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Abstract We report on new flavor tagging algorithms
developed to determine the quark-flavor content of bot-
tom (B) mesons at Belle II. The algorithms provide essen-
tial inputs for measurements of quark-flavor mixing and
charge-parity violation. We validate and evaluate the per-
formance of the algorithms using hadronic B decays with
flavor-specific final states reconstructed in a data set corre-
sponding to an integrated luminosity of 62.8 fb−1, collected
at the Υ (4S) resonance with the Belle II detector at the
SuperKEKB collider. We measure the total effective tagging
efficiency to be
εeff = (

30.0 ± 1.2(stat) ± 0.4(syst)
)
%

for a category-based algorithm and

εeff = (
28.8 ± 1.2(stat) ± 0.4(syst)

)
%

for a deep-learning-based algorithm.

1 Introduction

Determining the quark-flavor content of heavy-flavored
hadrons is essential in many measurements of quark-flavor
mixing and CP violation. A keystone of the Belle II physics

program is the study of B0 − B
0

mixing and CP viola-
tion in decays of neutral B mesons [1–21]. The study of
these processes is key to constrain the Cabibbo–Kobayashi–
Maskawa (CKM) angles φ1/β and φ2/α [22–27], as well as
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to study flavor anomalies that could ultimately reveal possible
deviations from the Standard Model expectations [28–30].

At Belle II, B mesons are produced in BB pairs at the
Υ (4S) resonance, which decays almost half of the time into
a pair of neutral BB mesons. Most measurements of CP vio-

lation and B0 − B
0

mixing require the full reconstruction of
a signal B meson (signal side), and to determine the quark-
flavor content of the accompanying B meson (tag side) at the
time of its decay, a task referred to as flavor tagging.

Flavor tagging is possible because many decay modes of
neutral B mesons provide flavor signatures through flavor-
specific final states. Flavor signatures are characteristics of
the B-decay products that are correlated with the flavor of
the neutral B meson, which is the charge sign of the b quark
or antiquark that it contains. For example, in semileptonic

decays such asB
0 → D∗+

�
−
ν� (charge-conjugate processes

are implied everywhere in this paper), a negatively charged

lepton tags unambiguously a B
0
, which contains a negatively

charged b, while a positively charged lepton tags a B0, which
contains a positively charged b.

To determine the quark-flavor of B mesons, Belle II
exploits the information associated with the B-decay prod-
ucts using multivariate machine-learning algorithms. We
develop two algorithms. The first one is a category-based
flavor tagger [31], which is inspired by previous flavor tag-
gers developed by the Belle and the BaBar collaborations
[32,33]. The category-based flavor tagger first identifies B0-
decay products and then combines all information to deter-
mine the B0 flavor. The second algorithm is a deep-learning
neural network (DNN) flavor tagger [34], that determines the
B0 flavor in a single step without pre-identifying B0-decay
products.

In the following, we focus on the description of the algo-
rithms and their training procedure. We evaluate the perfor-

mance of the algorithms by measuring the B0 − B
0

mixing
probability from the signal yield integrated in decay-time
(time-integrated analysis).

To evaluate the performance, we reconstruct signal B
decays with final states that allow us to unambiguously iden-
tify the flavor of the signal side and determine the flavor of
the tag side using the flavor taggers. We reconstruct signal
B decays into hadronic final states with branching fractions
of 10−5 or greater to obtain a sufficiently large signal sample
in the used data set. We evaluate the tagging performance on
neutralBmesons and, as a cross check, on chargedBmesons.
The training of the flavor taggers, the signal B reconstruction
procedure and the event selection criteria are developed and
optimized using Monte Carlo (MC) simulation before appli-
cation to experimental data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Belle II detector, followed by a descrip-
tion of the data sets and analysis framework in Sect. 3. The

category-based flavor tagger is described in Sect. 4 and the
DNN tagger in Sect. 5. The training of the flavor taggers
is detailed in Sect. 6. We describe the reconstruction of the
calibration samples in Sect. 7 and the determination of effi-
ciencies and wrong-tag fractions in Sect. 8. We then compare
the performance of the flavor taggers in data and in simula-
tion in Sect. 9 and present the results of the calibration in
Sects. 10 and 11. A comparison with the Belle algorithm is
provided in Sect. 12, followed by a summary of the paper in
Sect. 13.

2 The Belle II detector

Belle II is a particle-physics spectrometer with a solid-angle
acceptance of almost 4π [1,35]. It is designed to reconstruct
the products of electron–positron collisions produced by the
SuperKEKB asymmetric-energy collider [36], located at the
KEK laboratory in Tsukuba, Japan. Belle II comprises sev-
eral subdetectors arranged around the interaction point in a
cylindrical geometry. The innermost subdetector is the vertex
detector, which uses position-sensitive silicon layers to sam-
ple the trajectories of charged particles (tracks) in the vicinity
of the interaction region to determine the decay vertex of their
long-lived parent particles. The vertex detector includes two
inner layers of silicon pixel sensors (PXD) and four outer
layers of double-sided silicon microstrip sensors (SVD).
The second pixel layer is currently incomplete and covers
only one sixth of azimuthal angle. Charged-particle momenta
and charges are measured by a large-radius, helium-ethane,
small-cell central drift chamber (CDC), which also offers
charged-particle-identification information via the measure-
ment of particles’ energy-loss dE/dx by specific ionization.
A Cherenkov-light angle and time-of-propagation detec-
tor (TOP) surrounding the chamber provides charged-particle
identification in the central detector volume, supplemented
by proximity-focusing, aerogel, ring-imaging Cherenkov
detectors (ARICH) in the forward regions. A CsI(Tl)-crystal
electromagnetic calorimeter (ECL) enables energy measure-
ments of electrons and photons. A solenoid surrounding
the calorimeter generates a uniform axial 1.5 T magnetic
field filling its inner volume. Layers of plastic scintillator
and resistive-plate chambers (KLM), interspersed between
the magnetic flux-return iron plates, enable identification of
K0

L mesons and muons. We employ all subdetectors in this
work.

3 Framework and data

Both flavor taggers are part of the Belle II analysis soft-
ware framework [37], which is used to process all data.
We train the flavor taggers using a sample of 20 million
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signal-only MC events [38,39], where the signal B meson
decays to the invisible final state B0 → ντ ντ and the tag-
side B meson decays to any possible final state according to
known branching fractions [40]. To perform different tests
after training, we use similar signal-only MC samples where
the signal B meson decays to benchmark decay modes such
as B0 → K+

π
−, B0 → J/ψ(→ μ

+
μ

−
)K0

S(→ π
+
π

−
), and

B0 → η
′
(→ π

+
π

−
η(→ π

+
π

−
π

0
))K0

S(→ π
+
π

−
).

We evaluate the performance of the flavor taggers using
generic MC simulation. The generic MC simulation consists

of samples that include e+e− → B0B
0
, B+B−, uu, dd , cc,

and ss processes [38–41] in proportions representing their
different production cross sections and correspond to an inte-
grated luminosity of 700 fb−1, about eleven times the data
sample used in the measurement. We use these samples to
optimize the event selection and to compare the flavor dis-
tributions and fit results obtained from the experimental data
with the expectations.

Signal-only and generic MC simulation include the effect
of simulated beam-induced backgrounds [1,42], caused by
the Touschek effect (scattering and loss of beam particles),
by beam-gas scattering and by synchrotron radiation, as well
as simulated luminosity-dependent backgrounds, caused by
Bhabha scattering [43,44] and by two-photon quantum elec-
trodynamical processes [45].

As for experimental data, we use all good-quality data
collected at the Υ (4S) resonance between March 11th, 2019
and July 1st, 2020; this sample corresponds to an integrated
luminosity of 62.8 fb−1 [46]. To reduce the data sample
size to a manageable level, all events are required to meet
loose data-skim selection criteria, based on total energy and
charged-particle multiplicity in the event. Almost 100% of
the BB events meet the data-skim selection criteria.

4 The category-based flavor tagger

The Belle II flavor taggers are multivariate algorithms that
receive as input kinematic, track-hit, and charged-particle
identification (PID) information about the particles on the
tag side and provide as output the product q · r , where q is
the flavor of the tag-side B meson, and r the dilution factor.
By definition, the dilution factor r is equal to 1 − 2w, where
w corresponds to the fraction of wrongly tagged events. A
dilution factor r = 0 indicates a fully diluted flavor (no possi-

ble distinction between B0 and B
0
), whereas a dilution factor

r = 1 indicates a perfectly tagged flavor. By convention,
q = +1 corresponds to a tag-side B0, and q = −1 corre-

sponds to a tag-side B
0
.

The new category-based algorithm relies on flavor-specific
decay modes. Each decay mode has a particular decay topol-
ogy and provides a flavor-specific signature. Similar or com-

plementary decay modes are combined to obtain additional
flavor signatures. The different flavor signatures are sorted
into thirteen tagging categories, which are described in detail
in Sect. 4.1. Table 1 shows an overview of all thirteen cat-
egories together with the underlying decay modes and the
respective flavor-specific final state particles, which we call
target particles.

We identify the target particles among all available par-
ticle candidates on the tag side using discriminating input
variables. Some input variables require information from all
reconstructed tracks (charged candidates) [47] and all neutral
clusters (neutral candidates) on the tag side. Neutral clusters
are clusters in the electromagnetic calorimeter (reconstructed
photons) and in the KLM detector (reconstructed K0

L parti-
cles) that are not associated with a reconstructed track. Sum-
ming the input variables for all categories yields a total of
186 inputs in the current configuration of the algorithm (see
Sect. 4.1). Some variables are used multiple times for the
same candidates in different categories. To save computing
time, each variable is calculated only once for each candidate.

We adopted the useful concept of tagging categories from
the previous Belle and BaBar flavor taggers [32,33]. How-
ever, the new Belle II category-based flavor tagger includes
more categories and more input variables than previously
implemented algorithms.

4.1 Categories and input variables

In the following, we describe the flavor signatures and the
input variables. Table 2 shows an overview of the input
variables for each category. Except for the Maximum-p∗

category, PID variables are used for all categories. The
PID variables correspond to PID likelihoods L [1], which
can be either combined likelihoods considering 6 possible
long-lived charged-particle hypotheses (e, μ, K , π , p, and
deuteron), or binary likelihoods considering only two of the
hypotheses. The PID likelihoods can be calculated using all
sub-detectors providing particle identification, or single ones
(TOP, ARICH, ECL, KLM, or dE/dx from CDC). For exam-
ple,LdE/dx

π/e stands for binary π/e PID using only CDC infor-
mation.

Electron, muon, and kinetic lepton These categories
exploit the signatures provided by primary leptons from
B decays occurring via transitions b → c �

−
ν�, or

b → u �
−
ν�, where � corresponds to an electron, muon or

both depending on the category. Useful variables to identify
primary leptons are the momentum p, the transverse momen-
tum pt, and the cosine of the polar angle cos θ , which can be
calculated in the lab frame, or in the Υ (4S) frame (denoted
with a ∗ superscript). We consider the following variables
calculated only in the Υ (4S) frame:
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Table 1 Tagging categories and
their targets (left) with examples
of the considered decay
modes (right). The target
particles for each category are
shown using the same colors on
the left and on the right. Here,
p∗ stands for momentum in the
center-of-mass frame, �

± for
charged leptons (μ− or e−) and
X for other possible particles in
the decays

Table 2 Discriminating input
variables for each category and
for the DNN flavor tagger. For
some of the categories the
p-value of the track fit is taken
into account. For the Lambda
category, the p-value of the
reconstructed �-decay vertex is
used. All variables are
calculated for every particle
candidate

Categories Discriminating input variables

Electron and Int. Electron Le ,LTOP
e , LARICH

e , LECL
e , p∗, p∗

t , p, pt, cos θ ,

M2
rec, EW

90 , p∗
miss, cos θ

∗
miss, | cos θ

∗
T |, p-val.

Muon and Int. Muon Lμ ,LTOP
μ , LARICH

μ , LKLM
μ , p∗, p∗

t , p, pt, cos θ ,

M2
rec, EW

90 , p∗
miss, cos θ

∗
miss, | cos θ

∗
T |, p-val.(only for Int.)

Kin. Lepton and Int. Kin. Lep. Le , LTOP
e , LARICH

e , LECL
e , Lμ , LTOP

μ , LARICH
μ , LKLM

μ , p∗, p∗
t , p, pt,

cos θ , M2
rec, EW

90 , p∗
miss, cos θ

∗
miss, | cos θ

∗
T |, p-val.(only for Int.)

Kaon LK , LdE/dx
K , LTOP

K , LARICH
K , p∗, p∗

t , p, pt, cos θ ,

n
K 0

S
,
∑

p2
t , M2

rec, EW
90 , p∗

miss, cos θ
∗
miss, | cos θ

∗
T |, p-val.

Slow Pion and Fast Hadron Lπ ,LTOP
π , LARICH

π , LdE/dx
π/e , Le , LK , LdE/dx

K , LTOP
K , LARICH

K ,

p∗, p∗
t , p, pt,cos θ ,n

K 0
S
,
∑

p2
t , M2

rec,EW
90 , p∗

miss, cos θ
∗
miss, | cos θ

∗
T |

Kaon-Pion LK , yKaon, ySlowPion, cos θ
∗
Kπ , qK · qπ

Maximum p∗ p∗, p∗
t , p, pt, | cos θ

∗
T |

FSC LK , p∗
Slow, p∗

Fast, | cos θ
∗
T, Slow|, | cos θ

∗
T, Fast|, cos θ

∗
SlowFast, qSlow · qFast

Lambda Lp , Lπ , p∗
� , p� , p∗

π , pp , p∗
π ,pπ ,q� ,M� , n

K 0
S
,cos θx�, p�

, σ
zz
� , p-val.

DNN Le , Lμ , LK , Lπ , Lp , p∗, cos(θ∗
), φ

∗, NPXD, NSVD

• M2
rec = m2

X = gμ,ν p
∗μ
X p∗ν

X , the squared invariant mass of
the recoiling system X whose four-momentum is defined
by

p∗μ
X =

∑

i �=�

p∗μ
i ,

where the index i goes over all charged and neutral can-
didates on the tag side and � corresponds to the index of
the lepton candidate.

• p∗
miss = | p∗

miss| = | p∗
B0

tag
− p∗

X − p∗
� |, the absolute value

of the missing momentum.

• cos θ
∗
miss, the cosine of the angle between the momentum

p∗
� of the lepton candidate and the missing momentum

p∗
miss.

• E
W
90, the energy in the hemisphere defined by the direction

of the virtual W± in the B meson decay,

E
W
90 =

∑

i∈X, p∗
i · p∗

W>0

EECL
i ,

where the sum extends over all charged and neutral can-
didates in the recoiling system X that are in the hemi-
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sphere of the W±, and EECL corresponds to the energy
deposited in the ECL. The momentum of the virtual W±

is calculated as

p∗
W = p∗

� + p∗
ν ≈ p∗

� + p∗
miss = − p∗

X ,

where the momentum pν of the neutrino is estimated

using the missing momentum p∗
miss. In the equation above

we assume the B meson to be almost at rest in the Υ (4S)

frame, that is p∗
B0

tag
≈ 0 and thus p∗

miss ≈ −
(
p∗
X + p∗

�

)
.

• | cos θ
∗
T|, the absolute value of the cosine of the angle

between the momentum p∗
� of the lepton and the thrust

axis of the tag-side B meson in the Υ (4S) frame. In gen-
eral, a thrust axis T can be defined as the unit vector that
maximizes the thrust

T =
∑

i

∣∣T · pi
∣∣

∑
i

∣∣ pi
∣∣ ,

where the sum extends over a group of particles. For the
thrust axis of the tag-side B meson, the sum extends over
all charged and neutral candidates on the tag side.

Intermediate electron, intermediate muon, and inter-
mediate kinetic lepton These categories exploit flavor sig-
natures from secondary leptons produced through the decay
of charmed mesons and baryons occurring via transitions
b→ c→ s (d) �

+
ν�. In this case the charge-flavor cor-

respondence is reversed with respect to primary leptons: a

positively charged secondary lepton tags a B
0

meson, and a
negatively charged one a B0 meson. Since their momentum
spectrum is much softer in comparison with primary leptons,
we refer to secondary leptons as intermediate leptons.

Kaon This category exploits the signature from kaons
originating from decays of charmed mesons and baryons pro-
duced via b → c → s transitions. Such kaons are referred

to as right-sign kaons. They tag a B
0

if they are negatively
charged, and a B0 if they are positively charged.

The kaon category provides the largest tagging power due
to the high abundance of charged kaons (around 80% of
the B decays contain one) and because the fraction of right-
sign kaons (around 70%) is much larger than the fraction of
wrong-sign kaons (around 10%) produced through processes
of the kind b → W+ (→ cs/cd

)
X , with c → s → K−.

To identify target kaons, we include the following input
variables:

• n
K 0

S
, the number of reconstructed K0

S candidates on the

tag side. Charged kaons originating from b → c → s
transitions are usually not accompanied by K0

S candi-
dates, while wrong-sign kaons or charged kaons originat-

ing from ss pairs out of the vacuum are usually accom-
panied by one or more K0

S candidates.
• ∑

p2
t , the sum of the squared transverse momentum of

all tracks on the tag side in the lab frame.
• M2

rec, E
W
90, p∗

miss, cos θ
∗
miss, and | cos θ

∗
T|, the variables

in the Υ (4S) frame that discriminate against the lepton
background.

Slow pion The target particles of this category are sec-

ondary pions from decays B
0 → D∗+

(→ D0
π

+
)X−. Due

to the small mass difference between D∗+ and D0, the sec-
ondary pions have a soft momentum spectrum and are there-
fore called slow pions. To identify slow pions we include
some variables of the Kinetic Lepton and the kaon category,
which help distinguish the background from slow leptons and
kaons.

Kaon-pion This category exploits the flavor signatures of
decays containing both a right-sign kaon and a slow pion.
We use the following input variables to identify both target
particles:

• yKaon, the probability of being a target kaon obtained
from the individual Kaon category (see Sect. 4.2).

• ySlowPion, the probability of being a target slow pion
obtained from the individual Slow Pion category (see
Sect. 4.2).

• cos θ
∗
Kπ , the cosine of the angle between the kaon and the

slow-pion momentum in the Υ (4S) frame.
• qK ·qπ , the charge product of the kaon and the slow-pion

candidates.

Fast hadron The targets of this category are kaons and
pions from the W boson in b → cW− or b → uW−

decays, and from one-prong decays of primary tau leptons
from b → τ

−
(→ h−

ντ ) ντ X transitions, where h− stands
for a π

− or aK−. This category considers as targets also those
kaons and pions produced through intermediate resonances
that decay via strong processes conserving the flavor infor-

mation, for example B
0 → K∗−

(→ K−
π

0
)X+. The target

kaons and pions are referred to as fast hadrons because of
their hard momentum spectrum. To identify them we use the
same set of variables as the Slow Pion category, which also
distinguish fast kaons and pions among the background of
slow particles.

Maximum p∗ This category is a very inclusive tag based
on selecting the charged particle with the highest momentum
in the Υ (4S) frame and using its charge as a flavor tag. In this
way we give a higher weight to primary particles that may
have not been selected either as a primary lepton or as a fast
hadron. Primary hadrons and leptons from the W± boson in
b → c W− or in b → u W− transitions have a very hard
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momentum spectrum and are most likely to be the tag-side
particles with the largest momenta in a given event.

Fast-slow-correlated (FSC) The targets of this category
are both slow pions and high-momentum primary particles.
To identify them, we use the following input variables:

• p∗
Slow, the momentum of the slow pion candidate in the

Υ (4S) frame.
• p∗

Fast, the momentum of the fast candidate in the Υ (4S)
frame.

• | cos θ
∗
T, Slow|, the absolute value of the cosine of the angle

between the thrust axis and the momentum of the slow
pion candidate.

• | cos θ
∗
T, Fast|, the absolute value of the cosine of the angle

between the thrust axis and the momentum of the fast
candidate.

• cos θ
∗
SlowFast, the cosine of the angle between the momenta

of the slow and the fast candidate.
• qSlow · qFast, the charge product of the slow pion and the

fast candidate.

Lambda This category exploits the additional flavor sig-
natures provided by � baryons from b → c → s transitions.

A � baryon indicates a B
0
, and a �̄ a B0. Here, � candidates

are reconstructed from pairs of proton and pion candidates.
To identify target � particles, we use the momentum of the
reconstructed �, the momenta of the proton and the pion,
and also the following input variables:

• q�, the flavor of the � baryon.
• M�, the reconstructed mass of the �.

• n
K 0

S
, the number of reconstructed K0

S candidates on the

tag side.
• cos θx� p�

, the cosine of the angle between the � momen-

tum p� and the direction from the interaction point to the
reconstructed � vertex x� in the lab frame.

• |x�|, the absolute distance between the � vertex and the
interaction point.

• σ
zz
� , the uncertainty on the � vertex fit in the direction

along the beam (z direction).
• χ

2
�, the χ

2 probability of the vertex fit of the recon-
structed � decay vertex.

In comparison with previous versions of the Belle II flavor
taggers [1,31,34], for the current version of the algorithms we
exclude track impact parameters (displacement from nomi-
nal interaction point), because they are not yet well simulated
for small displacements below 0.1 cm. Track impact param-
eters provide additional separation power between primary
particles produced at the B-decay vertex (and thus with small
track impact parameters) and secondary particles with decay

Tracks KLMClusters ECLClusters

Electron

Int. El.

Muon

Int. Muon

Kin. Lepton

Int. Kin. Lep.

Kaon

Kaon-Pion

Slow Pion

FSC

Maximum P∗

Fast Hadron

Lambda

e

μ

K

π

p Λ

C
o
m
b
i
n
e
r

q · r

qcand · ycat

(qK · yKaon)eff

(qΛ · yLambda)eff

Fig. 1 Schematic overview of the category-based flavor tagger. The
tracks on the tag side are used to build five different lists of candidates: e,
μ, K , π , and p. Each category considers the list of candidates belonging
to its own targets. The different categories are represented by green
boxes, and the combiner by a magenta box

vertices displaced from the interaction point. Thus, we will
consider to use them again in the future.

For the current version of the algorithms, we also exclude
the p-value of the track fit for the Muon and the Kinetic
Lepton categories since we observe discrepancies between
data and simulation in the p-value distribution of particles
identified as primary muons.

4.2 Algorithm

The category-based flavor tagger performs a two-level pro-
cedure with an event level for each category followed by a
combiner level. Figure 1 shows a schematic overview. The
algorithm is based on Fast Boosted Decision Tree (FBDT)
[48] classifiers, which are stochastic gradient-boosted deci-
sion trees that incorporate several mechanisms for regular-
ization and are optimized to save computing resources during
training and application.

At the event level, the flavor tagger identifies decay prod-
ucts providing flavor signatures among the e±, μ

±, K±, π
±,

and � candidates. Each category considers the list of particle
candidates corresponding to its target particles. The event-
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level process is performed for each category, which corre-
sponds to an FBDT classifier that receives the input variables
associated with the category.

The event-level multivariate method assigns to each parti-
cle candidate a real-valued output ycat ∈ [0, 1] corresponding
to the probability of being the target of the corresponding cat-
egory providing the right flavor tag. Within each category,
the particle candidates are ranked according to the values
of ycat. The candidate with the highest ycat is identified as
flavor-specific decay product. Figure 2 illustrates the pro-
cedure. Only for the Maximum p∗ category, the candidates
are ranked according to their momenta in the Υ (4S) frame.
Two special categories get information from other categories:
the Kaon-Pion category and the Fast-Slow-Correlated (FSC)
category.

At the combiner level, the algorithm combines the infor-
mation provided by all categories into the final product q · r
using a combiner-level FBDT. Combining the information
provided by all categories improves the performance of the
flavor tagger as the B decays possibly offer more than one
flavor-specific signature. The combiner receives an input
from each category corresponding to the product qcand · ycat,
where qcand is the charge (or q� flavor) of the candidate iden-
tified as flavor-specific decay product, and ycat is the proba-
bility provided by the event-level FBDT. Only for the Kaon
and the Lambda categories the input is the effective product

(qcand · ycat)eff

=
∏

i

(
1 + (

qcand · ycat
)
i

) − ∏
i

(
1 − (

qcand · ycat
)
i

)

∏
i

(
1 + (

qcand · ycat
)
i

) + ∏
i

(
1 − (

qcand · ycat
)
i

) ,

where the products extend over the three particles with the
highest ycat value. The use of (qcand · ycat)eff for the Kaon and
the Lambda categories slightly improves the tagging perfor-
mance. We find no significant improvement when we use it
for the other categories.

The structure of the FBDT classifiers, the learning pro-
cedure, and the preprocessing of the input data is con-
trolled with different so-called hyper-parameters. We use the
default hyper-parameter values optimized for the Full-Event-
Interpretation algorithm [49,50], which performs similarly
complex classifications to identify B mesons and other inter-
mediate particles. The number of levels in each tree is three;
the number of cuts for the cumulative probability histograms
of each input variable is eight; the fraction of the sample
to train each tree (sampling rate) is 0.5; the learning rate
to regulate the training is 0.1. For the flavor tagger, only the
number of trees was optimized to 500. For the training proce-
dure, the FBDT algorithm transforms the distribution of the
input variables to a uniform distribution and uses a negative
binomial log-likelihood loss function.

The FBDT algorithm provides an internal ranking of input
variables by counting how often the variables are used to split
decision tree nodes and by weighting each split according to
the separation gain and the number of events in the node
[48,49]. Based on this ranking [31], we generally observe
that the input variables with largest separation power at the
event level are the PID variables followed by the particle
momenta. Variables requiring information from all tracks
and neutral clusters, for example M2

rec, EW
90, and cos θ

∗
miss,

provide marginal additional separation power. At the com-
biner level, the categories with largest separation power are
the Kaon and the Kinetic Lepton categories followed by the
Maximum p∗, Slow Pion, FSC, and Fast Hadron categories.
The other categories provide marginal additional separation
power.

5 The deep-learning flavor tagger

To explore the advantages of deep-learning multivariate
methods, we developed a DNN flavor tagger based on a
deep-learning multi-layer perceptron (MLP). The algorithm
is designed to learn the correlations between the character-
istics of the tag-side tracks and the flavor of the tag-side
B meson avoiding any pre-selection of decay products. The
algorithm provides as output the product q · r . The imple-
mentation of the algorithm is based on the machine-learning
library Tensor-flow [51].

The DNN flavor tagger sorts the tracks on the tag side
into two groups, a positive and a negative one, depending on
the electric charge of the particle (see Fig. 3). The algorithm
ranks the tracks in each group according to their momenta
in the Υ (4S) frame, and selects the top five tracks in each
group. We find on average around six tag-side tracks per
event in simulation with about equal fraction of positive and
negative tracks. About 96% of the events have fewer than ten
tag-side tracks. If an event contains fewer than five positive
or fewer than five negative tracks, the algorithm sets the input
variables for the missing candidates to zero.

For each charged-particle candidate, the deep-learning
MLP receives ten input variables in the current configura-
tion: five PID likelihoods Le, Lμ, LK , Lπ , and Lp, the mag-
nitude of the momentum p∗, the cosine of the polar angle
cos θ

∗, the azimuth angle φ
∗, and the number of hits in the

vertex detectors NPXD and NSVD. Multiplying the number
of input variables by the number of candidates yields 100,
corresponding to the number of input nodes.

We optimize the hyper-parameters of the MLP by per-
forming various scans. The optimized MLP contains eight
hidden layers with 300 nodes each. Based on previous stud-
ies on similarly complex classification tasks [52], we employ
the tanh function as activation function to describe possible
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Fig. 2 Procedure for each
single category (green box): the
candidates correspond to the
reconstructed tracks for a
specific mass hypothesis. Some
of the input variables consider
all reconstructed tracks and all
neutral ECL and KLM clusters
on the tag side. The magenta
boxes represent multivariate
methods: ycat is the output of the
event level. The output of the
combiner is equivalent to the
product q · r . Each box
corresponds to an FBDT
classifier

Tracks KLMClusters ECLClusters

Event Level
Input

Variables

Ranking and
Selection
using ycat

Candidates

e, μ,K, π, Λ

ycat

ycat of other
Categories

Combiner
qcand · ycat

or (qcand · ycat)eff
q · r

Example Category

Fig. 3 Scheme of the input information for the MLP in the deep-
learning flavor tagger. The tracks on the tag side are sorted into two
groups according to their electric charge and ranked according to their
momenta in the Υ (4S) frame. The top 5 tracks in each group are selected
as candidates. The MLP receives input variables for each candidate

non-linear dependences between the inputs and the B-meson
flavor. The inputs are transformed to be uniformly distributed
in the range [−1, 1] corresponding to the range of the acti-
vation function. Zero, the default value for missing tracks,
corresponds to the mean of the transformed distribution.

For the training procedure, we use a binary cross-entropy
loss function with regularization terms [34]. The loss func-
tion is minimized using a mini-batch stochastic gradient-
descent algorithm based on backpropagation [53].

6 Training procedure

Both flavor taggers are trained using B0 → ντ ντ samples (see
Sect. 3). In this way, we avoid possible bias due to CP asym-
metries or reconstruction performance since these samples
are generated without built-in CP violation, and all recon-
structed objects (tracks, photons, and KLM clusters) can be
used to form the tag side without passing through reconstruc-
tion of the signal side.

The algorithms are trained with a sample of about ten
million MC events and tested afterwards with an independent
sample of the same size to exclude overtraining. We find no
significant improvement in tagging performance using two to
five times larger training samples. We train the algorithms for

each MC campaign to optimize them for the most up-to-date
data processing and background expectation.

For the category-based algorithm, the training sample is
divided into two statistically independent MC samples of the
same size: one sample for the event level, and one sample for
the combiner level. The event level is trained first and each
category is trained independently. The combiner is trained
afterwards.

For the DNN algorithm, we take about 10% of the train-
ing sample as an independent validation sample. We monitor
the training procedure by calculating the value of the loss
function on the validation sample at each training epoch and
stop the training procedure if the value starts increasing for
a fixed number of 100 epochs. We then save the MLP con-
figuration at the epoch leading to the best performance on
the validation sample. Typically, the training is stopped after
about 500 epochs. We train 10 different MLPs with different
initial random weights and keep only the one leading to the
best performance.

Over-fitting is checked for each of the multivariate meth-
ods in both flavor taggers by comparing the distribution of the
output on the training sample with the output on the testing
sample. The output on the training and on the testing sample
have to be statistically compatible.

For the DNN tagger, the MLP complexity calls for sig-
nificant computing resources to train the algorithm. We use
GPUs to train the deep-learning MLP to exploit their parallel
computation capabilities. On a GTX 970 GPU [54], the train-
ing procedure for the eight-layer MLP takes about 48 hours.
In comparison, the training procedure for the category-based
flavor tagger takes about five hours running on a single CPU
core.

We compare the performance of both flavor taggers using
the testing B0 → ντ ντ sample. Figure 4 shows the 2D dis-
tribution of the DNN output vs. the combiner FBDT output.
From the sample we estimate a Pearson correlation coeffi-
cient around 90%. Figure 5 shows the receiver operating char-
acteristics (ROC) and the area under the ROC curve (AUC)
for all events, for events containing a target particle of the
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Fig. 4 Distribution of the DNN tagger output vs. the category-
based (FBDT) tagger output in the testingB0 → ντ ντ simulation sample

Kinetic Lepton or Kaon categories, and for events containing
less than 5 tracks, 5 to 10 tracks, and more than 10 tracks. The
category-based tagger reaches a slightly better performance
for events with a target of the Kinetic Lepton category and
for events with more than ten tracks. On the other hand, the
DNN tagger reaches a slightly better performance for events
with one target of the Kaon category and for events with less
than 10 tracks. However, in general, both algorithms reach
about the same performance for all events and for the various
sub-samples.

After the training, we perform checks using signal-
only MC samples, where the signal B meson decays to
one benchmark mode such as B0 → K+

π
−, B0 →

J/ψ(→ μ
+
μ

−
)K0

S(→ π
+
π

−
), B0 → η

′
(→ π

+
π

−
η(→

π
+
π

−
π

0
))K0

S(→ π
+
π

−
), or one of the neutral B decays

listed in the following section. We reconstruct the signal
B decay in each event and use the tag-side objects as input
for the flavor taggers. For correctly associated MC events,
we verify that the tagging performance is consistent with the
one obtained using the B0 → ντ ντ sample.

7 Reconstruction of calibration samples

To evaluate the performance of the flavor taggers, we recon-
struct the following signal B decays,

• B+ → D
0
π

+, • B0 → D−
π

+,

• B+ → D
0
ρ

+, • B0 → D−
ρ

+,

• B+ → D
∗0

(→ D
0
π

0
) π

+, • B0 → D∗−
(→ D

0
π

−
) π

+,

• B+ → D
∗0

(→ D
0
π

0
) ρ

+, • B0 → D∗−
(→ D

0
π

−
) ρ

+,

• B+ → D
∗0

(→ D
0
π

0
) a+

1 , • B0 → D∗−
(→ D

0
π

−
) a+

1 ,

for which we reconstruct the following D decays,

• D
0 → K+

π
−, • D− → K+

π
−
π

−,

• D
0 → K+

π
−
π

+
π

−, • D− → K 0
S π

−,

• D
0 → K+

π
−
π

0, • D− → K 0
S π

−
π

0,

• D
0 → K 0

S π
+
π

−, • D− → K+
π

−
π

−
π

0.

7.1 Reconstruction and baseline selection

We reconstruct charged-pion and charged-kaon candidates
by starting from the most inclusive charged-particle selec-
tions. To reduce the background from tracks that do not orig-
inate from the interaction region, we require fiducial criteria
that restrict the candidates to loose ranges of displacement
from the nominal interaction point (|dr | < 0.5 cm radial and
|dz| < 3 cm longitudinal) and to the full polar-acceptance
in the central drift chamber (17◦

< θ < 150◦). Addition-
ally, we use PID information to identify kaon candidates by
requiring the likelihood LK to be larger than 0.4.

We reconstruct neutral pion candidates by requiring pho-
tons to exceed energies of 80 MeV in the forward region,
30 MeV in the central volume, and 60 MeV in the back-
ward region. We restrict the diphoton mass to be in the range
120 < M(γ γ ) < 145 MeV/c2. The mass of the π

0 can-
didates is constrained to its known value [40] in subsequent
kinematic fits.

For K 0
S reconstruction, we use pairs of oppositely charged

particles that originate from a common decay vertex and
have a dipion mass in the range 450 < M(π

+
π

−
) <

550 MeV/c2. To reduce combinatorial background, we apply
additional requirements, dependent on K 0

S momentum, on
the distance between trajectories of the two charged-pion
candidates, the K 0

S flight distance, and the angle between the
pion-pair momentum and the K 0

S flight direction.
The resulting K±, π

±, π
0, and K0

S candidates are com-

bined to form D(∗) candidates in the various final states, by
requiring their invariant masses to satisfy

• 1.84 < M
(
K+

π
−

, K+
π

−
π

+
π

−
, K+

π
−

π
0
, K0

S π
+

π
−)

< 1.89 GeV/c2,

• 1.844 < M
(
K+

π
−

π
−

, K0
S π

−
,K0

S π
−

π
0
, K+

π
−

π
−

π
0)

<

1.894 GeV/c2,

• 0.14 < M(D0
π

0
) − M(D0

) < 0.144 GeV/c2,

• 0.143 < M(D0
π

+
) − M(D0

) < 0.147 GeV/c2,

where M(D0
) and M(D0

π
0
, D0

π
+
) are the invariant

masses of the reconstructedD0 andD∗ candidates. We recon-
struct ρ± candidates from pairs of charged and neutral pions,
and a±

1 candidates from three charged pions with the follow-
ing requirements:

• |M(π
+
π

0
) − Mρ | < 0.15 GeV/c2,

• |M(π
+
π

−
π

+
) − Ma1

| < 0.4 GeV/c2,
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Fig. 5 Receiver operating characteristic curves comparing the per-
formance of the DNN tagger and the category-based (FBDT) tag-
ger in the testing B0 → ντ ντ simulation sample. Curves and val-
ues of area under the curve (AUC) are shown for (left) all events,

events with one target particle of the Kinetic Lepton category and
events with one target particle of the Kaon category, and (right) events
with less than 5 tracks, with 5 to 10 tracks and with more than 10
tracks
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where Mρ and Ma1
are the known masses [40] of the ρ and

a1 mesons. To identify primary π
± and π

± candidates used
to reconstruct ρ

± and a±
1 candidates, we also require the

likelihood Lπ to be larger than 0.1 and the π
± momentum

in the Υ (4S) frame to be larger than 0.2 GeV/c.
To reconstruct the signal B candidates, we combine the

D(∗) candidates with appropriate additional candidate parti-
cles, π

±, ρ
± or a±

1 , by performing simultaneous kinematic-
vertex fits of the entire decay chain [55] into each of our signal
channels. We perform the kinematic-vertex fits without con-
straining the decay-vertex position or the invariant mass of
the decaying particles and require the fit to converge. Requir-
ing the kinematic-vertex fit to converge keeps about 96% of
the correctly associated MC events.

We use the following kinematic variables to distinguish
B signals from the dominant continuum background from
e+e− → uu, dd , ss, and cc processes:

• Mbc ≡
√
s/(4c4

) − (p∗
B/c)2, the beam-energy con-

strained mass, which is the invariant mass of the B can-
didate calculated with the B energy replaced by half the
collision energy

√
s, which is more precisely known;

• ΔE ≡ E∗
B − √

s/2, the energy difference between the
energy E∗

B of the reconstructed B candidate and half of
the collision energy, both measured in the Υ (4S) frame.

We retain B candidates that have Mbc > 5.27 GeV/c2 and
|ΔE | < 0.12 GeV. Additionally, for channels with ρ

± can-
didates, we remove combinatorial background from soft
π

0 mesons collinear with the ρ
±, by requiring the cosine

of the helicity angle θH between the B and the π
+ momenta

in the ρ frame to satisfy cos θH < 0.8.
We form the tag side of the signal B candidates using

all remaining tracks and photons that fulfill the loose fiducial
criteria, and KLM clusters. The category-based and the DNN
taggers receive the tag-side objects and run independently of
each other.

7.2 Continuum suppression and final selection

To suppress continuum background, we apply requirements
on the two topological variables with the highest discrim-
ination power between signal from hadronic B decays and
continuum background: cos θ

sig,tag
T , the cosine of the angle

between the thrust axis of the signalB (reconstructed) and the
thrust axis of the tag-side B (remaining tracks and clusters),
and R2, the ratio between the second and zeroth Fox-Wolfram
moments [56] calculated using the full event information.

We vary the selections on cos θ
sig,tag
T and R2 to maximize

the figure of merit S/
√

S + B, where S and B are the number
of signal and background B candidates in the signal-enriched

Table 3 Tagging efficiencies ε ± δε for charged and neutral B →
D(∗)h+ candidates in data and in simulation. All values are given in
percent. The uncertainties are only statistical

Channel MC Data

B0 → D(∗)−h+ 99.77 ± 0.01 99.75 ± 0.02

B+ → D
(∗)0

h+ 99.80 ± 0.01 99.73 ± 0.02

range Mbc > 5.27 GeV/c2 and −0.12 < ΔE < 0.09 GeV.
Both cos θ

sig,tag
T and R2 requirements are optimized simulta-

neously using simulation. We optimize the requirements for
charged and for neutral candidates independently. The opti-
mized requirements are found to be cos θ

sig,tag
T < 0.87 and

R2 < 0.43 for charged B candidates, and cos θ
sig,tag
T < 0.95

and R2 < 0.35 for neutral B candidates.
Applying the optimized R2 and cos θ

sig,tag
T requirements

keeps about 81% of the charged signalB candidates and about
77% of the neutral ones, and improves the figure of merit by
about 12% for charged B candidates and by about 14% for
neutral ones. We observe no significant difference in tagging
performance before and after the R2 and cos θ

sig,tag
T require-

ments.
After applying the cos θ

sig,tag
T and R2 requirements, more

than one candidate per event populate the resulting ΔE dis-
tributions, with average multiplicities for the various chan-
nels ranging from 1.00 to 3.00 (about 75% of the channels
have multiplicities between 1.00 and 2.00). We select a single
B candidate per event by selecting the one with the highest
p-value of the kinematic-vertex fit. The analyses of charged
and neutral B channels are independent: we select one candi-
date among the charged and one among the neutral channels
independently.

8 Determination of efficiencies and wrong-tag fractions

The tagging efficiency ε corresponds to the fraction of events
to which a flavor tag can be assigned. Since the category-
based and the DNN algorithms need only one charged track
on the tag side to provide a tag, the tagging efficiency is close
to 100% for both, with good consistency between data and
simulation as Table 3 shows.

To estimate the fraction of wrongly tagged events w, we

fit the time-integrated B0 −B
0

mixing probability to the data.
We take into account that ε and w can be slightly different for

B0 and B
0

mesons due to charge-asymmetries in detection
and reconstruction. We express ε and w as

ε =
ε
B0 + ε

B
0

2
, w =

w
B0 + w

B
0

2
,
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and introduce the differences

Δε = ε
B0 − ε

B
0 , Δw = w

B0 − w
B

0 ,

where the subscript corresponds to the true flavor, for exam-
ple w

B0 is the fraction of true B0 mesons that are wrongly

classified as B
0
.

For neutral BB pairs produced at the Υ (4S), the time-
integrated probability for an event with a signalBflavorqsig ∈
{−1,+1} and tag-side B flavor qtag ∈ {−1,+1} is given by

P(qsig, qtag) = 1

2

[
1 − qsig · qtag · (1 − 2 · χd)

]
,

where χd is the time-integrated B0 − B
0

mixing probability,
whose current world average is χd = 0.1858 ± 0.0011 [57].
The equation above assumes that for any event the signal and
the tag-side B flavor are correctly identified. To include the
effect of the flavor tagging algorithms, one can express the
observed probability P(qsig, qtag)

obs in terms of the efficien-
cies ε

B0 and ε
B

0 , and the wrong tag fractions w
B0 and w

B
0 .

The probability becomes

Pobs
(qsig, qtag = +1) = ε

B0(1 − w
B0) · P(qsig, qtag = +1)

+ ε
B

0w
B

0 · P(qsig, qtag = −1),

Pobs
(qsig, qtag = −1) = ε

B
0(1 − w

B
0) · P(qsig, qtag = −1)

+ ε
B0wB0 · P(qsig, qtag = +1),

which can be written in terms of ε, w, μ = Δε/(2ε) and Δw
as

P(qsig, qtag)
obs = 1

2
ε

[
1 − qtag · Δw + qtag · μ · (1 − 2w)

− [
qtag · (1 − 2w) + μ · (1 − qtag · Δw)

] · qsig · (1 − 2 · χd )

]
. (1)

We sort the events in bins of the dilution factor r provided
by the flavor taggers and measure the value of ε, w, μ, and
Δw in each r bin (7 bins in total). To compare with our
predecessor experiment, we use the binning introduced by
Belle [32,33].

Since we need to consider the background, we develop
a statistical model with a signal and a background compo-
nent. We determine the signal yield Nsig, the background
yield Nbkg, the partial efficiencies εi , the wrong-tag frac-
tions wi , and the asymmetries μi and Δwi in each r -bin
i from an extended maximum likelihood fit to the unbinned
distributions of ΔE , qsig, and qtag. We check that the ΔE dis-
tribution is statistically independent from those of qsig and
qtag with Pearson correlation coefficients below 2%.

In the fit model, the probability density function (PDF)
for each component j is given by

P j (ΔE, qsig, qtag) ≡ P j (ΔE) · Pobs
j (qsig, qtag).

We model the signal ΔE PDF using a Gaussian plus a Crys-
tal Ball function [58] determined empirically using signal
MC events obtained from the generic simulation (see Sect. 3),
with the additional flexibility of a global shift of peak posi-
tion and a global scaling factor for the width as suggested
by a likelihood-ratio test. The background ΔE PDF is mod-
eled using an exponential function with a floating exponent.
Residual peaking backgrounds in generic simulation have
expected yields below 0.5% of the signal one and are thus
neglected.

The flavor PDF P(qsig, qtag)
obs has the same form for sig-

nal and background (Eq. 1) with independent εi , wi , Δwi ,
μi , and χd parameters for signal and background. We fix the
background χ

bkg
d parameter to zero as we obtain values com-

patible with zero when we let it float. We find, on the other
hand, that the background parameters ε

bkg
i , wbkg

i , Δw
bkg
i , and

μ
bkg
i have to be free to obtain unbiased results for the signal

ones.
The total extended likelihood is given by

L ≡
∏

i

e−∑
j N j ·εi

N i !
Ni
∏

k=1

∑

j

N j · P i
j (ΔEk

, qksig, q
k
tag),

where i extends over the r bins, k extends over the events
in the r bin i , and j over the two components: signal and
background. The PDFs for the different components have
no common parameters. Here, N j denotes the yield for the

component j , and Ni denotes the total number of events in
the i-th r bin. The partial efficiencies εi are included in the
flavor part of P j . Since we can fit only to events with flavor
information, the sum of all εi must be one. We therefore
replace the epsilon for the first bin (with lowest r ) with

ε1 = 1 −
7∑

i=2

εi ,

and obtain its uncertainty δε1 from the width of the residuals
of simplified simulated experiments.

To validate the ΔE model, we first perform an extended
maximum likelihood fit to the unbinned distribution of ΔE
(without flavor part) in simulation and data. Figure 6 shows
the ΔE fit projections in data and simulation for charged and
neutral B → D(∗)h+ candidates. Table 4 summarizes the
yields obtained from the fits. We observe a relatively good
agreement between data and simulation, but a tendency to
lower yields with respect to the expectation, especially for
charged signal B candidates.

To determine the partial efficiencies εi and the wrong-tag
fractions wi , we perform a fit of the full model in a single
step. For neutral candidates, we constrain the value of the
signal χ

sig
d parameter via a Gaussian constraint,

L ⇒ G(χ
sig
d − χd , δχd) · L,
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Fig. 6 Distributions of ΔE for (top) neutral and (bottom) charged B → D(∗)h+ candidates reconstructed in (left) simulation and (right) data,
restricted to Mbc > 5.27 GeV/c2. The fit projection of the maximum likelihood fit is overlaid

Table 4 Summary of yields and
yields per integrated luminosity
obtained from the fit to
MC simulation (700 fb−1) and
data (62.8 fb−1). The
uncertainties are only statistical

Yield Yield/fb−1

MC Data MC Data

B0 → D(∗)−h+

Signal 375105 ± 1084 31423 ± 360 536 ± 2 500 ± 6

Background 397275 ± 1094 33764 ± 364 568 ± 2 538 ± 6

B+ → D
(∗)0

h+

Signal 610304 ± 1461 46530 ± 482 872 ± 2 741 ± 8

Background 587618 ± 1453 51420 ± 487 840 ± 2 819 ± 8
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Fig. 7 Normalized q ·r distributions obtained with the category-based
tagger in data and MC simulation. The contribution (left) from the sig-
nal component in data is compared with correctly associated signal MC

events and (right) from the background component in data is com-
pared with sideband MC events for (top) neutral and (bottom) charged
B → D(∗)h+ candidates

where χd and δχd are the central value and the uncertainty
of the world average. For charged B mesons, χd is zero since
there is no flavor mixing.

9 Comparison of performance in data and simulation

We check the agreement between data and MC distributions
of the flavor-tagger output by performing an sPlot [59] anal-
ysis using ΔE as the control variable. We determine sPlot
weights using the ΔE fit model introduced in the previous
section. We weight the data with the sPlot weights to obtain
the individual distributions of the signal and background
components in data and compare them with MC simula-

tion. We normalize the simulated samples by scaling the total
number of events to those observed in data. The procedure is
validated by performing the sPlot analysis using MC simu-
lation and verifying that the obtained signal and background
distributions correspond to the distributions obtained using
the MC truth.

Figures 7 and 8 show the q ·r distributions provided by the
FBDT and by the DNN flavor tagger; the signal and back-
ground distributions for neutral and charged B → D(∗)h+

candidates are shown separately. We compare the distribu-
tion of the signal component in data with the distribution of
correctly associated MC events, and the distribution of the
background component in data with the distribution of side-
band MC events (Mbc < 5.27 GeV/c2 and same fit range
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Fig. 8 Normalized q · r distributions obtained with the DNN tagger in
data and MC simulation. The contribution (left) from the signal compo-
nent in data is compared with correctly associated signal MC events and

(right) from the background component in data is compared with side-
band MC events for (top) neutral and (bottom) charged B → D(∗)h+
candidates

|ΔE | < 0.12 GeV). We also compare the distributions of
the signal component in data with the distribution of cor-
rectly associated MC events for the individual tagging cate-
gories (Figs. 9, 10, 11). On the MC distributions, the statis-
tical uncertainties are very small and thus not visible.

In general, the results show a good consistency between
data and simulation, with a slightly worse performance in
data. In the signal q · r distributions, we observe some con-
siderable differences around |q · r | ≈ 1. We attribute these
differences to discrepancies between data and simulation for
some of the discriminating input variables, in particular for
the electron and muon PID likelihoods. Some differences are
observed for categories associated with intermediate slow

particles. However, these categories provide only marginal
tagging power without degrading the overall tagging perfor-
mance.

10 Results

We obtain the partial tagging efficiencies εi , the wrong-tag
fractions wi , the asymmetries μi and Δwi and the correlation
coefficients between them from the maximum-likelihood fit
of the full model to data. To evaluate the tagging performance,
we calculate the total effective efficiency as
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Fig. 9 Normalized output distributions of the Electron, Intermedi-
ate Electron, Muon, Intermediate Muon, Kinetic Lepton, and Inter-
mediate Kinetic Lepton categories in data and MC simulation for

B0 → D(∗)−h+ candidates. The contribution from the signal com-
ponent in data is compared with correctly associated signal MC events
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Fig. 10 Normalized output distributions of the Kaon, Kaon-Pion, Slow Pion, Fast Hadron, Fast-Slow-Correlated, and Lambda categories in data
and MC simulation for B0 → D(∗)−h+ candidates. The contribution from the signal component in data is compared with correctly associated signal
MC events
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εeff =
∑

i

εeff,i =
∑

i

εi · (1 − 2wi )
2,

where εeff,i is the partial effective efficiency in the i-th
r bin. The effective tagging efficiency is a measure for
the effective reduction of events due to the flavor dilution
r . In CP-violation analyses, the statistical uncertainty of
measured CP asymmetries is approximately proportional to
1/

√
Neff = 1/

√
N · εeff , where Neff is the number of effec-

tively tagged events. Thus, one would obtain the same sta-
tistical precision for Neff perfectly tagged events or for N
events tagged with an effective efficiency εeff .

Tables 5 and 6 show the fit results for the category-based
and the DNN flavor taggers. The respective effective effi-
ciencies for both flavor taggers are shown in Tables 7 and 8.
Figure 12 shows the Pearson correlation coefficients obtained
from the Hessian matrix determined by the fit. We observe
considerable dependencies among the εi efficiencies for both
charged and neutral B candidates, and among the asymme-
tries Δwi and μi for neutral B candidates.

10.1 Systematic uncertainties

We consider the systematic uncertainties associated with the
ΔE PDF parametrization, the flavor mixing of the back-
ground, the fit bias, and the eventual bias introduced by model
assumptions.

ΔE PDF parametrization We perform simplified simu-
lated experiments using an alternative model with a different
ΔE parametrization. We perform fits to simulated data sam-
ples bootstrapped (sampled with replacement) [60] from the
generic MC simulation. We fit using default and alternative
models and calculate for each fit parameter xi the differ-
ence δxi between the results obtained with the alternative
model and the results obtained with the default model. We
obtain the mean difference δ x̂i by fitting a Gaussian func-
tion to the distribution of δxi and take the full mean δ x̂i as
systematic uncertainty.

For the alternative signal ΔE PDF, we use a triple Gaus-
sian function with the additional flexibility of a global shift
of peak position and a global scaling factor for the width. For
the alternative background ΔE PDF, we use a second-order
Chebyshev polynomial function; we determine the coeffi-
cient of the quadratic term by fitting to the distribution of the
generic simulation without signal MC events, and then leave
the coefficient of the linear term free, in order to have the
same degrees of freedom as the default model.

We also check whether the signal ΔE PDF shape changes
as a function of r and B flavor and find no significant depen-
dences.

Background mixing Our fit takes into account the uncer-
tainty on the world average for the signal χd in the Gaussian
constraint. However, we assume that there is no mixing in
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Fig. 11 Normalized output distributions of the Maximum p∗ category
in data and MC simulation for B0 → D(∗)−h+ candidates. The contri-
bution from the signal component in data is compared with correctly
associated signal MC events

the background (χbkg
d = 0). Since the background includes

B0B
0

events, we study the effect of flavor mixing in the back-
ground by varying the value of the background χ

bkg
d by a

small amount ±δχ
bkg
d , corresponding to the statistical uncer-

tainty when χ
bkg
d is a free parameter in the fit. We find that

the difference between the results for χ
bkg
d + δχ

bkg
d and for

χ
bkg
d − δχ

bkg
d are below 1% of the statistical uncertainty for

all fit parameters, which is negligible.
Fit bias For each fit parameter xi , we determine the fit

bias using the residuals from bootstrapped simulated experi-
ments. The residuals are the differences between the fit results
for the individual bootstrapped data samples and the fit results
for the parent MC sample. We take the full bias as systematic
uncertainty.

Fit model Before performing the fit to data, we check that
the results of the fit to the full MC sample and the true values
determined using MC information agree within about one
standard deviation for all fit parameters without tendency
of over or underestimation across neighboring r bins. We
consider possible bias that cannot be resolved with the current
sample sizes and that cannot be attributed to a single effect,
for example bias due to fit model or due to MC association,
by assigning the uncertainty of the fit to the full MC sample
as systematic uncertainty.

We further study possible asymmetries in the reconstruc-
tion of signal B candidates that might cause bias in the
measurement of the flavor tagging parameters as they are
neglected in the fit model. We observe small reconstruction

asymmetries between signal B0(B+) and B
0
(B−) in some

individual r -bins below or around 5%. However, we find that
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Table 5 Results for εi , wi , μi ,
and Δwi for the
category-based (FBDT) tagger:
systematic uncertainties
associated with the ΔE
parametrization, fit bias, and fit
model, and total systematic
uncertainty are shown together
with the fit results (with stat. and
syst. uncertainty). The results
are given in percent

Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

B0 → D(∗)−h+

ε1 0.01 0.00 0.09 0.1 19.0 ± 0.3 ± 0.1

ε2 0.01 0.00 0.09 0.1 17.1 ± 0.3 ± 0.1

ε3 0.01 0.03 0.09 0.1 21.3 ± 0.3 ± 0.1

ε4 0.01 0.01 0.07 0.1 11.3 ± 0.3 ± 0.1

ε5 0.01 0.01 0.07 0.1 10.7 ± 0.3 ± 0.1

ε6 0.00 0.01 0.06 0.1 8.2 ± 0.2 ± 0.1

ε7 0.02 0.00 0.07 0.1 12.4 ± 0.2 ± 0.1

w1 0.03 0.03 0.45 0.5 47.1 ± 1.6 ± 0.5

w2 0.01 0.01 0.46 0.5 41.3 ± 1.7 ± 0.5

w3 0.07 0.04 0.40 0.4 30.3 ± 1.4 ± 0.4

w4 0.17 0.18 0.53 0.6 22.9 ± 1.8 ± 0.6

w5 0.01 0.01 0.49 0.5 12.4 ± 1.8 ± 0.5

w6 0.02 0.02 0.50 0.5 9.4 ± 1.9 ± 0.5

w7 0.01 0.01 0.37 0.4 2.3 ± 1.3 ± 0.4

μ1 0.01 0.03 0.91 0.9 4.4 ± 3.2 ± 0.9

μ2 0.15 0.13 0.93 0.9 3.9 ± 3.3 ± 0.9

μ3 0.05 0.00 0.82 0.8 6.8 ± 2.9 ± 0.8

μ4 0.04 0.01 1.12 1.1 3.2 ± 4.0 ± 1.1

μ5 0.16 0.23 1.06 1.1 −0.5 ± 4.1 ± 1.1

μ6 0.02 0.04 1.14 1.1 10.8 ± 4.3 ± 1.1

μ7 0.37 0.27 0.86 1.0 −3.7 ± 3.2 ± 1.0

Δw1 0.16 0.12 0.57 0.6 8.8 ± 2.0 ± 0.6

Δw2 0.12 0.15 0.59 0.6 6.1 ± 2.1 ± 0.6

Δw3 0.12 0.11 0.54 0.6 2.7 ± 1.9 ± 0.6

Δw4 0.05 0.01 0.77 0.8 5.5 ± 2.6 ± 0.8

Δw5 0.05 0.03 0.74 0.7 0.7 ± 2.9 ± 0.7

Δw6 0.08 0.07 0.84 0.9 7.7 ± 3.2 ± 0.9

Δw7 0.19 0.17 0.66 0.7 0.6 ± 2.4 ± 0.7

B+ → D
(∗)0

h+

ε1 0.04 0.00 0.07 0.1 18.3 ± 0.3 ± 0.1

ε2 0.02 0.00 0.07 0.1 15.4 ± 0.3 ± 0.1

ε3 0.02 0.01 0.07 0.1 20.2 ± 0.3 ± 0.1

ε4 0.00 0.01 0.06 0.1 11.5 ± 0.2 ± 0.1

ε5 0.00 0.00 0.06 0.1 11.9 ± 0.2 ± 0.1

ε6 0.02 0.00 0.05 0.1 8.9 ± 0.2 ± 0.1

ε7 0.07 0.01 0.06 0.1 13.8 ± 0.2 ± 0.1

w1 0.01 0.01 0.23 0.2 48.2 ± 0.9 ± 0.2

w2 0.01 0.01 0.24 0.2 40.9 ± 0.9 ± 0.2

w3 0.05 0.00 0.19 0.2 28.3 ± 0.7 ± 0.2

w4 0.04 0.01 0.21 0.2 15.6 ± 0.8 ± 0.2

w5 0.03 0.01 0.17 0.2 11.9 ± 0.7 ± 0.2

w6 0.02 0.01 0.15 0.2 5.4 ± 0.6 ± 0.2

w7 0.00 0.00 0.06 0.1 1.2 ± 0.2 ± 0.1

μ1 0.03 0.02 0.46 0.5 0.2 ± 1.8 ± 0.5
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Table 5 continued
Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

μ2 0.03 0.05 0.49 0.5 0.3 ± 1.9 ± 0.5

μ3 0.00 0.02 0.43 0.4 1.5 ± 1.6 ± 0.4

μ4 0.10 0.09 0.55 0.6 −3.0 ± 2.1 ± 0.6

μ5 0.03 0.06 0.51 0.5 −3.1 ± 2.0 ± 0.5

μ6 0.09 0.10 0.56 0.6 −0.6 ± 2.2 ± 0.6

μ7 0.08 0.07 0.42 0.4 −0.6 ± 1.6 ± 0.4

Δw1 0.10 0.09 0.46 0.5 7.1 ± 1.8 ± 0.5

Δw2 0.08 0.07 0.48 0.5 5.8 ± 1.9 ± 0.5

Δw3 0.06 0.05 0.39 0.4 1.3 ± 1.5 ± 0.4

Δw4 0.04 0.05 0.43 0.4 −1.2 ± 1.6 ± 0.4

Δw5 0.06 0.04 0.35 0.4 2.0 ± 1.4 ± 0.4

Δw6 0.06 0.05 0.31 0.3 1.8 ± 1.2 ± 0.3

Δw7 0.01 0.01 0.12 0.1 0.5 ± 0.5 ± 0.1

Table 6 Results for εi , wi , μi ,
and Δwi for the DNN tagger:
systematic uncertainties
associated with the ΔE
parametrization, fit bias, and fit
model, and total systematic
uncertainty are shown together
with the fit results (with stat. and
syst. uncertainty). The results
are given in percent

Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

B0 → D(∗)−h+

ε1 0.02 0.01 0.09 0.1 14.3 ± 0.3 ± 0.1

ε2 0.00 0.01 0.09 0.1 17.9 ± 0.3 ± 0.1

ε3 0.01 0.02 0.10 0.1 22.5 ± 0.4 ± 0.1

ε4 0.00 0.00 0.07 0.1 11.0 ± 0.3 ± 0.1

ε5 0.00 0.00 0.07 0.1 10.4 ± 0.3 ± 0.1

ε6 0.01 0.00 0.07 0.1 9.6 ± 0.2 ± 0.1

ε7 0.02 0.01 0.08 0.1 14.2 ± 0.3 ± 0.1

w1 0.05 0.07 0.51 0.5 48.2 ± 1.9 ± 0.5

w2 0.02 0.02 0.46 0.5 43.6 ± 1.6 ± 0.5

w3 0.03 0.02 0.40 0.4 33.9 ± 1.4 ± 0.4

w4 0.08 0.06 0.54 0.6 19.3 ± 1.9 ± 0.6

w5 0.05 0.04 0.52 0.5 19.7 ± 1.9 ± 0.5

w6 0.07 0.04 0.49 0.5 10.8 ± 1.8 ± 0.5

w7 0.02 0.04 0.36 0.4 3.5 ± 1.2 ± 0.4

μ1 0.35 0.24 1.02 1.1 3.7 ± 3.7 ± 1.1

μ2 0.12 0.08 0.92 0.9 7.3 ± 3.2 ± 0.9

μ3 0.00 0.02 0.81 0.8 4.6 ± 2.9 ± 0.8

μ4 0.39 0.35 1.14 1.3 2.2 ± 4.0 ± 1.3

μ5 0.12 0.16 1.11 1.1 7.4 ± 4.1 ± 1.1

μ6 0.16 0.06 1.10 1.1 1.5 ± 4.1 ± 1.1

μ7 0.12 0.07 0.80 0.8 −2.5 ± 3.1 ± 0.8

Δw1 0.13 0.11 0.64 0.7 −1.1 ± 2.3 ± 0.7

Δw2 0.18 0.16 0.58 0.6 5.6 ± 2.1 ± 0.6

Δw3 0.01 0.01 0.53 0.5 7.1 ± 1.8 ± 0.5

Δw4 0.08 0.05 0.77 0.8 4.5 ± 2.8 ± 0.8

Δw5 0.06 0.03 0.78 0.8 7.9 ± 2.7 ± 0.8

Δw6 0.09 0.12 0.80 0.8 5.7 ± 3.0 ± 0.8

Δw7 0.12 0.09 0.61 0.6 3.4 ± 2.3 ± 0.6
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Table 6 continued
Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

B+ → D
(∗)0

h+

ε1 0.01 0.01 0.07 0.1 12.7 ± 0.3 ± 0.1

ε2 0.04 0.00 0.07 0.1 16.2 ± 0.3 ± 0.1

ε3 0.02 0.01 0.08 0.1 21.2 ± 0.3 ± 0.1

ε4 0.01 0.00 0.06 0.1 11.0 ± 0.2 ± 0.1

ε5 0.01 0.01 0.06 0.1 11.3 ± 0.2 ± 0.1

ε6 0.01 0.01 0.06 0.1 10.3 ± 0.2 ± 0.1

ε7 0.08 0.01 0.07 0.1 17.3 ± 0.2 ± 0.1

w1 0.01 0.00 0.27 0.3 47.2 ± 1.1 ± 0.3

w2 0.01 0.00 0.24 0.2 40.9 ± 0.9 ± 0.2

w3 0.06 0.02 0.19 0.2 29.8 ± 0.7 ± 0.2

w4 0.02 0.02 0.23 0.2 17.2 ± 0.9 ± 0.2

w5 0.06 0.02 0.19 0.2 11.9 ± 0.7 ± 0.2

w6 0.01 0.02 0.14 0.1 4.6 ± 0.5 ± 0.1

w7 0.01 0.00 0.06 0.1 1.8 ± 0.2 ± 0.1

μ1 0.08 0.10 0.54 0.6 0.4 ± 2.1 ± 0.6

μ2 0.11 0.08 0.49 0.5 3.2 ± 1.9 ± 0.5

μ3 0.04 0.02 0.42 0.4 4.4 ± 1.6 ± 0.4

μ4 0.01 0.04 0.57 0.6 −1.4 ± 2.2 ± 0.6

μ5 0.02 0.02 0.54 0.5 −4.1 ± 2.1 ± 0.5

μ6 0.07 0.05 0.53 0.5 −5.4 ± 2.1 ± 0.5

μ7 0.04 0.03 0.37 0.4 −4.5 ± 1.5 ± 0.4

Δw1 0.02 0.04 0.54 0.5 0.8 ± 2.1 ± 0.5

Δw2 0.00 0.03 0.48 0.5 6.4 ± 1.8 ± 0.5

Δw3 0.05 0.08 0.39 0.4 5.3 ± 1.5 ± 0.4

Δw4 0.11 0.12 0.46 0.5 3.4 ± 1.8 ± 0.5

Δw5 0.14 0.11 0.38 0.4 2.5 ± 1.5 ± 0.4

Δw6 0.05 0.03 0.29 0.3 0.5 ± 1.1 ± 0.3

Δw7 0.01 0.02 0.11 0.1 0.4 ± 0.5 ± 0.1

they do not cause statistically significant bias for samples up
to 700 fb−1 by performing fits to generic simulation.

11 Linearity check

We check whether the dilution r provided by the flavor tagger
corresponds to the actual definition r := 1−2w by perform-
ing a linearity check. Figure 13 shows the linearity check for
both flavor taggers in simulation and data.

For simulation, we determine the true wrong-tag fraction
wMC by comparing the MC truth with the flavor-tagger out-
put, and calculate the true dilution rMC = 1 − 2wMC. The
mean dilution 〈rFBDT〉 is simply the mean of |q · rFBDT| for
correctly associated MC events in each r bin. For data, we
obtain the mean 〈rFBDT〉 = 〈|q · rFBDT|〉 values from the sig-
nal q · rFBDT distribution provided by the sPlot analysis in
Sect. 9. The dilution r = 1−2 ·w in data is obtained from the

fit results for w. The linearity verifies the equivalence on aver-
age between the dilution provided by the flavor tagger and the
measured one within the uncertainties. For charged B can-
didates, we observe a slightly non-linear behavior, which is
attributed to the fact that both flavor taggers are optimized
and trained only for neutralBmesons. However, we observe a
good agreement between data and simulation for both neutral
and charged B candidates.

12 Comparison with the previous Belle algorithm

A comparison of the current results with the latest results
on flavor tagging obtained by Belle [33] provides interest-
ing insight about the current and projected performance of
Belle II. We compare partial efficiencies, wrong-tag frac-
tions, total effective efficiencies, and wrong-tag asymme-
tries in each r -bin. Table 9, and Figs. 14 and 15 compare
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Table 7 Effective efficiencies
for the category-based (FBDT)
tagger: systematic uncertainties
associated with the ΔE
parametrization, fit bias, and fit
model, and total systematic
uncertainty are shown together
with the fit results (with stat. and
syst. uncertainty). The results
are given in percent

Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

B0 → D(∗)−h+

εeff,1 0.02 0.02 0.02 0.0 0.1 ± 0.1 ± 0.0

εeff,2 0.02 0.02 0.06 0.1 0.5 ± 0.2 ± 0.1

εeff,3 0.03 0.01 0.13 0.1 3.3 ± 0.5 ± 0.1

εeff,4 0.04 0.04 0.14 0.2 3.3 ± 0.5 ± 0.2

εeff,5 0.01 0.00 0.16 0.2 6.1 ± 0.6 ± 0.2

εeff,6 0.00 0.00 0.16 0.2 5.4 ± 0.5 ± 0.2

εeff,7 0.03 0.01 0.20 0.2 11.3 ± 0.6 ± 0.2

Total 0.06 0.05 0.36 0.4 30.0 ± 1.2 ± 0.4

B+ → D
(∗)0

h+

εeff,1 0.00 0.00 0.01 0.0 0.0 ± 0.0 ± 0.0

εeff,2 0.00 0.00 0.03 0.0 0.5 ± 0.1 ± 0.0

εeff,3 0.01 0.00 0.07 0.1 3.8 ± 0.3 ± 0.1

εeff,4 0.01 0.00 0.07 0.1 5.4 ± 0.3 ± 0.1

εeff,5 0.01 0.01 0.08 0.1 7.0 ± 0.3 ± 0.1

εeff,6 0.02 0.00 0.06 0.1 7.1 ± 0.2 ± 0.1

εeff,7 0.07 0.01 0.06 0.1 13.2 ± 0.2 ± 0.1

Total 0.08 0.02 0.16 0.2 37.0 ± 0.6 ± 0.2

Table 8 Effective efficiencies
for the DNN tagger: systematic
uncertainties associated with the
ΔE parametrization, fit bias,
and fit model, and total
systematic uncertainty are
shown together with the fit
results (with stat. and syst.
uncertainty). The results are
given in percent

Parameter ΔE PDF Fit bias Model Total syst. uncty. Fit results

B0 → D(∗)−h+

εeff,1 0.02 0.02 0.01 < 0.1 0.0 ± 0.0 ± 0.0

εeff,2 0.01 0.01 0.05 0.1 0.3 ± 0.1 ± 0.1

εeff,3 0.00 0.00 0.13 0.1 2.3 ± 0.4 ± 0.1

εeff,4 0.00 0.00 0.12 0.1 4.2 ± 0.5 ± 0.1

εeff,5 0.01 0.01 0.15 0.2 3.8 ± 0.5 ± 0.2

εeff,6 0.02 0.02 0.16 0.2 5.9 ± 0.6 ± 0.2

εeff,7 0.03 0.01 0.23 0.2 12.3 ± 0.7 ± 0.2

Total 0.05 0.03 0.37 0.4 28.8 ± 1.2 ± 0.4

B+ → D
(∗)0

h+

εeff,1 0.00 0.00 0.01 < 0.1 0.0 ± 0.0 ± 0.0

εeff,2 0.00 0.00 0.03 < 0.1 0.5 ± 0.1 ± 0.0

εeff,3 0.02 0.01 0.07 0.1 3.5 ± 0.3 ± 0.1

εeff,4 0.01 0.00 0.07 0.1 4.7 ± 0.3 ± 0.1

εeff,5 0.01 0.00 0.07 0.1 6.6 ± 0.3 ± 0.1

εeff,6 0.01 0.01 0.07 0.1 8.5 ± 0.3 ± 0.1

εeff,7 0.09 0.00 0.07 0.1 16.1 ± 0.3 ± 0.1

Total 0.09 0.01 0.16 0.2 39.9 ± 0.6 ± 0.2

Belle II and Belle results. The Belle flavor tagger, which was a
category-based algorithm, reached a total effective efficiency
of (30.1 ± 0.4)% on Belle data [33]. We observe about the
same or slightly better performance than Belle in all bins
except in the highest r bin, for which we observe a smaller
partial efficiency and also a slightly worse performance with
respect to expectations (see Figs. 7 and 8). For the wrong-tag

fractions, we observe larger asymmetries between B0 and B
0

than Belle.
In comparison with the Belle algorithm [32,33], the

Belle II category-based flavor tagger considers more flavor
signatures and more input variables, and is fully based on
multivariate methods avoiding the cut-based identification
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Fig. 12 Correlation coefficients between εi , Δwi , Δwi , and μi for the (left) category-based and (right) DNN flavor tagger in data. The results are

shown for (top) neutral and (bottom) charged B → D(∗)h+ candidates

of decay products and exploiting the correlations between
input variables and between flavor signatures.

For the current version of the category-based and the DNN
flavor taggers, we obtain a total effective efficiency around
32.5% in simulation. Previous studies [1,31,34] show that
using track impact parameters as additional input variables
potentially improves the total effective tagging efficiency by
about 2 to 3% in its absolute value. Nonetheless, the current
results show that Belle II can reach a tagging performance
comparable with the one obtained by Belle even with a not yet

fully-optimized calibration of the tracking and PID systems,
and operating in harsher background conditions than those
experienced by Belle.

13 Summary

We report on the performance of two new Belle II B-flavor
tagging algorithms on Belle II data collected at the Υ (4S)
resonance between 2019 and 2020. The algorithms exploit
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Fig. 13 Dilution factor
r = 1 − 2w as a function of the
mean dilution 〈|q · r |〉 provided
by the (left) category-based and
(right) DNN flavor tagger in
data and MC simulation for
(top) neutral and
(bottom) charged
B → D(∗)h+ candidates. The
red dashed lines correspond to a
linear function with an intercept
at zero and a slope of one,
corresponding to a perfect
agreement between predicted
and measured dilution 0 0.2 0.4 0.6 0.8 1
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modern machine-learning techniques to determine the quark-
flavor content of neutral B mesons from the kinematic, track-
hit, and particle-identification information associated with
the reconstructed decay products. We validate the algorithms
in simulation and in data using samples containing one fully
reconstructed signalB decay. We reconstruct abundant signal
B decays to flavor-specific hadronic final states and then use
the remaining tracks and neutral clusters in each event as
input for the flavor taggers.

We use the ΔE distribution of the fully reconstructed
B candidates, restricted in Mbc, to identify the B signals
and measure the tagging efficiencies, fractions of wrongly
tagged events and related asymmetries from the flavor evo-
lution of the signal BB pairs in a time-integrated way. Using
a category-based flavor tagging algorithm, we obtain for neu-
tral B candidates the total effective efficiency

εeff = (
30.0 ± 1.2(stat) ± 0.4(syst)

)
%,

and for charged B candidates

εeff = (
37.0 ± 0.6(stat) ± 0.2(syst)

)
%.

Using a deep-learning-based flavor tagging algorithm, we

obtain for neutral B candidates the total effective efficiency

εeff = (
28.8 ± 1.2(stat) ± 0.4(syst)

)
%,

and for charged B candidates

εeff = (
39.9 ± 0.6(stat) ± 0.2(syst)

)
%.

The performance of the flavor taggers is generally com-
patible with expectations from simulation and is comparable
with the best performance obtained by the Belle experiment
within the uncertainties. While both flavor taggers perform
equally good in simulation, the deep-learning-based algo-
rithm performs slightly worse than the category-based one in
data. This is most likely due to current discrepancies between
data and simulation since deep-learning methods heavily rely
on a good description of the dependences among input vari-
ables. Thus we expect improvements in the future.

This work marks a milestone for future calibrations, which
will play an essential role in measurements of CP asymme-
tries at Belle II and ultimately in the search for deviations
from the Standard Model expectations.
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Table 9 Partial efficiencies εi ,
wrong-tag fractions wi , total
effective efficiencies εeff,i ,
tagging efficiency asymmetries
μ = Δε/(2ε), and wrong-tag
fraction asymmetries Δw

obtained with the Belle II
category-based (FBDT) and
deep-learning (DNN) flavor
taggers in 2019–2020 Belle II
data and with the Belle flavor
tagger in 2003–2010 Belle data
[33] taken with the second
silicon-vertex detector
configuration (SVD2). There are
no available Belle results for μ.
Statistical and systematical
uncertainties are added in
quadrature. All values are given
in percent

εi ± δεi wi ± δwi

r - Interval FBDT DNN Belle FBDT DNN Belle

0.000–0.100 19.0 ± 0.3 14.3 ± 0.3 22.2 ± 0.4 47.1 ± 1.7 48.2 ± 2.0 50.0

0.100–0.250 17.1 ± 0.3 17.9 ± 0.3 14.5 ± 0.3 41.3 ± 1.8 43.6 ± 1.7 41.9 ± 0.4

0.250–0.500 21.3 ± 0.3 22.5 ± 0.4 17.7 ± 0.4 30.3 ± 1.5 33.9 ± 1.5 31.9 ± 0.3

0.500–0.625 11.3 ± 0.3 11.0 ± 0.3 11.5 ± 0.3 22.9 ± 2.0 19.3 ± 2.0 22.3 ± 0.4

0.625–0.750 10.7 ± 0.3 10.4 ± 0.3 10.2 ± 0.3 12.4 ± 1.9 19.7 ± 2.0 16.3 ± 0.4

0.750–0.875 8.2 ± 0.2 9.6 ± 0.2 8.7 ± 0.3 9.4 ± 2.0 10.8 ± 1.9 10.4 ± 0.4

0.875–1.000 12.4 ± 0.2 14.2 ± 0.3 15.3 ± 0.3 2.3 ± 1.4 3.5 ± 1.4 2.5 ± 0.3

εeff,i ± δεeff,i

r -Interval FBDT DNN Belle

0.000–0.100 0.1 ± 0.1 0.0 ± 0.1 0.0

0.100–0.250 0.5 ± 0.2 0.3 ± 0.1 0.4 ± 0.1

0.250–0.500 3.3 ± 0.5 2.3 ± 0.4 2.3 ± 0.1

0.500–0.625 3.3 ± 0.5 4.2 ± 0.5 3.5 ± 0.1

0.625–0.750 6.1 ± 0.6 3.8 ± 0.5 4.6 ± 0.2

0.750–0.875 5.4 ± 0.5 5.9 ± 0.6 5.5 ± 0.1

0.875–1.000 11.3 ± 0.6 12.3 ± 0.7 13.8 ± 0.3

Total 30.0 ± 1.3 28.8 ± 1.3 30.1 ± 0.4

μi ± δμi Δwi ± δΔwi

r - Interval FBDT DNN Belle FBDT DNN Belle

0.000–0.100 4.4 ± 3.4 3.7 ± 3.9 – 8.8 ± 2.1 −1.1 ± 2.4 0.0

0.100–0.250 3.9 ± 3.4 7.3 ± 3.4 – 6.1 ± 2.2 5.6 ± 2.2 −0.9 ± 0.4

0.250–0.500 6.8 ± 3.0 4.6 ± 3.0 – 2.7 ± 2.0 7.1 ± 2.0 1.0 ± 0.4

0.500–0.625 3.2 ± 4.1 2.2 ± 4.2 – 5.5 ± 2.8 4.5 ± 2.9 −1.1 ± 0.4

0.625–0.750 −0.5 ± 4.2 7.4 ± 4.2 – 0.7 ± 3.0 7.9 ± 2.9 −1.9 ± 0.5

0.750–0.875 10.8 ± 4.4 1.5 ± 4.2 – 7.7 ± 3.3 5.7 ± 3.1 1.7 ± 0.4

0.875–1.000 −3.7 ± 3.4 −2.5 ± 4.2 – 0.6 ± 2.5 3.4 ± 2.5 −0.4 ± 0.2
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