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TRAVELING WAVES FOR A QUASILINEAR WAVE EQUATION

GABRIELE BRUELL, PIOTR IDZIK, AND WOLFGANG REICHEL

ABsTRACT. We consider a 2+1 dimensional wave equation appearing in the context of polarized waves for the
nonlinear Maxwell equations. The equation is quasilinear in the time derivatives and involves two material
functions V and I'. We prove the existence of traveling waves which are periodic in the direction of propaga-
tion and localized in the direction orthogonal to the propagation direction. Depending on the nature of the
nonlinearity coeffcient I" we distinguish between two cases: (a) I' € L® being regular and (b) I' = vd9 being
a multiple of the delta potential at zero. For both cases we use bifuraction theory to prove the existence of
nontrivial small-amplitude solutions. One can regard our results as a persistence result which shows that guided
modes known for linear wave-guide geometries survive in the presence of a nonlinear constitutive law. Our main
theorems are derived under a set of conditions on the linear wave operator. They are subsidised by explicit
examples for the coefficients V' in front of the (linear) second time derivative for which our results hold.

1. INTRODUCTION

Of concern is the following 2+1 dimensional quasilinear wave equation

—Au+0; (VN y)u+T(y)u’) =0, (1.1)
which appears in the context of polarized waves for the nonlinear Maxwell equations. Here, u = u(t, x,y) is the
unkown depeding on time ¢ € R, and the two spatial variables z,y. We assume wu to be periodic in z-direction
and localized in y-direction. In what follows, we denote by T the one dimensional flat 27-periodic torus, so that
(z,y) € T x R. The potentials V()\,-) and I" depend only on y and incorporate material properties. Here, A € R
is a parameter. The function I' might be a bounded function (referred to as regular I') or a multiple of a delta
potential at y = 0 (referred to as distributional T').

To motivate our interest in (1.1), let us explain how it appears in the context of electromagnetics. Recall that
the Maxwell equations in the absence of charges and currents are given by

V-D =0, V xE =-0B, D =¢oE + P(E),
V-B =0, V x H =¢,D, B =uoH.

The modeling of the underlying material is done by making assumptions on the form of the polarization field
P. Here, we assume that P depends instantaneously on the electric field E as follows

P(E) = cox1(X)E + cox3(x)|E’E

with x = (2,5, 2) € R3, cf. [1], Section 2.3. For simplicity we take x1, x3 as given scalar functions instead of the
more general matrix/tensor structure of these quantities. The values g, yo are constant such that ¢? = (gouo) !
and c is the speed of light in vacuum. By direct calculations from Maxwell’s equations one obtains the second-
order quasilinear wave-type equation for the electric field

0=V xVxE+7 (V(x)E+I(x)E’E), (1.2)

where V(x) = poego (1 + x1(x)) and I'(x) = pogoxs(x). The magnetic induction B can be retrieved from
V x E = —0;B by time-integration and it will satisfy V - B = 0 provided it does so at time ¢ = 0. By
assumption the magnetic field is given by H = ﬁB and it satisfies V x H = ¢;D. It remains to check that the
displacement field D satisfies the Gauss law V - D = 0 in the absence of external charges. This follows directly
from the constitutive equation D = ¢(1 + x1(x))E + £ox3(x)|E|?E and the assumption of the polarized form
of the electric field

E(x,t) = (0,0, u(t,z,y)).
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If we assume additionally that V(x) = V(y) and I'(x) = I'(y) then the quasilinear vectorial wave-type equation
(1.2) turns into the scalar equation (1.1) for u = u(t, x,y).

We study the existence of traveling wave solutions of (1.1) propagating in z-direction for certain classes of
potentials V. More precisely, we consider potentials of the form

V(&) =AW(y) +Vily),  AeR,
where Vy € L*(R) and V] is a distribution (e.g a §-potential). If
u(t,z,y) = ®(x —t,y) (1.3)

is a traveling wave solution of (1.1), propagating in a-direction with wave speed v = 1, then ® : T x R - R
satisfies

— @y — (1= Ao (y) = Vi(y)Pas + L(y)(2%)as = 0. (14)
The parameter A € R will serve as a bifurcation parameter. One might ask why we introduced A as a bifurcation
parameter in the form V(A y) = AVy(y) + Vi(y) and not in the more intuitive form V (A, y) = A(Vo(y) + Vi(y))
— the latter giving v/ the meaning of the propagation speed of the traveling wave. The reason lies in the
distributional character of V;. The choice of the underlying function spaces for our analysis allows to formulate
a (suitably defined, cf. Lemma 4.3) bounded inverse of Ly, which is a slightly modified version of the wave
operator Ly = —0; — (1 — AVo(y) — Vi(y))0s. Extending the multiplication with A also to the distributional
part V7 causes a difficulties when differentiating wit respect to A, cf. Remark 4.5.

Throughout the paper, a function u is called a traveling wave solution of (1.1) if u takes the form (1.3) and ®
is a solution of (1.4), which is periodic in its first and localized in its second component.

We investigate the existence of nontrivial solutions @ of (1.4) corresponding to the parameter A under certain
assumptions on the potential V'; thereby providing the existence a nontrivial traveling wave solution uy of (1.1).
We apply bifurcation theory for the parameter A to find nontrivial solutions of (1.4). Our aim is to analyze
the existence of nontrivial solutions in a way as general as possible, finding key properties of associate linear
operators, which guarantee the existence of solutions via bifurcation theory. Eventually, we provide examples
of specific potentials V' for which these properties can be verified. In particular, the following cases are under
consideration:

(P1) V is a d—potential on a positive background, that is V is a distribution of the form
V(A y) = A+ ado(y).
(P2) V is a —potential on a step background, that is V' is a distribution of the form
V(A Y) = ALy sp + BLjyj<p + ado(y).

Concerning the nonlinear potential I we distinguish between regular T', that is ' € L*(R), and distributional
T', that isT" = vdp. The main results for regular I" are shown in Section 2.1 and for distributional I" in Section 2.2.

Let us also comment on related work. Problem (1.1) has been considered in [17] where spatially localized
traveling wave solutions of the 1+1-dimensional quasi-linear Maxwell model were investigated. The authors
assume that V(y) is a periodic arrangement of delta potentials. Using a multiple scale ansatz in fast and slow
time, the field profile is expanded into infinitely many modes which are quasiperiodic in time (time-periodic both
in the fast and slow time variables). Using local bifurcation methods the authors solve a related system which is
homotopically linked to the Maxwell problem written as any infinite coupled system. It is not clear if the local
bifurcation connects the related system and the Maxwell problem but numerical results support the existence of
spatially localized traveling waves. In [7] and [9] another approximation (including error-estimates) of a version
of (1.1) with periodic coefficients by finitely many coupled modes near band edges has been performed both
analytically and numerially.

In the studies of the nonlinear Maxwell-system (1.2), often monochromatic waves E(x) = U(x)el*? + c.c. are
considered. Since a typical cubic nonlinearity generates higher harmonics, they either need to be neglected
(leading to an error), or the constitutive equation for D is replaced by a time-averaged nonlinearity D =
go(1 + x1(x))E + eoxs(x) 5 SOT|E|2 dtE, cf. [19, 20, 21, 14, 2, 8, 16] and particularly the two survey papers
[3, 15].

In contrast to the previously cited works, our approach is genuinely polychromatic and does not rely on time-
averaged material laws. In our solution ansatz we allow for harmonics of arbitrary order and we treat (1.1)
without any approximation. Recently in [12] a similar approach was taken and spatially localized, time-periodic
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solution of (1.1) were obtained via variational methods. The result of the present paper and [12] are comple-
mentary in the following sense: (a) in [12] only distributional I" is considered whereas in the present paper we
also allow for regular I" € L®; (b) in the case of distributional T, [12] ounly treats V' € L™ whereas in the present
paper we always have a delta potential contributing to V. Variational methods as in [12] have the advantage
of producing solutions which may be far away from the trivial solution whereas local bifurcation methods as in
the present paper produce solutions in the vicinity of zero. On the other hand, the local bifurcation method
leads to more precise information about the actual shape of the bifurcating branch of solutions.

Outline of the paper. We close the introduction with a brief outline of the paper. In Section 2, we collect
our main results. In Theorem 2.3 and Theorem 2.10 we provide a set of conditions on the linear wave operator
guaranteeing the existence of nontrivial traveling wave solutions of (1.1) for regular and distributional ', respec-
tively. Subsequentially, we present in Corollary 2.5, Corollary 2.6, and Corollary 2.13, Corollary 2.14 particular
examples in the form of (P1) and (P2) for regular and distributional I". In Section 3 we fix some notation. The
remaining sections 4-7 are devoted to the proofs of our main results. To be more presice, in Section 4 we prove
the existence result in Theorem 2.3 for regular I' followed by the proofs of Corollary 2.5 and Corollary 2.6 in
Section 5, which provide specific examples. Similarly, we prove in Section 6 the existence result in Theorem 2.10
for distributional I" and finalize our studies in Section 7 with the proofs of Corollary 2.13 and Corollary 2.14 on
specific examples in the case of distributional I'. In the appendix we collect auxiliary results.

2. MAIN RESULTS

We are looking for solutions of (1.4) of the form
(w53 0) = Y, dr(y; A) sin(ka). (2.1)
keN

Our analysis is going to be divided into two parts separating the case when I' is regular in the sense that
I' e L®(R) and the case when T is distributional and takes the extreme form of a §-potential. This is essentially
due to the fact that in the former case we are concerned with a nonlinear equation on the domain T x R, while
in case of I being a §-potential the problem can be viewed as a linear equation on T x R\{0} — which can be
solved separately — equipped with a nonlinear boundary condition at = 0 induced by the delta potential.

2.1. Main result for regular T'. Let us start with the definition of a weak solution of (1.4) in the case when
I'e L*(R).

Definition 2.1 (Weak solution in the case of regular I'). We say that ® € H*(T; L*(R)) n H'(T; H}(R)) is a
weak solution of (1.4) if and only if

[ ] 20w = =Wt #ow e - [ ()@ (o) Vot e+ [ [ @) dyde =0

for any W € H'(T; H'(R)). Here, (-,-) is the dual pairing between H~1(R) and H!(R).

Remark 2.2.

(a) We consider V; as a bounded linear operator from H!(R) into H~*(R). When V; = §; this means that
for f,g € HY(R) we have (V4 f,g) = f(0)g(0), i.e., since f € C(R) it multiplies Jp and generates f(0)do
as a distribution acting on g.

(b) Clearly @, € L?(TxR). We shall see in Section 4 (cf. (4.8), (4.9) in Lemma 4.4) that also ® € L®(T xR)
and ®, € L*(T x R) so that (®3),, = 3®2®,, + 6002 € L%(T x R).

If ' € L*(R), the ansatz in (2.1) allows us to reduce the problem of finding nontrivial solutions of (1.4) to
studying spectral properties of the family of linear wave operators

d2
Ly .= —d—y2+k2(1fwo(y)fv1(y)) for keN.

We prove the following theorem:
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Theorem 2.3 (Existence of traveling waves for regular I'). Assume that T' € L*(R), the potential V is given
by
V(A y) = AVoly) + Vily)

and

(LO) Vo e L*®(R) and Vi : HY(R) — H~Y(R) is bounded;

(L1) for every fived k € N and X € R the operator L5 : D(L%) < L*(R) — L*(R) is self-adjoint;

(L2) there exists a wavenumber ky € N, a value Ay € R, and an open interval I, < R containing Ay such that

zero is an isolated simple eigenvalue of L})t’; and 0 € p(LY) for any (k,\) € Nx I, with (k,A) # (kx, As);
(L3) if LY¢ = f for some f € L3(R), then

1 1
Pl 2wy < ﬁ”fHLZ(]R) and 16 L2my S EHfHN(R)

uniformly for A € I, and k € N sufficiently large.
If in addition Vy satisfies the transversality condition

Voo™, 0" r2(w) # 0, (2.2)

where ¢* spans the one-dimensional kernel of Lf\:, then there exists eg > 0 and a smooth curve through (0, \y),

{(®(e),A€)) | le] < eo} = (H*(T; L*(R)) n HY(T; H'(R))) x I,
of nontrivial solutions of (1.4) with
®(0) =0, D.®(0)(z,y) = ¢*(y) sin(kyx),
3 e T(W)(¢*)* (y) dy
25, Vo) (6%)2(y) dy
Remark 2.4. The transversality condition (2.2) is trivially satisfied if Vj > 0, #£ 0 or V5 < 0, # 0.

A0) = Ay, AM0) =0, A0)=

In Section 4 we prove Theorem 2.3. There are two main requirements on L’f\ providing the existence of nontrivial
solutions via bifurcation theory: The first is that there exists a value Ay € R of the bifurcation parameter such
that L’/{* has a one-dimensional kernel if and only if & = k, for some wave number k, € N (see (L2)); this is

a necessary bifurcation condition. Secondly, we demand that for any k # k, the self-adjoint operator L’; has a
spectral gap (—ck?, ck?) around zero, which ensures the decay properties of ¢5(; \) (see (L3)). Eventually, after
we have established Theorem 2.3, we turn to the specific case, when ' € L®(R) is regular, V are potentials of
the form as in (P1) and (P2) and formulate tangible assumptions on the triple (kx, Ay, @) (see (2.3) and (2.4)
below), which guarantee that conditions (L0) — (L3) of Theorem 2.3 are satisfied; thereby proving the existence
of nontrivial traveling wave solutions of (1.1). In particular, we prove the following corollaries.

Corollary 2.5 (Case P1, regular I'). LetT' € L®(R) and V(\,y) = A+ ado(y). If kx € N and Ay < 1 are given
and a > 0 is determined from
WIT= A,

_ 2.
om 2 (23)

then the assumptions in Theorem 2.3 are satisfied with

o*(y) = A /k*me*k*\M*)\*\m

®(0) =0, D®(0)(x,y) = ¢*(y) sin(ksx),

and

. . 3
A0) = As, AO) =0, A0) = =5 k(1 - mf L(y)e Vil ay,
R

Corollary 2.6 (Case P2, regular I'). Let I'e L*(R) and V (A, y) = M y=p + B1jyj<p + ado(y). If ks €N, b>0
and B, Ay <1 are given and o > 0 is determined from

2y/1 =3 /1= psinh(ksy/1 — Bb) + /1 — Ax cosh(kyr/1 — 5b) (2.4)

a = . .
k* V1= Bcosh(kyr/1 — Bb) + /1 — Ay sinh(ky+/1 — Bb)’

then the assumptions in Theorem 2.3 are satisfied.

Remark 2.7. Details on the construction of ¢* in Corollary 2.6 can be taken from Section 5.2.
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2.2. Main result for distributional I". Again, we start with the definition of a weak solution of (1.4), but
now in the case when I' is given by a J-potential. We assume that the function V3 = W + «adq splits into a
regular part W and the distributional part adg so that V- = AV + W + adg, where Vo, W € L®(R) and T' = 4.

Definition 2.8 (Weak solution in the case of distributional I'). We say that ® € H*(T; L2(R))nH'(T; H*(R))n
C(R; H?(T)) is a weak solution of (1.4) if and only if

f f ®, 0, — (1 —A\Vo(y) — W(y)) ®ue ¥ dy dx + JT(a@II(x,O) + Y(®%) 40 (2,0)) ¥ (x,0) dz = 0
for any ¥ e HY(T; H*(R)).

Remark 2.9. Clearly ®,,(-,0) € L?(T) and ®(-,0), ®,(-,0) € L®(T) so that (®3(-,0))ss = 30(-,0)2®(-,0) s +
6®(-,0)®(-,0)2 € L*(T). Moreover, ¥ € HY(T; H'(R)) = H*(T x R) has an L2-trace at y = 0.

Note that (1.4) can be written as a linear partial differential equation on T x R\{0} equipped with a nonlinear
boundary condition on T:

~®,, — (1= AVy — W), =0, (z,y) € T x R\{0}, (2.5)
Dy(z,04) — Py(z,0-) = 2 (a® + v®3) (2,0), xeT. '

As before let

to be the regular part of Lg. We prove the following theorem:
Theorem 2.10 (Existence of traveling wave for distributional T'). Assume that T' = 4o, the potential V is
given by
V(A y) = AVoly) + W(y) + ado(y),
and
(LO) Vo, W € L®(R) are even;

(L1) there exists an interval I < R such that for every fized k € N and X € I the operator LI&A : H*(R) <
L?(R) — L*(R) satisfies 0 € p(L’&A);

(1:42) there exists a wavenumber ky € N, a value Ay € R, and an open interval I\, < I < R containing Ay
such that zero is an isolated simple eigenvalue of Li”; and 0 € p(L%) for any (k,\) € N x I, with

_ (ka)‘) 7 (k*a)‘*);

(L3) there exist C > 0 such that |¢r(-; N)| 12(0,00) < C uniformly for X € I, k € N, and where ¢}, € H?(0, 00)
satisfies'

Loy #k(y;A) =0 on (0,00)  with ¢p(0; 1) = 1.

If in addition Vy satisfies the transversality condition
Voo™, 0" 2wy # 0, (2.6)
where ¢* spans the one-dimensional kernel of Li:, then there exists g > 0 and a smooth curve through (0, Ay)
{(®(e), Me)) | le] < eo} = (H*(T; L*(R)) n HY(T; H' (R)) 0 {@(-,0) € H*(T)}) x I,
of nontrivial solutions of (1.4) with
?(0) =0, D-2(0)(x,y) = ¢*(y) sin(kxx),

37
4§ Vo(y)(¢*)* () dy
Remark 2.11. The transversality condition (2.6) is trivially satisfied if V5 = 0, 2 0 or V5 < 0, # 0.

NOEPW A0) =0, A0)=—

IThe existence and the properties of the functions ¢y, are detailed in Remark 6.1.
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Remark 2.12. We can formulate (L2) entirely in terms of the ansatz-functions ¢y (-; A) defined in (L3). To
this end notice that O’eSS(LI&A) = 0ess(LY), cf. Lemma A.5. Since 0 ¢ U(L’&)\) by assumption (L1) it is clear that

0e O’(LI)C\) is characterized by zero being an eigenvalue of L’§. This, however, in combination with the evenness
of Vo, W, means that ¢ (|y|; A) is up to scalar multiples the unique candidate for the eigenfunction and has to
satisty

2¢5,(045\) + k*a = 0.
Here 2¢7.(04;\) is the jump of the first derivative of the even function ¢x(|y|;A) at y = 0. Based on this
characterization of zero belonging to the spectrum of LQ we can replace (L2) by

(L2) there exists a wavenumber ky € N, Ay > 0, and an open interval I, < R4 containing Ay such that
2¢,(043 ) + k*a =0
if and only if (k, ) = (ks, As) for any ke Nand A e I,.

In Section 6 we prove Theorem 2.10. Claiming periodicity in one spatial direction and evenness in the transverse
direction we make a Fourier ansatz of the form

O(x,y;A) = . ar(N) ek (|yl; A) sin(kz), (2.7)
keN

where ¢y, are the decaying functions from assumption (l~/3) In particular, the ansatz (2.7) solves the linear
differential equation in (2.5) and thus reduces the problem of finding nontrivial solutions of (1.4) to the following
family of algebraic equations

20 (\)p) (043 A) = —k? (aak()\) — iv(a()\) x a(N) * a()\))k) for all keN. (2.8)

In the spirit of Section 4, we show that if conditions (L0) — (L3) are satisfied, then the nonlinear equation (2.8)
has a non-trivial solution (aj(\))kez with ax()\) = —a—_x(\) and the decay property

(kQak()\))k € ZQ(R);
thereby providing a solution of (1.4) in the form of (2.7). Here, [?>(R) denotes the space of [>-summable
sequences in RZ. Condition (L1) guarantees the existence of the family of even ansatz-functions (¢)ren with
¢r(0;A) = 1. Condition (L2) assures that there exists ks € N, Ay € R and an interval I, < R including A
such that the linearization of (2.8), given by the multiplication operator
A§ = 297,045 ) + Ko,

has a one-dimensional kernel if (k,A) = (kx, Ax), that is A’j\: = 0; and A% # 0 for all (k,A\) € N x I, with
(k,A) # (k«, Ax). This is a necessary bifurcation condition. After we have proved Theorem 2.10, we investigate
the specific cases, when V is a potential of the form as in (P1) and (P2). The former being a d-potential on
a constant background, while the latter is a d-potential on the background of a step function. In both cases
the d-potential part in V' is essential, guaranteeing sufficient decay properties of the sequence (ax(\))gen. In
particular, we prove the following corollaries:

Corollary 2.13 (Case P1, distributional I'). Assume that T' = vdp and V(A y) = A+ ado(y). If k« € N and
Ax < 1 are given and a > 0 is determined from

2T,

o= T
then the assumptions in Theorem 2.10 are satisfied with
o (y) = e—kx/1= Akl
and
o(0) =0, D.®(0)(x,y) = e Fr/1-2xlvl sin(kyx),
A(0) = Ay, A0) =0, A0) = —yksr/T = As.
Moreover, the solutions ®(e) take the form

D(e)(z,y) = Z ak(s)e_km‘yl sin(kx).
keN
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Corollary 2.14 (Case P2, distributional I'). Let I'e L*(R) and V(A,y) = M y=p + B1)yj<p + @do(y). Suppose
furthermore that ky € N and Ay < 1 are given. If

o (Case B> 1)b,a>0 are determined from
™ 241 — g
-1 T T R
e (Case B <1)b>0is given and « > 0 is determined from
2¢/1 =B /1= Bsinh(ksy/1 — Bb) + /1 — Ay cosh(ky+/1 — Bb)

T k* T Bcosh(key/I— Bb) + v/1 — Ag sinh(ksy/I — Bb)

e (Case B =1)b> 0 is given and o > 0 is determined from
2VT— X
O k(L - VT = Aakab)

then in all three cases the assumptions in Theorem 2.10 are satisfied.

b=

Remark 2.15. Details on the construction of ¢* in Corollary 2.14, the functions ¢ and the form of the
solutions ®(e)(z,y) = D ey ok (€)Pr(y; A) sin(kz) can be taken from Section 7.2.

3. NOTATION

If f and g are elements in an ordered Banach space, we write f < g (f 2 g) if there exists a constant ¢ > 0
such that f < cg (f = cg). Moreover, the notation f ~ g is used whenever f < g and f = g. We write
¢ = ¢(p1,p2,...) > 0 if we want to emphasize that the constant ¢ > 0 depends on the parameters pi,p2, .. ..
In Section 6 we are looking for solutions of an infinite dimensional system of nonlinear algebraic equation. We
consider solutions in the sequence spaces related to

P(R) := {a = (ar)rez | ax € R for all k € Z and |a|f g = ) laxl” < oc} .
keZ

Eventually, for any r € R we set
R (R) := {a e P(R) | (1 + k) ak),, € P(R)}.
and equip the space h"(R) with the norm

lalfr gy == > (1 + [k))*"|ax]*.
keZ

We also consider the subspaces
E(R):={aecl®’R):a_y = —ay for k € Z},
hi(R) := h"(R) n lﬁQ(R).

Throughout the paper we use the notation {-,-)y to denote the dual pairing in the Hilbert space H. If f,g €
L?(U) are real-valued functions, where U < R" is a domain in R", n € N, then

i) = L F(2)g(2) d

and if a,b € [?(R) then
<a, b>12(]R) = Z akbk.

keZ
If L:D(L)c H— H is a linear operator with domain D(L), we denote by

p(L):={AeC|A\—L:D(L) — H has a bounded inverse}
the resolvent set of L. The spectrum of L is given by C\p(L). If L is self-adjoint, then (L) < R and the
spectrum of L can be decomposed as a disjoint union
(L) = 0ess(L) U oq(L),
where o4 is the discrete spectrum of L consisting of isolated eigenvalues of o(L) of finite multiplicity and
Oess(L) = o(L)\oq(L) is the essential spectrum.
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4. EXISTENCE OF TRAVELING WAVES FOR BOUNDED POTENTIALS I

This section is devoted to the proof of Theorem 2.3. Subsequently, we affirm in Section 5 that the conditions are
fulfilled for special cases where V' takes the form in (P1) or (P2), therey proving Corollary 2.5 and Corollary 2.6.
In the following we restrict ourself to solutions ® of (1.4) having the form

O(w,y; ) = Y, iy N sin(ka),
keN

where the y-dependent Fourier coefficients (¢ )ken are decaying at infinity (suitable function spaces are formu-
lated later). Then, ® is a solution of

- (I)yy - (1 - )‘VO(y) - Vl(y))q)zz + F(y)(q)g)mm =0 (4'1)
if and only if
1
—o} + K21 — M\Vo(y) — Vi(y))or + ZkQF(y) (PxPx®), =0 for all ke N.

Note that f% (® + ® = @) is the k-th Fourier coefficient of ®3, cf. Lemma A.1. The Fourier ansatz with respect
to & decomposes the operator

Ly :=—d; — (1= \Vo(y) — Vi(y))o: (4.2)
into the sequence of Schrédinger operators L’f\

k & 2

L)\ = _d_y2 + k (1 — )\Vo(y) — Vl(y))
Recall that we are working under the assumptions (L0)—(L3) from Theorem 2.3.
Remark 4.1.
(i) Notice that a necessary condition for (L3) to hold is that the operator L§ satisfies the spectral gap
property

(—ck?, ck?) < p(L}) for some constant ¢ > 0

uniformly in A € I, and k € N sufficiently large.

(ii) The domain of L% is a subset of H!(R), which is the domain of the quadratic form of L§. As a vector
space, it does not depend on A. However, the graph norm on D(L’i) is A-dependent and the embedding
D(L%) = H*(R) is locally uniformly bounded with respect to .

The next lemma extends property (L3) to all values of k € N by adding a projection to L’f\ for k = ky. For this
purpose let ker Ll)t’; = span{¢*} with [[¢*|2r) = 1. Denote by P** the projection mapping

P = ($,¢*)2m)¢*  forany ¢e L*(R)
and define by L5 : D(LY) c L?(R) — L%(R) for k € N and X € I, the family of operators
N Ky k . _
Pl [P k= @3
Lk if  k# k.

Lemma 4.2. Let l~/’§¢ = g for some g € L*(R). Then, by possibly shrinking the interval I, , we have that

1 1
I#lz2®) < EHQHLZ(R) and ¢ |2y S EHQHLZ(R) (4.4)
for all k € N uniformly in A€ I, .

Proof. By Theorem VIIL25 in [18] it follows that the map A — L% is norm-resolvent continuous, that is
A — (L% —1i)~' € £L(L*(R)) is continuous with respect to the operator norm. Let us verify that also L5* is
norm-resolvent convergent to E’;;’: as A — A4. Note that Id + Pk= (Li: — i)™ : L?*(R) — L?(R) is a compact
perturbation of the identity, injective and hence bijective. Then, for X close to Ay, also Id +P** (Li* —i)~t:
L?*(R) — L*(R) is bijective. Note that we have the identity

(L’;* —i+ Pk*)A - ((Id + PR (LR 1)—1) (Lh — i))il.
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From this we see that

(L =)~ = (e =) (1a P (L5 — i)*l)_l.
Using the assumption that Li* converges to Li:‘; in the norm resolvent sense, this implies the claim.
Next we show that 0 € p(ii’: ). Since adding a (compact) projection operator only changes the discrete spectrum,
we may assume by (L2) for contradiction that 0 is an eigenvalue of ii:, that is Li:qb + Pkx ¢ = 0. Testing with
¢*, which spans the kernel of L o we get (¢, 9*)r2r) = 0 and hence PF+¢ = 0. Thus, ¢ also belongs to the
kernel of LA:, which contradicts <¢, ¢*)12(r) = 0 and the simplicity of the 0-eigenvalue of Li:
Finally, by (L3) weknow that there exists kg € N (we assume w.l.o.g. ko > ky) such that (4.4) holds for
k > ko = k. This implies that

inf inf  dist(0, o (LF 0. 4.5
R T ist(0,0(L3)) > (4.5)

Now we want to extend this inequality to the remaining values of k € {1,...,ko} by possibly diminishing .
Thus, let k£ € N with 1 < k < ko and assume for contradiction the existence of a sequence \,, — Ay as n — ©
such that there exists p1, € o(L% ) with lim,, o p1n, = 0. By norm-resolvent convergence this implies 0 O'(Ll;* ),
which is impossible for k # k. by (L2) and also impossible for k = k, as stated above. This contradiction
establishes (4.5) for all ¥ € N. Finally, (4.5) shows that the map A — I(L5) " L2(r)—L2(r) is bounded for
A€ (Ax — 6, A + 9) uniformly for k € N. The same holds for A\ — ‘|(L§)_1|‘L2(R)_,D(L§)7 and due to (ii) in
Remark 4.1, also for A — ‘|(L§)71HL2(]R)_,H1(R). This establishes (4.4) for all k € N. O

Now, we introduce suitable function spaces and use Lemma 4.2 to reformulate the nonlinear problem (4.1) in a
setting, which makes the local bifurcation theorem due to Crandall-Rabinowitz [5] applicable. Set

X = {@ e H*(T; L*(R)) n HY(T; H'(R)) | ®(x,y) Z or (y) sin(kx) }

keN
and
Y = {QDELQ(T;LQ( )| @(z,y) Zgbk sin(kx) }
keN
Moreover, we set

Ly =Ly + P*,
where P* denotes the L?-orthogonal projection onto ker Ly, = span{®*} with ®*(z,y) = #qﬁ* (y) sin(kyx).
Recall, that the operator Ly is defined in (4.2). As an immediate consequence of (L0)—(L3), we obtain the
following lemma.

Lemma 4.3. Assume that (L0)~(L3) holds true and let A € I, . There exists a bounded linear map Ly":Y —
X with the following property: if f €Y is given and the function ® € X solves

®=LiY(f + P*®) (4.6)
then ® solves
Ly®d=f

in the weak sense, that is
| ] 0w, = 0= M) @erw dyde = [ RO o)Vl = || vy
T JR

for any ¥ e X.
Proof. Let X € Iy, . For g € Y the definition of ® := L;lg is given by

Z or(y)sin(kz)  with  ¢p = (LX) g

keN
Then Lemma 4.2 implies that ® € X and that Z;l :Y — X is bounded. Now suppose that ® € X solves (4.6).
Then ¢p, = (LX) "' (fx + P** ¢) so that ¢ € D(LY) = D(L%) for all k € N. In particular, we know that

Lo = fn for all keN
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and thus for Ko € N and 91, ...,%k, € H'(R) we have

K() KO
> (J et + K (1= AVo(y) dy — <Vl¢ka1/1k>) =, f fetbr dy.
—1 \JR k=1"R

Taking the limit Ky — o0 in the previous equation will lead to

ff@ T, — (1 AVi(y ))(bm\I/dydx—J-<V1 (=, ,\Ilz(x,-)>d:c=fTJRf\I/dydx

for any ¥ € X due to the following estimates:

|| 120wtayde < 3 Woklooce 1ilio < 191exm @yl ¥leacn @,
keN
| ] 9ol < 3 190l 20 22
keN
< Vol oo @) 1@ mr2cr, 22 ) [ ) 27, 22 (R)) 5
| 0@, ol Dl o < 3 Wil [l o e o
keN

< WVillgr s a1 1@ mer, mr @) 1Y 2 (r, 11 ()5

| ] 1rw1dnde < 3% 1daocey Wl socey < 1laoe, oy | ¥l e oo,
keN

Equipped with the above lemma, we use the invertibility of Ly to reformulate (4.1) as
F(®,)) =0, (4.7)
where F': X x I, — X is given by
F(®,)) =&+ Ly (T(y)(®%)sr — P*D).

We want to apply bifurcation theory to equation (4.7). Clearly, F/(0,\) = 0 for any X\ € I, and the line
{(0,\) | A € I} constitutes the line of trivial solutions from which we aim to bifurcate at A = Ay. The
following lemma collects the necessary properties of the map F.

Lemma 4.4. The map F : X x Iy, — X is a C®-map. Moreover the following holds:
(i) The linearization of F about ® = 0, given by

DeF(0,)\) =Id—Ly'P*: X - X

is a Fredholm operator of index zero. In particular DeF (0, A\x) = Id —P*. The kernel of DeF(0,\) is
trivial for X € I, \{\«} and it is given by span{®*} if X = 4.
(il) The mized second derivative of F about ® = 0 is given by

D3 \F(0,\) = Ly 'Vpo2Ly'P* 1 X — X,

Proof. Let us first verify the mapping properties of F' by checking that (®3),, € Y for ® € X. First note that
® € X implies

[l = sup |3 éuly)sinka)| < Y Ioulie < Y Iolin ey

z€R,yeT keN keN keN

< (Z kQ) (Z k2|\¢>kHH1<R)) S [ @lmr v, m @)

(4.8)

and, using |cos(kz)| < 1,

1/4
(| [ 1@attande)™ < 3 Wronloscesey = 27 3 llonloace) < 35 Ikl oo 0 ey

keN keN keN
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by the Gagliardo—Nirenberg inequality, cf. [10]. Using a triple Holder inequality we obtain that

3
8

([ [ 10l avae) ' < o(X R100700) " (3 #orl) " (5 42)°
TR keN keN keN

1 3
S Pl s, 11 20) 1@ 2, 22 )
Hence, for ® € X we have (®3),, = 302®,, + 6002 € L3(T, L?(R)) = Y and thus the mapping properties of F'
are proved.
The differentiability properties of F' with respect to ® also follow in a similar way from ® € L*(T x R) and
®, € L*(T x R). This can be seen as follows: the (formal) first/second derivatives of F' with respect to ® are
linear/bilinear operators and contain terms of the form abe,, or ab,c, where a,b, c € X. Based on the estimates

fT f (abacal? dy dz < [al2 [bal2 1 pcm ez 2 rmy:

L f (@b ? dy di < Jal% b2 [cee ]2 e m

we find in view of (4.8) and (4.9) that the first/second derivatives of F' with respect to ® exist, are bounded
linear /bilinear operators from X to Y, and depend continuously on ® and A. Due to the cubic nature of the
nonlinearity, derivatives of F' of order higher than two with respect to ® are independent of ®.

The differentiability properties of F' with respect to A follow from

LIt = L ALy = L Vol (4.10)
and due to i;l 1Y — X and Vp02 : X — Y, we see that the resulting operator on the right-hand side of (4.10)
is indeed a bounded linear map from ¥ — X. Moreover, (4.10) explains the formula for D3 , F(0,A) in (ii).

Finally, the formula in (i) shows that Dg F(0, A) is a compact perturbation of the identity, and hence Fredholm
of index zero. Let us compute the kernel of Dg F(0,\). If ¥ € X satisfies Dg F (0, \)¥ = 0 then according to
Lemma 4.3 we have that ¥ is a weak solution of L)W = 0. Then, for A # A, we have ¢, = 0 for all k€ N and
hence ¥ = 0. For A = A, we have 1, = 0 for all k£ € N\{k,} and vy, € span{¢*} so that ¥ e span{®*} as
claimed. Notice finally that DeF(0, Ay) = Id fE;;P* = Id —P* since range P* = span{®™*} is the eigenspace

of L« corresponding to the eigenvalue 1. This finishes the proof. (I

(4.9)

Remark 4.5. Let us briefly describe the difficulty that arises when one considers the bifurcation problem for
V(A y) = AV (y) with V =V, + V1, i.e., when multiplication with the bifurcation parameter is extended to the
distributional potential Vi. In this case one already obtains a problem in verifying the C!-property of the map
F. Formally one finds
DyF(®,)) = —L3'VO LT (D (y)(27)er — P*O).

As above, we would expect to have E;Waﬁi;l :Y — X as a bounded linear map. But this is not the case,
as a calculation in the case where Vp(y) = 1 and Vi(y) = ady(y) shows. Namely, let A = L' : Y — X and
B =V Then B: X — H-Y(T; H-*(R)) and C = Ly : range(B) — H*?(T; L*(R)) n HY?(T; H'(R)) ¢ X,
i.e., we are missing a half-derivative in the regularity gain.

The advantage of formulating the problem (4.1) as F(®,\) = 0 relies on the fact that its linearization about
® = 0 is of the form identity plus compact operator, which provides the Fredholm property for free. Applying
the Crandall-Rabinowitz theorem (cf. e.g. [5] or [11, Theorem 1.5.1]), we prove that assumption (L0)—(L3) on
the family of Schrédinger operators L’f\ are sufficient to guarantee the existence of nontrivial small-amplitude
solutions of (4.1) provided a certain transversality condition is satisfied, which we can formulate in terms of the
potential Vp, see (2.2).

Proof of Theorem 2.3. Recall from Lemma 4.4 that Dg F(0, \y) = Id —P* : X — X. Moreover, Dg F(0, Ay)
is a Fredholm operator of index zero with a one-dimensional kernel spanned by ®*. Correspondingly, we can
split the underlying space as follows:

X = span{®*} @ span{®*}112 = ker(Dg F (0, X)) @ range(Dg F(0, \y)).

Hence, according to the Crandall-Rabinowitz theorem, the existence of a local bifurcation branch of nontrivial
solutions (1.4) follows provided that the transversality condition

D2, F(0,\)®* ¢ range Dy F'(0, \y) = span{®*}* 2
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is satisfied. In view of i/;iq)* = ®* and the symmetry of INJL: (which follows from the self-adjointness of

L’§* , l~/’§*) the transversality condition holds since

(DF\F(0, X)) ®*, @* )2 (7xR) = <i§>:Vo‘I);FI,‘I)*>L2(TxR) = Vo@*,, ®*)2(rur) = —mk* Voo, d*)r2m) # 0

due to assumption (2.2) of the theorem.

Now, we are going to state the bifurcation formulas with the help of the Lyapunov—Schmidt reduction (cf. [11,
Theorem 1.2.3]). The Lyapunov-Schmidt reduction theorem in our context reads as follows:

Theorem 4.6 (Lyapunov—Schmidt reduction, [11], Theorem 1.2.3). Let F : X x I — X be a C*-map and
X = N@® Nte2 with N = span{®*} = ker Do F'(0,\s) and Ay € I. There ezists a neighborhood O x I' <
{(®,)\) e X x Ry} of the bifurcation point (0, Ay) such that the problem

F(®,\) =0 for (®,\)eOxTI
is equivalent to the finite-dimensional problem
n(e®@*,\) := P*F(e®* + ¢(e®*,\),\) =0 (4.11)

for functions ne C*(On x I',N), Y€ C°(Oy x I', N*12) where Ox < N is an open neighborhood of the zero
element in N. One has that

(0, A%) = ¥(0,Ax) = Dotp(0, Ax) = 0
and solving (4.11) provides a solution
O =@ + (¥, N)
of the infinite-dimensional problem F(®,\) = 0.
We have the following Fréchet derivatives:
Do F(®,\)0* = &* + L' (D(y)3(920*),, — P*®*),
Do F(®,N)[®*, %] = Ly* (D (y)62(2%)?)

DiaaF(2,N)[@*, @, 0] = L1 (F(y)6(*)?),, .

zx’

According to [11, Section 1.6], we have that
1D F(0,A4)[2*, ¥, @*)r2(1xR)

A0) =
( ) 2 <D<21>AF(07>\*)@*7(I)*>L2(TXR)

In view of F being cubic in @ it is clear that )\(0) = 0. In this case the second derivative is given by
_1<D%q><1>77(0a A ) [@F, ©F, DF], (I)*>L2(’]1‘><]R)
3 (DFAF(0, ) ®%, ®%) 127 ) '

Proposition 4.7. Let {(®(c),\(€)) | |e| < eo} © X x I, be the local bifurcation curve found in Theorem 2.3
corresponding to the bifurcation point (0, \y). Then

X(0) = (4.12)

37 R D) (0%)* (v) dy
2§ Vo(y)(6%)*(y) dy
Proof. As already mentioned, the cubic nonlinearity of F' implies already that )\(0) = 0. We are left to compute

the second derivative of A at the origin. According to the formula in (4.12) we need to compute the third
derivative of n with respect to ® evaluated at (0, A4). As for instance in [11, Eq. (1.6.5)] we obtain that

Dgpan(0,A4)[@*, ®%, @*] =P*Dgpq F(0, 14)[®*, ¥, &*] + 3P* D3 (0, As) [2*, D3o1(0, Ax ) [2, 2¥]].

MO)=0  and  X0) =

Again, since F is cubic in ®, we have that D24F(0,\s) = 0, whence
1{P*Di4qF (0, Ay)[D*, D, &*], &*)r2(r 1)

3 (DF\F(0, ) ®%*, ®%) 1274
1{D3gqF (0, As)[2*, @F, &¥], D) p2(7yr)

3 (D3 F (0, \s) ®%, &%) 2(1R) '

A0) =

We have that

<D§><I><I>F(Oa )‘*)[(I)*’ P, (I)*]a (I)*>L2('JT><R) = <l~;;>: (F(y)6((1)*)3) (I)*>L2(’]1‘><]R)-

zx’
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Using the symmetry of INJ)\* together with i/;iq)* = ®*, we obtain that
(D3aaF (0, \)[@F, 0%, @*], P*)r2(rxr) = 6{I'(y) ((@*)3)11 , Q¥ )2 (TxR) = *g”ki JRF(Q)(¢*)4(Z/) dy
and we know already that the denominator in )\(0) is given by

(D3\F(0, M) %, @*) 12 (ryr) = Vo (y) @, D*)p2(rr) = —k2 f Vo(y)(¢*)*(y) dy.
R

Summarizing, we conclude that
3 SR %) (y )dy
2 S]R VO ¢*) ( )

A0) =

5. EXAMPLES FOR REGULAR T

In what follows, we consider specific examples of potentials V' and prove Corollary 2.5 and Corollary 2.6, which
state the existence of traveling waves of (1.4) in the specific case when the potentials are given as in (P1),
(P2), respectively. Both Corollary 2.5 and Corollary 2.6 are immediate consequences of Theorem 2.3 and
Proposition 4.7, provided conditions (L0) — (L3) are satisfied.

Recall that V(A y) = AVy(y) + Vi(y) where in case (P1) we have Vy(y) = 1, Vi(y) = adp(y) and in case (P2)
we have Vo(y) = 1jy=p, Vi(y) = BLljy|<p + @do(y). The transversality condition (2.2) is trivially satisfied, since
in both cases V) = 0 and # 0. It is also clear that (L0) holds true. The beginning of this section will be valid
both for (P1) and (P2) since at the general level we may consider (P1) as a special case of (P2) with 5 = A. In
the subsequent subsections the considerations will split according to the two cases.

Let us consider the operator

d2
Ly .= e + k(1 = Ay — By )<p — ado(y))

with A\, 8 < 1. According to [4] the operator L% : D(L%) = L?(R) — L?(R) is self-adjoint on the domain
D(LY) = {p € H'(R) | ¢ € H*(—00,0) N H?(0,0), ¢/ (0+) — ¢/ (0-) = ~k*as(0)};

thereby (L1) is fulfilled. Moreover, oess(Li) = [k%(1 — X), 20) according to Lemma A.5. Next we consider the
point spectrum of Ly, i.e., the eigenvalue problem of finding ¢ € D(Lk) with L’§¢ = kQ;u,b where [i = k?u is the
actual eigenvalue. Settmg A=A+ w and B =0+ 1 the eigenvalue problem then reduces to

—¢" + E*(1 = Az — Bl )¢ = 0, y € (=0,0) U (0,0),
¢'(0+) — ¢'(0-) + k*ag(0) = 0
For reasons that will become obvious in the subsequent discussion we suppose p to be so small that A B < 1.

In Lemma A.6 in the Appendix we show that this problem is solvable (with a one-dimensional eigenspace) if
and only if

(5.1)

ko /1 — Bsinh(ky/1 — Bb) + /1 — Acosh(ky/1 Bb)

2\/1— \/1—Bcosh(k: 1—ﬁb)+ 1—)\smh(k 1—6())

Now we will split the discussion into subsections according to the cases (P1) and (P2), verifying (L2) and (L3)
separately.

(5.2)

5.1. (P1) V a é-potential on a positive background. Here we take V) = 1 and Vi = adp and V(\,y) =
A+ adp(y) with @ > 0 and A < 1. In the subsequent results of Lemma 5.1, Lemma 5.2 we verify that the family
of linear operators L} satisfies also the assumptions (L2) and (L3) in Theorem 2.3. Since (P1) is a special case
of (P2) with A = 8 we see that the eigenvalue condition (5.2) becomes

ko

21— )\

~1. (5.3)

This leads to the following lemma.
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Lemma 5.1. Let us fix a wavenumber ky € N and let Ay < 1. We determine o > 0 such that
24/1 — Ay
ks '

Then there exists an open interval Iy, < R containing Ay such that

o =

dimker L§* =1,
*
and ker LY = {0} for any (k,\) € N x I, with (k,\) # (kx, Ax).

Proof. Since we are considering the zero-eigenvalue of L’; we have y = 0 and A=A Together with our choice
of « the eigenvalue condition (5.3) becomes

ko _v1ZA
ke V1=
Recall that k € N is integer valued. Therefore, choosing a sufficiently small interval I, < (—o0, 1) that contains

Ax the eigenvalue condition is satisfied for A € Iy, and k € N if and only if A = A and k = ky. Moreover, for
k = k4 and A = )\, the eigenspace is one-dimensional. O

It is clear that kernel of Li:‘; is spanned by the L?(R)-unitary element

6 (1) = ke v/ T~ A/ T0el

since Li:qﬁ* = 0 in R\{0} and it satisfies ¢*'(0+) — ¢*'(0—) + ak2¢*(0) = 0. The above lemma ensures
that assumption (L2) is satisfied. The following lemma concerns the spectral properties of L’; and shows that
assumption (L3) holds true.

Lemma 5.2. There exists an open interval Iy, < R containing Ay such that the following holds for all k > 3k,
and all € I, : if Lk¢ = f for some f € L*(R), then

Blem S 5l ond 16w S p1flee.
In particular, there exists a constant ¢ = c(k«, |I,|), depending on ky and the size of the interval I, , such that
(—ck? ck?) < p(LY)  for every k = 3ky, A€ L,.
Proof. We show that for any A < 1 we have

1
150132y 25 (16" 13500y + 16" 30,

16(Ae — A
) L

which proves the assertion. We have that

2.2
kio

2
. A) P

k 2 _ 0 k 2 * k 2
I —f (hoydy+ [ (Lhe)? dy.
—00 0

For the first integral on the right hand side, we compute
0 0
| @whoray= [ o ra-nora
—o0 —o0

0
= [ 1P 2= N6 4 (- 2P dy
—o0
= 0”22 (0,0 + 2k%(1 = ¢ |22 (—p,0) + E* (1 = N)?[0]72(—o0.0) = 2K*(1 = M) (0-)(0),
where we used integration by parts. Similarly, we obtain that
Q0
fo (LX0)* dy = 16" 220,00) + 2k (1 = M6 720,00y + K1 (1 = N)?16]72(0,00) + 2K (1 = X)¢' (01)(0).

Taking the sum of the two integrals and using for ¢ € D(L) that
¢(04) — ¢/(0-) = —k%ag(0)
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we find that

13012 =" 1Z2(—c00) + 16" [Z2(0,00) + 262 (1 = M@ Z2m) + K (1 = 2)?[9]72(r)

2 5.5
= 20-0 (#04) - #0)". o

A simple computation together with Young’s inequality implies that
*© 1
6008 <2 [ 169 dy < (<16 ) + 16 o0
for any € > 0. A similar estimate holds for |¢/(0_)|>. Therefore
2
[0/(04) = ¢/ (0-)|" < 2 (¢ (04)]* + |¢/(0-)[%)
1 1
<2 (416 Bage) + 210 amon + 116 oy )

Inserting the latter into (5.5) yields

41— N\)
HL§¢H%2(R) = <1 - T) (H(b//”%?(—oo,o) + H(b”H%Z(O,oo))
2¢e
+2(1 = A)(k* - E)H(b/H%?(R) +E (1= A6l 72 m)-
The choice £ = 3(1 — \) = 2ak2 + 222 implies the claim. O

Collecting Lemma 5.1 and Lemma 5.2, we infer that there exists an open interval Iy, < Ry containing A4 such
that conditions (L0)—(L3) are satisfied, which concludes the proof of Corollary 2.5. The formulas for A(0) and

A(0) follow directly from Proposition 4.7.

5.2. (P2) V a é-potential on a step background. Here we take Vo(y) = 1jy=s, Vi(y) = BLjyj<p + @do(y)
and V(A y) = My = + B1jy)<p + ado(y) with a > 0, 8, A < 1. The subsequent two results verify that the family
of linear operators L satisfies also the assumptions (L2) and (L3) in Theorem 2.3. They are the counterparts
to Lemma 5.1 and Lemma 5.2.

Lemma 5.3. Let us fiz a wavenumber ky € N and let Ay < 1. We determine o > 0 such that

kxoao /1= Bsinh(ksy/1— Bb) + /T = Xy cosh(ky/1 — Bb) (5.6)

2VT—5  /T— Beosh(kuy/I— Bb) + v/T— Agsinh(ksy/T — 5b)

Then there exists an open interval Iy, < R containing Ay such that

dimkerLI;\* =1,
*
and ker LY = {0} for any (k,\) € N x I, with (k,\) # (kx, Ax).

Proof. As before we are considering the zero-eigenvalue of L’f\. Hence we have 4 = 0 and A= A, B = (. Then
(5.6) amounts to Lf\:’; having a simple zero eigenvalue, cf. Lemma A.6. It remains to show that for no other
value of X € I, and k € N there is a zero eigenvalue of L§. First note that for A in a bounded interval of (—0, 1)
there are only finitely many values of k € {1, ..., K} which potentially also fulfill (5.6) since the right-hand side
is bounded in k and the left-hand side tends to infinity as k — c0. Now we observe (by a standard calculation)
that for fixed A = Ay, the right-hand side of (5.6) divided by k is monotone decreasing in k. Hence, for given
Ax no other value of k € {1,..., K} than k, fulfills (5.6). Finally, since k € {1,..., K} needs to be integer
valued, we can find a sufficiently small open interval I, < (—c0,1) containing Ay such that (5.6) is fulfilled for
(A k) € In, x Nif and only if (A, k) = (g, ks ). O

Lemma 5.4. There ewists an open interval Iy, < R containing Ay« such that the following holds for all suffi-
ciently large k € N and all N € I, : if L5¢ = f for some f € L*(R), then

1 1
[0l2@) < 5 fl2y  and 19 L2r) < 2l (5.7)
In particular, there exists a constant ¢ = c(ks, |I,|), depending on ky and the size of the interval I, , such that

(—ck?,ck?) < p(L%)  for every k sufficiently large, \ € I,.
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Proof. The proof consists of two parts. First we determine an interval (—ck?, ck?) < p(L%) for all A € I, and
all sufficiently large k. This implies the first part of the estimate in (5.7). In the second part of the proof we
will show the remaining part of (5.7).

Part 1: Recall that o.ss(L%) = [k*(1—\), o0), which is consistent with the desired result provided we choose I,
in such a way that it has a positive distance from 1. Subject to this observation we take the bounded interval
I, from Lemma 5.3 and diminish it in the following if necessary. Notice that (5.2) describes all eigenvalues of
L§ of the form fi = k?u, where 4 is so small that SUPjer,, {5\ =A+pu} <1and B =08+ u < 1. Now observe
that uniformly for A € I, and p € [—po, po] for small 19 > 0 the left-hand side of (5.2) tends to oo as k — o0
whereas the right-hand side stays bounded in k. Therefore the set [—uok?, iok?] belongs to the resolvent of L’§
for all A € I, and all sufficiently large k.

Part 2: We need to distinguish the operator L% = —j—;z + k%(1 — XA — adyp) of case (P1) from its counterpart in

(P2). Within this part of the proof let us denote it by Lli,,@ = fj—; +k%2(1— ALz — Bljyj<p — @dp). Using

Part 1 we find
1 1

— g —
dist(0, 0 (L 5) ~ k2

Therefore, with f € L*(R) and ¢ as in the hypothesis of the lemma, we get |¢]2(r) < 75| f]|12(r)- The estimate
for |¢||2(r) is obtained as follows. We have

LY 30 = Lo + K> (=B + N1y <0 = f

I(LX 8) " pmre <

from which we deduce by using [[(L%) |2 < ¢ for k& » 1 from Lemma 5.2
o4 lr2m) < H(Lk “Heemm | f — K (=B +A) Ly 1<6®l L2 m) < (HfHLZ(R) + k2”¢”L2(R) HfHL2(R)
where in the last step we have used the result from Part 1. The ﬁmshes the proof of the lemma. (I

Due to Lemma 5.3 and Lemma 5.4 conditions (L0)—(L3) are satisfied. This concludes the proof of Corollary 2.6.

6. EXISTENCE OF TRAVELING WAVES WHEN I' IS A DELTA POTENTIAL

Subject of this section is the proof of Theorem 2.10 when I' = vdy is given by a multiple of a delta potential
and
V(A y) = AVoly) + W(y) + ado(y),
_

=Vi(y)
where Vy, W € L*(R) are even. The equation for traveling wave solutions (1.4) is then given by
— P, — (1 =2V (y) = W(y) — ado(y))Psz + Y00(y) (@3)m =0 (6.1)

and can be written as a linear partial differential equation on T x R\{0} equipped with a nonlinear boundary
condition on T:

—®yy — (1= AVy = W(y))Pou = 0, (z,y) € T x R\{0}, (6.2)
@y (2,04) — ®y(z,0-) = 07 (a® + v@%) (,0), reT. (6.3)
In what follows let us assume that ® is even with respect to y. We seek for solutions ® of the form
O(z,y) = Y. ardr(y; \) sin(kz), (6.4)
keN
where ¢ (;\) € HY(R) n H?(R\{0}) is an evenly extended solution to the linear problem
L3 1 0k(y;A) =0 on (0,00) with ¢ (0;A) = 1 (6.5)
and
A d?

O + k(1= MVo(y) — W(y)).

Thus ansatz (6.4) already solves (6.2) and its remains to determine a = (ay)ren such that (6.3) is also satisfied.
It will be convenient to parameterize the sequence (ay) over Z instead of N by setting a;, = —a_. In this way
®(z,y) = 2 Dczp andr(y; A) sin(kz). Here we have defined ¢_j(;; ) := ¢x(:;A) for k € N. Then, we shall see

that for s > g the existence of a traveling wave solution ® in the space

X, = H5(T; L*(R)) n H*~Y(T; H*(R)) n C(R;HS*%(’]I‘)) A Cl(R;HS*%(T))
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follows from the existence of a sequence a € hj (R) satisfying the boundary condition
2010}, (045 \) = —k? (aak - %(a * Q@ * a)k) for all keN. (6.6)

Recall that the k-th Fourier coefficient of ®3(x,0) is given by —%(a * a * a)j, (cf. Lemma A.1). Notics that for

s = g we have the embedding

X5 X = H¥(T; L*(R)) n HY(T; H'(R)) n C(R; H*(T)) n C*(R; H*(T)).

As in the previous section we aim to apply bifurcation theory with respect to the the parameter A to obtain the
existence of nontrivial solutions a € h{(R) of (6.6) for s > 5 by the Crandall-Rabinowitz theorem. Recall that

this time we are working under the the assumptions (L0)-(L3) from Theorem 2.10.

Remark 6.1. Existence and properties of the decaying solutions ¢y (-; \) of (6.5):

(i) Due to (L1) the problem L§ x¢r = 1[—2,—1) on R has a unique H?(R) solution. Its restriction to [0,0)
satisfies (6.5). The fact that ¢ (y; \) — 0 exponentially as y — oo can be seen as follows: Since Lé,k
is a self-adjoint operator with 0 € p(Lg‘ﬁk) and the resolvent set is open in C there exists ¢ » > 0 such
that (—cga, crn) C P(L(A),k)- Set x(y; A) := Yy (y; ). Then

LY etk (i N) + Bt (y; \) = €Y1 o _qj, (6.7)

where By = 26k d%w + 621. One can show that By is L()\J;bounded in the sense that there exist
ak,br > 0 such that

| Bet 72y < anl®l 7z + 0kl Lo stl7e@ — forall o e H*(R).

In fact, if b, > 0 is fixed, then ay := 2% 4 852421 — AVp — W, + 265 For fixed by € (0,1) let us
choose ¢ > 0 so small that

2 2 2 2
ay, + bkckﬁA < Cpa-

Then (—=éx,x, k,n) + iR < p(Lyy, + Bi), where ¢\ = ¢x — y/ap + bpcq , cf. [6, Theorem 2.1 (ii)|. In
particular, 0 € p(LS",c + B) so that there exists a unique solution 1, € H(R) of (6.7). The boundedness
of ¢y, then implies that ¢y (y; \)| < e~%*¥ decays exponentially on the half-line [0, 0). This result is also
known as “exponential dichotomy”. Assumption (i3) may be interpreted as some kind of generalized
uniform exponential dichotomy with respect to k € Nand A e I,.

(ii) In the specific examples (P1) and (P2) which we consider at the end of this section, the family of
ansatz-functions (¢ (-; \))ken satisfies a true uniform exponential dichotomy with respect to k& € N and
A € I,,; that is, there exists C,0 > 0 independent of k € N and A € I, such that |¢p(y; \)| < Ce=0v
for all y = 0. This leads to an exponential decay in y-direction of the traveling solution ® of (1.4) and
in particular it implies (L3).

(iii) Notice also that ¢y (0;A) # 0, since otherwise (by an odd reflection around zero) we would obtain an
eigenfunction of Lg‘ﬁ i for the eigenvalue 0. This is excluded by assumption (il) Likewise we see that
@1.(0; A) # 0 (using an even reflection around zero).

Remark 6.2. If V5, W are bounded, even functions and there exists v > 0 such that
1-AVo(y) —W(y) =7 for all Ae I,y € R,
then assumption (EO), (il), and (i3) are satisfied. Clearly, if 1 — A\Vy — W > o, then Lé,k is a self-adjoint
operator with O’(Lak) c [k?v,00); thus 0 € P(L(A),k) and (L1) is satisfied. As explained in Remark 6.1 (i),
condition (L1) implies the existence of a solution ¢y (-, \) € H2(0,0) with
— G+ R (1= AVo(y) = W(y)éx =0 on (0,0) (6.8)
and ¢, (0; \) = 1. Multiplying (6.8) with ¢, and integrating over the half line (0, 0), we obtain that

—¢2(0+;A>=L |¢;|2dy+k2f0 (1= AVo — W42 dy. (6.9)
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On the other hand, multiplying (6.8) with ¢} and integrating over (0, c0) yields

0

(6204 0) = — 2 f (1= AVo = W)(62)' d

0

0
- f2kf k/1 — A\Vy — Wondin/1 — AVo — W dy
0

o0 o0
< KT ATy =W (f 64 dy + kf (1= AV — W)g2 dy)
=~k T=AVo = W0} (045 V),

where we used relation (6.9) in the last equality. We deduce that ¢'(04; ) < 0 and
165045 M| < BIV1 = AV) = Wlee. (6.10)
Estimating the L?-norm of ¢y (-; ), we obtain that
o 1, = o _ L (7 2 L 1
Jou: NI = IVEORCN < 3 [ (L= Ao = W)k dy < 160 N] < V= AVo — W

where we used (6.9) and (6.10). In particular, we find that |¢y(; A)|2 < 1 as claimed in (L3).

For s = 0 denote the linearization of (6.6) around a = 0 by
A hi(R) © hi72(R) — by %(R), (Axa)y := Akay, for k e Z,
where
A% = 2¢5 (045 \) + k2a for k € Z.
Then (6.6) can be written as

k2
Axa —n(a) =0, where n(a)g = T(a*a*a)k. (6.11)
For m € Z let us denote by e € lﬁ2 (R) the sequence, which satisfies e]* = 0 for k # +m and e = —e™ = %

Lemma 6.3. Assume (L0)~(L3). Then
lbn (5 Ml e () S k2, I6% (s M2y Sk [0k M) ey S k3 (6.12)
uniformly for X € Ix, . In particular, |¢},(0; \)] < k|2 and consequently AY = ak? + O(k2) as k — +oo.
Proof. By a result of Komornik, cf. [13], the estimate
lullo < Clulz

holds true for every solution u of —u” + ¢(y)u = 0 on (a,b) with the constant C' = max{G lall 21 (a,b)s %}
We apply this result to the solutions ¢y (-; ) of (6.5) with ¢ = k*(1 — AVo — W), a = 0 and b = a + ¢ with

c:=2(y/|1 = A\Vo — W|xk)~!. Then

12
6\/ H‘IHLI(GJ)) < Gk\/Hl —AVo — WHOO\@ = 6\/5\/E</|‘1 — Ao =Wl = \/ﬁ
and thus for a constant C' only depending on |1 —AVy — W | we have |éx(-; Mz (ap) < kzCr(; Mz2(ap <
kz by (L3). Since a > 0 was arbitrary we obtain the first part of (6.12).

Multiplying (6.5) with u, v’ and integrating from a > 0 to c© we get
[ 4200 = XVo(0) = W)kl 07 + 607 dy = —nas V05, (6.13)

Q0
[ 2820 = X0 = W )00 M5 X) dy = 64 a0 (6.14)
respectively. Using (L3) and applying the Cauchy-Schwarz inequality to (6.14) we find
165 (s M7 < K265 M 20,00 (6.15)
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and from (6.13), (6.15) we get
6% (5 720,00y S K% + 1085 A 2o 0,00 19 (5 M) |22 (0,00)
S K2+ 110105 M e 0,000 K19 (5 M 220,00

The L®—estimate from the first part of the lemma leads to
3 1
165 (s 720,00y 52+ 52 [0k (3 M) 22000y < B2+ Cek® + €0 (5 M) 72(0,00)

where we have used Young’s inequality with exponents 4/3 and 4. This implies the second inequality in (6.12).
Inserting this into (6.15) we obtain the third inequality in (6.12). O

Lemma 6.4. Assume (LO)~(L3) and let s > 0. Then the operator Ay : hi(R) < hg_Q(R) — hg_Q(R) is
self-adjoint. Its spectrum is discrete and consist of the values (A%)ren. Moreover ker Ay, = span{e**} and
ker Ay = {0} for A e Iy, \{\«}.

Proof. Due to Lemma 6.3 and since ¢_i = ¢y, for all k € Z one can verify that Ay : hf(R) = h§*2(R) - hng(R)
acting like an infinite dimensional diagonal matrix is self-adjoint. Using the characterization of the spectrum
via Weyl-sequences one sees that Ay has the spectrum o(Ay) = clos{Af : k € N}. Due to Lemma 6.3 the set
{A% : k € N} is discrete and hence o(A%) consists of the set of eigenvalues {A4% : k € N}. Finally, let us determine
the kernel of Ay. On the one hand, a € ker A, if and only if there exists k € N such that A’; = 0, and in this
case a = e¥ (here we use that A} = A;k). On the other hand, using the characterization of the domain of L7
from Section 5.1 we know that Ly¢ = 0 if and only if ¢(z) = ¢ (|z]; A) and A5 = 0. Thus, bringing both facts
together and using assumption (L2) we obtain the final claim of the lemma. O

Similarly as in (4.3) we define the operator
/i,\ = Ay + P*,

where P*a = ay, ehx .

Lemma 6.5. Assume (L0)~(L3) and s = 0. Then we have that 0 € p(Ay) for all X € I, and hence A" :
hg_Q(R) — hi(R) is a bounded linear operator. Moreover, if f € hi(R), s > 5 is given and a € hi(R) solves
a= AN (—yM(f) + P*a) where  M(f)r := k> fx (6.16)
then ®(x,y) := > ey akPk (x5 A) sin(kx) satisfies ® € X and solves
LA® + v00(y)Fpe =0
for F(x,y) = Yoy fedr(y; A) sin(kz) in the weak sense, i.e.,
f f O,V — (1= AVo(y) — W(y)) @V dydx + J (a®uy(z,0) + YFpe(2,0))¥(2,0)dz =0
T Jr T
for any ¥ e HY(T; H'(R)).
Proof. Lemma 6.4 says that ker Ay, = span{e**} and ker Ay = {0} for any A € I,,\{\«}. We need to show
that 0 € p(Ay) for any X € Iy, Let be hi~?(R) be arbitrary, then Axa = b if and only if
Akak = by, if k# kg,
AAak—i-ak = by, if k =k,

which is equivalent to
1

1
— _bk = bk .
A% oA T
Due to Lemma 6.3 we obtain that for any b € hg_Q(R) the sequence a defined by (6.17) belongs to hj(R) and

solve Aya = b; whence 0 € p(A5).
Now suppose that f € hi(R) with s > 5 and that a € h;(R) solves (6.16). The regularity of @ follows from
Lemma A.3. Moreover, (Axa)r = —vk?fr and hence

2¢;€(0+, )\)ak + akQak = 7’)’]62‘]0]6. (618)

if k # ky and ak

(6.17)

3

Using that
L§ xér = 0 on R\{0} for all k € N,
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we deduce by testing with ax, € H'(R) and summing for 1 < k < Ky that

Ko
0= 3% [ axdheth + K1 = Walw) = W) bwr dy + ouéh 02 ) = 6,(0-5 )i 0)
k=1

Since ¢y (; A) is even with respect to y we obtain by (6.18)

Ko
0=, [ andhos + K(1 = AVa(y) — W ()nti dy — aban $u(0:2) 1(0) = 1K Fe (0).
Taking the limit Ky — o0 in the previous equation will lead to

0— f f By, — (1= AVo(y) — W (y)) Bp W + f (B (2, 0) + Y Fou(x,0)) T (x, 0) da
T JR T

for any ¥ e HY(T; H*(R)) due to the following estimates:
[ [ 12swlavas < 3 lawsiliace il o < 1@1 o 1912

T JR keN

< Cllallpr @) 1Y 22 (r, 21 ()
[ ] 160 Mot0) = W) 0ol dy o < 3 10— Ao = W 2ol 2o
keN

< 1= AVo = Wzom)l @l 2 (r, L2®)) [V 22 (T, 22(R))
< Cllalpz @) Yl L2 (r, L2 (R))

L @0z (2,0)¥ (2, 0)[ dz < sup [ @z (- y)| L2y [ (- 9) | 2T
y

< @] e,z ¥l e, L2ery)
<

Cllal, 5 ®) 1Yl ®,L2(T))
[ 1Fee@, 0@ 00l do < 151, 5 Wi 2ocoy

together with the continuous embeddings H'(T; H'(R)) < L*(T; H'(R)) n C(R; L*(T)) and h$(R) = h;*(R) <
hi(R) < h}(R) since s > s O

In the same spirit as in Section 4, let us reformulate our problem (6.11) in a way suitable for applying the
Crandall-Rabinowitz theorem. Using the above lemma, equation (6.11) is equivalent to

G(a,\) =0,
where the function G : hf(R) x I, — hi(R), s > 5, is defined by

G(a,)\):=a+/~1;1<71M(a*a*a)fP*a) and  M(f)s =K fi for fehi(R). (6.19)

Remark 6.6. Notice that hf(R), s > 1 is a Banach algebra, cf. Lemma A.4. Thus, for a € h(R) the
nonlinearity a = a * a stays in hj(R) and M(a*a+a) € th2 (R). Hence, in order to control the nonlinearity in
G(a, \), it is necessary that A3 is a bounded operator from hg‘Q(R) to hj(R). Otherwise, assume that we would
only have that 121;1 is bounded from h§72(R) to hgl (R) where s’ < s, then the mapping G is merely bounded from
hi(R) x Iy — h§/ (R). In this case, the Fréchet derivative has the property that D,G(0, ) : hi(R) — hg(R) (cf.
Lemma 6.7(ii) below) but is no longer a Fredholm operator from A (R) — hgl (R) since the co-dimension of its

image is infinite. The Fredholm property at A = A, however, is important for applying the Crandall-Rabinowitz
theorem for bifurcation.

The following lemma provides the necessary preparations to apply bifurcation theory to G(a, A) = 0.

Lemma 6.7. Let s > 2. The map G : hi(R) x I, — hi(R) is a C*-map. Moreover the following holds:

(i) The function ¢y is continuously differentiable with respect to A and i (y; \) := Oxgr(y; \) satisfies
Ly wtk = K*Vo(y)dn on (0,00), 1 (0; ) =0 (6.20)
and P}, (0;\) = k2§ Vooi dy = O(K?).
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(ii) The linearization of G about a = 0, given by
D.G(0,\) = 1d—A'P* : hi(R) — hi(R)

is a Fredholm operator of index zero. Its kernel is trivial for A € I, , X # Ay and it is given by span{eFx}
if A=Ay
(iii) The mixed second derivative of G about a = 0 is given by

D2\G(0,)) = AJ'BAT'P* : hi(R) — hi**(R) < hi(R),
where B : h§+2(R) — hi(R) is the pointwise multiplication with 21 (0; A).

Proof. (i) We are only interested in ¢5(-,A) = dx¢x(+,A) on [0,00). To find ¢,(-,A) we differentiate Lg , ¢ =
0 on (0,2), ¢x(0;A) = 1 with respect to A € I, and obtain (6.20). If we define Q¢r(-,A) : R — R as
the odd extension around y = 0 of ¢ (-, A) : (0,00) — R then we see that ¥ (-, \) is given by ¥i(-,A) =
(L()\k)_l(kQVOQ(bk(-, M))ljo,00)- Testing the differential equation in (6.20) with ¢5 and noting that Lé‘,kqﬁk =0 on
(0,00) we find

(LY n, Dy 2 (0,0) = (ke + Vrdl)|g + (Prs L xBrd2(0,00) = Yk (045 A) = O(K?),

as claimed, in view of (L ¢k, k) 12(0,00) = SSO k2Vo¢3 dy = O(k?) because Vy € L*(R) and (L3).
(ii) The mapping properties of G follow from Remark 6.6. The differentiability of the cubic nonlinearity a*a+*a
with respect to a is also a straightforward property of the Banach algebra property of h§ (R). The differentiability
property of G with respect to A follows from differentiability of A — ¢}.(04+; A) as given in (i). As in Lemma 4.4
the Fredholm property of D,(G(0,)\)) is satisfied since it is a compact perturbation of the identity and the
characterization of the kernel of can be seen in a similar way using Lemma 6.4.

(iii) Note that d%fl’f\ = d%A’f\ = 2¢,.(0; \). Since 1}, (0; ) = O(k?) by (i) we have the mapping property
B:hi"2(R) — hi(R).

O

We are now in a position to apply the Crandall-Rabinowitz theorem for G(a, A) : hi(R) x I, — X for s > 5
in order to proof Theorem 2.10 provided that the transversality condition in (2.6) is satisfied.

Proof of Theorem 2.10. The existence result follows from the Crandall-Rabinowitz theorem applied to
G(a,\) = 0. Successfully applied, it provides an interval Iy, < R containing A4, and a smooth curve through
(0, Ax) of the form
{(a(e), A(€)) | [e] <eo} = h*(R) x Iy,

of nontrivial solutions of (6.11) with A(0) = Ay and D.a(0) = e**. The curve (a(¢),A(¢)) < h*(R) x I, then
translates via ®(e)(z,y) = Yoy @k (€)@k(y; A) sin(kz) and by Lemma 6.5 into the curve {(®(e), A(¢)) | |e] <
g0} © Xs x I , of nontrivial solutions of (6.1) with the stated property. The Crandall-Rabinowitz theorem
requires that the linearization

DaG(0, M) = Id — AT P* : hi(R) — hi(R)
is a Fredholm operator of index zero with dimker D,G(0, Ax) = 1 and the transversality condition
D2,G(0, A\ )ef* ¢ range D, G(0, \y) (6.21)

is satisfied. The Fredholm property is already shown in Lemma 6.7 (ii) and the kernel of D,G(0, \y) is one
dimensional and spanned by e** . that is

ker D,G(0,ws) = span{e*}.
Concerning the transversality condition (6.21), assume on the contrary that there exists b € h®*(R) such that
D2,G(0, \y)ef* = D,G(0, Ay )b.

Then,
(D2,G(0, As)eF*, 5 )2 gy = (D G(0, A )b, €7 Yo ().

Using the formulas from Lemma 6.7 (ii) and (iii) and the fact that fl;iP* = P* together with the symmetry
of A;i we obtain that
21/};6* (0, )‘*) = <Bek* ) ek* >l2 = <D3AG(05 A*)ek* ) ek* >l2 (R) = <DGG(05 A>l<)ba ek* >l2(]R)

6.22
=<b7P*b,€k*>lz(]R) =0. ( )
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But due to Lemma 6.7 (i) this is a contradiction to (2.6).

Similarly as in the previous section, we determine the bifurcation formulas. The Fréchet derivatives of G with
respect to a are given by

DoG(a, \)eF* = eFx — AT <§7M(a waeh*) 4+ ek*>

4
3 -
DZ,G(a, \)[e"*, €] = 75'714;1 (M (a = ek« ek*))
DgaaG(a’a )‘) [ek* ’ ek* ) ek*] = _;’YA;1 (M(ek* * €k* * ek* ))

where M is defined as in (6.19).

Proposition 6.8. Let {(a(e),w(e)) | [e] < eo} < h*(R)x Iz, be the local bifurcation curve found in Theorem 2.10
corresponding to the bifurcation point (0, \y). Then

. . 3

Proof. The proof follows essentially the lines of the proof of Proposition 4.7. We obtain that )\(0) = 0, which is
due to the cubic character of the nonlinearity and

_1{D3aG 0, A ) [, b, ehs], ehx)

AO0) = =3 (D2, G0, Ay )eFs, eFxy

Due to Lemma 6.7 (i) and (6.22) the denominator is given by

o0
(D2,G(0, A )b, b — 2[ K2V ()2, dy,
0

and the numerator reads

<D2aaG(0, /\*)[ek*,ek*,ek*], ek*> = —g’yki(ek* * eFE 4 ek*)k*.

Since (eF# % ek % eF*);, = —3, as shown in Lemma A.2, the statement follows. (]

*

7. EXAMPLES FOR DISTRIBUTIONAL I’

In what follows we prove Corollary 2.13 and Corollary 2.14, which state the existence of traveling waves for
(1.4) in the specific cases, when the potentials are given as in (P1) and (P2), respectively.

7.1. (P1) V a j-potential on a positive background. We consider the particular case when Vo =1, W =0
so that we have a positive constant background potential with a multiple of a delta potential on top, i.e.,

V(A y) =X+ ado(y).

We verify the conditions (L0) — (L3) of Theorem 2.10; thereby proving part one of Corollary 2.13. Let us fix a
wavenumber k. € N and a value Ay < 1. We determine o > 0 from

2T,

a = »

Notice that the transversality condition and (L0) are trivially satisfied. Moreover, the validity of (L1) and (L3)
follow immediately from Remark 6.2, since 1 — AVo — W = 1 — X > 0. Condition (L2) is exactly the same as
(L2) since our operator L% is the same as the one considered in Corollary 2.5 of Case (P1). Since the choice of
a, Ky, Ay is the same as in Corollary 2.5 condition (l~/1) holds and we are finished with treating this example.
Now, Corollary 2.13 follows from Theorem 2.10 and the bifurcation formulas are an immediate consequence of
Proposition 6.8.
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7.2. (P2) V a é-potential on a step background. Now, we consider the case when Vj = Lyiz6, W= B1y1<p
for some b > 0 so that the potential V is given by

V(A Y) = ALy iz + Bl <p + @do(y),

Again we verify the conditions (EO) — (f,3) of Theorem 2.10; thereby proving Corollary 2.14. First we fix a
wavenumber ky € N and a value Ay < 1. According to Corollary 2.14 we have to distinguish between the case
B <1, >1,and 8 = 1. Notice that the transversality condition and (L0) are trivially satisfied for all 8 € R.

Let us begin with the case 8 < 1. The validity of (L1) and (L3) follow immediately from Remark 6.2, since
L=AVo =W = (1=XN1y5p + (1 — B1ly<p) > 0. It remains to consider (L2). But again the operator L} is the
same as the one considered in Corollary 2.5 of Case (P1) and the choice of a in Corollary 2.14 is exactly the
same as in Corollary 2.6 of Case (P1). Hence (L1) holds and this example is complete.

Next we consider the case 5 > 1. Here we have made the choices

VB—=1b=m
2V =)

a= ™
We are left to verify (L1)—(L3) of Theorem 2.10. For (L1) we need to consider the operator Ly =— j—:z +k2(1—
Ay — Blyy<p) : H*(R) — L?(R) which is self-adjoint with e (L ) < [k*(1 — X),00). Thus 0 € p(L ) if
and only if L’g)\qﬁ = 0 for some ¢ € H?(R) implies that ¢ = 0. In other words: we need to rule out that L’g)\ has
a zero eigenvalue. This can be seen from Lemma A.6 in the Appendix if we set & = 0 (no delta potential in the
equation) and = 0, i.e., A = X and 8 = 3. Moreover, we need to make the obvious changes v/1 — 8 = iv/B — 1

and sinh(iz) = isin(z), cosh(iz) = cos(z). Following the ansatz (A.1) for the eigenfunction we obtain ¢y = dp
and ¢; = d; due to the C'-matching at = 0. Moreover, the choice of v/3 — 1b = 7 results in the invertible

and

matrices
0 7671@\/17%
My = ~ _ -
: 1= B—1)F £/1 = de kY100
Hence the conclusion ¢; = —d; from Lemma A.6 holds and leads to ¢; = di = 0. An inspection of the C'-

compatibility at y = +b then yields co = d2 = ¢g = dyp = 0. Therefore, there is no zero-eigenvalue of L’g’ 5 for
any k€ N and any X € (—o0,1) and (1) holds.
Concerning (LQ) we need to study a zero-eigenvalue of L’§. The answer is again given by Lemma A.6 in the

Appendix since we already know the invertibility of the matrices My. Hence the eigenvalue condition is given
by (5.2) with the obvious changes from the hyperbolic functions to the trigonometric function and reads

ko —+/B—1sin(ky/B —1b) + V1 — Xcos(ky/5 — 1b)
VB—1  B—=Tcos(ky/B —1b) + V1 — Asin(k/B — 1b)
In view of v/ — 1b = 7 this reduces to

24/1— X

k
and hence L} has a zero-eigenvalue if and only if k = k, and A = \,. Thus (L2) holds. Finally, in order to
verify (L3), we compute the function ¢ which solve LE¢r =0 on (0,00) with ¢4(0) = 1. From Lemma A.6 we

obtain

¢k (yv )\) = COS(IC \% /3 - ly) + ic1 Sin(k \% /3 - 1y)7 yE [07 b]7

P (Y, \) = coe™MVITAY, y=b
with ¢ = T\/—Vﬁl:f‘ and ¢y = kv 1_)‘b(—l)k. Computing the L?-norm of ¢, we find that

b 2 o)
VAED Ry
J (cos(k«/ﬁ — ly) — ——=sin(k+/58 — 1y)> dy + J e2VI=A=Y) gy
0 VB -1 b
1 1/1-2X 1

———t - (——+1)b<C(1+ |,
2kv/1— A Q(ﬁ—l ) ( k:)
where the constant C' > 0 is independent of k£ and can be chosen uniformly for A sufficiently close to Ax. This
shows the validity of (L3).

o =

1
S0 ) B
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The last case to be considered is 8 = 1. Also here, we are left to verify conditions (L1), (L2), and (L3). First
we find that in this case with A = A and § = 8 = 1 condition (5.2) is replaced by

ko VIZA (7.1)

2 14++1-Xkb
which follows from a suitable adaptation of Lemma A.6. A zero eigenvalue of L’g’ y correspond to values k, A

satisfying (7.1) with o = 0 which is impossible. Since oess(L§ ) = [F*(1 — A), 0) this shows that (L1) holds. If
we recall the definition of «;, i.e.,
2T =N,

T Ten(1+ /T Aeksb)

and compare with the 0-eigenvalue condition (7.1) we see that this ensures that 0 is a (simple) eigenvalue of
L% if and only if A = Ay and k = ky. Hence, (L2) holds. To see (L3) we compute (also with the help of an
adaptation of Lemma A.6) that the functions ¢y solving L5¢y = 0 on (0, 00) with ¢ (0) = 1 are given by

(bk(ya)‘) =1+ 1y, Yy E [O)b]a
Pk (y, ) = cae™VITAY, y=b

. —/1= k«/ —Ab
with ¢; = ﬁ and ¢y = =7 From this we directly calculate that | Pw (-, )HQLQ(R) =0(1) ask — o

uniformly for \ sufficiently close to Ay. Hence, (L3) holds.
Now, Corollary 2.14 follows from Theorem 2.10.

APPENDIX A. AUXILIARY RESULTS
Lemma A.1. Let A(xz) = Y, arsin(kz), then
1
Ad(z) = —= 2 (a*a=*a)sin(kx),
4 keN

where a = (ay)kez 1S an infinite sequence with ar, = —a—y, for all k € Z. The notation (a * a * a)i s used to
denote the k-th entry in the sequence obtained by convolution a * a * a.

Proof. If a is a sequence as above then using ay = —a_yj, for all k£ we find that
Z (—51%) Z —ay, sin(kx) 2 ay sin(kx) = A(x),
keZ keZ keN

and

1 .
A3(x) = 2 Zi(a * a % a)pelt”.
8
keZ
We are going to show that the Fourier coefficients (a # a # a); are odd with respect to k. Notice first that

(a*a*ak—z <Zak - lcu) aj.

JEZ \IeZ

We also have that

(axa*a)_p = Z <Z akjlal> a; = — Z <Z ak+j+lal> a;

JEZ \IEZ JEZ \IeZ
= — 2 (2 akjlal> a_; = — Z (2 akjlal) a; = —(a*ax*a).
jez \IeZ jez \IeZ
From this we deduce that
1 .
A3(x) = 2 gi(a waxa)pett = —= Z a*ax*a)sin(ck) = —— Z a*a*a)gsin(zk).
keZ keZ keN
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Lemma A.2. Let k € N and e+ be a sequence such that e],:*

(eFs s eFw s b)) = _:1,)’

Proof. The convolution eF*  eF* % e#* is given by

Fy ks ko
Z (Zek —j—1€ )ej

(T

jez \iez
ks

k* ke
Chlok, — 265 T €iop,

and the claim follows.

Lemma A.3. Let a € h*(R) for some s
Then

> 0 and define O(

i) ® e H(T, L*(R)
(ii) ® € H*1(T, H'(R))
(iii) ® € H5 (T, H2(0,OC))
(iv) ® € C(R, H*"3(T))
(v) ® e (R, H*%(T))

Proof. We verify that
<C Y adk® |kl 7m

190375 (7, 22

=0 if k # tk,, e],z: = —elf’;C* = 1. Then,
Zf k_gk*,
if k= k
k k
Zek Ey— lel *Zekik* €

leZ leZ

< CHaHis(R)

keN
1@ 21 (r, 1y < C Z aik® 26172y < Clalie g
keN
18120, 2 0,000) < C 2 @k 772 (0,00
keN

CA+[1= AV = W|rem

92, e oy < € 20 0200y <
keN

” Hiﬂ R HSii('JT) <C Z akaS 3H¢kHLW(R)
keN

Lemma A.4. For s >

Proof. In this proof we use the I*-norm [a[; ()

) > Ak k72 0.0

keN

CHG is(]R)a

CHG }2L5(R).

< CHaHis(R)

1 the space h*(R) is a Banach algebra with respect to convolution.

space of all real sequences with finite /'-norm. Due to convexity we have the inequality

[k* < 227 —

Therefore, if a,b € h*(R) then

k" (@ b)y = |K[®

Z ak—1b;

leZ

leZ

Using the convolution inequality |axb|;2 <
(0)r = [K|*[br| we get

0P+ 11P)-

<277 Y e = 0 lail o] + gl 1]

la * blps ) < 2°7 (lallns ) [0l my + llali @) [b]nsr))-
Finally, a € h*(R) implies a € I*(R) due to
1
Z lax| = Z lak|([k] + 1) W+ 1 < Olalpw) < Clalps -

keZ keZ
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O

T,Y) = Dpen WPk (y; A) sin(kx) for x € T and y e R.

= Y ez |ax| for a sequence a = (ax)kez € I'(R), i.e., the Banach

@]z Hb”ll once for (a) = |k|*|ak|, ( )i = |bx| and once for (@) = |ak/,
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Lemma A.5. Let L = ,g_z + q(y) with ¢ € L*(R) be a self-adjoint operator on L*(R) with domain D(L) =
H?(R). Then, for any o € R, we have that L, := L + ady is self-adjoint with domain D(L,) = {u € HY(R) n
(H?(0,%0) U H*(=0,0)) | u'(04) — u/(0-) = —au(0)}. Moreover for any a € R the following holds:

(i) For sufficiently large pn > 0 we have that (Lo, + p) ™t : H-Y(R) — H(R) is bounded.

(11) Oess (Loz) = Oess (L)
Proof. A proof for the self-adjointness of L, for any « € R is given in [4]. For (i) we first note that L, is a
semi-bounded self-adjoint operator so that L, + p is a positive operator for p > 0 sufficiently large. Its bilinear
form by, 4, : H'(R) x H'(R) — R is coercive and equivalent to the standard H'(R)-inner product. Therefore,
any f € H '(R) can be represented by a unique u € H*(R) such that by 4, (u,¢) = f(¢) for any ¢ € H'(R)
and by, +p(u, u) = |31 () This proves (i).
For (ii) we may take A < 0 sufficiently negative such that A € p(L) n p(L,) "R since both L, L,, are semi-bounded
from below. Using (i) we may also assume \ sufficiently negative that (A—L,)~! : H~1(R) — H'(R) is bounded.
By Weyl’s criterion it is sufficient to show that the operator Wy := (A— L)1 — (A= L,)™!' : L*(R) — L3(R) is
compact in order to prove the statement. Since

Wr=M\—=La) to((AN=La)AN— L)™' —1d) = A=Ly)™" o (L—-Ly) o (M—-L)!
—_— — —
H-1(R)—H'(R)cL>(R) H'(R)—H-1(R) L2(R)—H(R)

and since L — Lo, = —ady : HY(R) —» H~!(R) is a bounded operator with 1-dimensional range spanned by &y
we see that W), is indeed compact. This finishes the proof. O

Lemma A.6. Let A\, 3 < 1. Then the eigenvalue problem (5.1) is solvable for ¢ € D(L%) if and only if (5.2)
holds. In this case the eigenspace is one-dimensional.

Proof. Solutions of the differential equation in (5.1) have to be of the form

CQeik 17)\y5 Yy = ba

co cosh(k 1—By + ¢ sinh(k 1—By, y € [0,0b],

By ) = (Y L= P+ crsinhiy L= ) 0.0 (A1)
do cosh(k/1 — By) + di sinh(kq/1 — By), y € [—b,0],
dgek 1—:\y, y < —b

with C'-compatibility conditions at z = +b and continuity at 2 = 0. The latter implies ¢y = dp and the
condition ¢'(0+) — ¢'(0—) + k*a¢(0) = 0 at = = 0 translates into

kA/1 = B(er — di) + k*aco = 0. (A.2)
The C'-compatibility leads to the following set of four equations
co cosh(ky/1 — Bb) + ¢; sinh(k/1 — 3b) — cpekV1-Xb,
1 — B(cosinh(kn/1 — Bb) + ¢y cosh(kn/1 — Bb)) = —v/1— Acse V12,
do cosh(k\/Eb) —d; sinh(kﬂb) — dye— V120,
\/E(*do sinh(kﬁb) +d; cosh(kﬂb)) = mdﬁ*kmb_

These four equations can be written as

—cocosh(kq/1 — Bb)

(]\g+ 0 ) <§%) B —4/1 — Begsinh(ky/1 — Gb)

—co cosh(kr/1 — D)

y/l—Bcosinh(kz 1-5 )

+ sinh(k4/1 — (b) e kV1-3b
A/ 11— Beosh(kr/1—Bb) +4/1— Ne—kV1-Xb

with

My =
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Since both M and M_ are invertible we see that w.l.o.g. we can choose ¢y = 1. Moreover, the structure of the
linear systems yields that ¢; = —d; and ¢ = ds. Finally, solving for ¢, co we get

/1= Bsinh(ky/1 — Bb) + V1 — Acosh(kq/1 — 3b)
\/1— Bcosh(ky/1 — Bb) + /1 — Asinh(k 173)7

co = eV 1_:\1’(01 sinh(k\/1 — Bb) + cosh(ky/1 — (b)).

C1 = —

Inserting c¢1, di = —c; and ¢ = 1 into (A.2) yields the condition (5.2) as claimed. It also shows that the
eigenspace is one-dimensional (the only degree of freedom is the choice of ¢y which we took to be 1 w.l.o.g.). O
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