‖u‖Yi
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implies the estimate

‖Nk(u1, . . . , uk)‖X .
∑
σ∈Sk

k∏
i=1

‖uσ(i)‖Yi ,

where Sk denotes the permutation group of order k.
Denote by BX(R) the ball of radius R in the space X. The reason for Definition

3.1 is the following:

Theorem 3.2. Let the equation

(3.3) u = Lf +Nk(u, . . . , u)

be quantitatively wellposed. Then there exist ε > 0 and C0 > 0 such that for all
f ∈ BD(ε) there is a unique solution u[f ] ∈ BX(C0ε) to (3.3). In particular, u can
be written as a X-convergent power series for f ∈ BD(ε)

(3.4) u[f ] =

∞∑
n=1

An(f),

where An is defined recursively by

A1(f) = Lf, An(f) =
∑

n1+···+nk=n

Nk(An1
(f), . . . Ank(f)),

and satisfies for some C1, C2 > 0,
An(λf) = λnAn(f)

‖An(f)−An(g)‖X ≤ Cn1 ‖f − g‖D(‖f‖D + ‖g‖D)n−1,

‖An(f)‖X ≤ Cn2 ‖f‖nD.

We will work in Modulation Spaces which do not admit homogeneous scaling,
and are also above the scaling critical exponent for NLS. Hence the bounds (3.1)
and (3.2) will depend on the time variable T which fixes how long we can guarantee
a solution exists. As a byproduct, we obtain a minimal time of existence depending
on ‖f‖D which then leads to a blow-up alternative.

Lemma 3.3. Let (3.3) be quantitatively wellposed in D,X = XT , and assume that
the constants in (3.1) respectively (3.2) are

C1 = c1〈T 〉α1 , C2 = c2T
α2〈T 〉α3 .

Then we may choose

T ∼ min
(
ε−β1 , ε−β2

)
, β1 =

k − 1

(k − 1)α1 + α2 + α3
, β2 =

k − 1

α2
,

as a guaranteed time of existence.

Proof. If Φ(u) = Lf +Nk(u, . . . , u), then (3.1) and (3.2) give

‖Φ(u)‖X ≤ C1ε+ C2(C0ε)
k,

which has to be smaller than C0ε for a contraction on BX(C0ε). Taking C0 = 2C1

we need that

2C2(2C1ε)
k−1 < 1,

which amounts to

Tα2〈T 〉α3+α1(k−1)εk−1 . 1.
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When ε is small, we can make T large and T ∼ 〈T 〉 so that β1 is the relevant
exponent for T . When ε is large, 〈T 〉 ∼ 1 and we arrive at β2. It is not hard
to see that this also guarantees the Lipschitz bound to hold, and we obtain a
contraction. �

We apply this general setting to cubic NLS and obtain:

Definition 3.4. Let D a Banach space of functions and let S(t) = eit∂
2
x . We call

a function u ∈ XT ⊂ C0([0, T ), D) a (mild) solution of NLS if it solves the fixed
point equation

(3.5) u = S(t)u0 ∓ 2i

∫ t

0

S(t− τ)(|u|2u)(τ) dτ

in XT ′ for all T ′ < T . The supremum of all such T is called maximal time of
existence and denoted by T ∗.

In the following we use the notation

N(u1, u2, u3) = N3(u1, u2, u3) = 2i

∫ t

0

S(t− τ)(u1ū2u3)(τ) dτ,

and note that all local results we prove hold for both the focusing (minus sign in
(1.1)) and the defocusing (plus sign in (1.1)) equation.

Corollary 3.5. Consider the Cauchy problem (1.1) with initial data f = u0 in a
Banach space D. If the bounds

‖S(t)u0‖XT . 〈T 〉α1‖u0‖D,(3.6) ∥∥∥∫ t

0

S(t− τ)(u1ū2u3)(τ) dτ
∥∥∥
XT
. Tα2〈T 〉α3

3∏
i=1

‖ui‖XT ,(3.7)

hold for some αl, αn > 0, then there exists a unique solution u ∈ XT to (1.1).
Moreover, the blowup-alternative

(3.8) T ∗ <∞ ⇒ lim sup
t↗T∗

‖u(·, t)‖D =∞

holds.

Proof. The existence and uniqueness follow from Theorem 3.2. Assuming that
‖u(T ∗)‖D < ∞ the assumptions from Lemma 3.3 are satisfied, hence there exists
a small δ > 0 such that (1.1) can be solved on [T ∗, T ∗ + δ), which contradicts the
maximality. �

4. Local Wellposedness via Multilinear Interpolation

4.1. The triangle 1/q ≥ max(1/p′, 1/p). We recall the Strichartz estimates which
lead to local wellposedness of (1.1) in L2(R).

Lemma 4.1 (Strichartz estimates). Let p ≥ 2. The following hold true:

‖S(t)f‖Lp . |t|1/2−1/p‖f‖Lp′ ,(4.1)

‖S(t)f‖L2 = ‖f‖L2 .(4.2)
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Moreover, call (q, p) admissible if 2/q = 1/2− 1/p, 2 ≤ p, q ≤ ∞ For all (q, p) and
(q̃, p̃) admissible we have

‖S(t)f‖LqtLpx . ‖f‖L2 ,(4.3)

‖
∫ t

0

S(t− s)f(s)‖LqtLpx . ‖f‖Lq̃′t Lp̃
′
x
.(4.4)

Recall how this allows to prove local (and due to L2 conservation also global) well-
posedness of cubic NLS in L2(R) by a fixed point argument: LetXT = L∞t L

2
x([0, T ]×

R) ∩ L4
tL
∞
x ([0, T ]× R). Then from Hölder’s inequality,

‖N(u1, u2, u3)‖XT = ‖
∫ t

0

S(t− s)(u1ū2u3)(s)ds‖XT

. ‖u1ū2u3‖L8/7
t L

4/3
x
. T 1/2

3∏
i=1

‖ui‖XT .

Corollary 3.5 together with L2-conservation then gives global wellposedness in
L2(R). The space L∞t L

2
x([0, T ]×R)∩L8

tL
4
x([0, T ]×R) would have been enough for

the iteration of the trilinear term, too.
The following estimates for the Schrödinger semigroup hold and are optimal with

respect to the time dependence of the constant. A first version of them were proven
in [1] in the case p = 2 which [4] then extended for p, q ∈ [1,∞]. Sharpness of the
exponent for p ∈ [1, 2] was proven in [13] and extended to p ∈ [1,∞] in [10, Theorem
3.4].

Lemma 4.2 (Semigroup estimates in Modulation Spaces). Let 1 ≤ p ≤ ∞ and
1 ≤ q ≤ ∞. The following hold true:

‖S(t)f‖Mp,q
. (1 + |t|)1/2‖f‖Mp,q

,(4.5)

‖S(t)f‖Mp,q . (1 + |t|)−(1/2−1/p)‖f‖Mp′,q , for p ≥ 2,(4.6)

‖S(t)f‖M2,q = ‖f‖M2,q ,(4.7)

‖S(t)f‖Mp,q
. (1 + |t|)|1/2−1/p|‖f‖Mp,q

.(4.8)

Note that (4.8) is obtained from interpolating between (4.5) with p = 1,∞ and
(4.7).

By Corollary 3.5 for all 1 ≤ p ≤ ∞ we obtain local wellposedness in Mp,1 with
XT = C0Mp,1([0, T ]× R) due to the trivial estimate

‖N(u1, u2, u3)‖XT . ‖
∫ t

0

S(t− s)(|u|2u)(s)ds‖XT

. T (1 + T )|1/2−1/p|‖u‖3XT ,

which follows from the Banach algebra property of Mp,1.
From the estimates for Mp,1 and L2 = M2,2 we use multilinear interpolation to

obtain new local wellposedness results. The range of p, q that can be reached as line
segments between points (1/p, 1) and (1/2, 1/2) is exactly the triangle 1 ≤ q ≤ 2,
1/q ≥ max(1/p′, 1/p), and this is where this simple multilinear interpolation works.
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Theorem 4.3 ([6], 4.4.1). Let (Aν0 , A
ν
1)(ν=1,...,n) and (B0, B1) be compatible Banach

couples. Let N :
∑⊕

1≤v≤nA
ν
0 ∩Aν1 → B0 ∩B1 be multilinear such that

‖N (a1, . . . , an)‖B0
6M0

∏n
ν=1 ‖aν‖Aν0 ,

‖N (a1, . . . , an)‖B1
6M1

∏n
ν=1 ‖aν‖Aν1 .

Then T can be uniquely extended to a multilinear mapping
∑⊕

1≤v≤n[Aν0 , A
ν
1 ]θ →

[B0, B1]θ with norm at most M1−θ
0 Mθ

1 .

Theorem 4.4. Let 1 ≤ q ≤ 2, 1/q ≥ max(1/p′, 1/p). Then for any initial data
u0 ∈Mp,q, there is a T > 0 and a unique solution u to (1.1) in

(4.9) Xp,q
T = L∞t Mp,q([0, T ]× R) ∩ L8/θ

t [Mp̃,1, L
4]θ([0, T ]× R).

Here, the numbers θ ∈ [0, 1] and p̃ ∈ [1,∞] are determined by 1/p = (1− θ)/p̃+ θ/2
and 1/q = 1− θ/2. Moreover, either the solution u exists globally in time, or there
is T ∗ <∞ such that

lim sup
t→T∗

‖u(t)‖Mp,q =∞.

Remark 4.5. Note that due to M p̃,1 ⊂ L∞ we have that [Mp̃,1, L
4]θ ⊂ L4/(1−θ).

This shows that the constructed solutions are also distributional.

Proof. Without loss of generality we assume T ≤ 1. The assumptions on θ and p̃
imply that Mp,q = [Mp̃,1, L

2]θ. We interpolate1 the linear estimates

‖S(t)u0‖L∞t L2
x∩L8

tL
4
x
. ‖u0‖L2 ,

‖S(t)u0‖L∞t Mp̃,1
. ‖u0‖Mp̃,1

,

to obtain

(4.10) ‖S(t)u0‖XT . ‖u0‖Mp,q .

Moreover, the nonlinear estimates

‖N(u1, u2, u3)‖L∞t L2
x∩L8

tL
4
x
. T 1/2

3∏
i=1

‖ui‖L8
tL

4
x
,

‖N(u1, u2, u3)‖L∞t M p̃,1 . T
3∏
i=1

‖ui‖L∞t Mp̃,1
,

give

(4.11) ‖N(u1, u2, u3)‖XT . T 1−θ/2
3∏
i=1

‖ui‖XT .

The result now follows from Corollary 3.5. �

1Strictly speaking, instead of interpolating with the intersection we interpolate first on both

spaces and then take the intersection. Interpolation of mixed-norm Lp spaces was shown to work
in [3]. Since we can apply this to �kf for each k the same works if we consider mixed-norm

combinations of Lp and Modulation Spaces.
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4.2. The triangle 1/q > |1− 2/p|. Using Bourgain space techniques, Guo showed
local wellposedness of cubic NLS in M2,q, q ≥ 2 [18]. Since his results were also
derived from a trilinear estimate of the form (3.2), we can use interpolation to get
more wellposedness results in Modulation Spaces. The triangle 1/q > |1 − 2/p| is
strictly larger than the triangle from the first section and can be obtained by means
of interpolating between the three endpoints M∞,1, M1,1 and M2,∞. Since the
latter space contains the Dirac delta distribution and there is no local wellposedness
theory for it, we have to exclude it and obtain wellposedness in a half-open triangle.

Definition 4.6. A Upt L
2
x((a, b)×R) atom is a function a : (a, b)→ L2 of the form

a =

K∑
k=1

χ[tk−1,tk)φk,

where a = t0 < . . . tK = b and (φ1, . . . , φK) ∈ (L2)K which has unit norm in lp,
i.e.

∑
i ‖φi‖

p
L2 = 1. The space Upt L

2
x is defined as the space of elements of the form∑∞

j=1 λjaj, where (λj) ∈ l1. It is equipped with the norm

(4.12) ‖u‖Up = inf{‖(λj)‖l1 : u =

∞∑
j=1

λjaj for aj U
p atoms}.

The space Up∆ is defined as S(·)Upt L2
x with norm

(4.13) ‖u‖Up∆ = ‖S(−t)u(t)‖Upt L2
x

The spaces U2
t and its close cousin V 2

t can be seen as refinements of Bourgain
spaces in the case of b = 1/2, which satisfy Upt ⊂ L∞t for all 1 ≤ p < ∞. Indeed,
the Xs,b space would be defined by the norm ‖u‖Xs,b = ‖S(−t)u(t)‖HbtHsx . The

usual Strichartz spaces are connected to the Up∆ spaces via

‖v‖LptLqx . ‖v‖Up∆ .

A proof of this can be found in [23, Chapter 4] and we refer to this book as a
reference for an introduction to these spaces.

Theorem 4.7 ([18]). Let 2 < q < ∞ and let Xq
T denote the space of all tempered

distributions such that the norm ‖u‖Xq = ‖‖�nu‖U2
∆([0,T ])‖lq is finite. Then,

‖N(u1, u2, u3)‖XqT . (T 1/2 + T 1/4 + T 1/q+

)

3∏
i=1

‖ui‖XqT .(4.14)

This estimate gives local wellposedness in Xq
T ⊂ L∞t M

2,q([0, T ] × R). Indeed,
for the linear part the definition of U∆ gives

‖S(t)u0‖Xq = ‖‖�nS(t)u0‖U2
∆
‖lq = ‖‖�nu0‖U2

t L
2
x
‖lq

. ‖‖�nu0‖L2
x
‖lq = ‖u0‖M2,q ,

(4.15)

Since this result was only shown for 2 < q <∞ for the sake of simplicity let us
define Xq

T = X2,q
T if 1 ≤ q ≤ 2, where Xp,q

T is as in Theorem 4.4. Then we arrive at
the following theorem which is proven analogous to Theorem 4.4:
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Theorem 4.8. Let 1/q > |1− 2/p|. Then for any initial data u0 ∈ Mp,q, there is
a T > 0 and a unique solution u to (1.1) in

(4.16) u ∈ Y p,qT =


[L∞t M1,1, X

q̃]θ, if 1 < p < 2,

Xq
T , if p = 2,

[L∞t M∞,1, X
q̃]θ, if 2 < p <∞

Here, q̃ is chosen such that

(4.17)
1

q
= 1− θ +

θ

q̃
,

1

p
=

{
1− θ

2 , if p < 2,
θ
2 , if p > 2.

Moreover, either the solution u exists globally in time, or there is T ∗ <∞ such that

lim sup
t→T∗

‖u(t)‖Mp,q
=∞.

Remark 4.9. Taking into account the well-posedness in M4,2 from [29], these re-
sults can be slightly strengthened to include the line 1/q = 1 − 2/p, 4 ≤ p ≤ ∞.
Indeed there the estimate

‖S(t)f‖L4([0,1]×R) . ‖f‖M4,2

is shown to hold, which gives rise to an iteration in L∞t M4,2∩L
24
7
t L4

x. Interpolating
the linear and the corresponding trilinear estimate with the estimates for q = 1, p =
∞ puts us into the setting of Corollary 3.5.

5. Global Wellposedness

5.1. Global Wellposedness if p = 2. If p = 2 and q > 2, Oh-Wang [25] showed
the existence of almost conserved quantities that are equivalent to the norms in
the spaces Mp,q. To this end they used the complete integrability of cubic NLS via
techniques from Killip-Visan-Zhang [20] in combination with the Galilei transform.
In this subsection, we extend these almost conserved quantities to the case q ∈ (1, 2)
by using a weight with more decay, as it was done in [20] for Besov spaces Bs2,q.

First we state the necessary preliminaries from [20]. Given an operator A with
continuous integral kernel K(x, y), we define the trace

tr (A) =

∫
R
K(x, x) dx,

and the Hilbert-Schmidt norm

‖A‖J2 =

∫
R2

|K(x, y)|2 dxdy.

It can then be shown that for all n ≥ 2,

| tr (A1 . . . An)| ≤ ‖A1‖J2
. . . ‖An‖J2

.

We consider both focusing and defocusing cubic NLS in the form

(5.1) − iut = −uxx ± 2|u|2u.

Depending on the sign we have the following definition.
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Definition 5.1. The perturbation determinant α(κ, u) and its coefficients αn(κ, u)
are

α(κ, u) = Re

∞∑
n=1

(∓1)n−1

n
tr
(
[(κ− ∂)−1/2u(κ+ ∂)−1ū(κ− ∂)−1/2]n

)
=

∞∑
n=1

α2n(κ, u),

where α2n(κ, λu) = λ2nα2n(κ, u) for all λ ∈ R.

Absolute convergence of this series holds provided we can control norms sligthly
stronger than H−1/2(R). Define a ∼ b as a . b and a & b. Then:

Lemma 5.2 (Lemma 4.1 in [20]). Given u ∈ S(R) and κ > 0, we have

(5.2) ‖(κ− ∂)−1/2u(κ+ ∂)−1/2‖2J2
∼
∫
R

log
(

4 +
ξ2

κ2

) |û(ξ)|2

(ξ2 + 4κ2)1/2
dξ.

In particular for all δ > 0,

(5.3) |α2n(κ, u)| .
(∫

R

|û(ξ)|2

(ξ2 + 4κ2)1/2−δ

)n
.

Even though we need H−1/2+(R) regularity to control the series, the first coef-
ficient in the expansion behaves similar to an H−1(R) norm:

Lemma 5.3 (Lemma 4.2 in [20]). Given u ∈ S(R) and κ > 0, we have

(5.4) α2(κ, u) = Re tr
(
(κ− ∂)−1u(κ+ ∂)−1ū

)
=

∫
R

2κ|û(ξ)|2

ξ2 + 4κ2
dξ.

Most importantly, α(κ, u) is a conserved quantity for all κ > 0 whenever it is
defined.

Proposition 5.4 (Proposition 4.3 in [20]). Given u(t, x) a Schwartz-space solution
of (5.1) and κ > 0 large enough, we have

d

dt
α(κ, u(t)) = 0.

In [25] the construction of the almost conserved quantity on the level of M2,q

worked as follows: Combining Lemma 5.3, Proposition 5.4 and invariance of (5.1)
under Galilean transformations, we obtain almost conservation of∫

R

|û(ξ)|2

(ξ − n)2 + 1
dξ,

uniformly in n.
Moreover, considering 〈ξ〉−1/2− instead of a compactly supported bump function

for the uniform decomposition on the Fourier side in the definition of the Modulation
Space norm gives an equivalent norm for 2 ≤ q ≤ ∞. More precisely, if one defines

‖f‖MHθ,q =
(∑
n∈Z
‖〈ξ − n〉θf̂(ξ)‖q

L2
ξ

) 1
q ,

then for θ < −1/2 and 2 ≤ q ≤ ∞ one has

‖f‖MHθ,q ∼ ‖f‖M2,q
.
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We follow quickly the proof (see Lemma 1.2 in [25]) to motivate our next definition.
The estimate “&” is trivial since for σ as in Definition 2.2 we have σ(ξ) . 〈ξ〉θ. For
the converse estimate, write Ik = [k − 1/2, k + 1/2). Then,

‖f‖MHθ,q =
(∑
n∈Z

(∫
R
〈ξ − n〉2θ|f̂(ξ)|2 dξ

) q
2
) 1
q

∼
∥∥∥∑
k∈Z
〈k − n〉2θ

∫
Ik

|f̂(ξ)|2 dξ
∥∥∥1/2

`
q/2
n

.
∥∥〈n〉2θ∥∥1/2

`1n

∥∥∥∫
In

|f̂(ξ)|2 dξ
∥∥∥1/2

`q/2

. ‖f‖M2,q .

We see that both the restriction q ≥ 2 and θ < −1/2 enter in the third line when
Young’s convolution inequality is used. If we have more decay available, i.e. if
θ < −1, we can also use the triangle inequality to get the full range of q.

Lemma 5.5. If θ < −1 and 1 ≤ q ≤ ∞, we have

‖f‖MHθ,q ∼ ‖f‖M2,q
.

Proof. Again “&” follows immediately from σn . 〈·〉θ. Now for the converse state-
ment write(∫

R
〈ξ − n〉2θ|f̂(ξ)|2 dξ

) 1
2 ∼

(∫
R

∑
l∈Z

σ2
l (ξ)〈l − n〉2θ|f̂(ξ)|2 dξ

) 1
2

≤
∑
l∈Z

(∫
R
σ2
l (ξ)〈l − n〉2θ|f̂(ξ)|2 dξ

) 1
2

=
∑
l∈Z
〈l − n〉θ

(∫
R
σ2
l (ξ)|f̂(ξ)|2 dξ

) 1
2

.

Thus,

‖u‖MHθ,q =
(∑
n∈Z
‖〈ξ − n〉θf̂(ξ)‖q

L2
ξ

) 1
q

.
∥∥∥∑
l∈Z
〈l − n〉θ‖�lf‖L2‖`q

≤ ‖〈n〉θ‖`1n‖u‖M2,q ,

by Young’s inequality in the last step. Since θ < 1, ‖〈n〉θ‖`1n <∞. �

From the form of α2 in Lemma 5.3 we see that we will get θ = −1. By re-
combining α2 for different values of κ, we get more decay (see also Lemma 3.4 in
[20]).

Definition 5.6. Define the weight function w(ξ, κ) as

(5.5) w(ξ, κ) =
3κ4

(ξ2 + κ2)(ξ2 + 4κ2)
.

A short calculation reveals that

w(ξ, κ) = 4
(κ/2)2

ξ2 + κ2
− κ2

ξ2 + 4κ2
,
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and hence

(5.6) 4κα2

(κ
2
, u
)
− κ

2
α2(κ, u) =

∫
w(ξ, κ)|û(ξ)|2 dξ.

Correspondingly we define F(�̃nu)(ξ) = w(ξ − n, 1)1/2û(ξ) and

‖u‖M̃2,q = ‖‖�̃nu‖L2‖lqn .

With these preparations we can prove:

Theorem 5.7. Let q ∈ [1,∞). There exists a constant C = C(q) such that

(5.7) ‖u(t)‖M2,q
≤

{
C(1 + ‖u(0)‖M2,q

)
2
q−1‖u(0)‖M2,q

, if 1 ≤ q ≤ 2,

C(1 + ‖u(0)‖M2,q
)
q
2−1‖u(0)‖M2,q

, if 2 ≤ q,<∞

for all u ∈ S(R) solutions to the cubic NLS on R.

Proof. The case 2 ≤ q <∞ was treated in [25]. In what follows we slightly modify
its argument when 1 ≤ q < 2. Consider the case of small initial data in M2,q first
and assume

‖u(0)‖M2,q ≤ ε� 1.

For n ∈ Z, define un(x, t) = e−inx+in2tu(x − 2nt, t) which satisfies |ûn(ξ, t)| =
|û(ξ + n, t)| and is a solution to cubic NLS as well.
By Lemma 5.2 for any δ > 0

∣∣∣α(un(t),
1

2

)
− α2

(
un(t),

1

2

)∣∣∣ . ∞∑
j=2

(∫
R

|û(ξ, t)|2

(1 + (ξ − n)2)1/2−δ

)j
.

Now for any q ∈ (1,∞) if δ is small enough,∫
R

|û(ξ, 0)|2

(1 + (ξ − n)2)1/2−δ ∼
∑
k

1

(1 + (k − n)2)1/2−δ

∫
Ik

|û(ξ, 0)|2dξ

. ‖u(0)‖2M2,q
,

uniformly in n ∈ Z. Indeed, if 2 < q < ∞ we can employ Hölder’s inequality
provided with exponent q/2 if δ > 0 is small enough. The case 1 ≤ q ≤ 2 follows
from q = 2 because of the embedding M2,q ⊂ L2. This shows that at time t = 0
the series for α is convergent. By continuity in time we can then choose a small
time interval 0 ∈ I such that the series stays convergent, and∣∣∣α(un(t),

1

2

)
− α2

(
un(t),

1

2

)∣∣∣ . (∫
R

|û(ξ, t)|2

(1 + (ξ − n)2)1/2−δ

)2

,

for all t ∈ I. The same argument works for κ = 1 instead of κ = 1/2.
We calculate the difference of α and α2 by first making use of the above estimate,

then localizing in Fourier space and then using Young’s convolution inequality, with
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Ik = [k, k + 1)(∑
n∈Z

∣∣∣α(un(t),
1

2

)
− α2

(
un(t),

1

2

)∣∣∣ q2) 1
q

.
(∑
n∈Z

(∫
R

|û(ξ, t)|2

(1 + (ξ − n)2)1/2−δ

)q) 1
q

∼
∥∥∥∑
k∈Z
〈k − n〉−1+2δ

∫
Ik

|û(ξ)|2 dξ
∥∥∥
`q

. ‖〈k〉−1+2δ‖`1+‖u‖2M2,2q−

. ‖u‖2M2,q
,

provided δ > 0 is small enough such that we can choose q < 2q−, and q > 1.
We use the definition of M̃2,q, the subadditivity of the square root, Minkowski’s

inequality, Proposition 5.4 and the above estimate to find

‖u(t)‖M̃2,q
=
∥∥‖�̃nu(t)‖L2

∥∥
`qn

=
∥∥∥(4α2

(1

2
, un(t)

)
− 1

2
α2(1, un(t))

) 1
2
∥∥∥
`qn

≤
∥∥∥∣∣∣4(α2 − α)

(1

2
, un(t)

)
− 1

2
(α2 − α)(1, un(t))

∣∣∣ 1
2
∥∥∥
`qn

+
∥∥∥(4α

(1

2
, un(t)

)
− 1

2
α(1, un(t))

) 1
2
∥∥∥
`qn

≤ 4
∥∥∥(α2 − α)

(1

2
, un(t)

)∥∥∥
`
q
2
n

+
1

2

∥∥∥(α2 − α)(1, un(t))
∥∥∥
`
q
2
n

+
∥∥∥∣∣∣4α(1

2
, un(0)

)
− 1

2
α(1, un(0))

∣∣∣ 1
2
∥∥∥
`qn

≤ ‖u(0)‖M̃2,q
+ 4

∑
s∈{0,t},κ∈{1/2,1}

‖(α2 − α)(κ, un(s))‖
1
2

`
q
2
n

≤ ‖u(0)‖M̃2,q
+ C(‖u(0)‖2

M̃2,q
+ ‖u(t)‖2

M̃2,q
),

for some constant C > 0. Using a continuity argument gives

(5.8) ‖u(t)‖M2,q
. ‖u(0)‖M2,q

if ‖u(0)‖M2,q
≤ ε with ε sufficiently small.

For general initial data, we apply Lemma 2.9 and the discussion thereafter. Con-
sider uλ(x, t) = λ−1u

(
λ−1x, λ−2t

)
, which is a solution to NLS for all λ ≥ 1. Then

for 1 < q ≤ 2, we have

‖uλ(0)‖M2,q
. λ−

1
2 ‖u(0)‖M2,q ≤ ε� 1

if λ ∼ (1 + ‖u(0)‖M2,q )
2. On the other hand,

‖u(t)‖M2,q . λ
1
q

∥∥uλ(λ2t)
∥∥
M2,q

,

and so

‖u(t)‖M2,q
. λ

1
q−

1
2 ‖u(0)‖M2,q

∼ (1 + ‖u(0)‖M2,q
)

2
q−1‖u(0)‖M2,q

,

which finishes the proof if 1 < q < 2.
This proof does not extend yet to q = 1 because the estimate of the tail does not

have enough decay in n. The problem here is the coefficient α4 since for the tail of
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order homogeneity 6 and more we can estimate with Young’s inequality

∑
n∈Z
|α(un)− α2(un)− α4(un)|1/2 .

∑
n∈Z

(∫
R

|û(ξ, t)|2

(1 + (ξ − n)2)1/2−δ

) 3
2

∼
∥∥∥∑
k∈Z
〈k − n〉−1+2δ

∫
Ik

|û(ξ)|2 dξ
∥∥∥ 3

2

`
3
2

. ‖〈k〉−1+2δ‖
3
2

`
3
2
‖u‖3L2 . ‖u‖3L2 ,

as long as δ stays small enough. To handle the sum

∑
n∈Z
|α4(un)|1/2,

we need to take a closer look at its structure. In [22, Chapter 8.1] Koch-Tataru

prove a formula for T̃4 which is related to α4 via α4 = Re T̃4(iκ) and reads

T̃4(iκ) =
i

2π

∫
ξ1+ξ2−ξ3−ξ4=0

Re
(
û(ξ1)û(ξ2)û(ξ3)û(ξ4)

)
(2iκ+ ξ1)(2iκ+ ξ3)(2iκ+ ξ4)

.

This implies

α4 =
1

2π

∫
ξ1+ξ2−ξ3−ξ4=0

2κ(ξ1ξ3 + ξ1ξ4 + ξ3ξ4)− 8κ3

(4κ2 + ξ2
1)(4κ2 + ξ2

3)(4κ2 + ξ2
4)

Re
(
û(ξ1)û(ξ2)û(ξ3)û(ξ4)

)
.

We concentrate on the part where there are frequencies in the enumerator because
the other part is more easily estimated. Now for example,

∫
ξ1+ξ2−ξ3−ξ4=0

|ξ1ξ3|
(4κ2 + ξ2

1)(4κ2 + ξ2
3)(4κ2 + ξ2

4)
|û(ξ1)||û(ξ2)||û(ξ3)||û(ξ4)|

≤
∥∥∥ |ξ1|û

4κ2 + ξ2
1

∗ |ξ3|û
4κ2 + ξ2

3

∗ û

4κ2 + ξ2
4

∗ û
∥∥∥
L∞

≤
∥∥∥ |ξ|û

4κ2 + ξ2

∥∥∥2

L2

∥∥∥ û

4κ2 + ξ2

∥∥∥
L1
‖û‖L1

.
∥∥∥ û√

4κ2 + ξ2

∥∥∥2

L2

∥∥∥ û

4κ2 + ξ2

∥∥∥
L1
‖u‖M2,1

.

Here we used Young’s convolution inequality and the fact that

∫
R
|û(ξ)|dξ =

∑
k∈Z

∫
Ik

|û(ξ)|dξ ≤
∑
k∈Z
‖û‖L2(Ik) = ‖u‖M2,1

.
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Thus to bound
∑
n∈Z |α4(un)|1/2 we estimate∑

n∈Z

(
‖un‖M2,1

∫
|ûn(ξ)|2

4κ2 + ξ2
dξ

∫
|ûn(ξ)|

4κ2 + ξ2
dξ
) 1

2

∼
∑
n∈Z
‖u‖

1
2

M2,1

(∑
k

∫
Ik
|û|2

4κ2 + (k − n)2
dξ
∑
l

∫
Ik
|û|

4κ2 + (l − n)2
dξ
) 1

2

≤ ‖u‖
1
2

M2,1

∥∥∥(∑
k

∫
Ik
|û|2

4κ2 + (k − n)2
dξ
) 1

2
∥∥∥
`2n

∥∥∥(∑
l

∫
Ik
|û|

4κ2 + (l − n)2
dξ
) 1

2
∥∥∥
`2n

≤ ‖u‖
1
2

M2,1

(
‖û‖2L2

∑
k

1

4κ2 + k2

) 1
2
(
‖û‖L1

∑
l

1

4κ2 + l2
) 1

2

. κ−1‖u‖M2,1‖u‖L2 .

In the first line we estimated with the inequality from above, then we discretized
in Fourier space, then we estimated via Hölder and Young’s convolution inequality,
and finally we used again that the L1 norm of the Fourier transform is bounded by
the M2,1 norm and that the scaling behavior of the sums is κ−1/2.

Arguing as before, we also obtain the case q = 1. �

5.2. Global Wellposedness if p < 2. If p < 2, the spaces Mp,q are contained in
M2,q and we expect an upgrade to a global result with the use of the principle of
persistence of regularity (see e.g. [30]). We use the following version of Gronwall’s
inequality:

Lemma 5.8. Let u, α, β : [a, b]→ R be continuous with β ≥ 0. Assume that for all
t ∈ [a, b],

u(t) ≤ α(t) +

∫ t

a

β(s)u(s) ds.

Then also

u(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ t
s
β(s′) ds′ ds.

The following blow-up alternative is easily obtained:

Lemma 5.9. If for all T > 0,

sup
t∈[0,T ]

‖u(t)‖M∞,1 <∞,

and if cubic NLS is locally well-posed in Ms
p,q(R), 1 ≤ p, q ≤ ∞, s ≥ 0, then it is

also globally wellposed in this space.

Proof. By Corollary 3.5 we have to show that the Ms
p,q(R) norm cannot blow up.

Now u solves

(5.9) u(t) = S(t)u0 + 2i

∫ t

0

S(t− s)|u|2u(s)ds,

and hence if 0 ≤ t ≤ T , estimating with (2.3),

(5.10) ‖u(t)‖Ms
p,q
.T ‖u0‖Ms

p,q
+ ‖u‖2L∞([0,T ],M∞,1)

∫ t

0

‖u(s)‖Ms
p,q
ds.

Using the assumption ‖u‖2L∞([0,T ],M∞,1) ≤ C we can use Gronwall’s inequality and

conclude. �
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Lemma 5.9 tells us that the M∞,1 norm is a controlling norm in this setting.
This shows that when 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞ and s is high enough, not only
the question of local but also of global well-posedness becomes trivial: From the
embedding H1/2+ ⊂M2,1 and the construction of conserved quantities adapted to
Hs for any s > −1/2 [22, 20] we find global in time bounds in M∞,1 if we just

embed into H1/2+. In the spaces Mp,1 with 1 ≤ p ≤ 2 we also find global well-
posedness due to Theorem 5.7. The case p > 2 is more complicated and treated
below.

For s = 0 and general 1 < q < ∞, we obtained the local well-posedness via
interpolation. In the upper triangle 1/q ≥ max(1/p′, 1/p) the Picard iteration
space was

Xp,q
T = L∞t Mp,q([0, T ]× R) ∩ L

8
θ
t [Mp̃,1, L

4]θ([0, T ]× R).

Note that we could equally well have iterated in

X̃p,q
T = L∞t Mp,q([0, T ]× R) ∩ L

4
θ
t [Mp̃,1, L

∞]θ([0, T ]× R),

because the Strichartz estimates holds true up to L4
tL
∞
x in one dimension. With

this at hand, we can prove:

Lemma 5.10. Cubic NLS is globally wellposed in Mp,q(R), 1 ≤ p < 2, 1/q ≥ 1/p.

Proof. We interpolate the multilinear estimates

‖u1ū2u3‖Mp̃,1
. ‖u1‖M∞,1‖u2‖M∞,1‖u3‖M p̃,1 ,

‖u1ū2u3‖L2 ≤ ‖u1‖L∞‖u2‖L∞‖u3‖L2

to obtain

(5.11) ‖u1ū2u3‖Mp,q . ‖u1‖[M∞,1,L∞]θ‖u2‖[M∞,1,L∞]θ‖u3‖Mp,q ,

where p, q, θ are exactly as in Theorem 4.4. This shows∥∥∥∫ t

0

S(t− s)|u|2u ds
∥∥∥
Mp,q

.
∫ t

0

‖u‖2[M∞,1,L∞]θ
‖u‖Mp,q

ds,

and we can conclude as in Lemma 5.9 if we know that ‖u‖L2([0,T ],[M∞,1,L∞]θ) remains
finite. Now with continuous inclusion with T -dependent constants,

[L∞([0, T ],M2,1), L4([0, T ], L∞)]θ ⊂ [L2([0, T ],M2,1), L2([0, T ], L∞)]θ

= L2([0, T ], [M2,1, L
∞]θ)

⊂ L2([0, T ], [M∞,1, L
∞]θ).

Since we could have chosen the left-hand side as the iteration space in Theorem 4.4
we conclude that the solution has locally bounded norm in this space with estimate

‖u‖[L∞([0,1],M2,1),L4([0,1],L∞)]θ . ‖u0‖M2,q .

Note that p < 2, hence Mp,q ⊂ M2,q. The M2,q norm does not blow up, hence
the norm on the left-hand side does not blow up even if we replace [0, 1] by a time
interval [0, T ] as we can just glue together solutions. �
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5.3. Global Wellposedness if p > 2. In the case u0 ∈Mp,1 with 2 < p <∞, we
want to use techniques inspired by [15]. Similar results were obtained for p = 4 and
p = 6 in [29]. Note though that the spaces Ms

4,2 and Ms
6,2 with s > 3/2 embed into

M1
4,2 and M1

6,2 in which we will prove global wellposedness. The goal is to make use
of the fact that there is a number N such that for n ≥ N , the nth Picard iterates
will be in an L2 based space. Indeed, if we keep the notation from Theorem 3.2,
then by the multilinear estimate (2.2),

‖A3(u0)‖L∞([0,1],M2,1) . ‖|S(t)u0|2S(t)u0‖L∞([0,1],M2,1) . ‖u0‖3M6,1
,

and similarly for each natural number of the form 4n+ 2, n ∈ N0, we have

(5.12) ‖A2n+1(u0)‖L∞([0,1],M2,1) .n ‖u0‖2n+1
M4n+2,1

.

More generally, we find:

Lemma 5.11. Given odd natural numbers k1, k2, k3 ∈ N and 2m+1 = k1 +k2 +k3,
and n ∈ N with m ≥ n, the following estimates hold:

‖N(Ak1
, Ak2

, Ak3
)‖L∞([0,T ],Mp,1) .m Tm〈T 〉m+1/2‖u0‖2m+1

Mp(2m+1),1
(5.13)

‖A2n+1‖L∞([0,1],M2,1) .n T
n〈T 〉n+1/2‖u0‖2n+1

M4n+2,1
(5.14)

‖A2m+1‖L∞([0,1],M2,1) .m Tm〈T 〉m+1/2‖u0‖2n+1
M4n+2,1

‖u0‖2(m−n)
M∞,1

.(5.15)

Proof. We use the estimate for 0 ≤ t ≤ T

‖N(Ak1 , Ak2 , Ak3)‖Mp,1 =
∥∥∥∫ t

0

S(t− s)Ak1Āk2Ak3 ds
∥∥∥
Mp,1

. T 〈T 〉1/2‖Ak1
‖Mp1,1

‖Ak2
‖Mp2,1

‖Ak3
‖Mp3,1

,

provided
∑
i 1/pi = 1/p. Plugging in the definition of Aki from Theorem 3.2

iteratively shows that after m iterations we arrive at

‖A2m+1(u0)‖Mp,1 + ‖N(Ak1 , Ak2 , Ak3)‖Mp,1 .n T
m〈T 〉m2 ‖Lu0‖2m+1

M(2m+1)p,1
,

if k1 + k2 + k3 = 2m+ 1. Together with

‖Lu0‖2m+1
M(2m+1)p,1

. 〈T 〉
2m+1

2 ‖u0‖2m+1
M(2m+1)p,1

,

(5.13) and (5.14) follow. To prove (5.15) we additionally use

‖uvw‖M4n+2,1 . ‖u‖M∞,1‖v‖M∞,1‖w‖M4n+2,1 ,

once we reached p = 4n+ 2 in the iteration. �

As is shown for the usual Picard iteration (see for example Theorem 3 in [2]), and
because there is no loss in the constant from Hölder’s inequality (2.2), the constant
in (5.12) grows at most exponentially in n meaning that we are able to sum the
remainder term. This motivates that we will be able to construct a solution of NLS
of the form

(5.16) u(t) =

2n−1∑
k=1

Ak(u0) + v = ũ+ v,

where

ũ ∈ C0([0, T ],M4n+2,1) and v ∈ C0([0, T ],M2,1).
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If u has the form (5.16) and solves NLS then v will solve the difference NLS

(5.17)

{
ivt + vxx = |u|2u−G(t),

v(0) = 0

where G(t) is given by

G(t) = iũt + ũxx =

2n−1∑
k=3

∑
k1+k2+k3=k

Ak1(u0)Āk2(u0)Ak3(u0).

As a fixed point equation this equation reads

(5.18) v(t) = N
(
v+

2n−1∑
k=1

Ak(u0), v+

2n−1∑
k=1

Ak(u0), v+

2n−1∑
k=1

Ak(u0)
)
−

2n−1∑
k=3

Ak(u0).

The existence and uniqueness issue of v is covered in the following Lemma.

Lemma 5.12. Let u0 ∈M4n+2,1. There exists T > 0 and a solution v ∈ C0([0, T ],M2,1)
of (5.18). The solution is unique in L∞([0, T ],M4n+2). If T ∗ denotes its maximal
time of existence, then either T ∗ =∞ or

lim sup
t→T∗

‖v(t)‖M4n+2,1 =∞.

Proof. We ignore permutations of the arguments of N and rewrite (5.18) as

v(t) = N
(
v +

2n−1∑
k=1

Ak(u0), v +

2n−1∑
k=1

Ak(u0), v +

2n−1∑
k=1

Ak(u0)
)
−

2n−1∑
k=3

Ak(u0)

= N(v, v, v) +N
(
v, v,

2n−1∑
k=1

Ak(u0)
)

+N
(
v,

2n−1∑
k=1

Ak(u0),

2n−1∑
k=1

Ak(u0)
)

+N
( 2n−1∑
k=1

Ak(u0),

2n−1∑
k=1

Ak(u0),

2n−1∑
k=1

Ak(u0)
)
−

2n−1∑
k=3

Ak(u0).

If we define the function in the last line to be F (t, x), then we can show

(5.19) ‖F‖L∞([0,T ],M2,1) . T
n〈T 〉n+1/2‖u0‖2n+1

M4n+2,1
+ T 3n−2〈T 〉3n−3/2‖u0‖6n−3

M4n+2,1
.

Indeed, we rewrite

N
( 2n−1∑
k=1

Ak(u0),

2n−1∑
k=1

Ak(u0),

2n−1∑
k=1

Ak(u0)
)

=

2n−1∑
m=1

∑
k1+k2+k3=m

N(Ak1
(u0), Ak2

(u0), Ak3
(u0)) + F

=

2n−1∑
k=3

Ak(u0) + F,

and use Lemma 5.11 to estimate. In the same fashion, we find∥∥∥ 2n−1∑
k=1

Ak(u0)
∥∥∥
L∞([0,T ],M∞,1)

. 〈T 〉1/2‖u0‖M4n+2,1 + Tn−1〈T 〉n−1/2‖u0‖2n−1
M4n+2,1

.
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This shows that if Φ(v) is the right-hand side in (5.18), and if ‖v‖L∞([0,T ],M2,1) ≤ R,
we have

‖Φ(v)‖L∞([0,T ],M2,1) . TR
3 + TR〈T 〉‖u0‖2M4n+2,1

+ T 2n−1R〈T 〉2n−1‖u0‖4n−2
M4n+2,1

+ Tn〈T 〉n+1/2‖u0‖2n+1
M4n+2,1

+ T 3n−2〈T 〉3n−3/2‖u0‖6n−3
M4n+2,1

.

Choosing T . min(1, ‖u0‖−2
M4n+2,1

) and R ∼ ‖u0‖M4n+2,1
makes Φ into a mapping

Φ : {‖v‖L∞([0,T ],M2,1) ≤ R} → {‖v‖L∞([0,T ],M2,1) ≤ R}.

Since we can obtain a similar estimate on Φ(v1)−Φ(v2) via polarization, this shows
that we can employ the Banach fixed point argument to get a unique solution
v ∈ L∞([0, T ],M2,1) of (5.18). Since we could have iterated in C0([0, T ],M2,1) as
well, we obtain continuity of v.

To prove the stronger blow-up criterion, if ‖v(T ∗)‖M4n+2,1
<∞ then we can use

ũ(T ∗) + v(T ∗) ∈ M4n+2,1 as new initial data for NLS. But then we transform this
into an equation for v again and obtain a small δ > 0 such that we can solve (5.18)
on [T ∗, T ∗ + δ] yielding a contradiction to the maximality.

For the stronger uniqueness statement we note that we can also construct a
unique solution u of NLS in L∞([0, T ],M4n+2,1) directly due to its algebra property.
Since u and v only differ by finitely many terms which do not blow up in M4n+2,1,
the uniqueness from u transfers. �

To go from local to global we need to bound a controlling norm for large times.
Our controlling norm will we the H1 norm and the way to bound it will be via
estimating the derivative of the time-dependent Hamiltonian and using a Gronwall
argument. Since we need the Hamiltonian to control the energy, the method only
applies in the defocusing case. This method has also been used in [29] as well as
in [21] to prove global wellposedness of NLS equations in H1(R) + Hs(T), and it
proves to be valuable here as well. More precisely, the difference NLS equation
(5.17) is Hamiltonian with respect to

H(t, v) =

∫
1

2
|vx|2 +

1

4

(
|v + ũ(t)|4 − |ũ(t)|4 − 4 Re(v̄G(t))

)
dx.

From the embedding H1 ⊂ M2,1 ⊂ M4n+2,1 and Lemma 5.12 we see that such
bound suffices to upgrade our local to a global result. Arguing as in Lemma 5.9, we
find that if we start with one more derivative u0 ∈ M1

4n+2,1, then the same holds
for the solution u.

We first show that when adding an L2 norm, the Hamiltonian is strong enough
to control the H1 norm:

Lemma 5.13. For all T > 0 and u0 ∈M4n+2,1 there exists a constant C > 0 such
that

(5.20) E(v) + ‖v‖2L2 . H(t, v) + ‖v‖2L2 + 1 . E(v) + ‖v‖2L2 + 1,

where

E(v) =

∫
1

2
|vx|2 +

1

4
|v|4 dx.

The constant depends on n, ‖u0‖M4n+2,1
and T .
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Proof. For 0 ≤ t ≤ T ,∫
|v + ũ|4 − |v|4 − |ũ|4−4 Re(|ũ|2ũv̄) dx

≤ c
∫
|v|2|ũ|(|v|+ |ũ|) dx

≤ c(‖ũ‖2L∞‖v‖2L2 + ‖ũ‖L∞‖v‖3L3)

≤ c(‖ũ‖2L∞‖v‖2L2 + ‖ũ‖L∞‖v‖L2‖v‖2L4)

≤ (1 + (C(ε))‖ũ‖2L∞‖v‖2L2 + εE(v).

This term is fine due to the estimate ‖ũ‖L∞t,x .T ‖u0‖M4n+2,1
. Knowing that∫

|ũ|4 dx ≤ C(‖u0‖M4n+2,1
, T ),

it remains to show that |ũ|2ũ−G(t) can be estimated in L2 if u0 ∈M4n+2,1. Indeed,
we rewrite it as

|ũ|2ũ =

2n−1∑
k1,k2,k3=1

Ak1
(u0)Āk2

(u0)Ak3
(u0)

=

2n−1∑
k=1

∑
k1+k2+k3=k

Ak1
(u0)Āk2

(u0)Ak3
(u0) +R(t) = G(t) +R(t),

where R(t) has only terms of homogeneity 2n + 1 ≤ k ≤ 6n − 3. Thus as in the
proof of Lemma 5.12, for all T > 0,

‖R‖L∞([0,T ],L2) .T ‖u0‖2n+1
M4n+2,1

+ ‖u0‖6n−3
M4n+2,1

.

Hence ∫
Re((|ũ|2ũ−G(t))v̄) dx .T ‖v‖L2(‖u0‖2n+1

M4n+2,1
+ ‖u0‖6n−3

M4n+2,1
)

≤ ‖v‖2L2 + C(‖u0‖M4n+2,1),

which implies (5.20). �

Theorem 5.14. Let 2 < p < ∞ and assume that u0 ∈ M1
p,1. Then the local

solution from Lemma 5.12 exists for all times. In particular, there exists a unique
global solution u ∈ C0([0,∞),M1

p,1) to cubic NLS with initial data u(0) = u0.

Proof. Via scaling (see e.g. Theorem 3.2. in [14]) we reduce to consider small initial
data. Moreover, there exists an n ∈ N0 such that p ≤ 4n + 2, hence Lemma 5.12
is applicable and without loss of generality we may assume p = 4n + 2. Fix some
T > 0.

We look at the time derivatives of the L2 norm and H and aim to use Gronwall.
Now with the notation

(f, g) =

∫
Re(fḡ) dx,
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we calculate that for 0 ≤ t ≤ T ,

∂t
1

2
‖v‖2L2 = (v, vt) =

(
v, |v + ũ|2(v + ũ)−G(t)

)
.
∫
|v|2(|v|2 + |ũ|2) + |v|(|ũ|2ũ−G(t)) dx

. E(v) + ‖ũ‖2L∞([0,T ]×R)‖v‖
2
L2 + ‖v‖L2‖|ũ|2ũ−G(t)‖L∞([0,T ],L2)

. E(v) + ‖v‖2L2 + 1.

The last inequality was proven in the proof of (5.20) and the its depends both on
T and ‖u0‖M4n+2,1

. For the Hamiltonian, we argue as in [21, Theorem 4.1] to see
that only time derivatives on terms with ũ and G prevail,

(5.21) ∂tH = (ũt, |v|2v + |v|2ũ+ 2 Re(v̄ũ)v) +
(
v, ∂t(|ũ|2ũ−G)

)
.

Indeed, for the bilinear part of H we calculate 2

∂t
1

2
(vx, vx) = (vt,−vxx) = −(vt, |v + ũ|(v + ũ)−G),

and for the remaining part,

∂t

∫
1

4

(
|v + ũ|4 − |ũ|4

)
− Re(v̄G) dx

= (vt, |v + ũ|2(v + ũ)−G) + (ũt, |v + ũ|2(v + ũ)− |ũ|2ũ)− (v,Gt),

from which (5.21) follows. We recall ũt = −iG(t) + iũxx and plug this into the first
summand. The worst term is

(ũxx, |v|2v) = −(ũx, (|v|2v)x) . ‖ũx‖L∞t,x‖v‖
2
L4‖vx‖L2 . E(v),

since we are able to bound ũx in L∞ because u0 ∈ M1
4n+2,1 ⊂ M1

∞,1. Since G,
ũ and ũx can be bounded in L∞ uniformly in time, the other terms in the first
summand of (5.21) are estimated more easily. It remains to estimate(

v, ∂t(|ũ|2ũ−G)
)

= (v, ∂tR),

where with the notation from the proof of (5.20) we have

R =

2n−1∑
ki,k1+k2+k3≥2n+1

Ak1(u0)Āk2(u0)Ak3(u0).

Now for each k,

i∂tAk(u0) + ∂2
xAk(u0) =

∑
k1+k2+k3=k

Ak1(u0)Āk2(u0)Ak3(u0).

Again the worst term comes from the two derivatives. From partial integration,

(v, (∂2
xAk1

)Āk2
Ak3

)

= −(vx, (∂xAk1)Āk2Ak3)− (v, (∂xAk1)(∂xĀk2)Ak3)− (v, (∂xAk1)Āk2∂xAk3).

2Strictly speaking this is only formal, the term (vt,−vxx) is not well-defined because both
factors are only distributional. One can make this rigorous by going to the interaction picture in

the calculation, see [21, Theorem 4.1] for details.
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In order to use Cauchy Schwartz we have to be sure that the functions that are
integrated against v or vx are in L2. But this holds true since k1 +k2 +k3 ≥ 2n+ 1
and since u0 ∈M1

4n+2,1. All in all we find

∂t(H + C‖v‖2L2) . H + C‖v‖2L2 + 1 for all 0 ≤ t ≤ T,

and hence by Gronwall’s lemma

sup
t∈[0,T ]

H(t, v) + C‖v‖2L2 <∞,

which proves the theorem. �

Remark 5.15. The same method applies to Ms
p,q for 2 < p <∞ and s > 2− 1/q.

In this case by Theorem 2.5 an embedding Ms
p,q ⊂ M1

p,1 holds so that the local
wellposedness becomes trivial by the algebra property. See also [29] for p = 4 and
p = 6, and the remark therein for general q = 2. This shows that for all spaces
Ms
p,q with 2 ≤ p <∞, 1 ≤ q ≤ ∞ one has global wellposedness if s is large enough.

Using Lemma 5.9 and Theorem 5.7 the same holds true for 1 ≤ p ≤ 2. It remains
open whether a global result can be achieved if p =∞.

6. Illposedness for negative regularity

We complement the well-posedness results and show that the cubic NLS is not
quantitatively well-posed in Mp,q

s if s < 0. This includes the cases p, q = ∞ and
extends considerations from the introduction of [29] where ill-posedness was shown
using Galilean invariance. We want to remark that results on norm-inflation for
nonlinear Schrödinger equations in Modulation Spaces have been proved in [7],
though some of them rule out the cubic case due to the complete integrability. The
proof of our result is inspired by [24]. More precisely, we show that:

Theorem 6.1. When s < 0, there is no function space XT which is continuously
embedded into C([0, T ],Mp,q

s (R)) such that there exists a C > 0 with

(6.1) ‖S(t)f‖XT ≤ C‖f‖Ms
p,q
,

and

(6.2) ‖
∫ t

0

S(t− s)|u|2u(s) ds‖XT ≤ C‖u‖3XT .

In particular, there is no T > 0 such that the flow map f 7→ u(t) mapping f to a
unique local solution on the interval [−T, T ] is C3 at f = 0 from Ms

p,q to Ms
p,q.

Proof. We first prove that the failure of the above estimates implies that the data-
to-solution map cannot be C3. Indeed, if we consider f = γu0 where u0 ∈ Mp,q

s is
fixed, then

∂3

∂γ3
u(t, x) = 12i

∫ t

0

S(t− s)(|S(s)u0|2S(s))u0 ds,

which by the flow being C3 would imply the bound

(6.3) ‖
∫ t

0

S(t− s)(|S(s)u0|2S(s))u0 ds‖Mp,q
s
. ‖u0‖3Mp,q

s
.

We will show below that (6.3) fails, which then gives the claim.
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To show that there is no quantitative wellposedness, we show exactly failure of
(6.3). Indeed, using the linear bound in the nonlinear bound would exactly imply
(6.3).

To prove failure of (6.3), we look for a lower bound of

g(t, x) =

∫ t

0

S(t− s)(|S(s)u0|2S(s)u0) ds.

Denote by ĝ(t, ξ) the Fourier transform x 7→ ξ of g. We rewrite

ĝ(t, ξ) =

∫ t

0

ei(t−s)ξ
2

∫
ξ1−ξ2+ξ3=ξ

eis(ξ
2
1−ξ

2
2+ξ2

3)û0(ξ1)û0(ξ2)û0(ξ3) dξ1dξ3ds

= eitξ
2

∫
ξ1−ξ2+ξ3=ξ

û0(ξ1)û0(ξ2)û0(ξ3)
eitχ − 1

iχ
dξ1dξ3,

where χ = ξ2
1 − ξ2

2 + ξ2
3 − ξ2. We choose û0(ξ) = χ[N,N+α] compactly supported

at frequency N , where N � 1, α � 1. Then, ĝ can only be nonzero when ξ ∈
[N − α,N + 2α]. Moreover, when ξ = ξ1 − ξ2 + ξ3, we have the factorization

(6.4) χ = −2(ξ − ξ1)(ξ − ξ3),

which is of size α2. In particular choosing α ∼ N−ε, we find∣∣∣∣eitχ − 1

iχ

∣∣∣∣ & |t|+O(N−ε).

Now the Modulation Space norm in Mp,q
s of u0 is

‖u0‖Ms
p,q
∼ Ns.

Similarly, by integrating in ξ1 and ξ3, the Modulation Space norm of g is then

‖g‖Ms
p,q
& Nsα2.

This shows that when (6.3) holds, we need to have

Ns−ε . N3s

which can only work when s ≥ 0. �



WELLPOSEDNESS OF NLS IN MODULATION SPACES 27

References

[1] Wang Baoxiang, Zhao Lifeng, and Guo Boling. Isometric decomposition operators, function
spaces Eλp,q and applications to nonlinear evolution equations. J. Funct. Anal., 233(1):1–39,

2006.

[2] Ioan Bejenaru and Terence Tao. Sharp well-posedness and ill-posedness results for a quadratic
non-linear Schrödinger equation. J. Funct. Anal., 233(1):228–259, 2006.

[3] A. Benedek and R. Panzone. The space Lp, with mixed norm. Duke Math. J., 28:301–324,

1961.
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