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TRAVELING WAVES FOR A QUASILINEAR WAVE EQUATION

GABRIELE BRUELL, PIOTR IDZIK, AND WOLFGANG REICHEL

Abstract. We consider a 2+1 dimensional wave equation appearing in the context of polarized waves for the
nonlinear Maxwell equations. The equation is quasilinear in the time derivatives and involves two material
functions V and Γ. We prove the existence of traveling waves which are periodic in the direction of propaga-
tion and localized in the direction orthogonal to the propagation direction. Depending on the nature of the
nonlinearity coeffcient Γ we distinguish between two cases: (a) Γ P L8 being regular and (b) Γ “ γδ0 being
a multiple of the delta potential at zero. For both cases we use bifuraction theory to prove the existence of
nontrivial small-amplitude solutions. One can regard our results as a persistence result which shows that guided
modes known for linear wave-guide geometries survive in the presence of a nonlinear constitutive law. Our main
theorems are derived under a set of conditions on the linear wave operator. They are subsidised by explicit
examples for the coefficients V in front of the (linear) second time derivative for which our results hold.

1. Introduction

Of concern is the following 2+1 dimensional quasilinear wave equation

´ ∆u` B2

t

`

V pλ, yqu` Γpyqu3
˘

“ 0, (1.1)

which appears in the context of polarized waves for the nonlinear Maxwell equations. Here, u “ upt, x, yq is the
unkown depeding on time t P R` and the two spatial variables x, y. We assume u to be periodic in x-direction
and localized in y-direction. In what follows, we denote by T the one dimensional flat 2π-periodic torus, so that
px, yq P TˆR. The potentials V pλ, ¨q and Γ depend only on y and incorporate material properties. Here, λ P R

is a parameter. The function Γ might be a bounded function (referred to as regular Γ) or a multiple of a delta
potential at y “ 0 (referred to as distributional Γ).

To motivate our interest in (1.1), let us explain how it appears in the context of electromagnetics. Recall that
the Maxwell equations in the absence of charges and currents are given by

∇ ¨ D “ 0, ∇ ˆ E “ ´ BtB, D “ε0E ` PpEq,
∇ ¨ B “ 0, ∇ ˆ H “ BtD, B “µ0H.

The modeling of the underlying material is done by making assumptions on the form of the polarization field
P. Here, we assume that P depends instantaneously on the electric field E as follows

PpEq “ ε0χ1pxqE ` ε0χ3pxq|E|2E

with x “ px, y, zq P R
3, cf. [1], Section 2.3. For simplicity we take χ1, χ3 as given scalar functions instead of the

more general matrix/tensor structure of these quantities. The values ε0, µ0 are constant such that c2 “ pε0µ0q´1

and c is the speed of light in vacuum. By direct calculations from Maxwell’s equations one obtains the second-
order quasilinear wave-type equation for the electric field

0 “ ∇ ˆ ∇ ˆ E ` B2

t

`

V pxqE ` Γpxq|E|2E
˘

, (1.2)

where V pxq “ µ0ε0 p1 ` χ1pxqq and Γpxq “ µ0ε0χ3pxq. The magnetic induction B can be retrieved from
∇ ˆ E “ ´BtB by time-integration and it will satisfy ∇ ¨ B “ 0 provided it does so at time t “ 0. By
assumption the magnetic field is given by H “ 1

µ0

B and it satisfies ∇ ˆ H “ BtD. It remains to check that the

displacement field D satisfies the Gauss law ∇ ¨ D “ 0 in the absence of external charges. This follows directly
from the constitutive equation D “ ε0p1 ` χ1pxqqE ` ε0χ3pxq|E|2E and the assumption of the polarized form
of the electric field

Epx, tq “ p0, 0, upt, x, yqqT .
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If we assume additionally that V pxq “ V pyq and Γpxq “ Γpyq then the quasilinear vectorial wave-type equation
(1.2) turns into the scalar equation (1.1) for u “ upt, x, yq.
We study the existence of traveling wave solutions of (1.1) propagating in x-direction for certain classes of
potentials V . More precisely, we consider potentials of the form

V pλ, yq “ λV0pyq ` V1pyq, λ P R,

where V0 P L8pRq and V1 is a distribution (e.g a δ-potential). If

upt, x, yq “ Φpx´ t, yq (1.3)

is a traveling wave solution of (1.1), propagating in x-direction with wave speed v “ 1, then Φ : T ˆ R Ñ R

satisfies

´ Φyy ´ p1 ´ λV0pyq ´ V1pyqqΦxx ` ΓpyqpΦ3qxx “ 0. (1.4)

The parameter λ P R will serve as a bifurcation parameter. One might ask why we introduced λ as a bifurcation
parameter in the form V pλ, yq “ λV0pyq ` V1pyq and not in the more intuitive form V pλ, yq “ λpV0pyq ` V1pyqq
– the latter giving

?
λ the meaning of the propagation speed of the traveling wave. The reason lies in the

distributional character of V1. The choice of the underlying function spaces for our analysis allows to formulate
a (suitably defined, cf. Lemma 4.3) bounded inverse of L̃λ, which is a slightly modified version of the wave
operator Lλ “ ´B2

y ´ p1 ´ λV0pyq ´ V1pyqqB2
x. Extending the multiplication with λ also to the distributional

part V1 causes a difficulties when differentiating wit respect to λ, cf. Remark 4.5.

Throughout the paper, a function u is called a traveling wave solution of (1.1) if u takes the form (1.3) and Φ

is a solution of (1.4), which is periodic in its first and localized in its second component.

We investigate the existence of nontrivial solutions Φλ of (1.4) corresponding to the parameter λ under certain
assumptions on the potential V ; thereby providing the existence a nontrivial traveling wave solution uλ of (1.1).
We apply bifurcation theory for the parameter λ to find nontrivial solutions of (1.4). Our aim is to analyze
the existence of nontrivial solutions in a way as general as possible, finding key properties of associate linear
operators, which guarantee the existence of solutions via bifurcation theory. Eventually, we provide examples
of specific potentials V for which these properties can be verified. In particular, the following cases are under
consideration:

(P1) V is a δ´potential on a positive background, that is V is a distribution of the form

V pλ, yq “ λ` αδ0pyq.
(P2) V is a δ´potential on a step background, that is V is a distribution of the form

V pλ, yq “ λ1|y|ěb ` β1|y|ăb ` αδ0pyq.

Concerning the nonlinear potential Γ we distinguish between regular Γ, that is Γ P L8pRq, and distributional
Γ , that is Γ “ γδ0. The main results for regular Γ are shown in Section 2.1 and for distributional Γ in Section 2.2.

Let us also comment on related work. Problem (1.1) has been considered in [17] where spatially localized
traveling wave solutions of the 1+1-dimensional quasi-linear Maxwell model were investigated. The authors
assume that V pyq is a periodic arrangement of delta potentials. Using a multiple scale ansatz in fast and slow
time, the field profile is expanded into infinitely many modes which are quasiperiodic in time (time-periodic both
in the fast and slow time variables). Using local bifurcation methods the authors solve a related system which is
homotopically linked to the Maxwell problem written as any infinite coupled system. It is not clear if the local
bifurcation connects the related system and the Maxwell problem but numerical results support the existence of
spatially localized traveling waves. In [7] and [9] another approximation (including error-estimates) of a version
of (1.1) with periodic coefficients by finitely many coupled modes near band edges has been performed both
analytically and numerially.
In the studies of the nonlinear Maxwell-system (1.2), often monochromatic waves Epxq “ Upxqeiωt ` c.c. are
considered. Since a typical cubic nonlinearity generates higher harmonics, they either need to be neglected
(leading to an error), or the constitutive equation for D is replaced by a time-averaged nonlinearity D “
ε0p1 ` χ1pxqqE ` ε0χ3pxq 1

T

şT

0
|E|2 dtE, cf. [19, 20, 21, 14, 2, 8, 16] and particularly the two survey papers

[3, 15].
In contrast to the previously cited works, our approach is genuinely polychromatic and does not rely on time-
averaged material laws. In our solution ansatz we allow for harmonics of arbitrary order and we treat (1.1)
without any approximation. Recently in [12] a similar approach was taken and spatially localized, time-periodic
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solution of (1.1) were obtained via variational methods. The result of the present paper and [12] are comple-
mentary in the following sense: (a) in [12] only distributional Γ is considered whereas in the present paper we
also allow for regular Γ P L8; (b) in the case of distributional Γ, [12] only treats V P L8 whereas in the present
paper we always have a delta potential contributing to V . Variational methods as in [12] have the advantage
of producing solutions which may be far away from the trivial solution whereas local bifurcation methods as in
the present paper produce solutions in the vicinity of zero. On the other hand, the local bifurcation method
leads to more precise information about the actual shape of the bifurcating branch of solutions.

Outline of the paper. We close the introduction with a brief outline of the paper. In Section 2, we collect
our main results. In Theorem 2.3 and Theorem 2.10 we provide a set of conditions on the linear wave operator
guaranteeing the existence of nontrivial traveling wave solutions of (1.1) for regular and distributional Γ, respec-
tively. Subsequentially, we present in Corollary 2.5, Corollary 2.6, and Corollary 2.13, Corollary 2.14 particular
examples in the form of pP1q and pP2q for regular and distributional Γ. In Section 3 we fix some notation. The
remaining sections 4–7 are devoted to the proofs of our main results. To be more presice, in Section 4 we prove
the existence result in Theorem 2.3 for regular Γ followed by the proofs of Corollary 2.5 and Corollary 2.6 in
Section 5, which provide specific examples. Similarly, we prove in Section 6 the existence result in Theorem 2.10
for distributional Γ and finalize our studies in Section 7 with the proofs of Corollary 2.13 and Corollary 2.14 on
specific examples in the case of distributional Γ. In the appendix we collect auxiliary results.

2. Main results

We are looking for solutions of (1.4) of the form

Φpx, y;λq “
ÿ

kPN
φkpy;λq sinpkxq. (2.1)

Our analysis is going to be divided into two parts separating the case when Γ is regular in the sense that
Γ P L8pRq and the case when Γ is distributional and takes the extreme form of a δ-potential. This is essentially
due to the fact that in the former case we are concerned with a nonlinear equation on the domain T ˆR, while
in case of Γ being a δ-potential the problem can be viewed as a linear equation on T ˆ Rzt0u – which can be
solved separately – equipped with a nonlinear boundary condition at x “ 0 induced by the delta potential.

2.1. Main result for regular Γ. Let us start with the definition of a weak solution of (1.4) in the case when
Γ P L8pRq.

Definition 2.1 (Weak solution in the case of regular Γ). We say that Φ P H2pT;L2pRqq XH1pT;H1pRqq is a
weak solution of (1.4) if and only if

ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyqqΦxxΨ dy dx´
ż

T

xV1p¨qΦxpx, ¨q,Ψxpx, ¨qy dx `
ż

T

ż

R

pΦ3qxxΨ dy dx “ 0

for any Ψ P H1pT;H1pRqq. Here, x¨, ¨y is the dual pairing between H´1pRq and H1pRq.

Remark 2.2.

(a) We consider V1 as a bounded linear operator from H1pRq into H´1pRq. When V1 “ δ0 this means that
for f, g P H1pRq we have xV1f, gy “ fp0qgp0q, i.e., since f P CpRq it multiplies δ0 and generates fp0qδ0
as a distribution acting on g.

(b) Clearly Φxx P L2pTˆRq. We shall see in Section 4 (cf. (4.8), (4.9) in Lemma 4.4) that also Φ P L8pTˆRq
and Φx P L4pT ˆ Rq so that pΦ3qxx “ 3Φ2Φxx ` 6ΦΦ2

x P L2pT ˆ Rq.

If Γ P L8pRq, the ansatz in (2.1) allows us to reduce the problem of finding nontrivial solutions of (1.4) to
studying spectral properties of the family of linear wave operators

Lk
λ :“ ´ d2

dy2
` k2p1 ´ λV0pyq ´ V1pyqq for k P N.

We prove the following theorem:
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Theorem 2.3 (Existence of traveling waves for regular Γ). Assume that Γ P L8pRq, the potential V is given
by

V pλ, yq “ λV0pyq ` V1pyq
and

pL0q V0 P L8pRq and V1 : H1pRq Ñ H´1pRq is bounded;
pL1q for every fixed k P N and λ P R the operator Lk

λ : DpLk
λq Ă L2pRq Ñ L2pRq is self-adjoint;

pL2q there exists a wavenumber k˚ P N, a value λ˚ P R, and an open interval Iλ˚ Ă R containing λ˚ such that

zero is an isolated simple eigenvalue of L
k˚
λ˚

and 0 P ρpLk
λq for any pk, λq P NˆIλ˚ with pk, λq ‰ pk˚, λ˚q;

pL3q if Lk
λφ “ f for some f P L2pRq, then

}φ}L2pRq À 1

k2
}f}L2pRq and }φ1}L2pRq À 1

k
}f}L2pRq

uniformly for λ P Iλ˚ and k P N sufficiently large.

If in addition V0 satisfies the transversality condition

xV0φ˚, φ˚yL2pRq ‰ 0, (2.2)

where φ˚ spans the one-dimensional kernel of L
k˚
λ˚

, then there exists ε0 ą 0 and a smooth curve through p0, λ˚q,

tpΦpεq, λpεqq | |ε| ă ε0u Ă pH2pT;L2pRqq XH1pT;H1pRqqq ˆ Iλ˚ ,

of nontrivial solutions of (1.4) with

Φp0q “ 0, DεΦp0qpx, yq “ φ˚pyq sinpk˚xq,

λp0q “ λ˚, 9λp0q “ 0, :λp0q “ ´3

2

ş

R
Γpyqpφ˚q4pyq dy

ş

R
V0pyqpφ˚q2pyq dy .

Remark 2.4. The transversality condition (2.2) is trivially satisfied if V0 ě 0, ı 0 or V0 ď 0, ı 0.

In Section 4 we prove Theorem 2.3. There are two main requirements on Lk
λ providing the existence of nontrivial

solutions via bifurcation theory: The first is that there exists a value λ˚ P R of the bifurcation parameter such
that Lk

λ˚
has a one-dimensional kernel if and only if k “ k˚ for some wave number k˚ P N (see pL2q); this is

a necessary bifurcation condition. Secondly, we demand that for any k ‰ k˚ the self-adjoint operator Lk
λ has a

spectral gap p´ck2, ck2q around zero, which ensures the decay properties of φkp¨;λq (see pL3q). Eventually, after
we have established Theorem 2.3, we turn to the specific case, when Γ P L8pRq is regular, V are potentials of
the form as in (P1) and (P2) and formulate tangible assumptions on the triple pk˚, λ˚, αq (see (2.3) and (2.4)
below), which guarantee that conditions pL0q ´ pL3q of Theorem 2.3 are satisfied; thereby proving the existence
of nontrivial traveling wave solutions of (1.1). In particular, we prove the following corollaries.

Corollary 2.5 (Case P1, regular Γ). Let Γ P L8pRq and V pλ, yq “ λ`αδ0pyq. If k˚ P N and λ˚ ă 1 are given
and α ą 0 is determined from

α “ 2
?
1 ´ λ˚
k˚

, (2.3)

then the assumptions in Theorem 2.3 are satisfied with

φ˚pyq “
b

k˚
a

1 ´ λ˚e
´k˚

?
1´λ˚|y|

and

Φp0q “ 0, DεΦp0qpx, yq “ φ˚pyq sinpk˚xq,

λp0q “ λ˚, 9λp0q “ 0, :λp0q “ ´3

2
k2˚p1 ´ λ˚q

ż

R

Γpyqe´4k˚
?

1´λ˚|y| dy.

Corollary 2.6 (Case P2, regular Γ). Let Γ P L8pRq and V pλ, yq “ λ1|y|ěb `β1|y|ăb `αδ0pyq. If k˚ P N, b ą 0

and β, λ˚ ă 1 are given and α ą 0 is determined from

α “ 2
?
1 ´ β

k˚ ¨
?
1 ´ β sinhpk˚

?
1 ´ βbq `

?
1 ´ λ˚ coshpk˚

?
1 ´ βbq?

1 ´ β coshpk˚
?
1 ´ βbq `

?
1 ´ λ˚ sinhpk˚

?
1 ´ βbq , (2.4)

then the assumptions in Theorem 2.3 are satisfied.

Remark 2.7. Details on the construction of φ˚ in Corollary 2.6 can be taken from Section 5.2.



TRAVELING WAVES FOR A QUASILINEAR WAVE EQUATION 5

2.2. Main result for distributional Γ. Again, we start with the definition of a weak solution of (1.4), but
now in the case when Γ is given by a δ-potential. We assume that the function V1 “ W ` αδ0 splits into a
regular part W and the distributional part αδ0 so that V “ λV0 `W `αδ0, where V0,W P L8pRq and Γ “ γδ0.

Definition 2.8 (Weak solution in the case of distributional Γ). We say that Φ P H2pT;L2pRqqXH1pT;H1pRqqX
CpR;H2pTqq is a weak solution of (1.4) if and only if

ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyq ´W pyqqΦxxΨ dy dx`
ż

T

`

αΦxxpx, 0q ` γpΦ3qxxpx, 0q
˘

Ψpx, 0q dx “ 0

for any Ψ P H1pT;H1pRqq.

Remark 2.9. Clearly Φxxp¨, 0q P L2pTq and Φp¨, 0q,Φxp¨, 0q P L8pTq so that pΦ3p¨, 0qqxx “ 3Φp¨, 0q2Φp¨, 0qxx `
6Φp¨, 0qΦp¨, 0q2x P L2pTq. Moreover, Ψ P H1pT;H1pRqq Ă H1pT ˆ Rq has an L2-trace at y “ 0.

Note that (1.4) can be written as a linear partial differential equation on T ˆ Rzt0u equipped with a nonlinear
boundary condition on T:

#

´Φyy ´ p1 ´ λV0 ´W qΦxx “ 0, px, yq P T ˆ Rzt0u,
Φypx, 0`q ´ Φypx, 0´q “ B2

x

`

αΦ ` γΦ3
˘

px, 0q, x P T.
(2.5)

As before let

Lλ
k :“ ´ d2

dy2
` k2p1 ´ λV0pyq ´W pyq ´ αδ0pyqq

be a family of linear wave operators and set

Lλ
0,k :“ ´ d2

dy2
` k2p1 ´ λV0pyq ´W pyqq

to be the regular part of Lλ
k . We prove the following theorem:

Theorem 2.10 (Existence of traveling wave for distributional Γ). Assume that Γ “ γδ0, the potential V is
given by

V pλ, yq “ λV0pyq `W pyq ` αδ0pyq,
and

pL̃0q V0,W P L8pRq are even;

pL̃1q there exists an interval I Ă R such that for every fixed k P N and λ P I the operator Lk
0,λ : H2pRq Ă

L2pRq Ñ L2pRq satisfies 0 P ρpLk
0,λq;

pL̃2q there exists a wavenumber k˚ P N, a value λ˚ P R, and an open interval Iλ˚ Ă I Ă R containing λ˚
such that zero is an isolated simple eigenvalue of L

k˚
λ˚

and 0 P ρpLk
λq for any pk, λq P N ˆ Iλ˚ with

pk, λq ‰ pk˚, λ˚q;
pL̃3q there exist C ą 0 such that }φkp¨;λq}L2p0,8q ď C uniformly for λ P Iλ˚ , k P N, and where φk P H2p0,8q

satisfies1

Lλ
0,kφkpy;λq “ 0 on p0,8q with φkp0;λq “ 1.

If in addition V0 satisfies the transversality condition

xV0φ˚, φ˚yL2pRq ‰ 0, (2.6)

where φ˚ spans the one-dimensional kernel of L
k˚
λ˚

, then there exists ε0 ą 0 and a smooth curve through p0, λ˚q

tpΦpεq, λpεqq | |ε| ă ε0u Ă pH2pT;L2pRqq XH1pT;H1pRqq X tΦp¨, 0q P H2pTquq ˆ Iλ˚

of nontrivial solutions of (1.4) with

Φp0q “ 0, DεΦp0qpx, yq “ φ˚pyq sinpk˚xq,

λp0q “ λ˚, 9λp0q “ 0, :λp0q “ ´ 3γ

4
ş

R
V0pyqpφ˚q2pyq dy .

Remark 2.11. The transversality condition (2.6) is trivially satisfied if V0 ě 0, ı 0 or V0 ď 0, ı 0.

1The existence and the properties of the functions φk are detailed in Remark 6.1.
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Remark 2.12. We can formulate pL̃2q entirely in terms of the ansatz-functions φkp¨;λq defined in pL̃3q. To

this end notice that σesspLk
0,λq “ σesspLk

λq, cf. Lemma A.5. Since 0 R σpLk
0,λq by assumption pL̃1q it is clear that

0 P σpLk
λq is characterized by zero being an eigenvalue of Lk

λ. This, however, in combination with the evenness
of V0,W , means that φkp|y|;λq is up to scalar multiples the unique candidate for the eigenfunction and has to
satisfy

2φ1
kp0`;λq ` k2α “ 0.

Here 2φ1
kp0`;λq is the jump of the first derivative of the even function φkp|y|;λq at y “ 0. Based on this

characterization of zero belonging to the spectrum of Lλ
k we can replace pL̃2q by

pL̄2q there exists a wavenumber k˚ P N, λ˚ ą 0, and an open interval Iλ˚ Ă R` containing λ˚ such that

2φ1
kp0`;λq ` k2α “ 0

if and only if pk, λq “ pk˚, λ˚q for any k P N and λ P Iλ˚ .

In Section 6 we prove Theorem 2.10. Claiming periodicity in one spatial direction and evenness in the transverse
direction we make a Fourier ansatz of the form

Φpx, y;λq “
ÿ

kPN
akpλqφkp|y|;λq sinpkxq, (2.7)

where φk are the decaying functions from assumption pL̃3q. In particular, the ansatz (2.7) solves the linear
differential equation in (2.5) and thus reduces the problem of finding nontrivial solutions of (1.4) to the following
family of algebraic equations

2akpλqφ1
kp0`;λq “ ´k2

ˆ

αakpλq ´ 1

4
γ
`

apλq ˚ apλq ˚ apλq
˘

k

˙

for all k P N. (2.8)

In the spirit of Section 4, we show that if conditions pL̃0q ´ pL̃3q are satisfied, then the nonlinear equation (2.8)
has a non-trivial solution pakpλqqkPZ with akpλq “ ´a´kpλq and the decay property

pk2akpλqqk P l2pRq;
thereby providing a solution of (1.4) in the form of (2.7). Here, l2pRq denotes the space of l2–summable

sequences in RZ. Condition pL̃1q guarantees the existence of the family of even ansatz-functions pφqkPN with

φkp0;λq “ 1. Condition pL̃2q assures that there exists k˚ P N, λ˚ P R and an interval Iλ˚ Ă R including λ˚
such that the linearization of (2.8), given by the multiplication operator

Ak
λ :“ 2φ1

kp0`;λq ` k2α,

has a one-dimensional kernel if pk, λq “ pk˚, λ˚q, that is Ak˚
λ˚

“ 0; and Ak
λ ‰ 0 for all pk, λq P N ˆ Iλ˚ with

pk, λq ‰ pk˚, λ˚q. This is a necessary bifurcation condition. After we have proved Theorem 2.10, we investigate
the specific cases, when V is a potential of the form as in (P1) and (P2). The former being a δ-potential on
a constant background, while the latter is a δ-potential on the background of a step function. In both cases
the δ-potential part in V is essential, guaranteeing sufficient decay properties of the sequence pakpλqqkPN. In
particular, we prove the following corollaries:

Corollary 2.13 (Case P1, distributional Γ). Assume that Γ “ γδ0 and V pλ, yq “ λ ` αδ0pyq. If k˚ P N and
λ˚ ă 1 are given and α ą 0 is determined from

α “ 2
?
1 ´ λ˚
k˚

then the assumptions in Theorem 2.10 are satisfied with

φ˚pyq “ e´k˚
?

1´λ˚|y|

and

Φp0q “ 0, DεΦp0qpx, yq “ e´k˚
?

1´λ˚|y| sinpk˚xq,
λp0q “ λ˚, 9λp0q “ 0, :λp0q “ ´γk˚

a

1 ´ λ˚.

Moreover, the solutions Φpεq take the form

Φpεqpx, yq “
ÿ

kPN
akpεqe´k

?
1´λ|y| sinpkxq.
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Corollary 2.14 (Case P2, distributional Γ). Let Γ P L8pRq and V pλ, yq “ λ1|y|ěb `β1|y|ăb `αδ0pyq. Suppose
furthermore that k˚ P N and λ˚ ă 1 are given. If

‚ (Case β ą 1) b, α ą 0 are determined from

b “ π?
β ´ 1

, α “ 2
?
1 ´ λ˚
k˚

‚ (Case β ă 1) b ą 0 is given and α ą 0 is determined from

α “ 2
?
1 ´ β

k˚ ¨
?
1 ´ β sinhpk˚

?
1 ´ βbq `

?
1 ´ λ˚ coshpk˚

?
1 ´ βbq?

1 ´ β coshpk˚
?
1 ´ βbq `

?
1 ´ λ˚ sinhpk˚

?
1 ´ βbq

‚ (Case β “ 1) b ą 0 is given and α ą 0 is determined from

α “ 2
?
1 ´ λ˚

k˚p1 `
?
1 ´ λ˚k˚bq

then in all three cases the assumptions in Theorem 2.10 are satisfied.

Remark 2.15. Details on the construction of φ˚ in Corollary 2.14, the functions φk and the form of the
solutions Φpεqpx, yq “ ř

kPN akpεqφkpy;λq sinpkxq can be taken from Section 7.2.

3. Notation

If f and g are elements in an ordered Banach space, we write f À g (f Á g) if there exists a constant c ą 0

such that f ď cg (f ě cg). Moreover, the notation f h g is used whenever f À g and f Á g. We write
c “ cpp1, p2, . . .q ą 0 if we want to emphasize that the constant c ą 0 depends on the parameters p1, p2, . . ..
In Section 6 we are looking for solutions of an infinite dimensional system of nonlinear algebraic equation. We
consider solutions in the sequence spaces related to

l2pRq :“
#

a “ pakqkPZ | ak P R for all k P Z and }a}2l2pRq :“
ÿ

kPZ
|ak|2 ă 8

+

.

Eventually, for any r P R we set

hrpRq :“
 

a P l2pRq |
`

p1 ` |k|qrak
˘

kPZ P l2pRq
(

.

and equip the space hrpRq with the norm

}a}2hrpRq :“
ÿ

kPZ
p1 ` |k|q2r|ak|2.

We also consider the subspaces

l27 pRq :“ ta P l2pRq : a´k “ ´ak for k P Zu,
hr7 pRq :“ hrpRq X l27 pRq.

Throughout the paper we use the notation x¨, ¨yH to denote the dual pairing in the Hilbert space H . If f, g P
L2pUq are real-valued functions, where U Ă Rn is a domain in Rn, n P N, then

xf, gyL2pUq :“
ż

U

fpzqgpzq dz

and if a, b P l2pRq then

xa, byl2pRq :“
ÿ

kPZ
akbk.

If L : DpLq Ă H Ñ H is a linear operator with domain DpLq, we denote by

ρpLq :“ tλ P C | λ´ L : DpLq Ñ H has a bounded inverseu
the resolvent set of L. The spectrum of L is given by CzρpLq. If L is self-adjoint, then σpLq Ă R and the
spectrum of L can be decomposed as a disjoint union

σpLq “ σesspLq Y σdpLq,
where σd is the discrete spectrum of L consisting of isolated eigenvalues of σpLq of finite multiplicity and
σesspLq “ σpLqzσdpLq is the essential spectrum.
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4. Existence of traveling waves for bounded potentials Γ

This section is devoted to the proof of Theorem 2.3. Subsequently, we affirm in Section 5 that the conditions are
fulfilled for special cases where V takes the form in (P1) or (P2), therey proving Corollary 2.5 and Corollary 2.6.
In the following we restrict ourself to solutions Φ of (1.4) having the form

Φpx, y;λq “
ÿ

kPN
φkpy;λq sinpkxq,

where the y-dependent Fourier coefficients pφkqkPN are decaying at infinity (suitable function spaces are formu-
lated later). Then, Φ is a solution of

´ Φyy ´ p1 ´ λV0pyq ´ V1pyqqΦxx ` ΓpyqpΦ3qxx “ 0 (4.1)

if and only if

´φ2
k ` k2p1 ´ λV0pyq ´ V1pyqqφk ` 1

4
k2Γpyq pΦ ˚ Φ ˚ Φqk “ 0 for all k P N.

Note that ´ 1

4
pΦ ˚ Φ ˚ Φq is the k-th Fourier coefficient of Φ3, cf. Lemma A.1. The Fourier ansatz with respect

to x decomposes the operator

Lλ :“ ´B2

y ´ p1 ´ λV0pyq ´ V1pyqqB2

x (4.2)

into the sequence of Schrödinger operators Lk
λ

Lk
λ :“ ´ d2

dy2
` k2p1 ´ λV0pyq ´ V1pyqq.

Recall that we are working under the assumptions pL0q–pL3q from Theorem 2.3.

Remark 4.1.

(i) Notice that a necessary condition for pL3q to hold is that the operator Lk
λ satisfies the spectral gap

property

p´ck2, ck2q Ă ρpLk
λq for some constant c ą 0

uniformly in λ P Iλ˚ and k P N sufficiently large.

(ii) The domain of Lk
λ is a subset of H1pRq, which is the domain of the quadratic form of Lk

λ. As a vector
space, it does not depend on λ. However, the graph norm on DpLk

λq is λ-dependent and the embedding
DpLk

λq Ă H1pRq is locally uniformly bounded with respect to λ.

The next lemma extends property pL3q to all values of k P N by adding a projection to Lk
λ for k “ k˚. For this

purpose let kerL
k˚
λ˚

“ spantφ˚u with }φ˚}L2pRq “ 1. Denote by P k˚ the projection mapping

P k˚φ :“ xφ, φ˚yL2pRqφ
˚ for any φ P L2pRq

and define by L̃k
λ : DpLk

λq Ă L2pRq Ñ L2pRq for k P N and λ P Iλ˚ the family of operators

L̃k
λ “

#

L
k˚
λ ` P k˚ if k “ k˚,

Lk
λ if k ‰ k˚.

(4.3)

Lemma 4.2. Let L̃k
λφ “ g for some g P L2pRq. Then, by possibly shrinking the interval Iλ˚ , we have that

}φ}L2pRq À 1

k2
}g}L2pRq and }φ1}L2pRq À 1

k
}g}L2pRq (4.4)

for all k P N uniformly in λ P Iλ˚ .

Proof. By Theorem VIII.25 in [18] it follows that the map λ ÞÑ Lk
λ is norm-resolvent continuous, that is

λ ÞÑ pLk
λ ´ iq´1 P LpL2pRqq is continuous with respect to the operator norm. Let us verify that also L̃k˚

λ is

norm-resolvent convergent to L̃k˚
λ˚

as λ Ñ λ˚. Note that Id`P k˚pLk˚
λ˚

´ iq´1 : L2pRq Ñ L2pRq is a compact

perturbation of the identity, injective and hence bijective. Then, for λ close to λ˚, also Id`P k˚pLk˚
λ ´ iq´1 :

L2pRq Ñ L2pRq is bijective. Note that we have the identity
´

L
k˚
λ ´ i ` P k˚

¯´1

“
´´

Id`P k˚pLk˚
λ ´ iq´1

¯

pLk˚
λ ´ iq

¯´1

.
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From this we see that

pL̃k˚
λ ´ iq´1 “ pLk˚

λ ´ iq´1

´

Id`P k˚ pLk˚
λ ´ iq´1

¯´1

.

Using the assumption that L
k˚
λ converges to L

k˚
λ˚

in the norm resolvent sense, this implies the claim.

Next we show that 0 P ρpL̃k˚
λ˚

q. Since adding a (compact) projection operator only changes the discrete spectrum,

we may assume by (L2) for contradiction that 0 is an eigenvalue of L̃
k˚
λ˚

, that is L
k˚
λ˚
φ`P k˚φ “ 0. Testing with

φ˚, which spans the kernel of L
k˚
λ˚

, we get xφ, φ˚yL2pRq “ 0 and hence P k˚φ “ 0. Thus, φ also belongs to the

kernel of L
k˚
λ˚

, which contradicts xφ, φ˚yL2pRq “ 0 and the simplicity of the 0-eigenvalue of L
k˚
λ˚

.

Finally, by pL3q weknow that there exists k0 P N (we assume w.l.o.g. k0 ě k˚) such that (4.4) holds for
k ą k0 ě k˚. This implies that

inf
kąk0

inf
|λ´λ˚|ăδ

distp0, σpL̃k
λqq ą 0. (4.5)

Now we want to extend this inequality to the remaining values of k P t1, . . . , k0u by possibly diminishing δ.
Thus, let k P N with 1 ď k ď k0 and assume for contradiction the existence of a sequence λn Ñ λ˚ as n Ñ 8
such that there exists µn P σpL̃k

λn
q with limnÑ8 µn “ 0. By norm-resolvent convergence this implies 0 P σpL̃k

λ˚
q,

which is impossible for k ‰ k˚ by pL2q and also impossible for k “ k˚ as stated above. This contradiction

establishes (4.5) for all k P N. Finally, (4.5) shows that the map λ ÞÑ }pL̃k
λq´1}L2pRqÑL2pRq is bounded for

λ P pλ˚ ´ δ, λ˚ ` δq uniformly for k P N. The same holds for λ ÞÑ }pL̃k
λq´1}L2pRqÑDpLk

λ
q, and due to (ii) in

Remark 4.1, also for λ ÞÑ }pL̃k
λq´1}L2pRqÑH1pRq. This establishes (4.4) for all k P N. �

Now, we introduce suitable function spaces and use Lemma 4.2 to reformulate the nonlinear problem (4.1) in a
setting, which makes the local bifurcation theorem due to Crandall–Rabinowitz [5] applicable. Set

X :“
#

Φ P H2pT;L2pRqq XH1pT;H1pRqq | Φpx, yq “
ÿ

kPN
φkpyq sinpkxq

+

and

Y :“
#

Φ P L2pT;L2pRqq | Φpx, yq “
ÿ

kPN
φkpyq sinpkxq

+

.

Moreover, we set

L̃λ :“ Lλ ` P˚,

where P˚ denotes the L2-orthogonal projection onto kerLλ˚ “ spantΦ˚u with Φ˚px, yq “ 1?
π
φ˚pyq sinpk˚xq.

Recall, that the operator Lλ is defined in (4.2). As an immediate consequence of pL0q–pL3q, we obtain the
following lemma.

Lemma 4.3. Assume that pL0q–pL3q holds true and let λ P Iλ˚ . There exists a bounded linear map L̃´1

λ : Y Ñ
X with the following property: if f P Y is given and the function Φ P X solves

Φ “ L̃´1

λ pf ` P˚Φq (4.6)

then Φ solves

LλΦ “ f

in the weak sense, that is
ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyqqΦxxΨ dy dx´
ż

T

xV1p¨qΦxpx, ¨q,Ψxpx, ¨qy dx “
ż

T

ż

R

fΨ dy dx

for any Ψ P X.

Proof. Let λ P Iλ˚ . For g P Y the definition of Φ :“ L̃´1

λ g is given by

Φpx, yq “
ÿ

kPN
φkpyq sinpkxq with φk “ pL̃k

λq´1gk.

Then Lemma 4.2 implies that Φ P X and that L̃´1

λ : Y Ñ X is bounded. Now suppose that Φ P X solves (4.6).

Then φk “ pL̃k
λq´1pfk ` P k˚φkq so that φk P DpL̃k

λq “ DpLk
λq for all k P N. In particular, we know that

Lk
λφk “ fk for all k P N
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and thus for K0 P N and ψ1, . . . , ψK0
P H1pRq we have

K0
ÿ

k“1

ˆ
ż

R

φ1
kψ

1
k ` k2p1 ´ λV0pyq dy ´ xV1φk, ψky

˙

“
K0
ÿ

k“1

ż

R

fkψk dy.

Taking the limit K0 Ñ 8 in the previous equation will lead to
ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyqqΦxxΨ dy dx´
ż

T

xV1p¨qΦxpx, ¨q,Ψxpx, ¨qy dx “
ż

T

ż

R

fΨ dy dx

for any Ψ P X due to the following estimates:
ż

T

ż

R

|ΦyΨy| dy dx ď
ÿ

kPN
}φ1

k}L2pRq}ψ1
k}L2pRq ď }Φ}L2pT,H1pRqq}Ψ}L2pT,H1pRqq,

ż

T

ż

R

|V0pyqΦxxΨ| dy dx ď
ÿ

kPN
}V0}L8pRqk

2}φk}L2pRq}ψk}L2pRq

ď }V0}L8pRq}Φ}H2pT,L2pRqq}Ψ}L2pT,L2pRqq,
ż

T

|xV1p¨qΦxpx, ¨q,Ψxpx, ¨qy| dx ď
ÿ

kPN
}V1}H1ÑH´1}kφk}H1pRq}kψk}H1pRq

ď }V1}H1ÑH´1}Φ}H1pT,H1pRqq}Ψ}H1pT,H1pRqq,
ż

T

ż

R

|fΨ| dy dx ď
ÿ

kPN
}fk}L2pRq}ψk}L2pRq ď }f}L2pT,L2pRqq}Ψ}L2pT,L2pRqq.

�

Equipped with the above lemma, we use the invertibility of L̃λ to reformulate (4.1) as

F pΦ, λq “ 0, (4.7)

where F : X ˆ Iλ˚ Ñ X is given by

F pΦ, λq “ Φ ` L̃´1

λ

`

ΓpyqpΦ3qxx ´ P˚Φ
˘

.

We want to apply bifurcation theory to equation (4.7). Clearly, F p0, λq “ 0 for any λ P Iλ˚ and the line
tp0, λq | λ P Iλ˚ u constitutes the line of trivial solutions from which we aim to bifurcate at λ “ λ˚. The
following lemma collects the necessary properties of the map F .

Lemma 4.4. The map F : X ˆ Iλ˚ Ñ X is a C8-map. Moreover the following holds:

(i) The linearization of F about Φ “ 0, given by

DΦF p0, λq “ Id´L̃´1

λ P˚ : X Ñ X

is a Fredholm operator of index zero. In particular DΦF p0, λ˚q “ Id´P˚. The kernel of DΦF p0, λq is
trivial for λ P Iλ˚ ztλ˚u and it is given by spantΦ˚u if λ “ λ˚.

(ii) The mixed second derivative of F about Φ “ 0 is given by

D2

Φ,λF p0, λq “ L̃´1

λ V0B2

xL̃
´1

λ P˚ : X Ñ X.

Proof. Let us first verify the mapping properties of F by checking that pΦ3qxx P Y for Φ P X . First note that
Φ P X implies

}Φ}8 “ sup
xPR,yPT

ˇ

ˇ

ˇ

ÿ

kPN
φkpyq sinpkxq

ˇ

ˇ

ˇ
ď

ÿ

kPN
}φk}L8pRq ď

ÿ

kPN
}φk}H1pRq

ď
´

ÿ

kPN

1

k2

¯
1

2

´

ÿ

kPN
k2}φk}2H1pRq

¯
1

2 À }Φ}H1pT,H1pRqq

(4.8)

and, using | cospkxq| ď 1,

´

ż

T

ż

R

|Φx|4 dy dx
¯1{4

ď
ÿ

kPN
}kφk}L4pTˆRq “ 4

?
2π

ÿ

kPN
|k|}φk}L4pRq À

ÿ

kPN
|k|}φ1

k}
1

4

L2pRq}φk}
3

4

L2pRq,
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by the Gagliardo–Nirenberg inequality, cf. [10]. Using a triple Hölder inequality we obtain that
´

ż

T

ż

R

|Φx|4 dy dx
¯

1

4 ď C
´

ÿ

kPN
k2}φ1

k}2L2pRq

¯
1

8

´

ÿ

kPN
k4}φk}2L2

¯
3

8

´

ÿ

kPN
k´3{2

¯
1

2

À }Φ}
1

4

H1pT,H1pRqq}Φ}
3

4

H2pT,L2pRqq.

(4.9)

Hence, for Φ P X we have pΦ3qxx “ 3Φ2Φxx ` 6ΦΦ2
x P L2pT, L2pRqq Ă Y and thus the mapping properties of F

are proved.
The differentiability properties of F with respect to Φ also follow in a similar way from Φ P L8pT ˆ Rq and
Φx P L4pT ˆ Rq. This can be seen as follows: the (formal) first/second derivatives of F with respect to Φ are
linear/bilinear operators and contain terms of the form abcxx or abxcx where a, b, c P X . Based on the estimates

ż

T

ż

R

|abxcx|2 dy dx ď }a}28}bx}2L4pTˆRq}cx}2L4pTˆRq,
ż

T

ż

R

|abcxx|2 dy dx ď }a}28}b}28}cxx}2L2pTˆRq

we find in view of (4.8) and (4.9) that the first/second derivatives of F with respect to Φ exist, are bounded
linear/bilinear operators from X to Y , and depend continuously on Φ and λ. Due to the cubic nature of the
nonlinearity, derivatives of F of order higher than two with respect to Φ are independent of Φ.
The differentiability properties of F with respect to λ follow from

d

dλ
L̃´1

λ “ ´L̃´1

λ

d

dλ
L̃λL̃

´1

λ “ ´L̃´1

λ V0B2

xL̃
´1

λ (4.10)

and due to L̃´1

λ : Y Ñ X and V0B2
x : X Ñ Y , we see that the resulting operator on the right-hand side of (4.10)

is indeed a bounded linear map from Y Ñ X . Moreover, (4.10) explains the formula for D2

Φ,λF p0, λq in (ii).

Finally, the formula in (i) shows that DΦF p0, λq is a compact perturbation of the identity, and hence Fredholm
of index zero. Let us compute the kernel of DΦF p0, λq. If Ψ P X satisfies DΦF p0, λqΨ “ 0 then according to
Lemma 4.3 we have that Ψ is a weak solution of LλΨ “ 0. Then, for λ ‰ λ˚ we have ψk “ 0 for all k P N and
hence Ψ “ 0. For λ “ λ˚ we have ψk “ 0 for all k P Nztk˚u and ψk˚ P spantφ˚u so that Ψ P spantΦ˚u as

claimed. Notice finally that DΦF p0, λ˚q “ Id´L̃´1

λ˚
P˚ “ Id´P˚ since rangeP˚ “ spantΦ˚u is the eigenspace

of L̃λ˚ corresponding to the eigenvalue 1. This finishes the proof. �

Remark 4.5. Let us briefly describe the difficulty that arises when one considers the bifurcation problem for
V pλ, yq “ λV pyq with V “ V0 ` V1, i.e., when multiplication with the bifurcation parameter is extended to the
distributional potential V1. In this case one already obtains a problem in verifying the C1-property of the map
F . Formally one finds

DλF pΦ, λq “ ´L̃´1

λ V B2

xL̃
´1

λ pΓpyqpΦ3qxx ´ P˚Φq.
As above, we would expect to have L̃´1

λ V B2
xL̃

´1

λ : Y Ñ X as a bounded linear map. But this is not the case,

as a calculation in the case where V0pyq ” 1 and V1pyq “ αδ0pyq shows. Namely, let A “ L̃´1

λ : Y Ñ X and

B “ V B2
x. Then B : X Ñ H´1pT;H´1pRqq and C “ L̃´1

λ : rangepBq Ñ H3{2pT;L2pRqq XH1{2pT;H1pRqq Ć X ,
i.e., we are missing a half-derivative in the regularity gain.

The advantage of formulating the problem (4.1) as F pΦ, λq “ 0 relies on the fact that its linearization about
Φ “ 0 is of the form identity plus compact operator, which provides the Fredholm property for free. Applying
the Crandall–Rabinowitz theorem (cf. e.g. [5] or [11, Theorem I.5.1]), we prove that assumption pL0q–pL3q on
the family of Schrödinger operators Lk

λ are sufficient to guarantee the existence of nontrivial small-amplitude
solutions of (4.1) provided a certain transversality condition is satisfied, which we can formulate in terms of the
potential V0, see (2.2).

Proof of Theorem 2.3. Recall from Lemma 4.4 that DΦF p0, λ˚q “ Id´P˚ : X Ñ X . Moreover,DΦF p0, λ˚q
is a Fredholm operator of index zero with a one-dimensional kernel spanned by Φ˚. Correspondingly, we can
split the underlying space as follows:

X “ spantΦ˚u ‘ spantΦ˚uK
L2 “ kerpDΦF p0, λ˚qq ‘ rangepDΦF p0, λ˚qq.

Hence, according to the Crandall–Rabinowitz theorem, the existence of a local bifurcation branch of nontrivial
solutions (1.4) follows provided that the transversality condition

D2

ΦλF p0, λ˚qΦ˚ R rangeDΦF p0, λ˚q “ spantΦ˚uK
L2
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is satisfied. In view of L̃´1

λ˚
Φ˚ “ Φ˚ and the symmetry of L̃´1

λ˚
(which follows from the self-adjointness of

Lk
λ˚
, L̃k

λ˚
) the transversality condition holds since

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq “ xL̃´1

λ˚
V0Φ

˚
xx,Φ

˚yL2pTˆRq “ xV0Φ˚
xx,Φ

˚yL2pTˆRq “ ´πk2xV0φ˚
x , φ

˚
xyL2pRq ‰ 0

due to assumption (2.2) of the theorem.

Now, we are going to state the bifurcation formulas with the help of the Lyapunov–Schmidt reduction (cf. [11,
Theorem I.2.3]). The Lyapunov–Schmidt reduction theorem in our context reads as follows:

Theorem 4.6 (Lyapunov–Schmidt reduction, [11], Theorem I.2.3). Let F : X ˆ I Ñ X be a C8-map and
X “ N ‘ NK

L2 with N “ spantΦ˚u “ kerDΦF p0, λ˚q and λ˚ P I. There exists a neighborhood O ˆ I 1 Ă
tpΦ, λq P X ˆ R`u of the bifurcation point p0, λ˚q such that the problem

F pΦ, λq “ 0 for pΦ, λq P O ˆ I 1

is equivalent to the finite-dimensional problem

ηpεΦ˚, λq :“ P˚F pεΦ˚ ` ψpεΦ˚, λq, λq “ 0 (4.11)

for functions η P C8pON ˆ I 1, Nq, ψ P C8pON ˆ I 1, NK
L2 q where ON Ă N is an open neighborhood of the zero

element in N . One has that
ηp0, λ˚q “ ψp0, λ˚q “ DΦψp0, λ˚q “ 0

and solving (4.11) provides a solution
Φ “ εΦ˚ ` ψpεΦ˚, λq

of the infinite-dimensional problem F pΦ, λq “ 0.

We have the following Fréchet derivatives:

DΦF pΦ, λqΦ˚ “ Φ˚ ` L̃´1

λ

`

Γpyq3pΦ2Φ˚qxx ´ P˚Φ˚˘ ,

D2

ΦΦF pΦ, λqrΦ˚,Φ˚s “ L̃´1

λ

`

Γpyq6ΦpΦ˚q2
˘

xx
,

D3

ΦΦΦ
F pΦ, λqrΦ˚,Φ˚,Φ˚s “ L̃´1

λ

`

Γpyq6pΦ˚q3
˘

xx
.

According to [11, Section I.6], we have that

9λp0q “ ´1

2

xD2

ΦΦ
F p0, λ˚qrΦ˚,Φ˚s,Φ˚yL2pTˆRq

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq
.

In view of F being cubic in Φ it is clear that 9λp0q “ 0. In this case the second derivative is given by

:λp0q “ ´1

3

xD3

ΦΦΦ
ηp0, λ˚qrΦ˚,Φ˚,Φ˚s,Φ˚yL2pTˆRq

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq
. (4.12)

Proposition 4.7. Let tpΦpεq, λpεqq | |ε| ă ε0u Ă X ˆ Iλ˚ be the local bifurcation curve found in Theorem 2.3
corresponding to the bifurcation point p0, λ˚q. Then

9λp0q “ 0 and :λp0q “ ´3π

2

ş

R
Γpyqpφ˚q4pyq dy

ş

R
V0pyqpφ˚q2pyq dy .

Proof. As already mentioned, the cubic nonlinearity of F implies already that 9λp0q “ 0. We are left to compute
the second derivative of λ at the origin. According to the formula in (4.12) we need to compute the third
derivative of η with respect to Φ evaluated at p0, λ˚q. As for instance in [11, Eq. (I.6.5)] we obtain that

D3

ΦΦΦηp0, λ˚qrΦ˚,Φ˚,Φ˚s “P˚D3

ΦΦΦF p0, λ˚qrΦ˚,Φ˚,Φ˚s ` 3P˚D2

ΦΦF p0, λ˚qrΦ˚, D2

ΦΦψp0, λ˚qrΦ˚,Φ˚ss.
Again, since F is cubic in Φ, we have that D2

ΦΦ
F p0, λ˚q “ 0, whence

:λp0q “ ´1

3

xP˚D3

ΦΦΦ
F p0, λ˚qrΦ˚,Φ˚,Φ˚s,Φ˚yL2pTˆRq

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq

“ ´1

3

xD3

ΦΦΦ
F p0, λ˚qrΦ˚,Φ˚,Φ˚s,Φ˚yL2pTˆRq

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq
.

We have that

xD3

ΦΦΦ
F p0, λ˚qrΦ˚,Φ˚,Φ˚s,Φ˚yL2pTˆRq “ xL̃´1

λ˚

`

Γpyq6pΦ˚q3
˘

xx
,Φ˚yL2pTˆRq.
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Using the symmetry of L̃λ˚ together with L̃´1

λ˚
Φ˚ “ Φ˚, we obtain that

xD3

ΦΦΦF p0, λ˚qrΦ˚,Φ˚,Φ˚s,Φ˚yL2pTˆRq “ 6xΓpyq
`

pΦ˚q3
˘

xx
,Φ˚yL2pTˆRq “ ´9

2
πk2˚

ż

R

Γpyqpφ˚q4pyq dy

and we know already that the denominator in :λp0q is given by

xD2

ΦλF p0, λ˚qΦ˚,Φ˚yL2pTˆRq “ xV0pyqΦ˚
xx,Φ

˚yL2pTˆRq “ ´πk2˚
ż

R

V0pyqpφ˚q2pyq dy.

Summarizing, we conclude that

:λp0q “ ´3

2

ş

R
Γpyqpφ˚q4pyq dy

ş

R
V0pyqpφ˚q2pyq dy .

�

5. Examples for regular Γ

In what follows, we consider specific examples of potentials V and prove Corollary 2.5 and Corollary 2.6, which
state the existence of traveling waves of (1.4) in the specific case when the potentials are given as in (P1),
(P2), respectively. Both Corollary 2.5 and Corollary 2.6 are immediate consequences of Theorem 2.3 and
Proposition 4.7, provided conditions pL0q ´ pL3q are satisfied.

Recall that V pλ, yq “ λV0pyq ` V1pyq where in case (P1) we have V0pyq “ 1, V1pyq “ αδ0pyq and in case (P2)
we have V0pyq “ 1|y|ěb, V1pyq “ β1|y|ăb ` αδ0pyq. The transversality condition (2.2) is trivially satisfied, since
in both cases V0 ě 0 and ı 0. It is also clear that pL0q holds true. The beginning of this section will be valid
both for (P1) and (P2) since at the general level we may consider (P1) as a special case of (P2) with β “ λ. In
the subsequent subsections the considerations will split according to the two cases.

Let us consider the operator

Lk
λ :“ ´ d2

dy2
` k2p1 ´ λ1|y|ěb ´ β1|y|ăb ´ αδ0pyqq

with λ, β ă 1. According to [4] the operator Lk
λ : DpLk

λq Ă L2pRq Ñ L2pRq is self-adjoint on the domain

DpLk
λq “ tφ P H1pRq | φ P H2p´8, 0q XH2p0,8q, φ1p0`q ´ φ1p0´q “ ´k2αφp0qu;

thereby pL1q is fulfilled. Moreover, σesspLkq “ rk2p1 ´ λq,8q according to Lemma A.5. Next we consider the
point spectrum of Lk, i.e., the eigenvalue problem of finding φ P DpLk

λq with Lk
λφ “ k2µφ where µ̃ “ k2µ is the

actual eigenvalue. Setting λ̃ “ λ` µ and β̃ “ β ` µ the eigenvalue problem then reduces to
#

´φ2 ` k2p1 ´ λ̃1|y|ěb ´ β̃1|y|ăbqφ “ 0, y P p´8, 0q Y p0,8q,
φ1p0`q ´ φ1p0´q ` k2αφp0q “ 0.

(5.1)

For reasons that will become obvious in the subsequent discussion we suppose µ to be so small that λ̃, β̃ ă 1.
In Lemma A.6 in the Appendix we show that this problem is solvable (with a one-dimensional eigenspace) if
and only if

kα

2

b

1 ´ β̃

“

b

1 ´ β̃ sinhpk
b

1 ´ β̃bq `
a

1 ´ λ̃ coshpk
b

1 ´ β̃bq
b

1 ´ β̃ coshpk
b

1 ´ β̃bq `
a

1 ´ λ̃ sinhpk
b

1 ´ β̃bq
. (5.2)

Now we will split the discussion into subsections according to the cases (P1) and (P2), verifying pL2q and pL3q
separately.

5.1. (P1) V a δ-potential on a positive background. Here we take V0 “ 1 and V1 “ αδ0 and V pλ, yq “
λ`αδ0pyq with α ą 0 and λ ă 1. In the subsequent results of Lemma 5.1, Lemma 5.2 we verify that the family
of linear operators Lk

λ satisfies also the assumptions pL2q and pL3q in Theorem 2.3. Since (P1) is a special case
of (P2) with λ “ β we see that the eigenvalue condition (5.2) becomes

kα

2
a

1 ´ λ̃
“ 1. (5.3)

This leads to the following lemma.
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Lemma 5.1. Let us fix a wavenumber k˚ P N and let λ˚ ă 1. We determine α ą 0 such that

α “ 2
?
1 ´ λ˚
k˚

. (5.4)

Then there exists an open interval Iλ˚ Ă R containing λ˚ such that

dimkerL
k˚
λ˚

“ 1,

and kerLk
λ “ t0u for any pk, λq P N ˆ Iλ˚ with pk, λq ‰ pk˚, λ˚q.

Proof. Since we are considering the zero-eigenvalue of Lk
λ we have µ “ 0 and λ̃ “ λ. Together with our choice

of α the eigenvalue condition (5.3) becomes

k

k˚
“

?
1 ´ λ?
1 ´ λ˚

.

Recall that k P N is integer valued. Therefore, choosing a sufficiently small interval Iλ˚ Ă p´8, 1q that contains
λ˚ the eigenvalue condition is satisfied for λ P Iλ˚ and k P N if and only if λ “ λ˚ and k “ k˚. Moreover, for
k “ k˚ and λ “ λ˚ the eigenspace is one-dimensional. �

It is clear that kernel of L
k˚
λ˚

is spanned by the L2pRq-unitary element

φ˚pyq :“
b

k˚
a

1 ´ λ˚e
´k˚

?
1´λ˚|y|

since L
k˚
λ˚
φ˚ “ 0 in Rzt0u and it satisfies φ˚1p0`q ´ φ˚1p0´q ` αk2˚φ

˚p0q “ 0. The above lemma ensures

that assumption pL2q is satisfied. The following lemma concerns the spectral properties of Lk
λ and shows that

assumption pL3q holds true.

Lemma 5.2. There exists an open interval Iλ˚ Ă R containing λ˚ such that the following holds for all k ě 3k˚
and all λ P Iλ˚ : if Lk

λφ “ f for some f P L2pRq, then

}φ}L2pRq À 1

k2
}f}L2pRq and }φ1}L2pRq À 1

k
}f}L2pRq.

In particular, there exists a constant c “ cpk˚, |Iλ˚ |q, depending on k˚ and the size of the interval Iλ˚ , such that

p´ck2, ck2q Ă ρpLk
λq for every k ě 3k˚, λ P Iλ˚ .

Proof. We show that for any λ ă 1 we have

}Lk
λφ}2L2pRq ě1

2

´

}φ2}2L2p´8,0q ` }φ2}2L2p0,8q

¯

` 2p1 ´ λq
ˆ

k2 ´ 4k2˚ ´ 16pλ˚ ´ λq
α2

˙

}φ1}2L2pRq `
ˆ

k2˚α
2

4
` λ˚ ´ λ

˙2

k4}φ}2L2pRq,

which proves the assertion. We have that

}Lk
λφ}2L2pRq “

ż

0

´8
pLk

λφq2 dy `
ż 8

0

pLk
λφq2 dy.

For the first integral on the right hand side, we compute
ż

0

´8
pLk

λφq2 dy “
ż

0

´8
p´φ2 ` k2p1 ´ λqφq2 dy

“
ż

0

´8
|φ2|2 ´ 2k2p1 ´ λqφ2φ` k4p1 ´ λq2φ2 dy

“ }φ2}2L2p´8,0q ` 2k2p1 ´ λq}φ1}2L2p´8,0q ` k4p1 ´ λq2}φ}2L2p´8,0q ´ 2k2p1 ´ λqφ1p0´qφp0q,
where we used integration by parts. Similarly, we obtain that

ż 8

0

pLk
λφq2 dy “ }φ2}2L2p0,8q ` 2k2p1 ´ λq}φ1}2L2p0,8q ` k4p1 ´ λq2}φ}2L2p0,8q ` 2k2p1 ´ λqφ1p0`qφp0q.

Taking the sum of the two integrals and using for φ P DpLk
λq that

φ1p0`q ´ φ1p0´q “ ´k2αφp0q
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we find that

}Lk
λφ}2L2pRq “}φ2}2L2p´8,0q ` }φ2}2L2p0,8q ` 2k2p1 ´ λq}φ1}2L2pRq ` k4p1 ´ λq2}φ}2L2pRq

´ 2

α
p1 ´ λq

`

φ1p0`q ´ φ1p0´q
˘2
.

(5.5)

A simple computation together with Young’s inequality implies that

|φ1p0`q|2 ď 2

ż 8

0

|φ1φ2| dy ď
ˆ

ε}φ1}2L2p0,8q ` 1

ε
}φ2}2L2p0,8q

˙

for any ε ą 0. A similar estimate holds for |φ1p0´q|2. Therefore
ˇ

ˇφ1p0`q ´ φ1p0´q
ˇ

ˇ

2 ď 2
`

|φ1p0`q|2 ` |φ1p0´q|2
˘

ď 2

ˆ

ε}φ1}2L2pRq ` 1

ε
}φ2}2L2pp´8,0qq ` 1

ε
}φ2}2L2pp0,8qq

˙

.

Inserting the latter into (5.5) yields

}Lk
λφ}2L2pRq ě

ˆ

1 ´ 4p1 ´ λq
αε

˙

p}φ2}2L2p´8,0q ` }φ2}2L2p0,8qq

` 2p1 ´ λqpk2 ´ 2ε

α
q}φ1}2L2pRq ` k4p1 ´ λq2}φ}2L2pRq.

The choice ε “ 8

α
p1 ´ λq “ 2αk2˚ ` 8pλ˚´λq

α
implies the claim. �

Collecting Lemma 5.1 and Lemma 5.2, we infer that there exists an open interval Iλ˚ Ă R` containing λ˚ such

that conditions pL0q–pL3q are satisfied, which concludes the proof of Corollary 2.5. The formulas for 9λp0q and
:λp0q follow directly from Proposition 4.7.

5.2. (P2) V a δ-potential on a step background. Here we take V0pyq “ 1|y|ěb, V1pyq “ β1|y|ăb ` αδ0pyq
and V pλ, yq “ λ1|y|ěb `β1|y|ăb `αδ0pyq with α ą 0, β, λ ă 1. The subsequent two results verify that the family

of linear operators Lk
λ satisfies also the assumptions pL2q and pL3q in Theorem 2.3. They are the counterparts

to Lemma 5.1 and Lemma 5.2.

Lemma 5.3. Let us fix a wavenumber k˚ P N and let λ˚ ă 1. We determine α ą 0 such that

k˚α

2
?
1 ´ β

“
?
1 ´ β sinhpk˚

?
1 ´ βbq `

?
1 ´ λ˚ coshpk˚

?
1 ´ βbq?

1 ´ β coshpk˚
?
1 ´ βbq `

?
1 ´ λ˚ sinhpk˚

?
1 ´ βbq . (5.6)

Then there exists an open interval Iλ˚ Ă R containing λ˚ such that

dimkerL
k˚
λ˚

“ 1,

and kerLk
λ “ t0u for any pk, λq P N ˆ Iλ˚ with pk, λq ‰ pk˚, λ˚q.

Proof. As before we are considering the zero-eigenvalue of Lk
λ. Hence we have µ “ 0 and λ̃ “ λ, β̃ “ β. Then

(5.6) amounts to L
k˚
λ˚

having a simple zero eigenvalue, cf. Lemma A.6. It remains to show that for no other

value of λ P Iλ˚ and k P N there is a zero eigenvalue of Lk
λ. First note that for λ in a bounded interval of p´8, 1q

there are only finitely many values of k P t1, . . . ,Ku which potentially also fulfill (5.6) since the right-hand side
is bounded in k and the left-hand side tends to infinity as k Ñ 8. Now we observe (by a standard calculation)
that for fixed λ “ λ˚, the right-hand side of (5.6) divided by k is monotone decreasing in k. Hence, for given
λ˚ no other value of k P t1, . . . ,Ku than k˚ fulfills (5.6). Finally, since k P t1, . . . ,Ku needs to be integer
valued, we can find a sufficiently small open interval Iλ˚ Ă p´8, 1q containing λ˚ such that (5.6) is fulfilled for
pλ, kq P Iλ˚ ˆ N if and only if pλ, kq “ pλ˚, k˚q. �

Lemma 5.4. There exists an open interval Iλ˚ Ă R containing λ˚ such that the following holds for all suffi-

ciently large k P N and all λ P Iλ˚ : if Lk
λφ “ f for some f P L2pRq, then

}φ}L2pRq À 1

k2
}f}L2pRq and }φ1}L2pRq À 1

k
}f}L2pRq. (5.7)

In particular, there exists a constant c “ cpk˚, |Iλ˚ |q, depending on k˚ and the size of the interval Iλ˚ , such that

p´ck2, ck2q Ă ρpLk
λq for every k sufficiently large, λ P Iλ˚ .



16 GABRIELE BRUELL, PIOTR IDZIK, AND WOLFGANG REICHEL

Proof. The proof consists of two parts. First we determine an interval p´ck2, ck2q Ă ρpLk
λq for all λ P Iλ˚ and

all sufficiently large k. This implies the first part of the estimate in (5.7). In the second part of the proof we
will show the remaining part of (5.7).
Part 1: Recall that σesspLk

λq “ rk2p1´λq,8q, which is consistent with the desired result provided we choose Iλ˚

in such a way that it has a positive distance from 1. Subject to this observation we take the bounded interval
Iλ˚ from Lemma 5.3 and diminish it in the following if necessary. Notice that (5.2) describes all eigenvalues of

Lk
λ of the form µ̃ “ k2µ, where µ is so small that supλPIλ˚

tλ̃ “ λ ` µu ă 1 and β̃ “ β ` µ ă 1. Now observe

that uniformly for λ P Iλ˚ and µ P r´µ0, µ0s for small µ0 ą 0 the left-hand side of (5.2) tends to 8 as k Ñ 8
whereas the right-hand side stays bounded in k. Therefore the set r´µ0k

2, µ0k
2s belongs to the resolvent of Lk

λ

for all λ P Iλ˚ and all sufficiently large k.

Part 2: We need to distinguish the operator Lk
λ “ ´ d2

dy2 ` k2p1 ´ λ´ αδ0q of case (P1) from its counterpart in

(P2). Within this part of the proof let us denote it by Lk
λ,β “ ´ d2

dy2 ` k2p1 ´ λ1|y|ěb ´ β1|y|ăb ´ αδ0q. Using

Part 1 we find

}pLk
λ,βq´1}L2ÑL2 ď 1

distp0, σpLk
λ,βq À 1

k2
.

Therefore, with f P L2pRq and φ as in the hypothesis of the lemma, we get }φ}L2pRq À 1

k2 }f}L2pRq. The estimate
for }φ1}L2pRq is obtained as follows. We have

Lk
λ,βφ “ Lk

λφ` k2p´β ` λq1|y|ăbφ “ f

from which we deduce by using }pLk
λq´1}L2ÑH1 À 1

k
for k " 1 from Lemma 5.2

}φ1}L2pRq ď }pLk
λq´1}L2ÑH1}f ´ k2p´β ` λq1|y|ăbφ}L2pRq À 1

k
p}f}L2pRq ` k2}φ}L2pRqq À 1

k
}f}L2pRq

where in the last step we have used the result from Part 1. The finishes the proof of the lemma. �

Due to Lemma 5.3 and Lemma 5.4 conditions pL0q–pL3q are satisfied. This concludes the proof of Corollary 2.6.

6. Existence of traveling waves when Γ is a delta potential

Subject of this section is the proof of Theorem 2.10 when Γ “ γδ0 is given by a multiple of a delta potential
and

V pλ, yq “ λV0pyq `W pyq ` αδ0pyq
loooooooomoooooooon

“V1pyq

,

where V0,W P L8pRq are even. The equation for traveling wave solutions (1.4) is then given by

´ Φyy ´ p1 ´ λV0pyq ´W pyq ´ αδ0pyqqΦxx ` γδ0pyq
`

Φ3
˘

xx
“ 0 (6.1)

and can be written as a linear partial differential equation on T ˆ Rzt0u equipped with a nonlinear boundary
condition on T:

´Φyy ´ p1 ´ λV0 ´W pyqqΦxx “ 0, px, yq P T ˆ Rzt0u, (6.2)

Φypx, 0`q ´ Φypx, 0´q “ B2

x

`

αΦ ` γΦ3
˘

px, 0q, x P T. (6.3)

In what follows let us assume that Φ is even with respect to y. We seek for solutions Φ of the form

Φpx, yq “
ÿ

kPN
akφkpy;λq sinpkxq, (6.4)

where φkp¨;λq P H1pRq XH2pRzt0uq is an evenly extended solution to the linear problem

Lλ
0,kφkpy;λq “ 0 on p0,8q with φkp0;λq “ 1 (6.5)

and

Lλ
0,k :“ ´ d2

dy2
` k2p1 ´ λV0pyq ´W pyqq.

Thus ansatz (6.4) already solves (6.2) and its remains to determine a “ pakqkPN such that (6.3) is also satisfied.
It will be convenient to parameterize the sequence pakq over Z instead of N by setting ak “ ´a´k. In this way
Φpx, yq “ 1

2

ř

kPZ akφkpy;λq sinpkxq. Here we have defined φ´kp¨;λq :“ φkp¨;λq for k P N. Then, we shall see

that for s ě 5

2
the existence of a traveling wave solution Φ in the space

Xs “ HspT;L2pRqq XHs´1pT;H1pRqq X CpR;Hs´ 1

2 pTqq X C1pR;Hs´ 3

2 pTqq
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follows from the existence of a sequence a P hs7 pRq satisfying the boundary condition

2akφ
1
kp0`;λq “ ´k2

´

αak ´ γ

4
pa ˚ a ˚ aqk

¯

for all k P N. (6.6)

Recall that the k-th Fourier coefficient of Φ3px, 0q is given by ´ 1

4
pa ˚ a ˚ aqk (cf. Lemma A.1). Notics that for

s ě 5

2
we have the embedding

Xs ãÑ X “ H2pT;L2pRqq X H1pT;H1pRqq X CpR;H2pTqq X C1pR;H1pTqq.

As in the previous section we aim to apply bifurcation theory with respect to the the parameter λ to obtain the
existence of nontrivial solutions a P hs7 pRq of (6.6) for s ě 5

2
by the Crandall–Rabinowitz theorem. Recall that

this time we are working under the the assumptions pL̃0q–pL̃3q from Theorem 2.10.

Remark 6.1. Existence and properties of the decaying solutions φkp¨;λq of (6.5):

(i) Due to pL̃1q the problem Lk
0,λφk “ 1r´2,´1s on R has a unique H2pRq solution. Its restriction to r0,8q

satisfies (6.5). The fact that φkpy;λq Ñ 0 exponentially as y Ñ 8 can be seen as follows: Since Lλ
0,k

is a self-adjoint operator with 0 P ρpLλ
0,kq and the resolvent set is open in C there exists ck,λ ą 0 such

that p´ck,λ, ck,λq Ă ρpLλ
0,kq. Set ψkpy;λq :“ eδkyφkpy;λq. Then

Lλ
0,kψkpy;λq `Bkψkpy;λq “ eδky1r´2,´1s, (6.7)

where Bkψ :“ 2δk
d
dy
ψ ` δ2kψ. One can show that Bk is Lλ

0,k–bounded in the sense that there exist

ak, bk ą 0 such that

}Bkψ}2L2pRq ď ak}ψ}2L2pRq ` bk}Lλ
0,kψ}2L2pRq for all ψ P H2pRq.

In fact, if bk ą 0 is fixed, then ak :“ 16δ4
k

bk
` 8δ2kk

2}1 ´ λV0 ´ W }8 ` 2δ4k. For fixed bk P p0, 1q let us

choose δk ą 0 so small that

a2k ` b2kc
2

k,λ ă c2k,λ.

Then p´c̃k,λ, c̃k,λq ` iR Ă ρpLλ
0,k ` Bkq, where c̃k,λ “ ck ´

b

a2k ` b2kc
2

k,λ, cf. [6, Theorem 2.1 (ii)]. In

particular, 0 P ρpLλ
0,k `Bq so that there exists a unique solution ψk P H2pRq of (6.7). The boundedness

of ψk then implies that |φkpy;λq| À e´δky decays exponentially on the half-line r0,8q. This result is also

known as “exponential dichotomy”. Assumption pL̃3q may be interpreted as some kind of generalized
uniform exponential dichotomy with respect to k P N and λ P Iλ˚ .

(ii) In the specific examples (P1) and (P2) which we consider at the end of this section, the family of
ansatz-functions pφkp¨;λqqkPN satisfies a true uniform exponential dichotomy with respect to k P N and
λ P Iλ˚ ; that is, there exists C, δ ą 0 independent of k P N and λ P Iλ˚ such that |φkpy;λq| ď Ce´δy

for all y ě 0. This leads to an exponential decay in y-direction of the traveling solution Φ of (1.4) and

in particular it implies pL̃3q.
(iii) Notice also that φkp0;λq ‰ 0, since otherwise (by an odd reflection around zero) we would obtain an

eigenfunction of Lλ
0,k for the eigenvalue 0. This is excluded by assumption pL̃1q. Likewise we see that

φ1
kp0;λq ‰ 0 (using an even reflection around zero).

Remark 6.2. If V0,W are bounded, even functions and there exists v̄ ą 0 such that

1 ´ λV0pyq ´W pyq ě v̄ for all λ P Iλ˚ , y P R,

then assumption pL̃0q, pL̃1q, and pL̃3q are satisfied. Clearly, if 1 ´ λV0 ´ W ě v̄, then Lλ
0,k is a self-adjoint

operator with σpLλ
0,kq Ă rk2v̄,8q; thus 0 P ρpLλ

0,kq and pL̃1q is satisfied. As explained in Remark 6.1 (i),

condition pL̃1q implies the existence of a solution φkp¨, λq P H2p0,8q with

´ φ2
k ` k2p1 ´ λV0pyq ´W pyqqφk “ 0 on p0,8q (6.8)

and φkp0;λq “ 1. Multiplying (6.8) with φk and integrating over the half line p0,8q, we obtain that

´ φ1
kp0`;λq “

ż 8

0

|φ1
k|2 dy ` k2

ż 8

0

p1 ´ λV0 ´W qφ2k dy. (6.9)
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On the other hand, multiplying (6.8) with φ1
k and integrating over p0,8q yields

pφ1
kq2p0`;λq “ ´k2

ż 8

0

p1 ´ λV0 ´W qpφ2kq1 dy

“ ´2k

ż 8

0

k
a

1 ´ λV0 ´Wφkφ
1
k

a

1 ´ λV0 ´W dy

ď k}
a

1 ´ λV0 ´W }8

ˆ
ż 8

0

|φ1
k|2 dy ` k2

ż 8

0

p1 ´ λV0 ´W qφ2k dy
˙

“ ´k}
a

1 ´ λV0 ´W }8φ
1
kp0`;λq,

where we used relation (6.9) in the last equality. We deduce that φ1p0`;λq ă 0 and

|φ1
kp0`;λq| ď k}

a

1 ´ λV0 ´W }8. (6.10)

Estimating the L2-norm of φkp¨;λq, we obtain that

}φkp¨;λq}2
2

“ 1

v̄
}
?
v̄φkp¨;λq}2

2
ď 1

v̄

ż 8

0

p1 ´ λV0 ´W qφ2k dy ď 1

v̄k2
|φ1

kp0`;λq| ď 1

v̄k
}
a

1 ´ λV0 ´W }8,

where we used (6.9) and (6.10). In particular, we find that }φkp¨;λq}2 À 1 as claimed in pL̃3q.

For s ě 0 denote the linearization of (6.6) around a “ 0 by

Aλ : hs7 pRq Ă hs´2

7 pRq Ñ hs´2

7 pRq, pAλaqk :“ Ak
λak for k P Z,

where

Ak
λ :“ 2φ1

kp0`;λq ` k2α for k P Z.

Then (6.6) can be written as

Aλa´ npaq “ 0, where npaqk “ γk2

4
pa ˚ a ˚ aqk. (6.11)

For m P Z let us denote by em P l27 pRq the sequence, which satisfies emk “ 0 for k ‰ ˘m and emm “ ´em´m “ 1?
2
.

Lemma 6.3. Assume pL̃0q–pL̃3q. Then

}φkp¨;λq}L8pRq À k
1

2 , }φ1
kp¨;λq}L2pRq À k, }φ1

kp¨;λq}L8pRq À k
3

2 (6.12)

uniformly for λ P Iλ˚ . In particular, |φ1
kp0;λq| À |k| 3

2 and consequently Ak
λ “ αk2 `Opk 3

2 q as k Ñ ˘8.

Proof. By a result of Komornik, cf. [13], the estimate

}u}8 ď C}u}L2

holds true for every solution u of ´u2 ` qpyqu “ 0 on pa, bq with the constant C “ max
!

6
b

}q}L1pa,bq,
12?
b´a

)

.

We apply this result to the solutions φkp¨;λq of (6.5) with q “ k2p1 ´ λV0 ´ W q, a ě 0 and b “ a ` c with

c :“ 2p
a

}1 ´ λV0 ´W }8kq´1. Then

6

b

}q}L1pa,bq ď 6k
a

}1 ´ λV0 ´W }8
?
c “ 6

?
2
?
k 4

a

}1 ´ λV0 ´W }8 “ 12?
b´ a

and thus for a constant C̃ only depending on }1´λV0 ´W }8 we have }φkp¨;λq}L8pa,bq ď k
1

2 C̃}φkp¨;λq}L2pa,bq À
k

1

2 by pL̃3q. Since a ě 0 was arbitrary we obtain the first part of (6.12).

Multiplying (6.5) with u, u1 and integrating from a ě 0 to 8 we get
ż 8

a

k2p1 ´ λV0pyq ´ W pyqqφkpy;λq2 ` φ1
kpy;λq2 dy “ ´φkpa;λqφ1

kpa;λq, (6.13)

ż 8

a

2k2p1 ´ λV0pyq ´W pyqqφkpy;λqφ1
kpy;λq dy “ ´φ1

kpa;λq2, (6.14)

respectively. Using pL̃3q and applying the Cauchy-Schwarz inequality to (6.14) we find

}φ1
kp¨;λq}2L8 À k2}φ1

kp¨;λq}L2p0,8q (6.15)
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and from (6.13), (6.15) we get

}φ1
kp¨;λq}2L2p0,8q À k2 ` }φkp¨;λq}L8p0,8q}φ1

kp¨;λq}L8p0,8q

À k2 ` }φkp¨;λq}L8p0,8qk}φ1
kp¨;λq}

1

2

L2p0,8q.

The L8–estimate from the first part of the lemma leads to

}φ1
kp¨;λq}2L2p0,8q À k2 ` k

3

2 }φ1
kp¨;λq}

1

2

L2p0,8q ď k2 ` Cǫk
2 ` ǫ}φ1

kp¨;λq}2L2p0,8q,

where we have used Young’s inequality with exponents 4{3 and 4. This implies the second inequality in (6.12).
Inserting this into (6.15) we obtain the third inequality in (6.12). �

Lemma 6.4. Assume pL̃0q–pL̃3q and let s ě 0. Then the operator Aλ : hs7 pRq Ă hs´2

7 pRq Ñ hs´2

7 pRq is

self-adjoint. Its spectrum is discrete and consist of the values pAk
λqkPN. Moreover kerAλ˚ “ spantek˚u and

kerAλ “ t0u for λ P Iλ˚ ztλ˚u.

Proof. Due to Lemma 6.3 and since φ´k “ φk for all k P Z one can verify that Aλ : hs7 pRq Ă hs´2

7 pRq Ñ hs´2

7 pRq
acting like an infinite dimensional diagonal matrix is self-adjoint. Using the characterization of the spectrum
via Weyl-sequences one sees that Aλ has the spectrum σpAλq “ clostAk

λ : k P Nu. Due to Lemma 6.3 the set
tAk

λ : k P Nu is discrete and hence σpAk
λq consists of the set of eigenvalues tAk

λ : k P Nu. Finally, let us determine
the kernel of Aλ. On the one hand, a P kerAλ if and only if there exists k P N such that Ak

λ “ 0, and in this

case a “ ek (here we use that Ak
λ “ A´k

λ ). On the other hand, using the characterization of the domain of Lλ
k

from Section 5.1 we know that Lλ
kφ “ 0 if and only if φpxq “ φkp|x|;λq and Ak

λ “ 0. Thus, bringing both facts

together and using assumption pL̃2q we obtain the final claim of the lemma. �

Similarly as in (4.3) we define the operator

Ãλ :“ Aλ ` P˚,

where P˚a “ ak˚e
k˚ .

Lemma 6.5. Assume pL̃0q–pL̃3q and s ě 0. Then we have that 0 P ρpÃλq for all λ P Iλ˚ and hence Ã´1

λ :

hs´2

7 pRq Ñ hs7 pRq is a bounded linear operator. Moreover, if f P hs7 pRq, s ě 5

2
is given and a P hs7 pRq solves

a “ Ã´1

λ p´γMpfq ` P˚aq where Mpfqk :“ k2fk (6.16)

then Φpx, yq :“ ř

kPN akφkpx;λq sinpkxq satisfies Φ P Xs and solves

LλΦ ` γδ0pyqFxx “ 0

for F px, yq “ ř

kPN fkφkpy;λq sinpkxq in the weak sense, i.e.,
ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyq ´W pyqqΦxxΨ dy dx`
ż

T

`

αΦxxpx, 0q ` γFxxpx, 0q
˘

Ψpx, 0q dx “ 0

for any Ψ P H1pT;H1pRqq.
Proof. Lemma 6.4 says that kerAλ˚ “ spantek˚u and kerAλ “ t0u for any λ P Iλ˚ ztλ˚u. We need to show

that 0 P ρpÃλq for any λ P Iλ˚ . Let b P hs´2

7 pRq be arbitrary, then Ãλa “ b if and only if
"

Ak
λak “ bk, if k ‰ k˚,

Ak
λak ` ak “ bk, if k “ k˚,

which is equivalent to

ak “ 1

Ak
λ

bk if k ‰ k˚ and ak˚ “ 1

A
k˚
λ ` 1

bk˚ . (6.17)

Due to Lemma 6.3 we obtain that for any b P hs´2

7 pRq the sequence a defined by (6.17) belongs to hs7 pRq and

solve Ãλa “ b; whence 0 P ρpÃλq.
Now suppose that f P hs7 pRq with s ě 5

2
and that a P hs7 pRq solves (6.16). The regularity of Φ follows from

Lemma A.3. Moreover, pAλaqk “ ´γk2fk and hence

2φ1
kp0`;λqak ` αk2ak “ ´γk2fk. (6.18)

Using that

Lk
0,λφk “ 0 on Rzt0u for all k P N,
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we deduce by testing with akψk P H1pRq and summing for 1 ď k ď K0 that

0 “
K0
ÿ

k“1

ż

R

akφ
1
kψ

1
k ` k2p1 ´ λV0pyq ´W pyqqφkψk dy ` akpφ1

kp0`;λq ´ φ1
kp0´;λqqψkp0q.

Since φkp¨;λq is even with respect to y we obtain by (6.18)

0 “
K0
ÿ

k“1

ż

R

akφ
1
kψ

1
k ` k2p1 ´ λV0pyq ´W pyqqφkψk dy ´ αk2ak φkp0;λq

looomooon

“1

ψkp0q ´ γk2fkψkp0q.

Taking the limit K0 Ñ 8 in the previous equation will lead to

0 “
ż

T

ż

R

ΦyΨy ´ p1 ´ λV0pyq ´W pyqqΦxxΨ `
ż

T

pαΦxxpx, 0q ` γFxxpx, 0qqΨpx, 0q dx

for any Ψ P H1pT;H1pRqq due to the following estimates:
ż

T

ż

R

|ΦyΨy| dy dx ď
ÿ

kPN
}akφ1

k}L2pRq}ψ1
k}L2pRq ď }Φ}L2pT,H1pRqq}Ψ}L2pT,H1pRqq

ď C}a}h1pRq}Ψ}L2pT,H1pRqq,
ż

T

ż

R

|
`

1 ´ λV0pyq ´W pyq
˘

ΦxxΨ| dy dx ď
ÿ

kPN
}1 ´ λV0 ´W }L8pRqk

2}φk}L2pRq}ψk}L2pRq

ď }1 ´ λV0 ´W }L8pRq}Φ}H2pT,L2pRqq}Ψ}L2pT,L2pRqq

ď C}a}h2pRq}Ψ}L2pT,L2pRqq
ż

T

|Φxxpx, 0qΨpx, 0q| dx ď sup
y

}Φxxp¨, yq}L2pTq}Ψp¨, yq}L2pTq

ď }Φ}CpR,H2pTqq}Ψ}CpR,L2pTqq

ď C}a}
h

5

2 pRq}Ψ}CpR,L2pTqq,
ż

T

|Fxxpx, 0qΨpx, 0q| dx ď }f}
h

5

2 pRq}Ψ}CpR,L2pTqq

together with the continuous embeddings H1pT;H1pRqq Ă L2pT;H1pRqq XCpR;L2pTqq and hs7 pRq Ă h
5{2
7 pRq Ă

h27 pRq Ă h17 pRq since s ě 5

2
. �

In the same spirit as in Section 4, let us reformulate our problem (6.11) in a way suitable for applying the
Crandall–Rabinowitz theorem. Using the above lemma, equation (6.11) is equivalent to

Gpa, λq “ 0,

where the function G : hs7 pRq ˆ Iλ˚ Ñ hs7 pRq, s ě 5

2
, is defined by

Gpa, λq :“ a ` Ã´1

λ

´

´γ

4
Mpa ˚ a ˚ aq ´ P˚a

¯

and Mpfqk :“ k2fk for f P hs7 pRq. (6.19)

Remark 6.6. Notice that hs7 pRq, s ě 1 is a Banach algebra, cf. Lemma A.4. Thus, for a P hs7 pRq the

nonlinearity a ˚ a ˚ a stays in hs7 pRq and Mpa ˚ a ˚ aq P hs´2

7 pRq. Hence, in order to control the nonlinearity in

Gpa, λq, it is necessary that Ã´1

λ is a bounded operator from hs´2

7 pRq to hs7 pRq. Otherwise, assume that we would

only have that Ã´1

λ is bounded from hs´2

7 pRq to hs
1

7 pRq where s1 ă s, then the mapping G is merely bounded from

hs7 pRq ˆ Iλ Ñ hs
1

7 pRq. In this case, the Fréchet derivative has the property that DaGp0, λq : hs7 pRq Ñ hs7 pRq (cf.

Lemma 6.7(ii) below) but is no longer a Fredholm operator from hs7 pRq Ñ hs
1

7 pRq since the co-dimension of its
image is infinite. The Fredholm property at λ “ λ˚, however, is important for applying the Crandall–Rabinowitz
theorem for bifurcation.

The following lemma provides the necessary preparations to apply bifurcation theory to Gpa, λq “ 0.

Lemma 6.7. Let s ě 5

2
. The map G : hs7 pRq ˆ Iλ˚ Ñ hs7 pRq is a C8-map. Moreover the following holds:

(i) The function φk is continuously differentiable with respect to λ and ψkpy;λq :“ Bλφkpy;λq satisfies

Lλ
0,kψk “ k2V0pyqφk on p0,8q, ψkp0;λq “ 0 (6.20)

and ψ1
kp0;λq “ k2

ş8
0
V0φ

2

k dy “ Opk2q.
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(ii) The linearization of G about a “ 0, given by

DaGp0, λq “ Id´Ã´1

λ P˚ : hs7 pRq Ñ hs7 pRq
is a Fredholm operator of index zero. Its kernel is trivial for λ P Iλ˚ , λ ‰ λ˚ and it is given by spantek˚u
if λ “ λ˚.

(iii) The mixed second derivative of G about a “ 0 is given by

D2

aλGp0, λq “ Ã´1

λ BÃ´1

λ P˚ : hs7 pRq Ñ hs`2

7 pRq Ă hs7 pRq,
where B : hs`2

7 pRq Ñ hs7 pRq is the pointwise multiplication with 2ψ1
kp0;λq.

Proof. (i) We are only interested in ψkp¨, λq “ Bλφkp¨, λq on r0,8q. To find ψkp¨, λq we differentiate Lλ
0,kφk “

0 on p0,8q, φkp0;λq “ 1 with respect to λ P Iλ˚ and obtain (6.20). If we define Qφkp¨, λq : R Ñ R as
the odd extension around y “ 0 of φkp¨, λq : p0,8q Ñ R then we see that ψkp¨, λq is given by ψkp¨, λq “
pLλ

0,kq´1pk2V0Qφkp¨, λqq|r0,8q. Testing the differential equation in (6.20) with φk and noting that Lλ
0,kφk “ 0 on

p0,8q we find

xLλ
0,kψk, φkyL2p0,8q “ p´ψ1

kφk ` ψkφ
1
kq
ˇ

ˇ

8
0

` xψk, L
λ
0,kφkyL2p0,8q “ ψ1

kp0`;λq “ Opk2q,

as claimed, in view of xLλ
0,kψk, φkyL2p0,8q “

ş8
0
k2V0φ

2

k dy “ Opk2q because V0 P L8pRq and pL̃3q.
(ii) The mapping properties of G follow from Remark 6.6. The differentiability of the cubic nonlinearity a˚a˚a
with respect to a is also a straightforward property of the Banach algebra property of hs7 pRq. The differentiability

property of G with respect to λ follows from differentiability of λ ÞÑ φ1
kp0`;λq as given in (i). As in Lemma 4.4

the Fredholm property of DapGp0, λqq is satisfied since it is a compact perturbation of the identity and the
characterization of the kernel of can be seen in a similar way using Lemma 6.4.
(iii) Note that d

dλ
Ãk

λ “ d
dλ
Ak

λ “ 2ψ1
kp0;λq. Since ψ1

kp0;λq “ Opk2q by (i) we have the mapping property

B : hs`2

7 pRq Ñ hs7 pRq. �

We are now in a position to apply the Crandall–Rabinowitz theorem for Gpa, λq : hs7 pRq ˆ Iλ˚ Ñ Xs for s ě 5

2

in order to proof Theorem 2.10 provided that the transversality condition in (2.6) is satisfied.

Proof of Theorem 2.10. The existence result follows from the Crandall–Rabinowitz theorem applied to
Gpa, λq “ 0. Successfully applied, it provides an interval Iλ˚ Ă R containing λ˚, and a smooth curve through
p0, λ˚q of the form

tpapεq, λpεqq | |ε| ă ε0u Ă hspRq ˆ Iλ˚

of nontrivial solutions of (6.11) with λp0q “ λ˚ and Dεap0q “ ek˚ . The curve papεq, λpεqq Ă hspRq ˆ Iλ˚ then
translates via Φpεqpx, yq “ ř

kPN akpεqφkpy;λq sinpkxq and by Lemma 6.5 into the curve tpΦpεq, λpεqq | |ε| ă
ε0u Ă Xs ˆ Iλ˚ of nontrivial solutions of (6.1) with the stated property. The Crandall–Rabinowitz theorem
requires that the linearization

DaGp0, λ˚q “ Id´Ã´1

λ˚
P˚ : hs7 pRq Ñ hs7 pRq

is a Fredholm operator of index zero with dimkerDaGp0, λ˚q “ 1 and the transversality condition

D2

aλGp0, λ˚qek˚ R rangeDaGp0, λ˚q (6.21)

is satisfied. The Fredholm property is already shown in Lemma 6.7 (ii) and the kernel of DaGp0, λ˚q is one
dimensional and spanned by ek˚ , that is

kerDaGp0, ω˚q “ spantek˚ u.
Concerning the transversality condition (6.21), assume on the contrary that there exists b P hspRq such that

D2

aλGp0, λ˚qek˚ “ DaGp0, λ˚qb.
Then,

xD2

aλGp0, λ˚qek˚ , ek˚yl2pRq “ xDaGp0, λ˚qb, ek˚yl2pRq.

Using the formulas from Lemma 6.7 (ii) and (iii) and the fact that Ã´1

λ˚
P˚ “ P˚ together with the symmetry

of Ã´1

λ˚
we obtain that

2ψ1
k˚

p0;λ˚q “ xBek˚ , ek˚yl2 “ xD2

aλGp0, λ˚qek˚ , ek˚yl2pRq “ xDaGp0, λ˚qb, ek˚yl2pRq

“ xb´ P˚b, ek˚yl2pRq “ 0.
(6.22)
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But due to Lemma 6.7 (i) this is a contradiction to (2.6).

Similarly as in the previous section, we determine the bifurcation formulas. The Fréchet derivatives of G with
respect to a are given by

DaGpa, λqek˚ “ ek˚ ´ Ã´1

λ

ˆ

3

4
γMpa ˚ a ˚ ek˚ q ` ek˚

˙

D2

aaGpa, λqrek˚ , ek˚s “ ´3

2
γÃ´1

λ

`

Mpa ˚ ek˚ ˚ ek˚q
˘

D3

aaaGpa, λqrek˚ , ek˚ , ek˚s “ ´3

2
γÃ´1

λ

`

Mpek˚ ˚ ek˚ ˚ ek˚ q
˘

where M is defined as in (6.19).

Proposition 6.8. Let tpapεq, ωpεqq | |ε| ă ε0u Ă hspRqˆIλ˚ be the local bifurcation curve found in Theorem 2.10
corresponding to the bifurcation point p0, λ˚q. Then

9λp0q “ 0 and :λp0q “ ´ 3γ

4
ş8
0
V0pyqφ2k˚

dy
.

Proof. The proof follows essentially the lines of the proof of Proposition 4.7. We obtain that 9λp0q “ 0, which is
due to the cubic character of the nonlinearity and

:λp0q “ ´1

3

xD3
aaaGp0, λ˚qrek˚ , ek˚ , ek˚s, ek˚ y

xD2

aλGp0, λ˚qek˚ , ek˚y .

Due to Lemma 6.7 (i) and (6.22) the denominator is given by

xD2

aλGp0, λ˚qek˚ , ek˚ y “ 2

ż 8

0

k2V0pyqψ2

k˚
dy,

and the numerator reads

xD3

aaaGp0, λ˚qrek˚ , ek˚ , ek˚s, ek˚y “ ´3

2
γk2˚pek˚ ˚ ek˚ ˚ ek˚ qk˚ .

Since pek˚ ˚ ek˚ ˚ ek˚ qk˚ “ ´3, as shown in Lemma A.2, the statement follows. �

7. Examples for distributional Γ

In what follows we prove Corollary 2.13 and Corollary 2.14, which state the existence of traveling waves for
(1.4) in the specific cases, when the potentials are given as in (P1) and (P2), respectively.

7.1. (P1) V a δ-potential on a positive background. We consider the particular case when V0 “ 1, W “ 0

so that we have a positive constant background potential with a multiple of a delta potential on top, i.e.,

V pλ, yq “ λ` αδ0pyq.

We verify the conditions pL̃0q ´ pL̃3q of Theorem 2.10; thereby proving part one of Corollary 2.13. Let us fix a
wavenumber k˚ P N and a value λ˚ ă 1. We determine α ą 0 from

α “ 2
?
1 ´ λ˚
k˚

.

Notice that the transversality condition and pL̃0q are trivially satisfied. Moreover, the validity of pL̃1q and pL̃3q
follow immediately from Remark 6.2, since 1 ´ λV0 ´ W “ 1 ´ λ ą 0. Condition pL̃2q is exactly the same as
pL2q since our operator Lk

λ is the same as the one considered in Corollary 2.5 of Case (P1). Since the choice of

α, k˚, λ˚ is the same as in Corollary 2.5 condition pL̃1q holds and we are finished with treating this example.
Now, Corollary 2.13 follows from Theorem 2.10 and the bifurcation formulas are an immediate consequence of
Proposition 6.8.
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7.2. (P2) V a δ-potential on a step background. Now, we consider the case when V0 “ 1|y|ěb, W “ β1|y|ăb

for some b ą 0 so that the potential V is given by

V pλ, yq “ λ1|y|ěb ` β1|y|ăb ` αδ0pyq,
Again we verify the conditions pL̃0q ´ pL̃3q of Theorem 2.10; thereby proving Corollary 2.14. First we fix a
wavenumber k˚ P N and a value λ˚ ă 1. According to Corollary 2.14 we have to distinguish between the case
β ă 1, β ą 1, and β “ 1. Notice that the transversality condition and pL̃0q are trivially satisfied for all β P R.

Let us begin with the case β ă 1. The validity of pL̃1q and pL̃3q follow immediately from Remark 6.2, since

1 ´ λV0 ´W “ p1 ´ λq1|y|ěb ` p1´ β1|y|ăbq ą 0. It remains to consider pL̃2q. But again the operator Lk
λ is the

same as the one considered in Corollary 2.5 of Case (P1) and the choice of α in Corollary 2.14 is exactly the

same as in Corollary 2.6 of Case (P1). Hence pL̃1q holds and this example is complete.

Next we consider the case β ą 1. Here we have made the choices
a

β ´ 1b “ π

and

α “ 2
?
1 ´ λ˚
k˚

.

We are left to verify pL̃1q´pL̃3q of Theorem 2.10. For pL̃1q we need to consider the operator Lk
0,λ “ ´ d2

dy2 `k2p1´
λ1|y|ěb ´ β1|y|ăbq : H2pRq Ñ L2pRq which is self-adjoint with σesspLk

0,λq Ă rk2p1 ´ λq,8q. Thus 0 P ρpLk
0,λq if

and only if Lk
0,λφ “ 0 for some φ P H2pRq implies that φ “ 0. In other words: we need to rule out that Lk

0,λ has

a zero eigenvalue. This can be seen from Lemma A.6 in the Appendix if we set α “ 0 (no delta potential in the

equation) and µ “ 0, i.e., λ̃ “ λ and β̃ “ β. Moreover, we need to make the obvious changes
?
1 ´ β “ i

?
β ´ 1

and sinhpixq “ i sinpxq, coshpixq “ cospxq. Following the ansatz (A.1) for the eigenfunction we obtain c0 “ d0
and c1 “ d1 due to the C1-matching at x “ 0. Moreover, the choice of

?
β ´ 1b “ π results in the invertible

matrices

M˘ “
˜

0 ´e´k
?

1´λ̃b
b

1 ´ β̃p´1qk ˘
a

1 ´ λ̃e´k
?

1´λ̃b

¸

.

Hence the conclusion c1 “ ´d1 from Lemma A.6 holds and leads to c1 “ d1 “ 0. An inspection of the C1-
compatibility at y “ ˘b then yields c2 “ d2 “ c0 “ d0 “ 0. Therefore, there is no zero-eigenvalue of Lk

0,λ for

any k P N and any λ P p´8, 1q and pL̃1q holds.

Concerning pL̃2q we need to study a zero-eigenvalue of Lk
λ. The answer is again given by Lemma A.6 in the

Appendix since we already know the invertibility of the matrices M˘. Hence the eigenvalue condition is given
by (5.2) with the obvious changes from the hyperbolic functions to the trigonometric function and reads

kα?
β ´ 1

“ ´
?
β ´ 1 sinpk

?
β ´ 1bq `

?
1 ´ λ cospk

?
β ´ 1bq?

β ´ 1 cospk
?
β ´ 1bq `

?
1 ´ λ sinpk

?
β ´ 1bq

.

In view of
?
β ´ 1b “ π this reduces to

α “ 2
?
1 ´ λ

k

and hence Lk
λ has a zero-eigenvalue if and only if k “ k˚ and λ “ λ˚. Thus pL̃2q holds. Finally, in order to

verify pL̃3q, we compute the function φk which solve Lk
λφk “ 0 on p0,8q with φkp0q “ 1. From Lemma A.6 we

obtain
#

φkpy, λq “ cospk
?
β ´ 1yq ` ic1 sinpk

?
β ´ 1yq, y P r0, bs,

φkpy, λq “ c2e
´k

?
1´λy, y ě b

with c1 “ ´
?
1´λ

i
?
β´1

and c2 “ ek
?
1´λbp´1qk. Computing the L2-norm of φk we find that

1

2
}φkp¨, λq}2L2pRq “

ż b

0

ˆ

cospk
a

β ´ 1yq ´
?
1 ´ λ?
β ´ 1

sinpk
a

β ´ 1yq
˙2

dy `
ż 8

b

e2k
?
1´λpb´yq dy

“ 1

2k
?
1 ´ λ

` 1

2

ˆ

1 ´ λ

β ´ 1
` 1

˙

b ď C

ˆ

1 ` 1

k

˙

,

where the constant C ą 0 is independent of k and can be chosen uniformly for λ sufficiently close to λ˚. This
shows the validity of pL̃3q.
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The last case to be considered is β “ 1. Also here, we are left to verify conditions pL̃1q, pL̃2q, and pL̃3q. First

we find that in this case with λ̃ “ λ and β̃ “ β “ 1 condition (5.2) is replaced by

kα

2
“

?
1 ´ λ

1 `
?
1 ´ λkb

, (7.1)

which follows from a suitable adaptation of Lemma A.6. A zero eigenvalue of Lk
0,λ correspond to values k, λ

satisfying (7.1) with α “ 0 which is impossible. Since σesspLk
0,λq “ rk2p1´λq,8q this shows that pL̃1q holds. If

we recall the definition of α, i.e.,

α “ 2
?
1 ´ λ˚

k˚p1 `
?
1 ´ λ˚k˚bq

and compare with the 0-eigenvalue condition (7.1) we see that this ensures that 0 is a (simple) eigenvalue of

Lk
λ if and only if λ “ λ˚ and k “ k˚. Hence, pL̃2q holds. To see pL̃3q we compute (also with the help of an

adaptation of Lemma A.6) that the functions φk solving Lk
λφk “ 0 on p0,8q with φkp0q “ 1 are given by

#

φkpy, λq “ 1 ` c1y, y P r0, bs,
φkpy, λq “ c2e

´k
?
1´λy, y ě b

with c1 “ ´
?
1´λk

kb
?
1´λ`1

and c2 “ ek
?

1´λb

kb
?
1´λ`1

. From this we directly calculate that }φkp¨, λq}2
L2pRq “ Op1q as k Ñ 8

uniformly for λ sufficiently close to λ˚. Hence, pL̃3q holds.

Now, Corollary 2.14 follows from Theorem 2.10.

Appendix A. Auxiliary results

Lemma A.1. Let Apxq “ ř

kPN ak sinpkxq, then

A3pxq “ ´1

4

ÿ

kPN
pa ˚ a ˚ aqk sinpkxq,

where a “ pakqkPZ is an infinite sequence with ak “ ´a´k for all k P Z. The notation pa ˚ a ˚ aqk is used to
denote the k-th entry in the sequence obtained by convolution a ˚ a ˚ a.

Proof. If a is a sequence as above then using ak “ ´a´k for all k we find that

ÿ

kPZ

ˆ

´1

2
iak

˙

eikx “
ÿ

kPZ

1

2
ak sinpkxq “

ÿ

kPN
ak sinpkxq “ Apxq,

and

A3pxq “
ÿ

kPZ

1

8
ipa ˚ a ˚ aqkeikx.

We are going to show that the Fourier coefficients pa ˚ a ˚ aqk are odd with respect to k. Notice first that

pa ˚ a ˚ aqk “
ÿ

jPZ

˜

ÿ

lPZ
ak´j´lal

¸

aj .

We also have that

pa ˚ a ˚ aq´k “
ÿ

jPZ

˜

ÿ

lPZ
a´k´j´lal

¸

aj “ ´
ÿ

jPZ

˜

ÿ

lPZ
ak`j`lal

¸

aj

“ ´
ÿ

jPZ

˜

ÿ

lPZ
ak´j´la´l

¸

a´j “ ´
ÿ

jPZ

˜

ÿ

lPZ
ak´j´lal

¸

aj “ ´pa ˚ a ˚ aqk.

From this we deduce that

A3pxq “
ÿ

kPZ

1

8
ipa ˚ a ˚ aqkeikx “ ´1

8

ÿ

kPZ
pa ˚ a ˚ aqk sinpxkq “ ´1

4

ÿ

kPN
pa ˚ a ˚ aqk sinpxkq.

�
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Lemma A.2. Let k P N and ek˚ be a sequence such that e
k˚
k “ 0 if k ‰ ˘k˚, e

k˚
k˚

“ ´ek˚
´k˚

“ 1. Then,

pek˚ ˚ ek˚ ˚ ek˚ qk “

$

&

%

1, if k “ 3k˚,´1, if k “ ´3k˚,´3, if k “ k˚,
3, if k “ ´k˚

Proof. The convolution ek˚ ˚ ek˚ ˚ ek˚ is given by

pek˚ ˚ ek˚ ˚ ek˚qk “
ÿ

jPZ

˜

ÿ

lPZ
e
k˚
k´j´le

k˚
l

¸

e
k˚
j “

ÿ

lPZ
e
k˚
k´k˚´le

k˚
l ´

ÿ

lPZ
e
k˚
k`k˚´le

k˚
l

“ e
k˚
k´2k˚

´ 2ek
˚

k ` e
k˚
k`2k˚

and the claim follows. �

Lemma A.3. Let a P hspRq for some s ě 0 and define Φpx, yq “ ř

kPN akφkpy;λq sinpkxq for x P T and y P R.
Then

(i) Φ P HspT, L2pRq
(ii) Φ P Hs´1pT, H1pRqq
(iii) Φ P Hs´2pT, H2p0,8qq
(iv) Φ P CpR, Hs´ 1

2 pTqq
(v) Φ P C1pR, Hs´ 3

2 pTqq

Proof. We verify that

}Φ}2HspT,L2pRqq ď C
ÿ

kPN
a2kk

2s}φk}2L2pRq ď C}a}2hspRq,

}Φ}2Hs´1pT,H1pRqq ď C
ÿ

kPN
a2kk

2s´2}φ1
k}2L2pRq ď C}a}2hspRq,

}Φ}2Hs´2pT,H2p0,8qq ď C
ÿ

kPN
a2kk

2s´4}φ2
k}2L2p0,8q

ď Cp1 ` }1 ´ λV0 ´W }L8pRq
ÿ

kPN
a2kk

2s}φk}2L2p0,8q ď C}a}2hspRq,

}Φ}2
CpR,Hs´ 1

2 pTqq
ď C

ÿ

kPN
a2kk

2s´1}φk}2L8pRq ď C}a}2hspRq,

}Φ}2
C1pR,Hs´ 3

2 pTqq
ď C

ÿ

kPN
a2kk

2s´3}φ1
k}2L8pRq ď C}a}2hspRq.

�

Lemma A.4. For s ě 1 the space hspRq is a Banach algebra with respect to convolution.

Proof. In this proof we use the l1-norm }a}l1pRq “ ř

kPZ |ak| for a sequence a “ pakqkPZ P l1pRq, i.e., the Banach

space of all real sequences with finite l1-norm. Due to convexity we have the inequality

|k|s ď 2s´1p|k ´ l|s ` |l|sq.
Therefore, if a, b P hspRq then

|k|spa ˚ bqk “ |k|s
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lPZ
ak´lbl

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2s´1
ÿ

lPZ
|k ´ l|s|ak´l||bl| ` |ak´l||l|s|bl|.

Using the convolution inequality }ã˚b̃}l2 ď }ã}l2}b̃}l1 once for pãqk “ |k|s|ak|, pb̃qk “ |bk| and once for pãqk “ |ak|,
pb̃qk “ |k|s|bk| we get

}a ˚ b}hspRq ď 2s´1p}a}hspRq}b}l1pRq ` }a}l1pRq}b}hspRqq.
Finally, a P hspRq implies a P l1pRq due to

ÿ

kPZ
|ak| “

ÿ

kPZ
|ak|p|k| ` 1q 1

|k| ` 1
ď C}a}h1pRq ď C}a}hspRq.

�
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Lemma A.5. Let L “ ´ d2

dy
` qpyq with q P L8pRq be a self-adjoint operator on L2pRq with domain DpLq “

H2pRq. Then, for any α P R, we have that Lα :“ L ` αδ0 is self-adjoint with domain DpLαq “ tu P H1pRq X
`

H2p0,8q YH2p´8, 0q
˘

| u1p0`q ´ u1p0´q “ ´αup0qu. Moreover for any α P R the following holds:

(i) For sufficiently large µ ą 0 we have that pLα ` µq´1 : H´1pRq Ñ H1pRq is bounded.
(ii) σesspLαq “ σesspLq.

Proof. A proof for the self-adjointness of Lα for any α P R is given in [4]. For (i) we first note that Lα is a
semi-bounded self-adjoint operator so that Lα `µ is a positive operator for µ ą 0 sufficiently large. Its bilinear
form bLα`µ : H1pRq ˆH1pRq Ñ R is coercive and equivalent to the standard H1pRq-inner product. Therefore,
any f P H´1pRq can be represented by a unique u P H1pRq such that bLα`µpu, φq “ fpφq for any φ P H1pRq
and bLα`µpu, uq “ }φ}2

H´1pRq. This proves (i).

For (ii) we may take λ ă 0 sufficiently negative such that λ P ρpLqXρpLαqXR since both L,Lα are semi-bounded
from below. Using (i) we may also assume λ sufficiently negative that pλ´Lαq´1 : H´1pRq Ñ H1pRq is bounded.
By Weyl’s criterion it is sufficient to show that the operator Wλ :“ pλ´Lq´1 ´ pλ´Lαq´1 : L2pRq Ñ L2pRq is
compact in order to prove the statement. Since

Wλ “ pλ ´ Lαq´1 ˝ ppλ ´ Lαqpλ´ Lq´1 ´ Idq “ pλ´ Lαq´1

looooomooooon

H´1pRqÑH1pRqĂL2pRq

˝ pL ´ Lαq
loooomoooon

H1pRqÑH´1pRq

˝ pλ´ Lq´1

loooomoooon

L2pRqÑH1pRq

and since L ´ Lα “ ´αδ0 : H1pRq Ñ H´1pRq is a bounded operator with 1-dimensional range spanned by δ0
we see that Wλ is indeed compact. This finishes the proof. �

Lemma A.6. Let λ̃, β̃ ă 1. Then the eigenvalue problem (5.1) is solvable for φ P DpLk
λq if and only if (5.2)

holds. In this case the eigenspace is one-dimensional.

Proof. Solutions of the differential equation in (5.1) have to be of the form

φpy, λq “

$

’

’

’

’

’

&

’

’

’

’

’

%

c2e
´k

?
1´λ̃y, y ě b,

c0 coshpk
b

1 ´ β̃yq ` c1 sinhpk
b

1 ´ β̃yq, y P r0, bs,
d0 coshpk

b

1 ´ β̃yq ` d1 sinhpk
b

1 ´ β̃yq, y P r´b, 0s,
d2e

k
?

1´λ̃y, y ď ´b

(A.1)

with C1-compatibility conditions at x “ ˘b and continuity at x “ 0. The latter implies c0 “ d0 and the
condition φ1p0`q ´ φ1p0´q ` k2αφp0q “ 0 at x “ 0 translates into

k

b

1 ´ β̃pc1 ´ d1q ` k2αc0 “ 0. (A.2)

The C1-compatibility leads to the following set of four equations
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

c0 coshpk
b

1 ´ β̃bq ` c1 sinhpk
b

1 ´ β̃bq “ c2e
´k

?
1´λ̃b,

b

1 ´ β̃
`

c0 sinhpk
b

1 ´ β̃bq ` c1 coshpk
b

1 ´ β̃bq
˘

“ ´
a

1 ´ λ̃c2e
´k

?
1´λ̃b,

d0 coshpk
b

1 ´ β̃bq ´ d1 sinhpk
b

1 ´ β̃bq “ d2e
´k

?
1´λ̃b,

b

1 ´ β̃
`

´d0 sinhpk
b

1 ´ β̃bq ` d1 coshpk
b

1 ´ β̃bq
˘

“
a

1 ´ λ̃d2e
´k

?
1´λ̃b.

These four equations can be written as

´

M` 0
0 M´

¯

˜c1
c2
d1
d2

¸

“

¨

˚

˚

˚

˚

˚

˚

˝

´c0 coshpk
b

1 ´ β̃bq
´
b

1 ´ β̃c0 sinhpk
b

1 ´ β̃bq
´c0 coshpk

b

1 ´ β̃bq
b

1 ´ β̃c0 sinhpk
b

1 ´ β̃bq

˛

‹

‹

‹

‹

‹

‹

‚

with

M˘ “

¨

˝

˘ sinhpk
b

1 ´ β̃bq ´e´k
?

1´λ̃b

b

1 ´ β̃ coshpk
b

1 ´ β̃bq ˘
a

1 ´ λ̃e´k
?

1´λ̃b

˛

‚.
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Since both M` and M´ are invertible we see that w.l.o.g. we can choose c0 “ 1. Moreover, the structure of the
linear systems yields that c1 “ ´d1 and c2 “ d2. Finally, solving for c1, c2 we get

c1 “ ´

b

1 ´ β̃ sinhpk
b

1 ´ β̃bq `
a

1 ´ λ̃ coshpk
b

1 ´ β̃bq
b

1 ´ β̃ coshpk
b

1 ´ β̃bq `
a

1 ´ λ̃ sinhpk
b

1 ´ β̃bq
,

c2 “ ek
?

1´λ̃bpc1 sinhpk
b

1 ´ β̃bq ` coshpk
b

1 ´ β̃bqq.
Inserting c1, d1 “ ´c1 and c0 “ 1 into (A.2) yields the condition (5.2) as claimed. It also shows that the
eigenspace is one-dimensional (the only degree of freedom is the choice of c0 which we took to be 1 w.l.o.g.). �
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