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1 Introduction

The description of Bq−B̄q mixing, where q = d or s, involves two hermitian 2× 2 matrices,
the mass matrix M and the decay matrix Γ. Their off-diagonal elements M q

12 and Γq12 enter
the observables related to Bq−B̄q mixing, namely

∆Mq = M q
H −M

q
L ,

∆Γq = ΓqL − ΓqH , (1.1)

and aqfs = Im Γq12
M q

12
. (1.2)

Here ML,H and ΓL,H denote the masses and widths of the two eigenstates found by
diagonalizing M − iΓ/2. The mass difference ∆Mq and the width difference ∆Γq are related
to M q

12 and Γq12 as

∆Mq ' 2|M q
12|,

∆Γq
∆Mq

= −Re Γq12
M q

12
. (1.3)

In the Standard Model (SM) the phase between −Γq12 and M q
12 is small, so that the

CP asymmetry in flavor-specific decays, aqfs, is much smaller than ∆Γq/∆Mq and further
∆Γq ' 2|Γq12|.

All results calculated in this paper equally apply to the Bs and Bd systems. For
definiteness, we quote all formulae for the case of Bs−B̄s mixing, the generalization to
Bd−B̄d mixing is found by replacing the elements Vqs, q = u, c, t, of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix by Vqd.
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Currently, better theory predictions are needed for the case of Bs−B̄s mixing to be
competitive with the precise experimental values

∆M exp
s = (17.7656± 0.0057) ps−1 [1] ,

∆Γexp
s = (0.082± 0.005) ps−1 [2] , (1.4)

where the quoted number for ∆Γexp
s is derived from data of LHCb [3], CMS [4], ATLAS [5],

CDF [6], and DØ [7].
M s

12 probes virtual contributions of very heavy particles, while Γs12 is mainly sensitive
to new physics mediated by particles with masses below the electroweak scale. Nevertheless,
a better theory prediction of |Γs12| also helps to quantify new physics in M s

12: both ∆Ms

and ∆Γs are proportional to |Vts|2, where Vts is an element of the CKM matrix. |Vts| is
calculated from (and is essentially identical to) |Vcb| extracted from measured b → c`ν,
` = e, µ, branching ratios. The unfortunate discrepancy between the values for |Vcb| found
from inclusive and exclusive decays inflicts an uncertainty of order 15% on the predicted
∆Ms. Now Vts cancels from ∆Γs/∆Ms in eq. (1.3), so that the SM prediction of this ratio
is not affected by the Vcb controversy.

In this paper we address Γs12 at leading order of the heavy-quark expansion (“leading
power”), which expresses Γs12 as a series in powers of ΛQCD/mb. At this order one encounters
only two physical ∆B = 2 operators, whose hadronic matrix elements have been calculated
with high precision with lattice QCD [8]. These matrix elements are multiplied with
Wilson coefficients which are calculated in perturbative QCD. The insufficient accuracy
of the Wilson coefficients dominates the uncertainty of the SM prediction of ∆Γq [9–15],
which exceeds the experimental error in eq. (1.4). The perturbative calculation of power
corrections to Γs12 has been carried out to order α0

s [16] and first lattice results for the
associated hadronic matrix elements are also available [17] (for results from sum rules, see
ref. [18] and references cited therein).

The |∆B| = 1 Hamiltonian H|∆B|=1
eff comprises current-current operators with large

coefficients C1,2 and the four-quark penguin operators whose coefficients C3−6 are small,
with magnitudes well below 0.1, at the scale µ1 = O(mb) at which they enter Γs12. At
order α0

s, Γs12 is composed of one-loop contributions proportional to CjCk with j, k ≤ 6.
H|∆B|=1

eff further involves the chromomagnetic penguin operator with coefficient C8 ∼ −0.16,
whose leading contribution is of order αs and enters Γs12 as products C8Ck with k ≤ 6. In
refs. [9–14] the small coefficients C3−6 have been formally treated as O(αs). With this
counting the one-loop terms with C1,2C3−6 contribute to next-to-leading order (NLO) and
those involving two factors of C3−6 are already part of the next-to-next-to-leading order
(NNLO). First steps towards NNLO accuracy have been done in refs. [13, 14] by calculating
contribution proportional to the number of active quark flavors, i.e. loop diagrams with a
closed fermion line.

As in ref. [15] we use the conventional notion of “NLO” and “NNLO” in this paper
and treat C3−6 on the same footing as C1,2. With this counting the NLO prediction of
Γs12 requires the calculation of the yet unknown two-loop contributions with one or two
four-quark penguin operators. In this paper present several two-loop calculations, namely:
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• penguin contributions proportional to the product of two C3−6 coefficients. This
contribution completes the prediction of Γs12 to order αs, which is NLO in the above-
mentioned conventional power counting. The corresponding one-loop corrections have
been computed in ref. [16]. Two-loop contributions with one current-current and one
four-quark penguin operator have been calculated in ref. [15].

• the contribution proportional to the product of C8 and one of C1−6. The calculated
one-loop and two-loop terms contribute to NLO and NNLO, respectively. The piece
of the one-loop correction proportional to the number Nf of active quark flavors
(stemming from diagrams with closed quark loops) has been computed in ref. [14].

• the contribution proportional to C2
8 . Here the one-loop contribution is already of

NNLO and not yet available in the literature, except for the α2
sNf part [14]. We

further provide results for the two-loop term which is N3LO.

As in ref. [15] we use the CMM basis [19] for the |∆B| = 1 operators and calculate the
two-loop QCD corrections as an expansion in

z = m2
c

m2
b

(1.5)

up to linear order.
The paper is organized as follows: in the next section we briefly discuss the operator

bases of the |∆B| = 1 and |∆B| = 2 theories. Afterwards, in section 3 we provide some
details of our calculation and in particular describe the matching procedure for the case
of dimensionally regularized infra-red singularities. Analytic result for all new matching
coefficients are listed in section 4 and we present our numerical result for ∆Γs in section 5.
Section 6 contains our conclusions. In the appendix we provide results for the renormalization
constants relevant for the operator mixing in the |∆B| = 2 theory.

2 Operator bases

The framework of our calculation is identical to the one used in ref. [15] and thus in the
following we repeat only the essential formulae needed to compute the width difference. The
new contributions considered in this paper require an extension of the |∆B| = 2 operator
basis which is discussed in more detail.

For the effective |∆B| = 1 theory we use the weak Hamiltonian

H|∆B|=1
eff = 4GF√

2

[
−λst

( 6∑
i=1

CiQi + C8Q8

)
− λsu

2∑
i=1

Ci(Qi −Qui )

+V ∗usVcb

2∑
i=1

CiQ
cu
i + V ∗csVub

2∑
i=1

CiQ
uc
i

]
+ h.c. , (2.1)

where explicit expressions for the (physical and evanescent) operators can be found in
ref. [19]. Q1, Q

(u,cu,uc)
1 , Q2 and Q(u,cu,uc)

2 are current-current and Q3, . . . , Q6 are four-quark
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penguin operators. Q8 is the chromomagnetic penguin operator. In eq. (2.1) we have
introduced the quantities λsa = V ∗asVab, a = u, c, t, which contain the CKM matrix elements.
Furthermore, we have used λst = −λsc − λsu and GF is the Fermi constant. Our two-loop
calculations involve one-loop diagrams with counterterms to the physical operators in
eq. (2.1) and these counterterms comprise both physical and evanescent operators.

As mentioned in the Introduction, we specify our discussion to b→ s decays relevant
for Bs−B̄s mixing. The corresponding expressions for Bd−B̄d mixing are obtained by
replacing Vas with Vad. Using the optical theorem we can relate Γs12 to the B̄s → Bs forward
scattering amplitude:

Γs12 = 1
2MBs

Abs〈Bs|i
∫

d4x T H∆B=1
eff (x)H∆B=1

eff (0)|B̄s〉 , (2.2)

where “Abs” stands for the absorptive part and T is the time ordering operator. Note that
Γs12 encodes the information of the inclusive decay rate into final states common to Bs and
B̄s. Following ref. [9] we decompose Γs12 as

Γs12 = −(λsc)2Γcc12 − 2λscλsuΓuc12 − (λsu)2Γuu12 . (2.3)

Let us now discuss the effective |∆B| = 2 theory. To leading power in 1/mb it is
convenient to introduce the following four operators

Q = s̄iγ
µ (1− γ5) bi s̄jγµ (1− γ5) bj ,

Q̃ = s̄iγ
µ (1− γ5) bj s̄jγµ (1− γ5) bi ,

Q̃S = s̄i (1 + γ5) bj s̄j (1 + γ5) bi
QS = s̄i (1 + γ5) bi s̄j (1 + γ5) bj , (2.4)

where i, j are color indices. In four space-time dimensions there are only two independent
operators which we choose as Q and Q̃S since we have (for D = 4) Q = Q̃ and

QS = −α1Q̃S −
1
2α2Q+R0 , (2.5)

where R0 describes 1/mb-suppressed contributions to Γs12 [16]. α1,2 are QCD correction
factors which ensure that the MS renormalized matrix element 〈R0〉 has the desired power
suppression [9, 12].

Using the Heavy Quark Expansion (HQE) it is thus possible to write Γab12 in eq. (2.3) as

Γab12 = G2
Fm

2
b

24πMBs

[
Hab(z)〈Bs|Q|B̄s〉+ H̃ab

S (z)〈Bs|Q̃S |B̄s〉
]

+ . . . (2.6)

with z = (mpole
c /mpole

b )2 and the ellipses denoting higher-order terms in ΛQCD/mb. Here z
is defined in terms of pole quark masses. Later we will trade z for the ratio of MS masses
which leads to a better behavior of the perturbative series. Hab and H̃ab

S are ultra-violet
and infra-red finite matching coefficients which we decompose as follows

Hab(z) = H(c) ab(z) +H(cp) ab(z) +H(p) ab(z) ,

H̃ab
S (z) = H̃

(c) ab
S (z) + H̃

(cp) ab
S (z) + H̃

(p) ab
S (z) , (2.7)
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Contribution Maximal number of γ matrices needed
for the two-loop calculation

Q1,2 × Q1,2 5× 5
Q1,2 × Q3−6 5× 5
Q3−6 × Q3−6 9× 9
Q1,2 × Q8 3× 3
Q3,6 × Q8 7× 7
Q8 × Q8 5× 5

Table 1. Maximal number of γ matrices which appear in the calculation of two-loop corrections to
the various contributions involving current-current and penguin operators.

where the superscript “(c)” denotes the contributions with two current-current operators
Q1,2 or Q(u,cu,uc)

1,2 , “(cp)” refers to those with one operator Q1,2 or Q(u,cu,uc)
1,2 and one (four-

quark or chromomagnetic) penguin operator Q3−6,8 and “(p)” labels the terms involving
two penguin operators. In this paper we present new contributions to H(p) ab and H̃(p) ab

S (z)
up to two-loop order.

At intermediate steps (i.e. in D = 4− 2ε dimensions) of our calculation it is convenient
to use all four operators of eq. (2.4) together with evanescent operators with two or three
Dirac matrix structures given by [9, 20]

E
(1)
1 = Q̃−Q ,

E
(1)
2 = s̄iγ

µγνγρ (1− γ5) bj s̄jγµγνγρ (1− γ5) bi − (16− 4ε)Q̃ ,

E
(1)
3 = s̄iγ

µγνγρ (1− γ5) bi s̄jγµγνγρ (1− γ5) bj − (16− 4ε)Q ,

E
(1)
4 = s̄iγ

µγν (1 + γ5) bj s̄jγνγµ (1 + γ5) bi + (8− 8ε)Qs ,

E
(1)
5 = s̄iγ

µγν (1 + γ5) bi s̄jγνγµ (1 + γ5) bj + (8− 8ε)Q̃s . (2.8)

The O(ε) parts in eq. (2.8) are chosen such that the Fierz symmetry of the renormalized
|∆B| = 2 amplitudes extends to D dimensions [21] and O(ε2) terms, which are important
for a three-loop (NNLO) calculation, have been omitted. Furthermore, we remark that the
five evanescent operators in eq. (2.8) are needed in order to determine the renormalization
constants responsible for the operator mixing in the |∆B| = 2 theory, see appendix A.

In our calculation we encounter further evanescent |∆B| = 2 operators, since in
intermediate steps Dirac structures with up to nine different γ matrices can appear. In
table 1 we list the maximal number of γ matrices for each pair of |∆B| = 1 operators. It is
easily obtained by inspecting the corresponding one-loop diagrams with one physical and
one evanescent operator from eqs. (2.4) and (2.8), respectively, or two-loop diagrams with
two physical operators. We define the additional evanescent operators as

E
(2)
1 = s̄iγ

µ1 . . . γµ5 (1− γ5) bj s̄jγµ1 . . . γµ5 (1− γ5) bi − (256 + e
(2)
1 ε)Q̃ ,

E
(2)
2 = s̄iγ

µ1 . . . γµ5 (1− γ5) bi s̄jγµ1 . . . γµ5 (1− γ5) bj − (256 + e
(2)
2 ε)Q ,
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E
(2)
3 = s̄iγ

µ1 . . . γµ4 (1 + γ5) bi s̄jγµ1 . . . γµ4 (1 + γ5) bj − (128 + e
(2)
3,1ε)Q̃S

− (128 + e
(2)
3,2ε)QS ,

E
(2)
4 = s̄iγ

µ1 . . . γµ4 (1 + γ5) bj s̄jγµ1 . . . γµ4 (1 + γ5) bi − (128 + e
(2)
4,1ε)Q̃S

− (128 + e
(2)
4,2ε)QS ,

E
(3)
1 = s̄iγ

µ1 . . . γµ7 (1− γ5) bj s̄jγµ1 . . . γµ7 (1− γ5) bi − (4096 + e
(3)
1 ε)Q̃,

E
(3)
2 = s̄iγ

µ1 . . . γµ7 (1− γ5) bi s̄jγµ1 . . . γµ7 (1− γ5) bj − (4096 + e
(3)
2 ε)Q,

E
(3)
3 = s̄iγ

µ1 . . . γµ6 (1 + γ5) bi s̄jγµ1 . . . γµ6 (1 + γ5) bj − (2048 + e
(3)
3,1ε)Q̃S

− (2048 + e
(3)
3,2ε)QS ,

E
(3)
4 = s̄iγ

µ1 . . . γµ6 (1 + γ5) bj s̄jγµ1 . . . γµ6 (1 + γ5) bi − (2048 + e
(3)
4,1ε)Q̃S

− (2048 + e
(3)
4,2ε)QS ,

E
(4)
1 = s̄iγ

µ1 . . . γµ9 (1− γ5) bj s̄jγµ1 . . . γµ9 (1− γ5) bi − (65536 + e
(4)
1 ε)Q̃,

E
(4)
2 = s̄iγ

µ1 . . . γµ9 (1− γ5) bi s̄jγµ1 . . . γµ9 (1− γ5) bj − (65536 + e
(4)
2 ε)Q,

E
(4)
3 = s̄iγ

µ1 . . . γµ8 (1 + γ5) bi s̄jγµ1 . . . γµ8 (1 + γ5) bj − (32768 + e
(4)
3,1ε)Q̃S

− (32768 + e
(4)
3,2ε)QS ,

E
(4)
4 = s̄iγ

µ1 . . . γµ8 (1 + γ5) bj s̄jγµ1 . . . γµ8 (1 + γ5) bi − (32768 + e
(4)
4,1ε)Q̃S

− (32768 + e
(4)
4,2ε)QS , (2.9)

where for our calculation the values of e(k)
j ,e(k)

j,l , which parametrize the O(ε) terms in the
definition of the evanescent operators are irrelevant since the operators in eq. (2.9) do not
appear in one-loop counterterm contributions. These numbers, however, become important
at NNLO to fully specify the renormalization scheme at this order.

3 Calculation and matching

The setup which we use for our calculation has already been described in ref. [15]. For conve-
nience of the reader we repeat the essential steps and stress the differences in the following.

Figure 1 shows typical one- and two-loop Feynman diagrams for the new contributions
considered in this paper. The displayed diagrams correspond to the |∆B| = 1 side of the
matching equation. In addition, one needs the one-loop diagrams with a gluon dressing the
∆B = 2 operators Q and Q̃S to determine the desired Wilson coefficients Hab and H̃ab

S in
eqs. (2.6) and (2.7). We perform the calculation for a generic QCD gauge parameter which
drops out in the final result for each matching coefficient and thereby provides a non-trivial
check of our calculation. The counterterms to the ∆B = 1 operators and the gauge coupling
gs in the Feynman diagrams exemplified in figure 1 are all evaluated at the renormalization
scale µ1. Conversely, operators and couplings on the |∆B| = 2 side are evaluated at the
scale µ2. The unphysical µ1 dependence of Hab(z) and H̃ab

S (z) diminishes order-by-order
in perturbation theory and can be used to assess the accuracy of the calculated result.
The µ2 dependence of Hab(z) and H̃ab

S (z), however, cancels with the µ2 dependence of the
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Figure 1. Sample Feynman diagrams contributing to eq. (2.2) to the orders considered in this
paper. From top to bottom they contribute to the Q3−6×Q3−6, Q1,2×Q8, Q3,6×Q8, and Q8×Q8
pieces of H∆B=1

eff (x)H∆B=1
eff (0) in eq. (2.2), with the blobs denoting the corresponding current-current

or penguin operators.

hadronic matrix element, which enters the lattice-continuum matching. For calculational
convenience we first choose µ1 = µ2 and implement the separation µ1 6= µ2 with the help of
renormalization group techniques.

We pursue two different approaches to treat the four-quark amplitudes. The first one is
based on tensor integrals combined with various manipulations of the Dirac structures and
relies on FeynCalc [22–24] and Fermat [25]. The so-obtained formulae are then exported
to FORM [26].

For the contribution Q3−6×Q3−6 routines are needed which can handle tensor integrals
up to rank 6. The second approach is based on projectors (see appendix of ref. [15]) which
allows taking traces. Thus, one only has to deal with scalar expressions. However, one
needs to calculate products of two traces with up to 18 γ matrices1 in each trace. We find
that both approaches lead to the same expressions for the amplitude with two ∆B = 1
operators once the latter is expressed in terms of tree-level ∆B = 2 matrix elements.

For the reduction of the ∆B = 1 amplitude we use FIRE [27] with symmetries from
LiteRed [28, 29] and obtain four two-loop master integrals. Their evaluation as an expansion
in ε is straightforward.

The amplitudes in the |∆B| = 1 and |∆B| = 2 theories contain both ultra-violet and
infra-red singularities. The former are cured with parameter, quark field, and operator
renormalization. We use the one-loop counterterms for αs in the MS scheme and renor-
malize the charm quark in the one-loop expression in the on-shell (or pole) scheme. The
renormalization of the bottom quark, which we also renormalize on-shell, is only needed for
the contributions involving Q8. We also perform the renormalization of the external quark
fields in the MS scheme. The counterterms needed for the renormalization of the ∆B = 1
operator mixing can be taken from the literature [30]. The renormalization constants of the
∆B = 2 part are given in appendix A.

1Up to nine γ matrices are present in the (two-loop) amplitude (see table 1) and nine γ matrices come
from the projector.
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In order to regulate the infra-red singularities two possibilities come to mind: one can
either introduce a (small) gluon mass, mg, or instead use dimensional regularization.

The choice mg 6= 0 is conceptually simpler and has the advantage that after renormal-
ization the ∆B = 1 and ∆B = 2 amplitudes are separately finite and one can take the
limit D → 4, which eliminates all evanescent operators before matching the two theories.
Furthermore, it is possible to use four-dimensional relations in order to arrive at a minimal
operator basis. However, a finite gluon mass breaks gauge invariance and thus, in general,
additional counterterms have to be introduced for its restoration. In our application the
two-loop ∆B = 1 amplitudes with four-quark operators do not involve three-gluon vertices,
and thus it is safe to regulate the infra-red divergences with mg 6= 0. However, at three-loop
level this is not the case. Furthermore, the two-loop corrections with two Q8 operators also
contain infra-red divergences in the non-abelian part.

Regulating the infra-red divergences dimensionally using the same regulator ε as for
the ultra-violet divergences has the advantage that the loop integrals are simpler. However,
the matching has to be performed with divergent quantities in D 6= 4 dimensions. As a
consequence lower-order corrections have to be computed to higher order in ε, meaning that
also the evanescent operators have to be taken into account.

In our calculation we proceeded as follows: we have computed the contributions Q1−6×
Q1−6 and Q1−2 ×Q8 both for mg 6= 0 and mg = 0 and have obtained identical results for
the matching coefficients, which provides sufficient confidence that the conceptually more in-
volved approach where the infra-red divergences are regularized dimensionally is understood.
Thus, the calculation of the Q3−6 ×Q8 and Q8 ×Q8 have only been performed for mg = 0.

In the following we provide some details to the matching procedure. In this context
we also refer to ref. [31] where the contribution Q1,2 ×Q1,2 is discussed. We introduce the
|∆B| = 1 and |∆B| = 2 amplitude in a schematic way as

A∆B=1 = AQ〈Q〉0 +AE〈E〉0 ,
A∆B=2 = HQBQQ〈Q〉0 +HEBEQ〈Q〉0 +HQBQE〈E〉0 +HEBEE〈E〉0 , (3.1)

where the HX , AX and BXY have an expansion both in αs and ε with BQQ = BEE = 1
and BEQ = BQE = 0 at LO. 〈·〉0 denote tree-level matrix elements. Starting from two-loop
order2 AX and BXY contain infrared 1/ε poles. The presence of these poles force us to
calculate the LO coefficients HX to order ε in order to obtain the correct finite ε0 piece on
the right-hand side of eq. (3.1). Thus, the desired finite matching coefficients HX have the
following expansion in αs and ε:

HQ =
∑
i,j≥0

H
(i,j)
Q εj

(
αs
4π

)i
, (3.2)

and analogously for HE . In general, several physical (“Q”) and evanescent (“E”) operators
are present; for simplicity we condense the notation to only one operator for in each case.

We start the matching at LO, which corresponds to a one-loop calculation of AQ and
AE . For BXY we use the tree-level expressions. Both A∆B=1 and A∆B=2 are finite and from
the comparison of both amplitudes we obtain results for H(0,0)

Q , H(0,1)
Q , H(0,0)

E and H(0,1)
E .

2The counting of loop orders always refers to the |∆B| = 1 side of the matching equation.
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At NLO we observe that after using the result for H(0,0)
Q and H

(0,0)
E the difference

A∆B=1 −A∆B=2 is finite, which constitutes an important consistency check. In a next step
we concentrate on the part of A∆B=1 −A∆B=2 proportional to 〈Q〉0, which contains H(1,0)

Q

as the desired finite coefficient. H(1,0)
Q can thus be determined by requiring the 〈Q〉0 part of

A∆B=1 −A∆B=2 to vanish.
For definiteness, we now consider the LO expression of the Q3−6 ×Q3−6 contribution,

where for simplicity we set the matching coefficients C4, C5 and C6 to zero and display only
the terms proportional to C2

3 . Then the LO ∆B = 1 amplitude including terms of O(ε)
is given by

A∆B=1 = C2
3

[(
14〈Q〉(0) − 25

〈
Q̃S
〉(0)

+ 27 〈R0〉(0) − 1
8
〈
E

(1)
3

〉(0)
− 1

4
〈
E

(1)
5

〉(0)
)

+ ε

(131
6 〈Q〉

(0) − 125
3
〈
Q̃S
〉(0)

+ 43 〈R0〉(0) − 1
3
〈
E

(1)
3

〉(0)
− 5

12
〈
E

(1)
5

〉(0)
)

+ ε

(
28〈Q〉(0) − 50

〈
Q̃S
〉(0)

+ 54 〈R0〉(0) − 1
4
〈
E

(1)
3

〉(0)
− 1

2
〈
E

(1)
5

〉(0)
)

log
(
µ1
mb

)
+ ε

(
18〈Q〉(0) − 36

〈
Q̃S
〉(0)

+ 36 〈R0〉(0)
)
z + O(z2) +O(ε2)

]
, (3.3)

where we set the number of colors to Nc = 3. At the same order the ∆B = 2 amplitude reads

A∆B=2 = HQ〈Q〉(0) +HQ̃S

〈
Q̃S
〉(0)

+HR0 〈R0〉(0) +H
E

(1)
1

〈
E

(1)
1

〉(0)
+H

E
(1)
2

〈
E

(1)
2

〉(0)

+H
E

(1)
3

〈
E

(1)
3

〉(0)
+H

E
(1)
4

〈
E

(1)
4

〉(0)
+H

E
(1)
5

〈
E

(1)
5

〉(0)
+

3∑
i=2

4∑
j=1

H
E

(i)
j

〈
E

(i)
j

〉
(0) ,

(3.4)

and from the matching procedure we obtain

H
(0,0)
Q = 14C2

3 ,

H
(0,1)
Q = 1

6C
2
3

(
168 log

(
µ1
mb

)
+ 108z + 131

)
,

H
(0,0)
Q̃S

= −25C2
3 ,

H
(0,1)
Q̃S

= −1
3C

2
3

(
150 log

(
µ1
mb

)
+ 108z + 125

)
,

H
(0,0)
R0

= 27C2
3 ,

H
(0,1)
R0

= C2
3

(
54 log

(
µ1
mb

)
+ 36z + 43

)
,

H
(0,0)
E3

= −C
2
3

8 ,

H
(0,1)
E3

= − 1
12C

2
3

(
3 log

(
µ1
mb

)
+ 4

)
,

H
(0,0)
E5

= −C
2
3

4 ,

H
(0,1)
E5

= − 1
12C

2
3

(
6 log

(
µ1
mb

)
+ 5

)
, (3.5)

– 9 –



J
H
E
P
0
4
(
2
0
2
2
)
0
0
6

with all other H(0,0)
E and H(0,1)

E being zero. In the next step we consider both amplitudes
at NLO up to O(ε0). Upon inserting the above values for H(0,0)

Q , H(0,1)
Q , H(0,0)

E and H(0,1)
E

we observe an explicit cancellation of all 1/ε poles multiplying C2
3 which allows us to take

the limit D → 4. We also find the coefficients independent of the gauge parameter.
The presence of R0 in eqs. (3.3) to (3.5) requires some explanation: for D = 4 one

has 〈R0〉(0) = O(ΛQCD/mb) (and at NLO and beyond 〈R0〉 = O(ΛQCD/mb) is ensured by a
finite renormalization). To derive this result one employs four-dimensional Dirac algebra
(such as using the Fierz identity from [16]) and for D 6= 4 the definition of R0 in eq. (2.5)
thus includes an evanescent piece. One may write

R0 = Rphys
0 + ER0 (3.6)

with 〈Rphys
0 〉 = O(ΛQCD/mb), while the evanescent piece 〈ER0〉 scales as m0

b . Clearly, if one
uses a gluon mass as infra-red regulator, this subtlety does not occur, because the matching
is done in D = 4 dimensions. In our case of dimensional infra-red regularization, however,
ER0 must be included in the LO matching just as any other evanescent operator. If we were
interested in the C2

3 contributions to the 1/mb-suppressed part (which is beyond the scope
of this paper), we would have to provide different coefficients for the physical operator Rphys

0
and the unphysical ER0 . For our choice of external states, namely zero momenta ps for the
light strange quarks, we cannot determine the coefficient of Rphys

0 , because 〈Rphys
0 〉(0) = 0

for ps = 0. Therefore, the coefficients H(0,0)
R0

and H(0,1)
R0

in eq. (3.5) are to be understood as
the coefficients of ER0 .

The O(ε) terms of the coefficients of evanescent operators, i.e. H(0,1)
E3

, H(0,1)
E5

, and H(0,1)
R0

are not needed for the NLO calculation presented in this paper. However, they will be
relevant at NNLO and beyond.

4 Analytic results

In this section we present analytic results for the new contributions to H(p) ab and H̃(p) ab
S

introduced in eq. (2.7). For this purpose it is convenient to decompose these quantities
according to the |∆B| = 1 matching coefficients as follows

H(p) ab(z) =
∑

i,j=3,...,6,8
i≥j

CiCj p
ab
ij (z) ,

H̃
(p) ab
S (z) =

∑
i,j=3,...,6,8

i≥j

CiCj p
S,ab
ij (z) , (4.1)

and to write the perturbative expansion of the coefficients

pabij (z) = p
ab,(0)
ij (z) + αs(µ1)

4π p
ab,(1)
ij (z) +O(α2

s) , (4.2)

(and analogously for pS,abij ) where pab,(0)
ij refers to one-loop and pab,(1)

ij to two-loop contri-
butions. We define the strong coupling constant with five active quark flavors at the
renormalization scale µ1, i.e. we have αs(µ1) ≡ α

(5)
s (µ1). Both the charm and bottom

quark masses are defined in the on-shell scheme. Furthermore, we fix the number of colors
to Nc = 3. Computer-readable expressions for all results for generic Nc are available as
supplementary material to this paper and can be downloaded from [32].
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4.1 Four-quark penguin operators

We start with the Q3−6 × Q3−6 contribution. Both at one- and two-loop order, which
contribute to LO and NLO, respectively, the “cc”, “uc” and “uu” contributions agree,
because penguin operators come with the CKM factor −λst = λsc + λsu:

p
cc,(0)
ij (z) = p

uc,(0)
ij (z) = p

uu,(0)
ij (z) ,

p
S,cc,(0)
ij (z) = p

S,uc,(0)
ij (z) = p

S,uu,(0)
ij (z) ,

p
cc,(1)
ij (z) = p

uc,(1)
ij (z) = p

uu,(1)
ij (z) ,

p
S,cc,(1)
ij (z) = p

S,uc,(1)
ij (z) = p

S,uu,(1)
ij (z) . (4.3)

At one-loop order exact results are available [16], which we repeat for convenience

p
cc,(0)
33 (z) =

√
1− 4z (3NV + 6NV z) + (2 + 3NL) ,

p
cc,(0)
34 (z) = 7/3,

p
cc,(0)
35 (z) =

√
1− 4z (60NV + 120NV z) + (64 + 60NL) ,

p
cc,(0)
36 (z) = 112

3 ,

p
cc,(0)
44 (z) =

√
1− 4z

(5NV

12 + 5NV z

6

)
+
(13

72 + 5NL

12

)
,

p
cc,(0)
45 (z) = 112

3 ,

p
cc,(0)
46 (z) =

√
1− 4z

(25NV

3 + 50NV z

3

)
+
(52

9 + 25NL

3

)
,

p
cc,(0)
55 (z) =

√
1− 4z (408NV − 480NV z) + (512 + 408NL) ,

p
cc,(0)
56 (z) = 1792

3 ,

p
cc,(0)
66 (z) =

√
1− 4z

(170NV

3 + 124NV z

3

)
+
(416

9 + 170NL

3

)
,

p
S,cc,(0)
33 (z) =

√
1− 4z (−6NV − 12NV z) + (−1− 6NL) ,

p
S,cc,(0)
34 (z) = −8

3 ,

p
S,cc,(0)
35 (z) =

√
1− 4z (−120NV − 240NV z) + (−32− 120NL) ,

p
S,cc,(0)
36 (z) = −128

3 ,

p
S,cc,(0)
44 (z) =

√
1− 4z

(2NV

3 + 4NV z

3

)
+
(
−7

9 + 2NL

3

)
,

p
S,cc,(0)
45 (z) = −128

3 ,

p
S,cc,(0)
46 (z) =

√
1− 4z

(40NV

3 + 80NV z

3

)
+
(
−224

9 + 40NL

3

)
,

p
S,cc,(0)
55 (z) =

√
1− 4z (−816NV − 1632NV z) + (−256− 816NL) ,

p
S,cc,(0)
56 (z) = −2048

3 ,

p
S,cc,(0)
66 (z) =

√
1− 4z

(272NV

3 + 544NV z

3

)
+
(
−1792

9 + 272NL

3

)
. (4.4)
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The symbols NL and NV label closed fermion loops with mass 0 and mc, respectively. In
the numerical evaluation we set NL = 3 and NV = 1.

The two-loop results are new. Their expansions up to linear order in z are given by

p
cc,(1)
33 (z) =−154

9 L1+ 16
3 L2+14NLL2+14NV L2+90NV z

− 1166
27 + 71NL

3 + 71NV

3 + 5π
3
√

3
− 5π2

3 , (4.5)

p
cc,(1)
34 (z) =−151

54 L1−
14
9 NHL1−

8
3NLL1−

8
3NV L1+ 74

9 L2−
10NV z

3

+ 317
324−

5π
9
√

3
− 10π2

9 +NL

(
−379

18 + 5π
3
√

3

)
+NV

(
−379

18 + 5π
3
√

3

)
+NH

(
−85

27 + 5π
3
√

3

)
, (4.6)

p
cc,(1)
35 (z) =−4928

9 L1+ 512
3 L2+280NLL2+280NV L2+1800NV z

− 34240
27 + 1420NL

3 + 1420NV

3 + 160π
3
√

3
− 160π2

3 , (4.7)

p
cc,(1)
36 (z) =−1208

27 L1−
140
9 NHL1−

314
3 NLL1−

314
3 NV L1+144NV zL1

+ 1184
9 L2+ 440NV z

3 − 13876
81 − 80π

9
√

3
− 160π2

9 +NL

(
−3215

9 + 50π
3
√

3

)
+NV

(
−3215

9 + 50π
3
√

3

)
+NH

(
−598

27 + 50π
3
√

3

)
, (4.8)

p
cc,(1)
44 (z) =−187

81 L1−
13
54NHL1+ 133

36 NLL1−
5
9NHNLL1−

5
9N

2
LL1+ 133

36 NV L1

− 5
9NHNV L1−

10
9 NLNV L1−

5
9N

2
V L1+ 151

108L2−
1
18NLL2−

1
18NV L2

+
[
−10

3 NLNV −
10N2

V

3 +NV

(
803
36 −

5π2

3

)]
z− 1466

243 −
25N2

L

27

− 50NLNV

27 − 25N2
V

27 + 5π
108
√

3
+ 25π2

108 +NH

( 85
162−

5π
18
√

3

)
+NHNL

(
−85

27 + 5π
3
√

3

)
+NHNV

(
−85

27 + 5π
3
√

3

)

+NL

(
233
27 −

5π
18
√

3
− 5π2

6

)
+NV

(
233
27 −

5π
18
√

3
− 5π2

6

)
, (4.9)

p
cc,(1)
45 (z) =−1208

27 L1−
224
9 NHL1−

362
3 NLL1−

362
3 NV L1+576NV zL1

+ 1184
9 L2+ 3836NV z

3 + 11234
81 − 80π

9
√

3
− 160π2

9

+NL

(
−3754

9 + 80π
3
√

3

)
+NV

(
−3754

9 + 80π
3
√

3

)
+NH

(
−1360

27 + 80π
3
√

3

)
, (4.10)
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p
cc,(1)
46 (z) =−5984

81 L1−
169
27 NHL1+ 437

9 NLL1−
100
9 NHNLL1−

100
9 N2

LL1

+ 437
9 NV L1−

100
9 NHNV L1−

200
9 NLNV L1−

100
9 N2

V L1+60NV zL1

+ 1208
27 L2−

10
9 NLL2−

10
9 NV L2

+
[
−200

3 NLNV −
200N2

V

3 +NV

(
4855

9 − 100π2

3

)]
z

− 58213
243 −

410N2
L

27 − 820NLNV

27 − 410N2
V

27 + 40π
27
√

3
+ 200π2

27

+NHNL

(
−1610

27 + 100π
3
√

3

)
+NHNV

(
−1610

27 + 100π
3
√

3

)

+NH

(1222
81 −

65π
9
√

3

)
+NL

(
3374
27 −

65π
9
√

3
− 50π2

3

)

+NV

(
3374
27 −

65π
9
√

3
− 50π2

3

)
, (4.11)

p
cc,(1)
55 (z) =−39424

9 L1+ 4096
3 L2+1904NLL2+1904NV L2−2592NV zL2

−z (33120NV +10368NV log(z))− 249344
27 + 16568NL

3 + 16568NV

3

+ 1280π
3
√

3
− 1280π2

3 , (4.12)

p
cc,(1)
56 (z) =−19328

27 L1−
2240

9 NHL1−
5960

3 NLL1−
5960

3 NV L1

+7200NV zL1+ 18944
9 L2+ 74000NV z

3 − 62560
81 − 1280π

9
√

3
− 2560π2

9

+NL

(
−60064

9 + 800π
3
√

3

)
+NV

(
−60064

9 + 800π
3
√

3

)
+NH

(
−9568

27 + 800π
3
√

3

)
, (4.13)

p
cc,(1)
66 (z) =−47872

81 L1−
1040
27 NHL1+ 2260

9 NLL1−
500
9 NHNLL1−

500
9 N2

LL1

+ 2260
9 NV L1−

500
9 NHNV L1−

1000
9 NLNV L1−

500
9 N2

V L1−48NV zL1

+ 9664
27 L2−

68
9 NLL2−

68
9 NV L2−144NV zL2

+
[
−1000

3 NLNV −
1000N2

V

3 +NV

(
24290

9 − 248π2

3

)
−576NV log(z)

]
z

− 556112
243 − 1600N2

L

27 − 3200NLNV

27 − 1600N2
V

27 + 320π
27
√

3
+ 1600π2

27

+NHNL

(
−7600

27 + 500π
3
√

3

)
+NHNV

(
−7600

27 + 500π
3
√

3

)
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+NH

(8672
81 −

400π
9
√

3

)
+NL

(
1148

3 − 400π
9
√

3
− 340π2

3

)

+NV

(
1148

3 − 400π
9
√

3
− 340π2

3

)
, (4.14)

p
S,cc,(1)
33 (z) = 176

9 L1−
8
3L2−16NLL2−16NV L2−432NV z

+ 1684
27 −

64NL

3 − 64NV

3 + 8π
3
√

3
− 8π2

3 , (4.15)

p
S,cc,(1)
34 (z) = 220

27 L1+ 16
9 NHL1−

64
9 L2−

16NV z

3 + 2042
81 −

8π
9
√

3
− 16π2

9

+NH

(
−136

27 + 8π
3
√

3

)
+NL

(52
9 + 8π

3
√

3

)
+NV

(52
9 + 8π

3
√

3

)
, (4.16)

p
S,cc,(1)
35 (z) = 5632

9 L1−
256
3 L2−320NLL2−320NV L2−8640NV z

+ 55808
27 − 1280NL

3 − 1280NV

3 + 256π
3
√

3
− 256π2

3 , (4.17)

p
S,cc,(1)
36 (z) =

(3520
27 L1+ 160

9 NHL1+48NLL1+48NV L1−
1024

9 L2

)
− 160NV z

3 + 47264
81 − 128π

9
√

3
− 256π2

9 +NH

(
−1648

27 + 80π
3
√

3

)
+NL

(1288
9 + 80π

3
√

3

)
+NV

(1288
9 + 80π

3
√

3

)
, (4.18)

p
S,cc,(1)
44 (z) = 8

81L1+ 28
27NHL1+ 22

3 NLL1−
8
9NHNLL1−

8
9N

2
LL1+ 22

3 NV L1

− 8
9NHNV L1−

16
9 NLNV L1−

8
9N

2
V L1−

56
27L2+ 16

9 NLL2+ 16
9 NV L2

+
[
−16

3 NLNV −
16N2

V

3 +NV

(
422
9 −

8π2

3

)]
z

+ 394
243−

40N2
L

27 − 80NLNV

27 − 40N2
V

27 + 2π
27
√

3
+ 10π2

27

+NH

(68
81−

4π
9
√

3

)
+NHNL

(
−136

27 + 8π
3
√

3

)
+NHNV

(
−136

27 + 8π
3
√

3

)

+NL

(
452
27 −

4π
9
√

3
− 4π2

3

)
+NV

(
452
27 −

4π
9
√

3
− 4π2

3

)
, (4.19)

p
S,cc,(1)
45 (z) = 3520

27 L1+ 256
9 NHL1+48NLL1+48NV L1−

1024
9 L2+ 608NV z

3

+ 26960
81 − 128π

9
√

3
− 256π2

9 +NH

(
−2176

27 + 128π
3
√

3

)
+NL

(1232
9 + 128π

3
√

3

)
+NV

(1232
9 + 128π

3
√

3

)
, (4.20)
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p
S,cc,(1)
46 (z) = 256

81 L1+ 728
27 NHL1+ 344

3 NLL1−
160
9 NHNLL1−

160
9 N2

LL1

+ 344
3 NV L1−

160
9 NHNV L1−

320
9 NLNV L1−

160
9 N2

V L1−
1792
27 L2

+ 320
9 NLL2+ 320

9 NV L2+
[
−320

3 NLNV −
320N2

V

3

+NV

(
7408

9 − 160π2

3

)]
z+ 42680

243 −
656N2

L

27 − 1312NLNV

27

− 656N2
V

27 + 64π
27
√

3
+ 320π2

27 +NH

(1264
81 −

104π
9
√

3

)
+NHNL

(
−2576

27 + 160π
3
√

3

)
+NHNV

(
−2576

27 + 160π
3
√

3

)

+NL

(
7328
27 −

104π
9
√

3
− 80π2

3

)
+NV

(
7328
27 −

104π
9
√

3
− 80π2

3

)
, (4.21)

p
S,cc,(1)
55 (z) = 45056

9 L1−
2048

3 L2−2176NLL2−2176NV L2−58752NV z

+ 461824
27 − 22528NL

3 − 22528NV

3 + 2048π
3
√

3
− 2048π2

3 , (4.22)

p
S,cc,(1)
56 (z) = 56320

27 L1+ 2560
9 NHL1+960NLL1+960NV L1−

16384
9 L2

+ 6080NV z

3 + 664832
81 − 2048π

9
√

3
− 4096π2

9 +NH

(
−26368

27 + 1280π
3
√

3

)
+NL

(25472
9 + 1280π

3
√

3

)
+NV

(25472
9 + 1280π

3
√

3

)
, (4.23)

p
S,cc,(1)
66 (z) = 2048

81 L1+ 4480
27 NHL1+ 1888

3 NLL1−
800
9 NHNLL1−

800
9 N2

LL1

+ 1888
3 NV L1−

800
9 NHNV L1−

1600
9 NLNV L1−

800
9 N2

V L1−
14336

27 L2

+ 2176
9 NLL2+ 2176

9 NV L2+
[
−1600

3 NLNV −
1600N2

V

3

+NV

(
42896

9 − 1088π2

3

)]
z+ 582016

243 − 2560N2
L

27 − 5120NLNV

27

− 2560N2
V

27 + 512π
27
√

3
+ 2560π2

27 +NH

(2816
81 −

640π
9
√

3

)
+NHNL

(
−12160

27 + 800π
3
√

3

)
+NHNV

(
−12160

27 + 800π
3
√

3

)

+NL

(
960− 640π

9
√

3
− 544π2

3

)
+NV

(
960− 640π

9
√

3
− 544π2

3

)
. (4.24)

Here NH = 1 labels closed fermion loops with mass mb and

L1 = log µ2
1

m2
b

, L2 = log µ2
2

m2
b

. (4.25)
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As a novel feature compared to the NLO calculation with two current-current oper-
ators [9], the penguin operator contributions involve Feynman diagrams with an FCNC
b→ s self-energy in an external leg, cf. figure 1. Owing to p2

b = m2
b 6= p2

s = 0 these diagrams
contribute to the result in the same way as all other diagrams [33]. Indeed, we find that
their omission would lead to a divergent result.

4.2 Chromomagnetic and four-quark operators

In this subsection we present results for all contributions involving one chromomagnetic
and one of the four-quark operators Q1, . . . , Q6. Here the one- and two-loop corrections
correspond to NLO and NNLO contributions.

We start with Q1,2 ×Q8 where the (exact) one-loop result is given by [9]

p
cc,(0)
18 (z) =

√
1− 4z

( 5
18 + 5z

9

)
,

p
cc,(0)
28 (z) =

√
1− 4z

(
−5

3 −
10z
3

)
,

p
S,cc,(0)
18 (z) =

√
1− 4z

(4
9 + 8z

9

)
,

p
S,cc,(0)
28 (z) =

(
−8

3 −
16z
3

)√
1− 4z . (4.26)

The results for puui8 and pS,uui8 are obtained from pcci8 and pS,cci8 for z = 0. For pucij and pS,ucij

we have

p
uc,(0)
i8 (z) = p

cc,(0)
i8 (z) + p

uu,(0)
i8

2 ,

p
S,uc,(0)
i8 (z) = p

S,cc,(0)
i8 (z) + p

S,uu,(0)
i8

2 . (4.27)

At two-loop order the results are new. The “cc” contribution is given by

p
cc,(1)
18 (z) =

(343
81 −

5NH

27 − 10NL

27 − 10NV

27

)
L1 −

1
27L2

+
(

2915
54 − 10NL

9 − 20NV

9 − 10π2

9

)
z + 1235

486 −
35NL

81 − 35NV

81

− 5π
54
√

3
− 5π2

9 +NH

(
−85

81 + 5π
9
√

3

)
,

p
cc,(1)
28 (z) =

(
−281

27 + 10NH

9 + 20NL

9 + 20NV

9

)
L1 + 2

9L2

+
(
−1133

9 + 20NL

3 + 40NV

3 + 20π2

3

)
z − 4475

81 + 70NL

27 + 70NV

27

+ 5π
9
√

3
+ 10π2

3 +NH

(170
27 −

10π
3
√

3

)
,
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p
S,cc,(1)
18 (z) =

(664
81 −

8NH

27 − 16NL

27 − 16NV

27

)
L1 + 32

27L2

+
(

1432
27 − 16NL

9 − 32NV

9 − 16π2

9

)
z + 4660

243 −
56NL

81 − 56NV

81

− 4π
27
√

3
− 8π2

9 +NH

(
−136

81 + 8π
9
√

3

)
,

p
S,cc,(1)
28 (z) =

(
−680

27 + 16NH

9 + 32NL

9 + 32NV

9

)
L1 −

64
9 L2

+
(
−1568

9 + 32NL

3 + 64NV

3 + 32π2

3

)
z − 6728

81 + 112NL

27 + 112NV

27

+ 8π
9
√

3
+ 16π2

3 +NH

(272
27 −

16π
3
√

3

)
. (4.28)

Note that the (uu) contribution is not simply obtained by taking the limit z → 0 in the
expressions of eq. (4.28) since there are charm quark loops not connected to the external
operators. We thus have

p
uu,(1)
18 (z) = p

cc,(1)
18 (z)

∣∣∣
z→0
− 10NV

9 z ,

p
uu,(1)
28 (z) = p

cc,(1)
28 (z)

∣∣∣
z→0

+ 20NV

3 z ,

p
S,uu,(1)
18 (z) = p

S,cc,(1)
18 (z)

∣∣∣
z→0
− 16NV

9 z ,

p
S,uu,(1)
28 (z) = p

S,cc,(1)
28 (z)

∣∣∣
z→0

+ 32NV

3 z . (4.29)

For the uc contributions we find

p
uc,(1)
i8 (z) = p

cc,(1)
i8 (z) + p

uu,(1)
i8 (z)

2 ,

p
S,uc,(1)
i8 (z) = p

S,cc,(1)
i8 (z) + p

S,uu,(1)
i8 (z)

2 . (4.30)

For the contribution Q3−6 ×Q8 we observe that both at one- and two-loop order we
obtain the same results for the “cc”, “uu” and “uc” contributions and thus we have

p
cc,(0)
ij (z) = p

uc,(0)
ij (z) = p

uu,(0)
ij (z) ,

p
S,cc,(0)
ij (z) = p

S,uc,(0)
ij (z) = p

S,uu,(0)
ij (z) ,

p
cc,(1)
ij (z) = p

uc,(1)
ij (z) = p

uu,(1)
ij (z) ,

p
S,cc,(1)
ij (z) = p

S,uc,(1)
ij (z) = p

S,uu,(1)
ij (z) . (4.31)
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The one-loop results are exact in z and read

p
cc,(0)
38 (z) = −32

3 ,

p
cc,(0)
48 (z) =

√
1− 4z

(
−5NV

3 − 10NV z

3

)
+
(
−49

18 −
5NL

3

)
,

p
cc,(0)
58 (z) = −512

3 ,

p
cc,(0)
68 (z) =

√
1− 4z

(
−50NV

3 − 100NV z

3

)
+
(
−392

9 − 50NL

3

)
,

p
S,cc,(0)
38 (z) = 64

3 ,

p
S,cc,(0)
48 (z) =

√
1− 4z

(
−8NV

3 − 16NV z

3

)
+
(76

9 −
8NL

3

)
,

p
S,cc,(0)
58 (z) = 1024

3 ,

p
S,cc,(0)
68 (z) =

√
1− 4z

(
−80NV

3 − 160NV z

3

)
+
(1216

9 − 80NL

3

)
. (4.32)

At two-loop order our results read

p
cc,(1)
38 (z) =−1285

27 L1 + 64
9 NHL1 + 28

3 NLL1 + 28
3 NV L1−

448
9 L2−

196NV z

3

− 30707
81 + 193π

18
√

3
+ 25π2

6 +NH

(170
27 −

10π
3
√

3

)
+NL

(361
9 −

10π
3
√

3

)
+NV

(361
9 −

10π
3
√

3

)
, (4.33)

p
cc,(1)
48 (z) =−1469

162 L1 + 98
27NHL1−

799
54 NLL1 + 20

9 NHNLL1 + 20
9 N

2
LL1

− 799
54 NV L1 + 20

9 NHNV L1 + 40
9 NLNV L1 + 20

9 N
2
V L1−

451
27 L2 + 2

9NLL2

+ 2
9NV L2 +

[
40NLNV

3 + 40N2
V

3 +NV

(
−188+ 20π2

3

)]
z− 41707

486

+ 100N2
L

27 + 200NLNV

27 + 100N2
V

27 − 841π
108
√

3
+ 17π2

36 +NHNL

(340
27 −

20π
3
√

3

)

+NHNV

(340
27 −

20π
3
√

3

)
+NH

(
−3695

162 + 395π
36
√

3
+ 5π2

18

)

+NL

(
−3605

81 + 10π
9
√

3
+ 10π2

3

)
+NV

(
−3605

81 + 10π
9
√

3
+ 10π2

3

)
, (4.34)

p
cc,(1)
58 (z) =−20560

27 L1 + 1024
9 NHL1 + 628

3 NLL1 + 628
3 NV L1−

7168
9 L2−

760NV z

3

− 540206
81 + 1940π

9
√

3
+ 578π2

9 +NL

(3476
9 − 160π

3
√

3

)
+NV

(3476
9 − 160π

3
√

3

)

+NH

(
−5056

27 −
16π
3
√

3
+ 64π2

3

)
, (4.35)
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p
cc,(1)
68 (z) =−11752

81 L1 + 1274
27 NHL1−

3086
27 NLL1 + 200

9 NHNLL1 + 200
9 N2

LL1

− 3086
27 NV L1 + 200

9 NHNV L1 + 400
9 NLNV L1 + 200

9 N2
V L1−

7216
27 L2

+ 20
9 NLL2 + 20

9 NV L2 +
[

400NLNV

3 + 400N2
V

3 +NV

(
−5822

3 + 200π2

3

)]
z

− 249917
243 + 820N2

L

27 + 1640NLNV

27 + 820N2
V

27 − 970π
27
√

3
+ 71π2

27

+NHNL

(3220
27 −

200π
3
√

3

)
+NHNV

(3220
27 −

200π
3
√

3

)

+NH

(
−22297

81 + 1130π
9
√

3
+ 10π2

3

)
+NL

(
−32654

81 + 130π
9
√

3
+ 100π2

3

)

+NV

(
−32654

81 + 130π
9
√

3
+ 100π2

3

)
, (4.36)

p
S,cc,(1)
38 (z) = 1976

27 L1−
128
9 NHL1−

32
3 NLL1−

32
3 NV L1 + 512

9 L2 + 608NV z

3

+ 27160
81 + 188π

9
√

3
− 596π2

27 +NL

(
−152

9 −
16π
3
√

3

)
+NV

(
−152

9 −
16π
3
√

3

)
+NH

(272
27 −

16π
3
√

3

)
, (4.37)

p
S,cc,(1)
48 (z) = 3548

81 L1−
304
27 NHL1−

1100
27 NLL1 + 32

9 NHNLL1 + 32
9 N

2
LL1

− 1100
27 NV L1 + 32

9 NHNV L1 + 64
9 NLNV L1 + 32

9 N
2
V L1 + 608

27 L2

− 64
9 NLL2−

64
9 NV L2 +

[
64NLNV

3 + 64N2
V

3 +NV

(
−128+ 32π2

3

)]
z

+ 38584
243 + 160N2

L

27 + 320NLNV

27 + 160N2
V

27 − 634π
27
√

3
− 674π2

81

+NHNL

(544
27 −

32π
3
√

3

)
+NHNV

(544
27 −

32π
3
√

3

)

+NH

(
−2956

81 + 158π
9
√

3
+ 4π2

9

)
+NL

(
−9944

81 + 16π
9
√

3
+ 16π2

3

)

+NV

(
−9944

81 + 16π
9
√

3
+ 16π2

3

)
, (4.38)

p
S,cc,(1)
58 (z) =

(31616
27 L1−

2048
9 NHL1−

224
3 NLL1−

224
3 NV L1 + 8192

9 L2

)
+ 11456NV z

3 + 502864
81 + 2720π

9
√

3
− 9488π2

27 +NL

(
−2656

9 − 256π
3
√

3

)

+NV

(
−2656

9 − 256π
3
√

3

)
+NH

(
4352
27 −

544π
3
√

3
+ 64π2

3

)
, (4.39)
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p
S,cc,(1)
68 (z) = 56768

81 L1−
3952
27 NHL1−

10928
27 NLL1 + 320

9 NHNLL1 + 320
9 N2

LL1

− 10928
27 NV L1 + 320

9 NHNV L1 + 640
9 NLNV L1 + 320

9 N2
V L1 + 9728

27 L2

− 640
9 NLL2−

640
9 NV L2 +

[
640NLNV

3 + 640N2
V

3 +NV

(
−2720

3 + 320π2

3

)]
z

+ 458776
243 + 1312N2

L

27 + 2624NLNV

27 + 1312N2
V

27 − 4816π
27
√

3
− 11672π2

81

+NHNL

(5152
27 −

320π
3
√

3

)
+NHNV

(5152
27 −

320π
3
√

3

)

+NH

(
−27640

81 + 1808π
9
√

3

)
+NL

(
−97808

81 + 208π
9
√

3
+ 160π2

3

)

+NV

(
−97808

81 + 208π
9
√

3
+ 160π2

3

)
, (4.40)

4.3 Two chromomagnetic operators

Finally, we come to the Q8×Q8 contribution, where the one-loop corrections are already of
NNLO. The one-loop result, for which only the Nf -piece has been known in the literature,
is given by

p
cc,(0)
88 (z) = p

uc,(0)
88 (z) = p

uu,(0)
88 (z) =−133

18 + 5NL

3 +
√

1−4z
(5

3NV + 10
3 NV z

)
,

p
S,cc,(0)
88 (z) = p

S,uc,(0)
88 (z) = p

S,uu,(0)
88 (z) =−164

9 + 8NL

3 +
√

1−4z
(8

3NV + 16
3 NV z

)
. (4.41)

At two-loop order we have

p
cc,(1)
88 = p

uc,(1)
88 = p

uu,(1)
88 ,

p
S,cc,(1)
88 (z) = p

S,uc,(1)
88 (z) = p

S,uu,(1)
88 (z) , (4.42)

with

p
cc,(1)
88 =

(
−2527

27 + 266NH

27 + 836NL

27 − 20NHNL

9 − 20N2
L

9 + 836NV

27 − 20NHNV

9

− 40NLNV

9 − 20N2
V

9

)
L1 +

(257
27 −

2NL

9 − 2NV

9

)
L2 +

[
−40

3 NLNV

− 40N2
V

3 +NV

(
853
9 − 20π2

3

)]
z − 156295

486 − 100N2
L

27 − 200NLNV

27 − 100N2
V

27

+ 277π
18
√

3
+ 167π2

27 +NHNL

(
−340

27 + 20π
3
√

3

)
+NHNV

(
−340

27 + 20π
3
√

3

)
+NL

(
8632
81 − 10π

9
√

3
− 10π2

3

)
+NV

(
8632
81 − 10π

9
√

3
− 10π2

3

)

+NH

(
1175
27 − 125π

6
√

3
− 5π2

9

)
, (4.43)
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p
S,cc,(1)
88 =

(
−6232

27 + 656NH

27 + 1568NL

27 − 32NHNL

9 − 32N2
L

9 + 1568NV

27 − 32NHNV

9

− 64NLNV

9 − 32N2
V

9

)
L1 +

(
−1312

27 + 64NL

9 + 64NV

9

)
L2

+
[
−64

3 NLNV −
64N2

V

3 +NV

(
616
9 − 32π2

3

)]
z − 222200

243 − 160N2
L

27

− 320NLNV

27 − 160N2
V

27 + 140π
3
√

3
+ 1828π2

81 +NHNL

(
−544

27 + 32π
3
√

3

)
+NHNV

(
−544

27 + 32π
3
√

3

)
+NL

(
15856

81 − 16π
9
√

3
− 16π2

3

)

+NV

(
15856

81 − 16π
9
√

3
− 16π2

3

)
+NH

(
1880
27 − 100π

3
√

3
− 8π2

9

)
. (4.44)

5 Numerical results

In this section we present the numerical effect of the new corrections to ∆Γs and asfs. We
start with discussing the relative size of the contributions from the various operators and
consider afterwards the ratio ∆Γs/∆Ms, from which |Vts| and the ballpark of the hadronic
uncertainties cancel. Finally, we use the measured result for ∆Ms and present updated results
for ∆Γs in two different renormalization schemes. We also present updated results for asfs.

The calculations described in the previous sections and the analytic results presented
in section 4 use the MS scheme for the strong coupling constant and the operator mixing
and the on-shell scheme for the charm and bottom quark masses. It is well known that
the latter choice leads to large perturbative corrections. Thus, we choose as our default
renormalization scheme the one where all parameters are defined in the MS scheme. It is
obtained with the help of the one-loop relations between the on-shell and MS charm and
bottom quark masses. We define a second renormalization scheme where the overall factor
m2
b (see, e.g., eq. (2.6)) is defined in the on-shell scheme, but Hab and H̃ab

S depend on the
quark masses in the MS scheme. In the following we refer to this scheme as the “pole”
scheme [13, 14]. Note that after each scheme change, which adds z-exact expressions to the
two-loop term, we re-expand the latter in z up to linear order to be consistent with our
genuine two-loop calculation.

For convenience, we summarize in table 2 the input parameters needed for our numerical
analysis. In addition we have (see ref. [14])

λsu
λst

= −(0.00865± 0.00042) + (0.01832± 0.00039)i . (5.1)

From mb(mb) we obtain mpole
b = 4.56GeV using the one-loop conversion formula. BBs and

B̃′S,Bs
parametrize the matrix elements of Q and Q̃S as

〈Bs|Q(µ2) |Bs〉 = 8
3M

2
Bs
f2
Bs
BBs(µ2),

〈Bs| Q̃S(µ2) |Bs〉 = 1
3M

2
Bs
f2
Bs
B̃′S,Bs

(µ2). (5.2)
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αs(MZ) = 0.1179± 0.001 [34]
mc(3GeV) = 0.993± 0.008GeV [35]

mb(mb) = 4.163± 0.016GeV [35]
mpole
t = 172.9± 0.4GeV [34]
MBs = 5366.88MeV [34]
BBs = 0.813± 0.034 [8]

B̃′S,Bs
= 1.31± 0.09 [8]

fBs = 0.2307± 0.0013GeV [36]

Table 2. Input parameters for the numerical analysis. From the charm and bottom quark mass one
obtains z̄ = 0.04974 ± 0.00092. The quoted mpole

t corresponds to mt(mt) = (163.1 ± 0.4) GeV in
the MS scheme. We use the values for BBs = BBs(µ2) and B̃′S,Bs

= B̃′S,Bs
(µ2) with µ2 = mpole

b =
4.56 GeV.

For the matrix elements of the 1/mb suppressed corrections we have

〈Bs|R0|B̄s〉 = −(0.43± 0.17)f2
Bs
M2
Bs
,

〈Bs|R1|B̄s〉 = (0.07± 0.00)f2
Bs
M2
Bs
,

〈Bs|R̃1|B̄s〉 = (0.04± 0.00)f2
Bs
M2
Bs
,

〈Bs|R2|B̄s〉 = −(0.18± 0.07)f2
Bs
M2
Bs
,

〈Bs|R̃2|B̄s〉 = (0.18± 0.07)f2
Bs
M2
Bs
,

〈Bs|R3|B̄s〉 = (0.38± 0.13)f2
Bs
M2
Bs
,

〈Bs|R̃3|B̄s〉 = (0.29± 0.10)f2
Bs
M2
Bs
. (5.3)

The results for 〈Bs|R2|B̄s〉, 〈Bs|R̃2|B̄s〉, 〈Bs|R3|B̄s〉, and 〈Bs|R̃3|B̄s〉 can be found in ref. [17]
and we extract the remaining three matrix elements from [8]. For 〈Bs|R1|B̄s〉 and 〈Bs|R̃1|B̄s〉
the ratio of the bottom and strange quark masses is needed mb(µ)/ms(µ) = 52.55±0.55 [37].

Let us next discuss our choices for the various renormalization schemes. We fix the
high scale in the ∆B = 1 theory to µ0 = 165GeV ≈ 2mW ≈ mt(mt). Since µ2 is closely
connected to the lattice results for BBq , B̃′S,Bs

and the 1/mb matrix elements of eq. (5.3), we
fix it to µ2 = mpole

b . For µ1 we choose mb(mb) and mpole
b in the MS and pole renormalization

scheme, respectively. Furthermore, there are the renormalization scales µc and µb of the
charm and bottom quark masses, which in principle can be varied independently. However,
choosing µc = µb avoids potentially large logarithms z log z [38] which is why our default
choice is µc = µb = mb(mb). That is, instead of z = (mpole

c /mpole
b )2 we use

z̄ = m2
c(µb)

m2
b(µb)

as in [11–15, 38]. This means that the coefficients pab,(1)
ij (z) and pS,ab,(1)

ij (z) must be replaced
by p̄ab,(1)

ij (z̄) and p̄S,ab,(1)
ij (z̄), respectively, as defined in eq. (32) of ref. [15].
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Contribution X rX (MS) rX (pole)
Q1,2 × Q1,2 133 (145, −12.0)% 141 (190, −49.2) % (LO,NLO)
Q1,2 × Q3−6 −9.55 (−9.02, −0.53)% −9.82 (−11.5, 1.63)% (LO,NLO)
Q3−6 × Q3−6 1.67 (1.32, 0.35)% 1.74 (1.60, 0.14)% (LO,NLO)
Q1,2 × Q8 1.01 (0.78, 0.23)% 1.09 (0.98, 0.11)% (NLO,NNLO)
Q3,6 × Q8 −0.33 (−0.21, −0.12)% −0.36 (−0.26, −0.09)% (NLO,NNLO)
Q8 × Q8 −0.33 (−0.20, −0.12) 10−2 % −0.36 (−0.25, −0.11) 10−2 % (NNLO,N3LO)

Table 3. Relative contributions in percent in the MS and pole schemes. The breakdown into one-
and two-loop contributions is shown inside the round brackets. In the last column we mention the
corresponding perturbative order.

In table 3 we show the relative size of the individual contributions to ∆Γs both in the
MS and pole scheme. They are defined as

rX = ∆ΓXs
∆Γs

, (5.4)

with X ∈ {Q1,2 ×Q1,2, Q1,2 ×Q3−6, Q3−6 ×Q3−6, . . .}. Power-suppressed 1/mb corrections
are only included in the denominator of eq. (5.4) but not in the numerator. In both
renormalization schemes the dominant contribution is given by the Q1,2 ×Q1,2, followed
about a 7% contribution from Q1,2×Q3−6. The remaining terms contribute at the 1% level
or below. Note that these contributions are necessary to obtain complete NLO and NNLO
corrections. It is interesting to note that the QCD corrections to Q1,2×Q1,2 amount only to
9% in the MS scheme but to more than 30% in the pole scheme. Also for the contribution
Q1,2 × Q3−6 the QCD corrections are about a factor of three larger in the pole scheme
whereas for Q3−6 ×Q3−6 the situation is vice versa. For the contributions involving Q8 the
QCD corrections in the MS scheme amount to up to about 50% of the leading order term,
though their absolute contribution is small.

Let us next consider ∆Γs/∆Ms. We use eq. (1.3) with Γs12 from eq. (2.2) and M s
12 from

ref. [39] where two-loop QCD corrections have been computed. In the two renormalization
schemes our results read

∆Γs
∆Ms

=
(
4.70+0.32

−0.70scale ± 0.12BB̃S
± 0.801/mb

± 0.05input
)
× 10−3 (pole) ,

∆Γs
∆Ms

=
(
5.20+0.01

−0.16scale ± 0.12BB̃S
± 0.671/mb

± 0.06input
)
× 10−3 (MS) , (5.5)

where the subscripts indicate the source of the uncertainties: “scale” denotes the uncertainties
from the variation of µ1, “BB̃S” those from the leading order bag parameters and “input”
refers to the variation of αs(mZ), mb(mb), mc(3 GeV), mpole

t and the CKM parameters in
eq. (5.1). The uncertainties from the matrix elements of the power-suppressed corrections in
eq. (5.3) are denoted by “1/mb”. Adding the uncertainties in quadrature (and symmetrising
the scale uncertainty) yields the numbers quoted in the abstract.
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Figure 2. ∆Γs/∆Ms and asfs as a function of µ1 for the MS (dashed orange) and pole (solid blue)
renormalization schemes. The gray area shows the range of µ1 used to obtain the renormalization
scale uncertainties quoted in eqs. (5.5) and (5.6).

The largest uncertainty is induced by the power-suppressed 1/mb corrections. It is
obtained by combining the uncertainties from the seven matrix elements of eq. (5.3) in
quadrature taking into account the 100% correlation of 〈Bs|R2|B̄s〉 and 〈Bs|R̃2|B̄s〉. Next,
there is the renormalization scale uncertainty, which we use to estimate the contribution
from unknown higher order corrections. We obtain the numbers in eq. (5.5) by varying
µ1 between 2.5 GeV and 10.0 GeV while keeping µ2, µc and µb at their default values. A
simultaneous variation of µ1 = µb = µc leads to significant larger scale uncertainties, which
is expected, because the anomalous dimension of the quark mass is large and appears in
the coefficient of log(µb/mb).

The last three uncertainties in eq. (5.5) are correlated between the two schemes. The
scale dependence is plotted in figure 2(a) and leads to the asymmetric uncertainties quoted
in eq. (5.5). The difference between the central values found in the pole and MS schemes is
around 11%, i.e. of the expected size of an NNLO correction.

We proceed in a similar way for asfs. We use eq. (1.2) and obtain

asfs =
(
2.07+0.10

−0.11scale ± 0.01BB̃S
± 0.061/mb

± 0.06input
)
× 10−5 (pole) ,

asfs =
(
2.02+0.15

−0.17scale ± 0.01BB̃S
± 0.051/mb

± 0.06input
)
× 10−5 (MS) . (5.6)

In figure 2(b) we show the dependence on µ1 for the two renormalization schemes. Here
the interval in the pole scheme is completely contained in the one from the MS scheme.

The predictions in eqs. (5.5) and (5.6) are consistent with those of ref. [14], but the
central values for ∆Γs/∆Ms in eq. (5.5) are larger in both schemes. In ref. [14] only partial
NLO corrections to the Q1,2 ×Q3−6 contribution and no Q3−6 ×Q3−6 or NNLO Q8 terms
have been included. Inspecting the sources of the differences in detail, we find that almost
2/3 of these stem from the new contributions presented in ref. [15] and this paper. The
remainder is due to terms, which are formally of higher order in αs. Interestingly, the
µ1 dependence of ∆Γs/∆Ms is much smaller in eq. (5.5) compared to ref. [14], while the
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situation is vice versa for asfs. We trace this feature back to the use of αs(µ1) versus αs(µ2)
in certain NLO terms, both of which are allowed choices in the considered order. In view of
this observation and the fact that the intervals from the scale uncertainty of ∆Γs/∆Ms

in both schemes barely overlap, we conclude that the µ1 dependence is not always a good
estimate of the size of the unknown higher-order corrections.

In a next step we can use the experimental result for ∆Ms [34],

∆M exp
s = 17.7656± 0.0057 ps−1 , (5.7)

and obtain for ∆Γs in the two renormalization schemes

∆Γpole
s =

(
0.083+0.005

−0.012scale ± 0.002BB̃S
± 0.0141/mb

± 0.001input
)
ps−1 ,

∆ΓMS
s =

(
0.092+0.0002

−0.003 scale ± 0.002BB̃S
± 0.0121/mb

± 0.001input
)
ps−1 . (5.8)

Comparing our prediction with the experimental value in eq. (1.4) we see that both the
“pole” and MS results are consistent with the measured value, but the central value of the
former is closer to the experimental result. One needs a better perturbative precision (which
will bring the “pole” and MS results closer to each other and reduce the scale uncertainty)
and more precise lattice results for the matrix elements of the 1/mb-suppressed operators
to quantify new-physics contributions to ∆Γs/∆Ms.

The value for ∆Γs/∆Ms quoted in eq. (5.5) also applies to ∆Γd/∆Md for two reasons:
first, while the CKM-suppressed contribution to ∆Γd/∆Md is a priori expected to be relevant
due to |λdu/λdt | � |λsu/λst |, it merely contributes at the percent level because of a numerical
cancellation in the sum of uc and uu contributions [11]. Second, the non-perturbative
calculations of the Bs and Bd hadronic matrix elements agree well within their error bars.
As a result the central values for ∆Γd/∆Md and ∆Γs/∆Ms agree within a few percent (see
e.g. [14]) and the difference is much smaller than the uncertainty in eq. (5.5). We find

∆Γpole
d ' ∆Γs

∆Ms

∣∣∣
pole

∆M exp
d

=
(
0.00238+0.00016

−0.00036scale ± 0.00006BB̃S
± 0.000401/mb

± 0.00003input
)
ps−1 ,

∆ΓMS
d ' ∆Γs

∆Ms

∣∣∣
MS

∆M exp
d

=
(
0.00264+0.00001

−0.00008scale ± 0.00006BB̃S
± 0.000341/mb

± 0.00003input
)
ps−1 , (5.9)

where ∆M exp
d = (0.5065± 0.0019) ps−1 [2] has been used.

6 Conclusions

In this paper we have completed the calculation of the NLO contributions to the decay
matrix element Γq12 appearing in Bq−B̄q mixing. These new contributions involve two-loop
diagrams with two four-quark penguin operators. We have further calculated two-loop
contributions with one or two copies of the chromomagnetic penguin operators, which
belong to NNLO or N3LO, respectively. All results are obtained as an expansion to first
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order in z = m2
c/m

2
b , except for the one-loop Q8 ×Q8 contribution for which our result has

the exact z-dependence. With our new results the theoretical uncertainties associated with
the penguin sector are under full control and way below the experimental error of the width
difference ∆Γs ' 2|Γs12| in eq. (1.4). We present updated predictions for ∆Γs and ∆Γd and
the CP asymmetry in flavor-specific Bs decays, asfs. For the width differences we find the
predictions in the pole and MS schemes to differ by 11%, which invigorates the need for a
full NNLO calculation of the contributions from current-current operators.

We provide the newly obtained matching coefficients in a computer readable format with
full dependence on the number of colors Nc. In the same way we present the renormalization
matrix Zij of the ∆B = 2 operators including the submatrices governing the mixing of
evanescent operators with physical operators and among each other.
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A Renormalization constants

In this appendix we describe the computation of the renormalization constants required for
the operator mixing in the |∆B| = 2 theory and provide explicit results relevant for the
two-loop calculations presented in the main part of this paper. Let us mention that all
relevant renormalization constants for the |∆B| = 1 theory can be found in ref. [30].

For the computation of renormalization constants in the MS scheme we can choose the
external momenta and particle masses such, that the amplitude b+ s̄→ b̄+ s is infra-red
finite. This is possible since MS renormalization constants do not depend on kinematic
invariants and masses. In our case it is convenient to set all external momenta to zero and
introduce a common mass for the strange and bottom quark. The gluon remains massless.
This leads to one-loop vacuum integrals.

We work in a basis with physical operators Q, Q̃S (cf. eq. (2.4)) and R0 and the
corresponding evanescent operators E(1)

1 , . . . , E
(1)
5 from eq. (2.8). We have to introduce

further evanescent operators, which contains the Dirac structures present in the ∆B = 1
amplitude. As can be seen from table 1 the contribution Q3−6 × Q3−6 has the largest
number of γ matrices and requires that the evanescent operators E(4)

i (see eq. (2.9)) are
taken into account in the computation of the amplitude. The same evanescent operators
are also needed for the computation of the renormalization constants. In analogy to the
amplitude calculation, also for the renormalization constants the O(ε) terms ei,j defined in
eq. (2.9) are only needed for E(1)

i .
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We can write the matrix of renormalization constants as a 20 × 20 matrix which is
naturally decomposed into four sub-matrices

Z∆B=2 =
(
ZQQ ZQE
ZEQ ZEE

)
, (A.1)

where ZQQ, ZQE , ZEQ and ZEE have the dimension 3 × 3, 3 × 17, 17 × 3 and 17 × 17,
respectively. We define Z∆B=2 via the renormalization of the coefficient functions as follows

~Cbare = ZT∆B=2
~Cren , (A.2)

where ~Cbare and ~Cren are 20-dimensional vectors of the bare and renormalized |∆B| = 2
coefficient functions, respectively. The perturbative expansion of the sub-matrices is
introduced as

ZQQ = 1 + αs
4π

1
ε
Z

(1,1)
QQ ,

ZQE = αs
4π

1
ε
Z

(1,1)
QE ,

ZEE = 1 + αs
4π

1
ε
Z

(1,1)
EE ,

ZEQ = αs
4πZ

(1,0)
EQ , (A.3)

where the first superscript denotes the order in αs and the second one the order in 1/ε.
Note that at one-loop order the matrix ZEQ only contains finite contributions.

In order to determine the matrix elements of Z∆B=2 we compute the amplitude
b+ s̄→ b̄+ s in the kinematics described above, take into account the field renormalization
of the external quarks in the MS scheme and require that the remaining poles in ε, which are
all of ultra-violet nature, are absorbed by the operator mixing via Z∆B=2. This condition
fixes all matrix elements but the ones in ZEQ. The latter are fixed by the requirement that
the contributions of evanescent operators vanish in D = 4 dimensions [21, 40]. Note that to
our order we do not have to renormalize the common strange and bottom quark mass.

An important check of our calculation is the locality of the extracted renormalization
constants. Furthermore, we perform the calculation for general QCD gauge parameter and
observe that the matrix Z∆B=2 is independent of ξ.

In the following we present explicit results for the one-loop corrections to ZQQ, ZQE
and ZEE . For Nc = 3 we have

Z
(1,1)
QQ =

 2 0 0
−4

3
8
3

8
3

2 8 −2

 , (A.4)

Z
(1,1)
QE =

 3 1
2 −

1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 − 7
12 −

1
4 0 0 0 0 0 0 0 0 0 0 0 0

3
2

1
4 −

1
12 −

13
12 −

1
12 0 0 0 0 0 0 0 0 0 0 0 0

 , (A.5)
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Z
(1,1)
EE =



−4 1
12

5
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −59
3 −5 0 0 7

12
1
4 0 0 0 0 0 0 0 0 0 0

0 −13 13
3 0 0 1

2 −1
6 0 0 0 0 0 0 0 0 0 0

0 0 0 −22 −2
3 0 0 −1

4 − 7
12 0 0 0 0 0 0 0 0

0 0 0 −44
3 4 0 0 1

6 −1
2 0 0 0 0 0 0 0 0

0 −1888
3 96 0 0 41

3 −9 0 0 7
12

1
4 0 0 0 0 0 0

0 −288 1568
3 0 0 3 −67

3 0 0 1
2 −1

6 0 0 0 0 0 0
0 0 0 608

3 −544
3 0 0 −22

3 −2 0 0 −1
6

1
2 0 0 0 0

0 0 0 992
3 −160

3 0 0 −4 −4
3 0 0 1

4
7
12 0 0 0 0

0 −39424
3 2560 0 0 −672 224 0 0 185

3 −25 0 0 7
12

1
4 0 0

0 −5632 34304
3 0 0 −224 672 0 0 19 −211

3 0 0 1
2 −

1
6 0 0

0 0 0 7424
3 −1792

3 0 0 720 −240 0 0 −130
3 10 0 0 −1

6
1
2

0 0 0 8960
3 −256

3 0 0 240 −720 0 0 −16 104
3 0 0 1

4
7
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


(A.6)

where the entries “∗” are not needed for our calculation.
The (finite) matrix Z(1,0)

EQ depends on the O(ε) terms of the evanescent operators, e(i)
j

and e(i)
j,k. It is given by

Z
(1,0)
EQ =

(
Z

(1,0)
EQ,1 Z

(1,0)
EQ,2 Z

(1,0)
EQ,3

)
, (A.7)

where

Z
(1,0)
EQ,1 =



0
7
12e

(2)
1 + 1

4e
(2)
2 + 464

3
1
2e

(2)
1 − 1

6e
(2)
2 − 16

3
1
8e

(2)
3,2+ 7

24e
(2)
4,2+84

− 1
12e

(2)
3,2+ 1

4e
(2)
4,2+44

35
3 e

(2)
1 + 7

12e
(3)
1 −9e (2)

2 + 1
4e

(3)
2 + 17920

3
3e(2)

1 + 1
2e

(3)
1 − 73

3 e
(2)

2 − 1
6e

(3)
2 − 14336

3
4
3e

(2)
3,1+ 4

3e
(2)
3,2+e (2)

4,2 + 1
12e

(3)
3,2− 1

4e
(3)
4,2+64

2e(2)
3,2− 1

8e
(3)
3,2+ 4

3e
(2)

4,1 − 5
3e

(2)
4,2− 7

24e
(3)
4,2−1728

−672e(2)
1 + 179

3 e
(3)
1 + 7

12e
(4)
1 +224 e(2)

2 −25e(3)
2 + 1

4e
(4)
2 + 901120

3
−224e(2)

1 +19e(3)
1 + 1

2e
(4)
1 +672e(2)

2 − 217
3 e

(3)
2 − 1

6e
(4)
2 − 843776

3
−360e(2)

3,2+ 58
3 e

(3)
3,2+ 1

12 e
(4)
3,2+120e(2)

4,2+ 4
3e

(3)
3,1−5 e(3)

4,2− 1
4e

(4)
4,2+24064

−120e(2)
3,2+8e(3)

3,2− 1
8e

(4)
3,2+360 e(2)

4,2+ 4
3e

(3)
4,1− 59

3 e
(3)

4,2 − 7
24e

(4)
4,2−44544

∗
∗
∗
∗



, (A.8)
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Z
(1,0)
EQ,2 =



0
0
0

−1
4e

(2)
3,1+ 1

4e
(2)
3,2− 7

12e
(2)
4,1+ 7

12e
(2)
4,2+32

1
6e

(2)
3,1− 1

6e
(2)
3,2− 1

2e
(2)
4,1+ 1

2e
(2)
4,2+32

0
0

−10e(2)
3,1− 1

6e
(3)
3,1+2e(2)

3,2−2e(2)
4,1+2e(2)

4,2+ 1
6e

(3)
3,2+ 1

2e
(3)
4,1− 1

2e
(3)
4,2−1536

−4e(2)
3,1+ 1

4e
(3)
3,1+4e(2)

3,2−4e(2)
4,1−4e(2)

4,2− 1
4e

(3)
3,2+ 7

12e
(3)
4,1− 7

12e
(3)
4,2−1536

0
0

720e(2)
3,1−46e(3)

3,1− 1
6e

(4)
3,1−720e(2)

3,2−240e(2)
4,1+240e(2)

4,2+38e(3)
3,2+10e(3)

4,1−10e(3)
4,2+ 1

6e
(4)
3,2+ 1

2e
(4)
4,1− 1

2e
(4)
4,2−12288

240e(2)
3,1−16e(3)

3,1+ 1
4e

(4)
3,1−240e(2)

3,2−720e(2)
4,1+720e(2)

4,2+16e(3)
3,2+32e(3)

4,1−40e(3)
4,2− 1

4e
(4)
3,2+ 7

12e
(4)
4,1− 7

12e
(4)
4,2−12288

∗
∗
∗
∗



,

(A.9)

Z
(1,0)
EQ,3 =



0
0
0

−1
4e

(2)
3,2− 7

12e
(2)
4,2−168

1
6e

(2)
3,2− 1

2e
(2)
4,2−88

0
0

−8
3e

(2)
3,1− 8

3e
(2)
3,2−2e(2)

4,2− 1
6e

(3)
3,2+ 1

2e
(3)
4,2−128

−4e(2)
3,2+ 1

4e
(3)
3,2− 8

3e
(2)
4,1+ 10

3 e
(2)
4,2+ 7

12e
(3)
4,2+3456

0
0

720e(2)
3,2− 116

3 e
(3)
3,2− 1

6e
(4)
3,2−240e(2)

4,2− 8
3e

(3)
3,1+10e(3)

4,2+ 1
2e

(4)
4,2−48128

240e(2)
3,2−16e(3)

3,2+ 1
4e

(4)
3,2−720e(2)

4,2− 8
3e

(3)
4,1+ 118

3 e
(3)
4,2+ 7

12e
(4)
4,2+89088

∗
∗
∗
∗



. (A.10)
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