
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 79 (2019) 385–390

2212-8271 © 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.
10.1016/j.procir.2019.02.099

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018,
Gulf of Naples, Italy

© 2019 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Coupling of centralized and decentralized scheduling for
robust production in agile production systems

 Fabio Echsler Minguillona,*, Gisela Lanzaa
a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44153 E-mail address: fabio.echsler@kit.edu

Abstract

Individualized products and timely delivery require agile just-in-time manufacturing operations. Scheduling needs to deliver a robust
performance with high and stable results even when facing disruptions such as machine failures. Existing approaches often generate predictive
schedules and adjust them reactively as disturbances occur. However, the effectiveness of rescheduling approaches highly depends on the
available degrees of freedom in the predictive schedule. In the proposed approach, a centralized robust scheduling procedure is coupled with a
decentralized reinforcement learning algorithm in order to adjust the required degrees of freedom for a maximally efficient production control
in real-time.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Scheduling; Robustness; Reinforcement Learning; Agile Production

1. Introduction

Manufacturing today is facing an increasingly volatile and
fast-paced environment. Product lifecycles are shortening
while variant diversity is growing. Additionally, customer
demand is more volatile and harder to predict than before [1].
As a result, agility is gaining importance as an evaluation
factor of manufacturing operations [2].

Recent research efforts have been focused on the design of
agile production systems such as matrix-structured
manufacturing systems (MMS) [3]. These systems allow for
agile production of many variants with a lot size of one. Key
for efficient operation of such a production system is a
suitable method for scheduling, i.e. assigning jobs to
resources over time in order to meet some goal criterion [4].
The scheduling environment of an MMS corresponds to a
flexible job shop scheduling problem (FJSSP) [4]. In make-to-
order settings, jobs often have to meet due dates e.g. as to
adhere to just-in-sequence (JIS) requirements [5]. In order to
calculate the completion dates for performance evaluation, all
information about jobs and resources involved is gathered
centrally and scheduled with respect to global optimality,

albeit it with long computation times [6]. However,
unforeseen disruptions on the shop floor such as machine
failures can deteriorate the performance of central schedules.
Therefore, a reactive rescheduling method is needed in order
to handle disruptions appropriately and maintain the
performance level. In order to be able to react in a timely
manner, local information is often used decentrally and
rescheduling is performed with respect to local optimality in
short computation times [6].

In this paper, an approach for scheduling and rescheduling
for FJSSP settings found in MMS is presented. The aim of the
approach is to deliver a robust performance with respect to the
JIS criterion [7]. The approach consists of a centralized robust
scheduling system, a decentralized reinforcement learning
system for partial rescheduling and a coupling mechanism for
adjusting the robustness requirement in centralized planning
according to learning progress achieved in decentralized
rescheduling.

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2018) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering.

12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME '18

Coupling of centralized and decentralized scheduling for
robust production in agile production systems

 Fabio Echsler Minguillona,*, Gisela Lanzaa
a wbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-608-44153 E-mail address: fabio.echsler@kit.edu

Abstract

Individualized products and timely delivery require agile just-in-time manufacturing operations. Scheduling needs to deliver a robust
performance with high and stable results even when facing disruptions such as machine failures. Existing approaches often generate predictive
schedules and adjust them reactively as disturbances occur. However, the effectiveness of rescheduling approaches highly depends on the
available degrees of freedom in the predictive schedule. In the proposed approach, a centralized robust scheduling procedure is coupled with a
decentralized reinforcement learning algorithm in order to adjust the required degrees of freedom for a maximally efficient production control
in real-time.
© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 12th CIRP Conference on Intelligent Computation in Manufacturing
Engineering.

Keywords: Scheduling; Robustness; Reinforcement Learning; Agile Production

1. Introduction

Manufacturing today is facing an increasingly volatile and
fast-paced environment. Product lifecycles are shortening
while variant diversity is growing. Additionally, customer
demand is more volatile and harder to predict than before [1].
As a result, agility is gaining importance as an evaluation
factor of manufacturing operations [2].

Recent research efforts have been focused on the design of
agile production systems such as matrix-structured
manufacturing systems (MMS) [3]. These systems allow for
agile production of many variants with a lot size of one. Key
for efficient operation of such a production system is a
suitable method for scheduling, i.e. assigning jobs to
resources over time in order to meet some goal criterion [4].
The scheduling environment of an MMS corresponds to a
flexible job shop scheduling problem (FJSSP) [4]. In make-to-
order settings, jobs often have to meet due dates e.g. as to
adhere to just-in-sequence (JIS) requirements [5]. In order to
calculate the completion dates for performance evaluation, all
information about jobs and resources involved is gathered
centrally and scheduled with respect to global optimality,

albeit it with long computation times [6]. However,
unforeseen disruptions on the shop floor such as machine
failures can deteriorate the performance of central schedules.
Therefore, a reactive rescheduling method is needed in order
to handle disruptions appropriately and maintain the
performance level. In order to be able to react in a timely
manner, local information is often used decentrally and
rescheduling is performed with respect to local optimality in
short computation times [6].

In this paper, an approach for scheduling and rescheduling
for FJSSP settings found in MMS is presented. The aim of the
approach is to deliver a robust performance with respect to the
JIS criterion [7]. The approach consists of a centralized robust
scheduling system, a decentralized reinforcement learning
system for partial rescheduling and a coupling mechanism for
adjusting the robustness requirement in centralized planning
according to learning progress achieved in decentralized
rescheduling.

386	 Fabio Echsler Minguillon et al. / Procedia CIRP 79 (2019) 385–390
 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

2. State of the art

2.1. Dynamic scheduling

As most manufacturing systems operate in an uncertain
environment, disruptions such as machine failures can render
predictively created schedules infeasible. Scheduling
therefore needs to also consider the presence of real-time
events. This is defined as dynamic scheduling [8].
Approaches for solving dynamic scheduling problems are
categorized as completely reactive, predictive-reactive, and
robust pro-active [9].

• In completely reactive scheduling, no predetermined

schedule is created. Only local dispatching is performed
and subsequent machines are selected for processing jobs
only after they have finished processing on a previous
machine. These approaches inherently consider the
current situation of the job shop. However, they are
unsuitable for JIS settings because of the lack of a
predetermined schedule. [8]

• Predictive-reactive scheduling approaches generate a
predictive schedule off-line (before production has
started) and correct that schedule on-line (during
production) if necessary due to unforeseen disruptions.
Predictive schedules are usually created centralized with
all information available, while rescheduling can be
performed decentralized with only local information
available. This can decrease calculation times
considerably. Rescheduling can either be performed as
right-shift rescheduling (shifting operations in time as
necessary), partial rescheduling (regenerating part of the
predictive schedule) or complete regeneration (regenerate
the entire remaining schedule) [9]. Predictive-reactive
scheduling can be used for both adhering to JIS
requirements (with predictive scheduling) as well as
maintaining this plan in the face of disruptions (with
reactive rescheduling). [8]

• Robust pro-active scheduling seeks to consider all
uncertainties e.g. with respect to station availabilities
during initial scheduling. No rescheduling procedure is
needed in this case. However, this considers a worst-case
approach and can yield poor performance in case of less
than expected disturbances. [8]

2.2. Robustness and its application to scheduling

Robustness in the context of manufacturing can be defined as
the ability to maintain a high performance even when facing
unknown disruptions [10]. In order to evaluate the robustness
in planning, the most commonly utilized criteria described in
[11] are:

• Solution robustness: The result of a plan should not deviate

from the planned outcome under different disruptions.
• Optimality robustness: In addition to a solution robust

plan, the result of the plan should not deviate from the
optimal outcome, i.e. represent a “perfect plan”.

• Feasibility robustness: Disruptions should not have any
effect on planned tasks.

For further details on information robustness, planning
robustness and evaluation robustness, the reader is referred to
[11]. In scheduling literature, solution robustness and
optimality robustness are often summarized under the term
robustness, whereas feasibility robustness is described as
stability [12]. It is desirable to create both robust and stable
plans, however this is not possible in most cases.
 Robustness and stability criteria are operationalized in
robust optimization (RO) models. An approach for RO is
presented in [13]. Instead of optimizing a certain goal
criterion (e.g. makespan, earliness and tardiness) directly, a
robustness measure is introduced in the objective function and
optimized instead. By integrating the original goal criterion
into the robustness measure, robust and good solutions (with
respect to the original goal criterion) can be obtained. This is
demonstrated in the following example:
 A disjunctive linear program (LP) formulation of the
classical job shop scheduling problem (JSSP) with makespan
optimization [14] can be written as:

min max ()pC S (1)

. .s t , , ,h j i j i jy y p−  (,) (,)i j h j A→ 
 max , ,i h i jC y p−  (,)i j N

, , ,i j i h i hy y p−  or

, , ,i j i h i ky y p− 

(,), (,), 1,...,i h i j i m=

 , , 0i j i hy y−  (,)i j N

max () 0pC S  (,)i j N

 The formulation as a RO problem based on [13] is as
follows:

min  (2)
. .s t max ()pC S 

 , , ,h j i j i jy y p−  (,) (,)i j h j A→ 

max , ,i h i jC y p−  (,)i j N
 , , ,i j i h i hy y p−  or

, , ,i j i h i ky y p− 

(,), (,), 1,...,i h i j i m=

 , , 0i j i hy y−  (,)i j N
 max () 0pC S  (,)i j N
The main difference between both models lies in the way the
optimization criterion is integrated. In the first case, makespan

maxC is to be minimized, in the second case, a robustness
criterion  is to be minimized. In the example, the robustness
criterion is a maximum makespan that is to not be exceeded
by any schedule. However, this is not necessarily so.
The result largely depends on the robustness criterion chosen.
Extensive research has been done on robustness measures for

 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

scheduling problems. Robustness measures can be categorized
in two different classes:

• Scenario-based measures evaluate robustness as the

deviation of the planned schedule from a realized
schedule over scenarios. A low deviation indicates a high
robustness, see e.g. [12], [15], [16], [17]. Computational
studies have shown that scenario-based measures are
capable of increasing robustness [16]. However, they are
computationally intensive, as many scenarios need to be
created and evaluated. This quickly becomes an
intractable problem for many practical applications.

• Surrogate measures evaluate robustness as the
approximated deviation of the planned schedule with
mostly slack-based scenario-independent indicators, see
e.g. [16], [18], [19], [20]. The amount and distribution of
idle times (slack) in a schedule is used in many surrogate
measures.

2.3. Reinforcement learning in scheduling

Reinforcement learning (RL) is described as “learning
what to do […] so as to maximize a numerical reward signal”
[21]. It describes both a problem and a class of solution
methods within the domain of artificial intelligence. RL has
found numerous applications within the domain multi-agent
systems (MAS) in recent years. MAS consist of at least two
agents deciding on some task. [22] Usually, a larger task (e.g.
scheduling an entire shift) is decomposed into smaller
decision problems that are then solved decentrally. Besides
many rule-based approaches for negotiation (e.g. Contract Net
Protocol [23]), RL has become one of the most widely applied
methods from artificial intelligence in MAS. A thorough
survey of RL in MAS can be found in [24]. For the purpose of
this paper, only RL approaches in MAS with applications to
scheduling are considered. The approaches transform
scheduling into a sequential decision problem which is
modeled with the help of decentralized Markov decision
processes (DEC-MDP) [25].

A DEC-MDP is defined by a tuple
, , , , , ,Ag S A P R O   [26] with

• {1,..., }Ag m= as the set of agents; in a scheduling

settings, these are m stations deciding on which of the
waiting jobs to process next

• S as world states that can be factored into m individual
components 1 ... mS S S=   ; in scheduling, these are
e.g. which stations are available, which jobs are in the
system and what is their status etc.

• 1 ... mA A A=   as a set of joint actions performed by
the m agents; between two time steps this would be all
jobs that have been picked for further processing

• P as a transition function that shows how the system

state changes in response to an action; this could entail
finished jobs or jobs whose state has been changed

• R as a reward function for executing a certain action in a
certain state; in scheduling, the makespan is to be
minimized often. A reward function for this case could

reward every action by -1 for each time step required
[25].

In [26], a decentralised policy search algorithm is proposed
building upon the DEC-MDP formulation for scheduling.
Policy updates are performed with a gradient estimation
approach. After enough training examples have been
collected, the policies of the agents are updated according to
the gradient estimation and therefore gradually adjusted to a
locally optimal policy. This is performed for all agents
individually, enabling decentralised learning of an implicit
coordination to solve a scheduling problem.

2.4. Summary and deficit

RO can be useful for generating robust schedules and is a
feasible method for centralized scheduling of FJSSP as found
in MMS. However, special care should be devoted to suitable
robustness measures, as the obtained results largely depend on
those measures. Surrogate measure are a promising and on-
going research effort, as they require relatively little
computational power and can deliver very good results.
 RL within MAS represent a useful framework for both
generating and regenerating schedules. Due to its relatively
low computational requirements and strong decentralization
of the scheduling problem, it represents a natural approach for
rescheduling.
 From a robustness and stability perspective, schedule
repair with a partial rescheduling approach is desirable, as
deviations from the centralized schedule are minimized.
However, to the author’s knowledge, no existing approaches
explicitly treat the robustness required to even be able to
reschedule within a certain time successfully as a variable.
This is even more interesting for the relatively new
applications of RL in scheduling have the potential to adapt to
agile production systems like MMS.

3. Approach

The proposed approach for coupling of centralized and
decentralized scheduling consists of three distinct systems that
are connected within a loop.

The centralized scheduling with RO seeks to incorporate
some knowledge about possible machine failures into
schedule generation. The goal is to predictively calculate
completion times for jobs within the bounds of the due dates
as to allow for JIS production. The decentralized rescheduling
with RL becomes active any time infeasibilities arise in the
centrally created schedule. Its task is to then perform partial
schedule regeneration within a user-defined time frame. The
coupling mechanism incorporates scheduling knowledge
acquired through repeated decentralized rescheduling as a
lower robustness requirement for centralized scheduling. As
the reactivity to disruptions becomes better over time, less
robustness is required in centralized planning, leading to a
generally better performance with respect to the JIS criterion.
However, depending on the specific setup, at some point an
equilibrium for the robustness requirement is reached.
Without any robustness, no rescheduling within a certain time

	 Fabio Echsler Minguillon et al. / Procedia CIRP 79 (2019) 385–390� 387
 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

2. State of the art

2.1. Dynamic scheduling

As most manufacturing systems operate in an uncertain
environment, disruptions such as machine failures can render
predictively created schedules infeasible. Scheduling
therefore needs to also consider the presence of real-time
events. This is defined as dynamic scheduling [8].
Approaches for solving dynamic scheduling problems are
categorized as completely reactive, predictive-reactive, and
robust pro-active [9].

• In completely reactive scheduling, no predetermined

schedule is created. Only local dispatching is performed
and subsequent machines are selected for processing jobs
only after they have finished processing on a previous
machine. These approaches inherently consider the
current situation of the job shop. However, they are
unsuitable for JIS settings because of the lack of a
predetermined schedule. [8]

• Predictive-reactive scheduling approaches generate a
predictive schedule off-line (before production has
started) and correct that schedule on-line (during
production) if necessary due to unforeseen disruptions.
Predictive schedules are usually created centralized with
all information available, while rescheduling can be
performed decentralized with only local information
available. This can decrease calculation times
considerably. Rescheduling can either be performed as
right-shift rescheduling (shifting operations in time as
necessary), partial rescheduling (regenerating part of the
predictive schedule) or complete regeneration (regenerate
the entire remaining schedule) [9]. Predictive-reactive
scheduling can be used for both adhering to JIS
requirements (with predictive scheduling) as well as
maintaining this plan in the face of disruptions (with
reactive rescheduling). [8]

• Robust pro-active scheduling seeks to consider all
uncertainties e.g. with respect to station availabilities
during initial scheduling. No rescheduling procedure is
needed in this case. However, this considers a worst-case
approach and can yield poor performance in case of less
than expected disturbances. [8]

2.2. Robustness and its application to scheduling

Robustness in the context of manufacturing can be defined as
the ability to maintain a high performance even when facing
unknown disruptions [10]. In order to evaluate the robustness
in planning, the most commonly utilized criteria described in
[11] are:

• Solution robustness: The result of a plan should not deviate

from the planned outcome under different disruptions.
• Optimality robustness: In addition to a solution robust

plan, the result of the plan should not deviate from the
optimal outcome, i.e. represent a “perfect plan”.

• Feasibility robustness: Disruptions should not have any
effect on planned tasks.

For further details on information robustness, planning
robustness and evaluation robustness, the reader is referred to
[11]. In scheduling literature, solution robustness and
optimality robustness are often summarized under the term
robustness, whereas feasibility robustness is described as
stability [12]. It is desirable to create both robust and stable
plans, however this is not possible in most cases.
 Robustness and stability criteria are operationalized in
robust optimization (RO) models. An approach for RO is
presented in [13]. Instead of optimizing a certain goal
criterion (e.g. makespan, earliness and tardiness) directly, a
robustness measure is introduced in the objective function and
optimized instead. By integrating the original goal criterion
into the robustness measure, robust and good solutions (with
respect to the original goal criterion) can be obtained. This is
demonstrated in the following example:
 A disjunctive linear program (LP) formulation of the
classical job shop scheduling problem (JSSP) with makespan
optimization [14] can be written as:

min max ()pC S (1)

. .s t , , ,h j i j i jy y p−  (,) (,)i j h j A→ 
 max , ,i h i jC y p−  (,)i j N

, , ,i j i h i hy y p−  or

, , ,i j i h i ky y p− 

(,), (,), 1,...,i h i j i m=

 , , 0i j i hy y−  (,)i j N

max () 0pC S  (,)i j N

 The formulation as a RO problem based on [13] is as
follows:

min  (2)
. .s t max ()pC S 

 , , ,h j i j i jy y p−  (,) (,)i j h j A→ 

max , ,i h i jC y p−  (,)i j N
 , , ,i j i h i hy y p−  or

, , ,i j i h i ky y p− 

(,), (,), 1,...,i h i j i m=

 , , 0i j i hy y−  (,)i j N
 max () 0pC S  (,)i j N
The main difference between both models lies in the way the
optimization criterion is integrated. In the first case, makespan

maxC is to be minimized, in the second case, a robustness
criterion  is to be minimized. In the example, the robustness
criterion is a maximum makespan that is to not be exceeded
by any schedule. However, this is not necessarily so.
The result largely depends on the robustness criterion chosen.
Extensive research has been done on robustness measures for

 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

scheduling problems. Robustness measures can be categorized
in two different classes:

• Scenario-based measures evaluate robustness as the

deviation of the planned schedule from a realized
schedule over scenarios. A low deviation indicates a high
robustness, see e.g. [12], [15], [16], [17]. Computational
studies have shown that scenario-based measures are
capable of increasing robustness [16]. However, they are
computationally intensive, as many scenarios need to be
created and evaluated. This quickly becomes an
intractable problem for many practical applications.

• Surrogate measures evaluate robustness as the
approximated deviation of the planned schedule with
mostly slack-based scenario-independent indicators, see
e.g. [16], [18], [19], [20]. The amount and distribution of
idle times (slack) in a schedule is used in many surrogate
measures.

2.3. Reinforcement learning in scheduling

Reinforcement learning (RL) is described as “learning
what to do […] so as to maximize a numerical reward signal”
[21]. It describes both a problem and a class of solution
methods within the domain of artificial intelligence. RL has
found numerous applications within the domain multi-agent
systems (MAS) in recent years. MAS consist of at least two
agents deciding on some task. [22] Usually, a larger task (e.g.
scheduling an entire shift) is decomposed into smaller
decision problems that are then solved decentrally. Besides
many rule-based approaches for negotiation (e.g. Contract Net
Protocol [23]), RL has become one of the most widely applied
methods from artificial intelligence in MAS. A thorough
survey of RL in MAS can be found in [24]. For the purpose of
this paper, only RL approaches in MAS with applications to
scheduling are considered. The approaches transform
scheduling into a sequential decision problem which is
modeled with the help of decentralized Markov decision
processes (DEC-MDP) [25].

A DEC-MDP is defined by a tuple
, , , , , ,Ag S A P R O   [26] with

• {1,..., }Ag m= as the set of agents; in a scheduling

settings, these are m stations deciding on which of the
waiting jobs to process next

• S as world states that can be factored into m individual
components 1 ... mS S S=   ; in scheduling, these are
e.g. which stations are available, which jobs are in the
system and what is their status etc.

• 1 ... mA A A=   as a set of joint actions performed by
the m agents; between two time steps this would be all
jobs that have been picked for further processing

• P as a transition function that shows how the system

state changes in response to an action; this could entail
finished jobs or jobs whose state has been changed

• R as a reward function for executing a certain action in a
certain state; in scheduling, the makespan is to be
minimized often. A reward function for this case could

reward every action by -1 for each time step required
[25].

In [26], a decentralised policy search algorithm is proposed
building upon the DEC-MDP formulation for scheduling.
Policy updates are performed with a gradient estimation
approach. After enough training examples have been
collected, the policies of the agents are updated according to
the gradient estimation and therefore gradually adjusted to a
locally optimal policy. This is performed for all agents
individually, enabling decentralised learning of an implicit
coordination to solve a scheduling problem.

2.4. Summary and deficit

RO can be useful for generating robust schedules and is a
feasible method for centralized scheduling of FJSSP as found
in MMS. However, special care should be devoted to suitable
robustness measures, as the obtained results largely depend on
those measures. Surrogate measure are a promising and on-
going research effort, as they require relatively little
computational power and can deliver very good results.
 RL within MAS represent a useful framework for both
generating and regenerating schedules. Due to its relatively
low computational requirements and strong decentralization
of the scheduling problem, it represents a natural approach for
rescheduling.
 From a robustness and stability perspective, schedule
repair with a partial rescheduling approach is desirable, as
deviations from the centralized schedule are minimized.
However, to the author’s knowledge, no existing approaches
explicitly treat the robustness required to even be able to
reschedule within a certain time successfully as a variable.
This is even more interesting for the relatively new
applications of RL in scheduling have the potential to adapt to
agile production systems like MMS.

3. Approach

The proposed approach for coupling of centralized and
decentralized scheduling consists of three distinct systems that
are connected within a loop.

The centralized scheduling with RO seeks to incorporate
some knowledge about possible machine failures into
schedule generation. The goal is to predictively calculate
completion times for jobs within the bounds of the due dates
as to allow for JIS production. The decentralized rescheduling
with RL becomes active any time infeasibilities arise in the
centrally created schedule. Its task is to then perform partial
schedule regeneration within a user-defined time frame. The
coupling mechanism incorporates scheduling knowledge
acquired through repeated decentralized rescheduling as a
lower robustness requirement for centralized scheduling. As
the reactivity to disruptions becomes better over time, less
robustness is required in centralized planning, leading to a
generally better performance with respect to the JIS criterion.
However, depending on the specific setup, at some point an
equilibrium for the robustness requirement is reached.
Without any robustness, no rescheduling within a certain time

388	 Fabio Echsler Minguillon et al. / Procedia CIRP 79 (2019) 385–390
 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

frame is possible. In other words, some form of slack is
always required in the schedule or else rescheduling with
partial regeneration is not possible.

The approach is embedded in a discrete event simulation of
the production system whose production control is to be
optimized. It has to be trained separately for each new MMS,
because the following system-specific factors have a great
impact on its performance:

• Redundant stations: In MMS, identical stations are often

multiplied e.g. in order to provide the capacity needed.
Redundant stations provide flexibility for decentralized
rescheduling, as they potentially allow for re-routing of
jobs in case of machine failures.

• Station availabilities: MMS with very high station
availabilities are less prone to disruptions caused by
machine failures. In such settings, centralized scheduling
is close to the JIS criterion in deterministic environments.

• Buffer size: Robustness can be created with work-in-
process (WIP). By providing enough WIP at each station,
the system is much less prone to starvation and can
continue production when facing disruptions.

• Production programs: A tight production program can
lead to a very high station utilization. In cases where all
stations are utilized near their maximum capacity,
rescheduling cannot be performed decentralized, because
cascading effects inevitably require complete
regeneration.

• Precedence graphs of products: Whether products have
flexibility in their precedence graphs or not plays an
important role in the ability to reschedule. Besides using
redundant stations for a task, switching the order of some
tasks allows for additional options for rescheduling.

• Time frame for schedule regeneration: The smaller the
time frame is, the more difficult it becomes to reschedule
within those boundaries. Rescheduling required idle
times for compensating disruptions. Along a time line,
the amount of idle times on all concerned stations needs
to be at least as much as the duration of the disruption.
This is more likely to be fulfilled for longer time frames.

3.1. Centralized scheduling with RO

Centralized scheduling with RO generates robust predictive
schedules with committed completion time. The goal is to
provide a schedule with a large robustness without any impact
on performance. For centralized scheduling, a RO model
based on [13] is utilized with a standard formulation of the

FJSSP. The robustness measure has been developed to focus
solution robustness only. Optimality can rarely be obtained in
large scheduling settings; feasibility does not need to be
obtained with RO because of the coupling with decentralized
rescheduling. Therefore, the utilized robustness measure has a
focus on practical applicability and considers specific station
availabilities. As disruptions are unknown, all jobs should
behave equally robust. In JIS settings, robustness can be
considered as the slack time between planned completion time
and due date. This will be denoted as unweighted slack and
can be defined as follows:

i i ius dd pct= − (3)

Unweighted slack for a job i ius is the difference between
that job’s due date idd and its planned completion time ipct
A weighting factor corresponding to the station availabilities
is added to acquire weighted slack iws :

1

io

i i k
k

ws us a
=

=  (4)

The weight is obtained from the availabilities ka of all k
utilized stations along its precedence graph. Jobs utilizing
stations with a low availability therefore have a much lower
weighted slack than jobs on stations with a high availability.
This can be used in robust scheduling to ensure weighted
slack is evenly distributed amongst all jobs to be scheduled.
The robustness measure used is:

min{ }ii
ws


= (5)

In Fig. 2, a simple example of a schedule with 3 jobs on 3
stations is shown. The us values correspond to the different
unweighted slack values between completion time and due
date. Weighted slack would have to incorporate the station
availabilities of all used stations A, B, or C.
 The optimization model used corresponds to the one
outlined in [13] for FJSSP. Additionally, buffer constraints for
physical buffers were added to model realistic scenario with
WIP limits (organizational or physical limits).
In order to obtain the minimal robustness that can always be
integrated in the central schedule without any performance
deterioration, the following optimizations are performed:

1. Determine a predictive schedule with respect to the JIS

criterion (i.e. making sure the deviation between

Fig. 1: Overview of the approach.

Fig. 2: Example for the slack-based robustness measure.

 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

completion times and due dates are as low as possible,
also: delivery reliability)

2. Add the achieved delivery reliability as an additional
constraint to the RO model and determine a robust
schedule with respect to the weighted slack robustness
measure

This allows obtaining a maximally robust schedule that still
allows for the best possible performance with respect to the
JIS criterion. Requiring any additional robustness would
inevitably lead to decreased performance. The robustness
value obtained in 2. (r*) is the minimum robustness level
possible to be manipulated further by the coupling
mechanism.

3.2. Decentralized rescheduling with RL

Decentralized rescheduling with RL is used to regenerate a
schedule partially after a disruption in order to continue with
the robust schedule soon thereafter. The goal is to perform
partial regeneration as fast as possible with as little robustness
in the central plan as possible. A rescheduling strategy needs
the following information to be able to reschedule:

• When should rescheduling take place? In this case, only

machine failures trigger rescheduling.
• How long should rescheduling be performed? Here, this

is a user parameter setting an upper bound.
• What should be rescheduled? All tasks belonging to jobs

that were originally scheduled within the determined
time.

Rescheduling is performed with the RL approach outlined in
[26]. Stations are modeled as agents and decide independently
which job to process next. Their reward function awards
every agent a reward of -1 for each time step. This way,
makespan for the tasks to be rescheduled is optimized and
return to the robust schedule in less time than specified by the
user is possible. The policy update function updates the
agent’s preferences over time and generates scheduling
knowledge with each rescheduling after a disruption.

3.3. Coupling mechanism

The coupling mechanism is used during training of the
approach to adjust the robustness requirement to the
centralized planning. The goal is to reduce the robustness
requirement as close as possible to the level obtained in 3.1.
The control loop is implemented in a simulation and allows
for training in different production systems and different
setting (e.g. time frames for schedule regeneration). The
following steps are performed iteratively:

1. A centralized robust schedule is generated with a large

robustness value (leading to a purposely low
performance).

2. The production simulation is started and machine failures
are generated randomly according to the real availabilities

3. The performance of decentralized rescheduling with RL
is evaluated by post-optimization of each disruption. This
way, the makespans can be compared and an optimality
gap can be calculated.

4. If for multiple shifts a trend in a decreasing optimality
gap is seen, the robustness value for centralized schedule
is decreased gradually and steps 1-4 are repeated.

The control loop is in equilibrium if no learning progress in
the decentralized rescheduling with RL is possible anymore.
In this case, the robustness requirement for centralized
scheduling converges towards r*.

4. Preliminary results

4.1. Experimental setting

In the experimental setting, a future body shop is simulated as
an MMS. On-time delivery of sub-assemblies of a car body is
of greatest importance in that settings. Thus, the JIS criterion
should be optimized. However, different availabilities exist,
leading to disruptions.

4.2. First results

The RO model was tested thoroughly for different physical
buffer sizes. It was shown that for small buffer sizes, no
feasible schedules could be found and that there is a tendency
of decreased makespan and increased robustness as buffers
get larger. The main finding however is that while the
makespan-oriented optimization and the RO model generate
almost identical makespans, the robustness in the RO model is
significantly higher.

4.3. Outlook

Modelling of the decentralized rescheduling with RL and the
coupling mechanism are an ongoing implementation effort
and currently only exist is simplified versions. In the next
step, the decentralized rescheduling with RL will be tested in
a simulation with different robustness requirements to the
centralized planning and different time frames for
rescheduling. This should confirm the utility of a coupling in
an experimental setting.

Fig. 3: Robustness and makespan for makespan-oriented and robust
scheduling with different buffer sizes.

	 Fabio Echsler Minguillon et al. / Procedia CIRP 79 (2019) 385–390� 389
 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

frame is possible. In other words, some form of slack is
always required in the schedule or else rescheduling with
partial regeneration is not possible.

The approach is embedded in a discrete event simulation of
the production system whose production control is to be
optimized. It has to be trained separately for each new MMS,
because the following system-specific factors have a great
impact on its performance:

• Redundant stations: In MMS, identical stations are often

multiplied e.g. in order to provide the capacity needed.
Redundant stations provide flexibility for decentralized
rescheduling, as they potentially allow for re-routing of
jobs in case of machine failures.

• Station availabilities: MMS with very high station
availabilities are less prone to disruptions caused by
machine failures. In such settings, centralized scheduling
is close to the JIS criterion in deterministic environments.

• Buffer size: Robustness can be created with work-in-
process (WIP). By providing enough WIP at each station,
the system is much less prone to starvation and can
continue production when facing disruptions.

• Production programs: A tight production program can
lead to a very high station utilization. In cases where all
stations are utilized near their maximum capacity,
rescheduling cannot be performed decentralized, because
cascading effects inevitably require complete
regeneration.

• Precedence graphs of products: Whether products have
flexibility in their precedence graphs or not plays an
important role in the ability to reschedule. Besides using
redundant stations for a task, switching the order of some
tasks allows for additional options for rescheduling.

• Time frame for schedule regeneration: The smaller the
time frame is, the more difficult it becomes to reschedule
within those boundaries. Rescheduling required idle
times for compensating disruptions. Along a time line,
the amount of idle times on all concerned stations needs
to be at least as much as the duration of the disruption.
This is more likely to be fulfilled for longer time frames.

3.1. Centralized scheduling with RO

Centralized scheduling with RO generates robust predictive
schedules with committed completion time. The goal is to
provide a schedule with a large robustness without any impact
on performance. For centralized scheduling, a RO model
based on [13] is utilized with a standard formulation of the

FJSSP. The robustness measure has been developed to focus
solution robustness only. Optimality can rarely be obtained in
large scheduling settings; feasibility does not need to be
obtained with RO because of the coupling with decentralized
rescheduling. Therefore, the utilized robustness measure has a
focus on practical applicability and considers specific station
availabilities. As disruptions are unknown, all jobs should
behave equally robust. In JIS settings, robustness can be
considered as the slack time between planned completion time
and due date. This will be denoted as unweighted slack and
can be defined as follows:

i i ius dd pct= − (3)

Unweighted slack for a job i ius is the difference between
that job’s due date idd and its planned completion time ipct
A weighting factor corresponding to the station availabilities
is added to acquire weighted slack iws :

1

io

i i k
k

ws us a
=

=  (4)

The weight is obtained from the availabilities ka of all k
utilized stations along its precedence graph. Jobs utilizing
stations with a low availability therefore have a much lower
weighted slack than jobs on stations with a high availability.
This can be used in robust scheduling to ensure weighted
slack is evenly distributed amongst all jobs to be scheduled.
The robustness measure used is:

min{ }ii
ws


= (5)

In Fig. 2, a simple example of a schedule with 3 jobs on 3
stations is shown. The us values correspond to the different
unweighted slack values between completion time and due
date. Weighted slack would have to incorporate the station
availabilities of all used stations A, B, or C.
 The optimization model used corresponds to the one
outlined in [13] for FJSSP. Additionally, buffer constraints for
physical buffers were added to model realistic scenario with
WIP limits (organizational or physical limits).
In order to obtain the minimal robustness that can always be
integrated in the central schedule without any performance
deterioration, the following optimizations are performed:

1. Determine a predictive schedule with respect to the JIS

criterion (i.e. making sure the deviation between

Fig. 1: Overview of the approach.

Fig. 2: Example for the slack-based robustness measure.

 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

completion times and due dates are as low as possible,
also: delivery reliability)

2. Add the achieved delivery reliability as an additional
constraint to the RO model and determine a robust
schedule with respect to the weighted slack robustness
measure

This allows obtaining a maximally robust schedule that still
allows for the best possible performance with respect to the
JIS criterion. Requiring any additional robustness would
inevitably lead to decreased performance. The robustness
value obtained in 2. (r*) is the minimum robustness level
possible to be manipulated further by the coupling
mechanism.

3.2. Decentralized rescheduling with RL

Decentralized rescheduling with RL is used to regenerate a
schedule partially after a disruption in order to continue with
the robust schedule soon thereafter. The goal is to perform
partial regeneration as fast as possible with as little robustness
in the central plan as possible. A rescheduling strategy needs
the following information to be able to reschedule:

• When should rescheduling take place? In this case, only

machine failures trigger rescheduling.
• How long should rescheduling be performed? Here, this

is a user parameter setting an upper bound.
• What should be rescheduled? All tasks belonging to jobs

that were originally scheduled within the determined
time.

Rescheduling is performed with the RL approach outlined in
[26]. Stations are modeled as agents and decide independently
which job to process next. Their reward function awards
every agent a reward of -1 for each time step. This way,
makespan for the tasks to be rescheduled is optimized and
return to the robust schedule in less time than specified by the
user is possible. The policy update function updates the
agent’s preferences over time and generates scheduling
knowledge with each rescheduling after a disruption.

3.3. Coupling mechanism

The coupling mechanism is used during training of the
approach to adjust the robustness requirement to the
centralized planning. The goal is to reduce the robustness
requirement as close as possible to the level obtained in 3.1.
The control loop is implemented in a simulation and allows
for training in different production systems and different
setting (e.g. time frames for schedule regeneration). The
following steps are performed iteratively:

1. A centralized robust schedule is generated with a large

robustness value (leading to a purposely low
performance).

2. The production simulation is started and machine failures
are generated randomly according to the real availabilities

3. The performance of decentralized rescheduling with RL
is evaluated by post-optimization of each disruption. This
way, the makespans can be compared and an optimality
gap can be calculated.

4. If for multiple shifts a trend in a decreasing optimality
gap is seen, the robustness value for centralized schedule
is decreased gradually and steps 1-4 are repeated.

The control loop is in equilibrium if no learning progress in
the decentralized rescheduling with RL is possible anymore.
In this case, the robustness requirement for centralized
scheduling converges towards r*.

4. Preliminary results

4.1. Experimental setting

In the experimental setting, a future body shop is simulated as
an MMS. On-time delivery of sub-assemblies of a car body is
of greatest importance in that settings. Thus, the JIS criterion
should be optimized. However, different availabilities exist,
leading to disruptions.

4.2. First results

The RO model was tested thoroughly for different physical
buffer sizes. It was shown that for small buffer sizes, no
feasible schedules could be found and that there is a tendency
of decreased makespan and increased robustness as buffers
get larger. The main finding however is that while the
makespan-oriented optimization and the RO model generate
almost identical makespans, the robustness in the RO model is
significantly higher.

4.3. Outlook

Modelling of the decentralized rescheduling with RL and the
coupling mechanism are an ongoing implementation effort
and currently only exist is simplified versions. In the next
step, the decentralized rescheduling with RL will be tested in
a simulation with different robustness requirements to the
centralized planning and different time frames for
rescheduling. This should confirm the utility of a coupling in
an experimental setting.

Fig. 3: Robustness and makespan for makespan-oriented and robust
scheduling with different buffer sizes.

390	 Fabio Echsler Minguillon et al. / Procedia CIRP 79 (2019) 385–390
 F. Echsler Minguillon and G. Lanza / Procedia CIRP 00 (2018) 000–000

Acknowledgements

The authors would like to acknowledge the funding support of
the German Federal Ministry of Economics and Technology
(BMWi) within the joint project “SmartBodySynergy”
(01MX15007) and the funding program “ELEKTRO POWER
II”.

References

[1] Feldmann K, Slama S. Highly flexible Assembly – Scope and
Justification, CIRP Annals - Manufacturing Technology, 50(2), 2001, p.
489–498

[2] Ramsauer C, Rabitsch C. Agile Produktion - Ein Produktionskonzept für
gesteigerten Unternehmenserfolg in volatilen Zeiten,Industrial
Engineering und Management. Beiträge des Techno-Ökonomie-Forums
der TU Austria, Hrsg. H. Biedermann, Springer Gabler, Wiesbaden, 2016,
p. 63–81

 [3] Schönemann M, Herrmann C, Greschke P, Thiede S. Simulation of
matrix-structured manufacturing systems, Journal of Manufacturing
Systems, 37, 2015, p. 104–112

[4] Pinedo ML. Scheduling. Theory, Algorithms, and Systems, Springer
International Publishing; Imprint: Springer, Cham, 2016

[5] Baker KR, Scudder GD. Sequencing with Earliness and Tardiness
Penalties: A Review, Operations Research, 38(1), 1990, p. 22–36

[6] Lödding H. Handbook of manufacturing control. Fundamentals,
description, configuration, Springer, Heidelberg, 2013

[7] Wu Z, Weng MX. Multiagent Scheduling Method With Earliness and
Tardiness Objectives in Flexible Job Shops, IEEE Transactions on
Systems, Man and Cybernetics, Part B (Cybernetics), 35(2), 2005, p. 293–
301

[8] Ouelhadj D, Petrovic S. A survey of dynamic scheduling in manufacturing
systems, Journal of Scheduling, 12(4), 2009, p. 417–431

[9] Vieira G, Herrmann, J, Lin E. Rescheduling Manufacturing Systems: A
Framework of Strategies, Policies, and Methods, Journal of Scheduling 6,
2003, p. 39-62

[10] Stricker N, Lanza G. The Concept of Robustness in Production Systems
and its Correlation to Disturbances, Procedia CIRP, 19, 2014, p. 87–92

[11] Scholl A. Robuste Planung und Optimierung. Grundlagen - Konzepte
und Methoden - experimentelle Untersuchungen ; Zugl.: Darmstadt,
Techn. Univ., Habil.-Schr., 2000, Physica-Verl., Heidelberg

[12] Goren S, Sabuncuoglu I. Robustness and stability measures for
scheduling: single-machine environment“, IIE Transactions, 40(1), 2008,
p. 66–83

[13] Kouvelis P, Yu G. Robust Discrete Optimization and Its Applications,
Springer, Boston, MA, 1997

[14] Manne AS. On the Job-Shop Scheduling Problem, Operations Research,
8(2), 1960, p. 219–223

[15] Jorge Leon V, David Wu S, Storer RH. Robustness measures and robust
scheduling for job shops, IIE Transactions, 26(5), 1994, p. 32–43

[16] Xiong, J, Xing LN, Chen YW: Robust scheduling for multi-objective
flexible job-shop problems with random machine breakdowns,
International Journal of Production Economics, 141(1), 2013, p. 112–
126

[17] Shen XN, Han Y, Fu JZ: Robustness measures and robust scheduling for
multi-objective stochastic flexible job shop scheduling problems, Soft
Computing, 21(21), 2017, p. 6531–6554

[18] Hazır Ö, Haouari M, Erel E. Robust scheduling and robustness measures
for the discrete time/cost trade-off problem, European Journal of
Operational Research, 207(2), 2010, p. 633–643

[19] Van de Vonder S, Demeulemeester E, Herroelen W, Leus R. The trade-
off between stability and makespan in resource-constrained project
scheduling, International Journal of Production Research, 44(2), 2006, p.
215–236

[20] Mehta SV. Predictable scheduling of a single machine subject to
breakdowns“, International Journal of Computer Integrated
Manufacturing, 12(1), 1999, p. 15–38

[21] Sutton RS, Barto A. Reinforcement learning. An introduction, The MIT
Press, Cambridge, Massaschusetts, London, 1998

[22] Weiss G. Multiagent systems, MIT Press, Cambridge, Mass., 2013
[23] FIPA: FIPA Contract Net Interaction Protocol Specification,

http://www.fipa.org/specs/fipa00029/SC00029H.html, 2002
[24] Busoniu L, Babuska R, Schutter B. A Comprehensive Survey of

Multiagent Reinforcement Learning, IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 38(2), 2008, p. 156–172.

[25] Gabel T. Learning in Cooperative Multi-Agent Systems. Distributed
Reinforcement Learning Algorithms and their Application to Scheduling
Problems, Suedwestdeutscher Verlag fuer Hochschulschriften,
Saarbrücken, 2010

[26] Gabel T, Riedmiller M. Distributed policy search reinforcement learning
for job-shop scheduling tasks“, International Journal of Production
Research, 50(1), 2012, p. 41–61

