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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Individualized products and timely delivery require agile just-in-time manufacturing operations. Scheduling needs to deliver a robust 
performance with high and stable results even when facing disruptions such as machine failures. Existing approaches often generate predictive 
schedules and adjust them reactively as disturbances occur. However, the effectiveness of rescheduling approaches highly depends on the 
available degrees of freedom in the predictive schedule. In the proposed approach, a centralized robust scheduling procedure is coupled with a 
decentralized reinforcement learning algorithm in order to adjust the required degrees of freedom for a maximally efficient production control 
in real-time. 
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1. Introduction 

Manufacturing today is facing an increasingly volatile and 
fast-paced environment. Product lifecycles are shortening 
while variant diversity is growing. Additionally, customer 
demand is more volatile and harder to predict than before [1]. 
As a result, agility is gaining importance as an evaluation 
factor of manufacturing operations [2].  

Recent research efforts have been focused on the design of 
agile production systems such as matrix-structured 
manufacturing systems (MMS) [3]. These systems allow for 
agile production of many variants with a lot size of one. Key 
for efficient operation of such a production system is a 
suitable method for scheduling, i.e. assigning jobs to 
resources over time in order to meet some goal criterion [4]. 
The scheduling environment of an MMS corresponds to a 
flexible job shop scheduling problem (FJSSP) [4]. In make-to-
order settings, jobs often have to meet due dates e.g. as to 
adhere to just-in-sequence (JIS) requirements [5]. In order to 
calculate the completion dates for performance evaluation, all 
information about jobs and resources involved is gathered 
centrally and scheduled with respect to global optimality, 

albeit it with long computation times [6]. However, 
unforeseen disruptions on the shop floor such as machine 
failures can deteriorate the performance of central schedules. 
Therefore, a reactive rescheduling method is needed in order 
to handle disruptions appropriately and maintain the 
performance level. In order to be able to react in a timely 
manner, local information is often used decentrally and 
rescheduling is performed with respect to local optimality in 
short computation times [6].  

In this paper, an approach for scheduling and rescheduling 
for FJSSP settings found in MMS is presented. The aim of the 
approach is to deliver a robust performance with respect to the 
JIS criterion [7]. The approach consists of a centralized robust 
scheduling system, a decentralized reinforcement learning 
system for partial rescheduling and a coupling mechanism for 
adjusting the robustness requirement in centralized planning 
according to learning progress achieved in decentralized 
rescheduling. 
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to handle disruptions appropriately and maintain the 
performance level. In order to be able to react in a timely 
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short computation times [6].  

In this paper, an approach for scheduling and rescheduling 
for FJSSP settings found in MMS is presented. The aim of the 
approach is to deliver a robust performance with respect to the 
JIS criterion [7]. The approach consists of a centralized robust 
scheduling system, a decentralized reinforcement learning 
system for partial rescheduling and a coupling mechanism for 
adjusting the robustness requirement in centralized planning 
according to learning progress achieved in decentralized 
rescheduling. 
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2. State of the art 

2.1. Dynamic scheduling 

As most manufacturing systems operate in an uncertain 
environment, disruptions such as machine failures can render 
predictively created schedules infeasible. Scheduling 
therefore needs to also consider the presence of real-time 
events. This is defined as dynamic scheduling [8]. 
Approaches for solving dynamic scheduling problems are 
categorized as completely reactive, predictive-reactive, and 
robust pro-active [9]. 

 
• In completely reactive scheduling, no predetermined 

schedule is created. Only local dispatching is performed 
and subsequent machines are selected for processing jobs 
only after they have finished processing on a previous 
machine. These approaches inherently consider the 
current situation of the job shop. However, they are 
unsuitable for JIS settings because of the lack of a 
predetermined schedule. [8] 

• Predictive-reactive scheduling approaches generate a 
predictive schedule off-line (before production has 
started) and correct that schedule on-line (during 
production) if necessary due to unforeseen disruptions. 
Predictive schedules are usually created centralized with 
all information available, while rescheduling can be 
performed decentralized with only local information 
available. This can decrease calculation times 
considerably. Rescheduling can either be performed as 
right-shift rescheduling (shifting operations in time as 
necessary), partial rescheduling (regenerating part of the 
predictive schedule) or complete regeneration (regenerate 
the entire remaining schedule) [9]. Predictive-reactive 
scheduling can be used for both adhering to JIS 
requirements (with predictive scheduling) as well as 
maintaining this plan in the face of disruptions (with 
reactive rescheduling). [8]  

• Robust pro-active scheduling seeks to consider all 
uncertainties e.g. with respect to station availabilities 
during initial scheduling. No rescheduling procedure is 
needed in this case. However, this considers a worst-case 
approach and can yield poor performance in case of less 
than expected disturbances. [8] 

2.2. Robustness and its application to scheduling 

Robustness in the context of manufacturing can be defined as 
the ability to maintain a high performance even when facing 
unknown disruptions [10]. In order to evaluate the robustness 
in planning, the most commonly utilized criteria described in 
[11]  are: 
 
• Solution robustness: The result of a plan should not deviate 

from the planned outcome under different disruptions. 
• Optimality robustness: In addition to a solution robust 

plan, the result of the plan should not deviate from the 
optimal outcome, i.e. represent a “perfect plan”. 

• Feasibility robustness: Disruptions should not have any 
effect on planned tasks. 

 
For further details on information robustness, planning 
robustness and evaluation robustness, the reader is referred to 
[11]. In scheduling literature, solution robustness and 
optimality robustness are often summarized under the term 
robustness, whereas feasibility robustness is described as 
stability [12]. It is desirable to create both robust and stable 
plans, however this is not possible in most cases.  
 Robustness and stability criteria are operationalized in 
robust optimization (RO) models. An approach for RO is 
presented in [13]. Instead of optimizing a certain goal 
criterion (e.g. makespan, earliness and tardiness) directly, a 
robustness measure is introduced in the objective function and 
optimized instead. By integrating the original goal criterion 
into the robustness measure, robust and good solutions (with 
respect to the original goal criterion) can be obtained. This is 
demonstrated in the following example: 
 A disjunctive linear program (LP) formulation of the 
classical job shop scheduling problem (JSSP) with makespan 
optimization [14] can be written as:                        
 
min  max ( )pC S  (1) 

. .s t  , , ,h j i j i jy y p−   ( , ) ( , )i j h j A→    
 max , ,i h i jC y p−    ( , )i j N  
 

, , ,i j i h i hy y p−   or 

, , ,i j i h i ky y p−   

( , ), ( , ), 1,...,i h i j i m=  

 , , 0i j i hy y−   ( , )i j N  
 

max ( ) 0pC S   ( , )i j N  
 
  The formulation as a RO problem based on [13] is as 
follows: 
 
min    (2) 
. .s t  max ( )pC S    

 , , ,h j i j i jy y p−   ( , ) ( , )i j h j A→    
 

max , ,i h i jC y p−    ( , )i j N  
 , , ,i j i h i hy y p−   or 

, , ,i j i h i ky y p−   

( , ), ( , ), 1,...,i h i j i m=  

 , , 0i j i hy y−   ( , )i j N  
 max ( ) 0pC S   ( , )i j N  
The main difference between both models lies in the way the 
optimization criterion is integrated. In the first case, makespan 

maxC  is to be minimized, in the second case, a robustness 
criterion   is to be minimized. In the example, the robustness 
criterion is a maximum makespan that is to not be exceeded 
by any schedule. However, this is not necessarily so. 
The result largely depends on the robustness criterion chosen. 
Extensive research has been done on robustness measures for 
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scheduling problems. Robustness measures can be categorized 
in two different classes: 
  
• Scenario-based measures evaluate robustness as the 

deviation of the planned schedule from a realized 
schedule over scenarios. A low deviation indicates a high 
robustness, see e.g. [12], [15], [16], [17]. Computational 
studies have shown that scenario-based measures are 
capable of increasing robustness [16]. However, they are 
computationally intensive, as many scenarios need to be 
created and evaluated. This quickly becomes an 
intractable problem for many practical applications. 

• Surrogate measures evaluate robustness as the 
approximated deviation of the planned schedule with 
mostly slack-based scenario-independent indicators, see 
e.g. [16], [18], [19], [20]. The amount and distribution of 
idle times (slack) in a schedule is used in many surrogate 
measures. 

2.3. Reinforcement learning in scheduling 

Reinforcement learning (RL) is described as “learning 
what to do […] so as to maximize a numerical reward signal” 
[21]. It describes both a problem and a class of solution 
methods within the domain of artificial intelligence. RL has 
found numerous applications within the domain multi-agent 
systems (MAS) in recent years. MAS consist of at least two 
agents deciding on some task. [22] Usually, a larger task (e.g. 
scheduling an entire shift) is decomposed into smaller 
decision problems that are then solved decentrally. Besides 
many rule-based approaches for negotiation (e.g. Contract Net 
Protocol [23]), RL has become one of the most widely applied 
methods from artificial intelligence in MAS. A thorough 
survey of RL in MAS can be found in [24]. For the purpose of 
this paper, only RL approaches in MAS with applications to 
scheduling are considered. The approaches transform 
scheduling into a sequential decision problem which is 
modeled with the help of decentralized Markov decision 
processes (DEC-MDP) [25]. 

A DEC-MDP is defined by a tuple 
, , , , , ,Ag S A P R O    [26] with 

 
• {1,..., }Ag m=  as the set of agents; in a scheduling 

settings, these are m  stations deciding on which of the 
waiting jobs to process next 

• S  as world states that can be factored into m individual 
components 1 ... mS S S=   ; in scheduling, these are 
e.g. which stations are available, which jobs are in the 
system and what is their status etc. 

• 1 ... mA A A=    as a set of joint actions performed by 
the m agents; between two time steps this would be all 
jobs that have been picked for further processing 

 
• P  as a transition function that shows how the system 

state changes in response to an action; this could entail 
finished jobs or jobs whose state has been changed 

• R  as a reward function for executing a certain action in a 
certain state; in scheduling, the makespan is to be 
minimized often. A reward function for this case could 

reward every action by -1 for each time step required 
[25]. 

 
In [26], a decentralised policy search algorithm is proposed 
building upon the DEC-MDP formulation for scheduling. 
Policy updates are performed with a gradient estimation 
approach. After enough training examples have been 
collected, the policies of the agents are updated according to 
the gradient estimation and therefore gradually adjusted to a 
locally optimal policy. This is performed for all agents 
individually, enabling decentralised learning of an implicit 
coordination to solve a scheduling problem. 

2.4. Summary and deficit 

RO can be useful for generating robust schedules and is a 
feasible method for centralized scheduling of FJSSP as found 
in MMS. However, special care should be devoted to suitable 
robustness measures, as the obtained results largely depend on 
those measures. Surrogate measure are a promising and on-
going research effort, as they require relatively little 
computational power and can deliver very good results. 
 RL within MAS represent a useful framework for both 
generating and regenerating schedules. Due to its relatively 
low computational requirements and strong decentralization 
of the scheduling problem, it represents a natural approach for 
rescheduling. 
 From a robustness and stability perspective, schedule 
repair with a partial rescheduling approach is desirable, as 
deviations from the centralized schedule are minimized. 
However, to the author’s knowledge, no existing approaches 
explicitly treat the robustness required to even be able to 
reschedule within a certain time successfully as a variable. 
This is even more interesting for the relatively new 
applications of RL in scheduling have the potential to adapt to 
agile production systems like MMS. 

3. Approach 

The proposed approach for coupling of centralized and 
decentralized scheduling consists of three distinct systems that 
are connected within a loop. 

The centralized scheduling with RO seeks to incorporate 
some knowledge about possible machine failures into 
schedule generation. The goal is to predictively calculate 
completion times for jobs within the bounds of the due dates 
as to allow for JIS production. The decentralized rescheduling 
with RL becomes active any time infeasibilities arise in the 
centrally created schedule. Its task is to then perform partial 
schedule regeneration within a user-defined time frame. The 
coupling mechanism incorporates scheduling knowledge 
acquired through repeated decentralized rescheduling as a 
lower robustness requirement for centralized scheduling. As 
the reactivity to disruptions becomes better over time, less 
robustness is required in centralized planning, leading to a 
generally better performance with respect to the JIS criterion. 
However, depending on the specific setup, at some point an 
equilibrium for the robustness requirement is reached. 
Without any robustness, no rescheduling within a certain time 
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optimization [14] can be written as:                        
 
min  max ( )pC S  (1) 

. .s t  , , ,h j i j i jy y p−   ( , ) ( , )i j h j A→    
 max , ,i h i jC y p−    ( , )i j N  
 

, , ,i j i h i hy y p−   or 

, , ,i j i h i ky y p−   

( , ), ( , ), 1,...,i h i j i m=  

 , , 0i j i hy y−   ( , )i j N  
 

max ( ) 0pC S   ( , )i j N  
 
  The formulation as a RO problem based on [13] is as 
follows: 
 
min    (2) 
. .s t  max ( )pC S    

 , , ,h j i j i jy y p−   ( , ) ( , )i j h j A→    
 

max , ,i h i jC y p−    ( , )i j N  
 , , ,i j i h i hy y p−   or 

, , ,i j i h i ky y p−   

( , ), ( , ), 1,...,i h i j i m=  

 , , 0i j i hy y−   ( , )i j N  
 max ( ) 0pC S   ( , )i j N  
The main difference between both models lies in the way the 
optimization criterion is integrated. In the first case, makespan 

maxC  is to be minimized, in the second case, a robustness 
criterion   is to be minimized. In the example, the robustness 
criterion is a maximum makespan that is to not be exceeded 
by any schedule. However, this is not necessarily so. 
The result largely depends on the robustness criterion chosen. 
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jobs that have been picked for further processing 

 
• P  as a transition function that shows how the system 

state changes in response to an action; this could entail 
finished jobs or jobs whose state has been changed 

• R  as a reward function for executing a certain action in a 
certain state; in scheduling, the makespan is to be 
minimized often. A reward function for this case could 

reward every action by -1 for each time step required 
[25]. 

 
In [26], a decentralised policy search algorithm is proposed 
building upon the DEC-MDP formulation for scheduling. 
Policy updates are performed with a gradient estimation 
approach. After enough training examples have been 
collected, the policies of the agents are updated according to 
the gradient estimation and therefore gradually adjusted to a 
locally optimal policy. This is performed for all agents 
individually, enabling decentralised learning of an implicit 
coordination to solve a scheduling problem. 

2.4. Summary and deficit 

RO can be useful for generating robust schedules and is a 
feasible method for centralized scheduling of FJSSP as found 
in MMS. However, special care should be devoted to suitable 
robustness measures, as the obtained results largely depend on 
those measures. Surrogate measure are a promising and on-
going research effort, as they require relatively little 
computational power and can deliver very good results. 
 RL within MAS represent a useful framework for both 
generating and regenerating schedules. Due to its relatively 
low computational requirements and strong decentralization 
of the scheduling problem, it represents a natural approach for 
rescheduling. 
 From a robustness and stability perspective, schedule 
repair with a partial rescheduling approach is desirable, as 
deviations from the centralized schedule are minimized. 
However, to the author’s knowledge, no existing approaches 
explicitly treat the robustness required to even be able to 
reschedule within a certain time successfully as a variable. 
This is even more interesting for the relatively new 
applications of RL in scheduling have the potential to adapt to 
agile production systems like MMS. 

3. Approach 

The proposed approach for coupling of centralized and 
decentralized scheduling consists of three distinct systems that 
are connected within a loop. 

The centralized scheduling with RO seeks to incorporate 
some knowledge about possible machine failures into 
schedule generation. The goal is to predictively calculate 
completion times for jobs within the bounds of the due dates 
as to allow for JIS production. The decentralized rescheduling 
with RL becomes active any time infeasibilities arise in the 
centrally created schedule. Its task is to then perform partial 
schedule regeneration within a user-defined time frame. The 
coupling mechanism incorporates scheduling knowledge 
acquired through repeated decentralized rescheduling as a 
lower robustness requirement for centralized scheduling. As 
the reactivity to disruptions becomes better over time, less 
robustness is required in centralized planning, leading to a 
generally better performance with respect to the JIS criterion. 
However, depending on the specific setup, at some point an 
equilibrium for the robustness requirement is reached. 
Without any robustness, no rescheduling within a certain time 
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frame is possible. In other words, some form of slack is 
always required in the schedule or else rescheduling with 
partial regeneration is not possible. 

The approach is embedded in a discrete event simulation of 
the production system whose production control is to be 
optimized. It has to be trained separately for each new MMS, 
because the following system-specific factors have a great 
impact on its performance: 

 
• Redundant stations: In MMS, identical stations are often 

multiplied e.g. in order to provide the capacity needed. 
Redundant stations provide flexibility for decentralized 
rescheduling, as they potentially allow for re-routing of 
jobs in case of machine failures. 

• Station availabilities: MMS with very high station 
availabilities are less prone to disruptions caused by 
machine failures. In such settings, centralized scheduling 
is close to the JIS criterion in deterministic environments. 

• Buffer size: Robustness can be created with work-in-
process (WIP). By providing enough WIP at each station, 
the system is much less prone to starvation and can 
continue production when facing disruptions. 

• Production programs: A tight production program can 
lead to a very high station utilization. In cases where all 
stations are utilized near their maximum capacity, 
rescheduling cannot be performed decentralized, because 
cascading effects inevitably require complete 
regeneration. 

• Precedence graphs of products: Whether products have 
flexibility in their precedence graphs or not plays an 
important role in the ability to reschedule. Besides using 
redundant stations for a task, switching the order of some 
tasks allows for additional options for rescheduling. 

• Time frame for schedule regeneration: The smaller the 
time frame is, the more difficult it becomes to reschedule 
within those boundaries. Rescheduling required idle 
times for compensating disruptions. Along a time line, 
the amount of idle times on all concerned stations needs 
to be at least as much as the duration of the disruption. 
This is more likely to be fulfilled for longer time frames. 

3.1. Centralized scheduling with RO 

Centralized scheduling with RO generates robust predictive 
schedules with committed completion time. The goal is to 
provide a schedule with a large robustness without any impact 
on performance. For centralized scheduling, a RO model 
based on [13] is utilized with a standard formulation of the 

FJSSP. The robustness measure has been developed to focus 
solution robustness only. Optimality can rarely be obtained in 
large scheduling settings; feasibility does not need to be 
obtained with RO because of the coupling with decentralized 
rescheduling. Therefore, the utilized robustness measure has a 
focus on practical applicability and considers specific station 
availabilities. As disruptions are unknown, all jobs should 
behave equally robust. In JIS settings, robustness can be 
considered as the slack time between planned completion time 
and due date. This will be denoted as unweighted slack and 
can be defined as follows: 
 

i i ius dd pct= −              (3) 
   
Unweighted slack for a job i ius  is the difference between 
that job’s due date idd  and its planned completion time ipct   
A weighting factor corresponding to the station availabilities 
is added to acquire weighted slack iws  : 
 

1

io

i i k
k

ws us a
=

=            (4) 

 
The weight is obtained from the availabilities ka  of all k 
utilized stations along its precedence graph. Jobs utilizing 
stations with a low availability therefore have a much lower 
weighted slack than jobs on stations with a high availability. 
This can be used in robust scheduling to ensure weighted 
slack is evenly distributed amongst all jobs to be scheduled. 
The robustness measure used is: 

min{ }ii
ws


=                (5) 

 

 
In Fig. 2, a simple example of a schedule with 3 jobs on 3 
stations is shown. The us  values correspond to the different 
unweighted slack values between completion time and due 
date. Weighted slack would have to incorporate the station 
availabilities of all used stations A, B, or C. 
     The optimization model used corresponds to the one 
outlined in [13] for FJSSP. Additionally, buffer constraints for 
physical buffers were added to model realistic scenario with 
WIP limits (organizational or physical limits). 
In order to obtain the minimal robustness that can always be 
integrated in the central schedule without any performance 
deterioration, the following optimizations are performed: 
 
1. Determine a predictive schedule with respect to the JIS 

criterion (i.e. making sure the deviation between 

Fig. 1: Overview of the approach. 

Fig. 2: Example for the slack-based robustness measure. 
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completion times and due dates are as low as possible, 
also: delivery reliability) 

2. Add the achieved delivery reliability as an additional 
constraint to the RO model and determine a robust 
schedule with respect to the weighted slack robustness 
measure  

 
This allows obtaining a maximally robust schedule that still 
allows for the best possible performance with respect to the 
JIS criterion. Requiring any additional robustness would 
inevitably lead to decreased performance. The robustness 
value obtained in 2. (r*) is the minimum robustness level 
possible to be manipulated further by the coupling 
mechanism. 

3.2. Decentralized rescheduling with RL 

Decentralized rescheduling with RL is used to regenerate a 
schedule partially after a disruption in order to continue with 
the robust schedule soon thereafter. The goal is to perform 
partial regeneration as fast as possible with as little robustness 
in the central plan as possible. A rescheduling strategy needs 
the following information to be able to reschedule: 
 
• When should rescheduling take place? In this case, only 

machine failures trigger rescheduling. 
• How long should rescheduling be performed? Here, this 

is a user parameter setting an upper bound. 
• What should be rescheduled? All tasks belonging to jobs 

that were originally scheduled within the determined 
time. 

 
Rescheduling is performed with the RL approach outlined in 
[26]. Stations are modeled as agents and decide independently 
which job to process next. Their reward function awards 
every agent a reward of -1 for each time step. This way, 
makespan for the tasks to be rescheduled is optimized and 
return to the robust schedule in less time than specified by the 
user is possible. The policy update function updates the 
agent’s preferences over time and generates scheduling 
knowledge with each rescheduling after a disruption. 

3.3. Coupling mechanism 

The coupling mechanism is used during training of the 
approach to adjust the robustness requirement to the 
centralized planning. The goal is to reduce the robustness 
requirement as close as possible to the level obtained in 3.1. 
The control loop is implemented in a simulation and allows 
for training in different production systems and different 
setting (e.g. time frames for schedule regeneration). The 
following steps are performed iteratively: 
 
1. A centralized robust schedule is generated with a large 

robustness value (leading to a purposely low 
performance). 

2. The production simulation is started and machine failures 
are generated randomly according to the real availabilities 

3. The performance of decentralized rescheduling with RL 
is evaluated by post-optimization of each disruption. This 
way, the makespans can be compared and an optimality 
gap can be calculated. 

4. If for multiple shifts a trend in a decreasing optimality 
gap is seen, the robustness value for centralized schedule 
is decreased gradually and steps 1-4 are repeated. 

 
The control loop is in equilibrium if no learning progress in 
the decentralized rescheduling with RL is possible anymore. 
In this case, the robustness requirement for centralized 
scheduling converges towards r*. 

4. Preliminary results 

4.1. Experimental setting 

In the experimental setting, a future body shop is simulated as 
an MMS. On-time delivery of sub-assemblies of a car body is 
of greatest importance in that settings. Thus, the JIS criterion 
should be optimized. However, different availabilities exist, 
leading to disruptions. 

4.2. First results 

The RO model was tested thoroughly for different physical 
buffer sizes. It was shown that for small buffer sizes, no 
feasible schedules could be found and that there is a tendency 
of decreased makespan and increased robustness as buffers 
get larger. The main finding however is that while the 
makespan-oriented optimization and the RO model generate 
almost identical makespans, the robustness in the RO model is 
significantly higher.  

4.3. Outlook 

Modelling of the decentralized rescheduling with RL and the 
coupling mechanism are an ongoing implementation effort 
and currently only exist is simplified versions. In the next 
step, the decentralized rescheduling with RL will be tested in 
a simulation with different robustness requirements to the 
centralized planning and different time frames for 
rescheduling. This should confirm the utility of a coupling in 
an experimental setting. 

 

Fig. 3: Robustness and makespan for makespan-oriented and robust 
scheduling with different buffer sizes. 
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frame is possible. In other words, some form of slack is 
always required in the schedule or else rescheduling with 
partial regeneration is not possible. 

The approach is embedded in a discrete event simulation of 
the production system whose production control is to be 
optimized. It has to be trained separately for each new MMS, 
because the following system-specific factors have a great 
impact on its performance: 

 
• Redundant stations: In MMS, identical stations are often 

multiplied e.g. in order to provide the capacity needed. 
Redundant stations provide flexibility for decentralized 
rescheduling, as they potentially allow for re-routing of 
jobs in case of machine failures. 

• Station availabilities: MMS with very high station 
availabilities are less prone to disruptions caused by 
machine failures. In such settings, centralized scheduling 
is close to the JIS criterion in deterministic environments. 

• Buffer size: Robustness can be created with work-in-
process (WIP). By providing enough WIP at each station, 
the system is much less prone to starvation and can 
continue production when facing disruptions. 

• Production programs: A tight production program can 
lead to a very high station utilization. In cases where all 
stations are utilized near their maximum capacity, 
rescheduling cannot be performed decentralized, because 
cascading effects inevitably require complete 
regeneration. 

• Precedence graphs of products: Whether products have 
flexibility in their precedence graphs or not plays an 
important role in the ability to reschedule. Besides using 
redundant stations for a task, switching the order of some 
tasks allows for additional options for rescheduling. 

• Time frame for schedule regeneration: The smaller the 
time frame is, the more difficult it becomes to reschedule 
within those boundaries. Rescheduling required idle 
times for compensating disruptions. Along a time line, 
the amount of idle times on all concerned stations needs 
to be at least as much as the duration of the disruption. 
This is more likely to be fulfilled for longer time frames. 

3.1. Centralized scheduling with RO 

Centralized scheduling with RO generates robust predictive 
schedules with committed completion time. The goal is to 
provide a schedule with a large robustness without any impact 
on performance. For centralized scheduling, a RO model 
based on [13] is utilized with a standard formulation of the 

FJSSP. The robustness measure has been developed to focus 
solution robustness only. Optimality can rarely be obtained in 
large scheduling settings; feasibility does not need to be 
obtained with RO because of the coupling with decentralized 
rescheduling. Therefore, the utilized robustness measure has a 
focus on practical applicability and considers specific station 
availabilities. As disruptions are unknown, all jobs should 
behave equally robust. In JIS settings, robustness can be 
considered as the slack time between planned completion time 
and due date. This will be denoted as unweighted slack and 
can be defined as follows: 
 

i i ius dd pct= −              (3) 
   
Unweighted slack for a job i ius  is the difference between 
that job’s due date idd  and its planned completion time ipct   
A weighting factor corresponding to the station availabilities 
is added to acquire weighted slack iws  : 
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=            (4) 

 
The weight is obtained from the availabilities ka  of all k 
utilized stations along its precedence graph. Jobs utilizing 
stations with a low availability therefore have a much lower 
weighted slack than jobs on stations with a high availability. 
This can be used in robust scheduling to ensure weighted 
slack is evenly distributed amongst all jobs to be scheduled. 
The robustness measure used is: 

min{ }ii
ws


=                (5) 

 

 
In Fig. 2, a simple example of a schedule with 3 jobs on 3 
stations is shown. The us  values correspond to the different 
unweighted slack values between completion time and due 
date. Weighted slack would have to incorporate the station 
availabilities of all used stations A, B, or C. 
     The optimization model used corresponds to the one 
outlined in [13] for FJSSP. Additionally, buffer constraints for 
physical buffers were added to model realistic scenario with 
WIP limits (organizational or physical limits). 
In order to obtain the minimal robustness that can always be 
integrated in the central schedule without any performance 
deterioration, the following optimizations are performed: 
 
1. Determine a predictive schedule with respect to the JIS 

criterion (i.e. making sure the deviation between 

Fig. 1: Overview of the approach. 

Fig. 2: Example for the slack-based robustness measure. 
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completion times and due dates are as low as possible, 
also: delivery reliability) 

2. Add the achieved delivery reliability as an additional 
constraint to the RO model and determine a robust 
schedule with respect to the weighted slack robustness 
measure  

 
This allows obtaining a maximally robust schedule that still 
allows for the best possible performance with respect to the 
JIS criterion. Requiring any additional robustness would 
inevitably lead to decreased performance. The robustness 
value obtained in 2. (r*) is the minimum robustness level 
possible to be manipulated further by the coupling 
mechanism. 

3.2. Decentralized rescheduling with RL 

Decentralized rescheduling with RL is used to regenerate a 
schedule partially after a disruption in order to continue with 
the robust schedule soon thereafter. The goal is to perform 
partial regeneration as fast as possible with as little robustness 
in the central plan as possible. A rescheduling strategy needs 
the following information to be able to reschedule: 
 
• When should rescheduling take place? In this case, only 

machine failures trigger rescheduling. 
• How long should rescheduling be performed? Here, this 

is a user parameter setting an upper bound. 
• What should be rescheduled? All tasks belonging to jobs 

that were originally scheduled within the determined 
time. 

 
Rescheduling is performed with the RL approach outlined in 
[26]. Stations are modeled as agents and decide independently 
which job to process next. Their reward function awards 
every agent a reward of -1 for each time step. This way, 
makespan for the tasks to be rescheduled is optimized and 
return to the robust schedule in less time than specified by the 
user is possible. The policy update function updates the 
agent’s preferences over time and generates scheduling 
knowledge with each rescheduling after a disruption. 

3.3. Coupling mechanism 

The coupling mechanism is used during training of the 
approach to adjust the robustness requirement to the 
centralized planning. The goal is to reduce the robustness 
requirement as close as possible to the level obtained in 3.1. 
The control loop is implemented in a simulation and allows 
for training in different production systems and different 
setting (e.g. time frames for schedule regeneration). The 
following steps are performed iteratively: 
 
1. A centralized robust schedule is generated with a large 

robustness value (leading to a purposely low 
performance). 

2. The production simulation is started and machine failures 
are generated randomly according to the real availabilities 

3. The performance of decentralized rescheduling with RL 
is evaluated by post-optimization of each disruption. This 
way, the makespans can be compared and an optimality 
gap can be calculated. 

4. If for multiple shifts a trend in a decreasing optimality 
gap is seen, the robustness value for centralized schedule 
is decreased gradually and steps 1-4 are repeated. 

 
The control loop is in equilibrium if no learning progress in 
the decentralized rescheduling with RL is possible anymore. 
In this case, the robustness requirement for centralized 
scheduling converges towards r*. 

4. Preliminary results 

4.1. Experimental setting 

In the experimental setting, a future body shop is simulated as 
an MMS. On-time delivery of sub-assemblies of a car body is 
of greatest importance in that settings. Thus, the JIS criterion 
should be optimized. However, different availabilities exist, 
leading to disruptions. 

4.2. First results 

The RO model was tested thoroughly for different physical 
buffer sizes. It was shown that for small buffer sizes, no 
feasible schedules could be found and that there is a tendency 
of decreased makespan and increased robustness as buffers 
get larger. The main finding however is that while the 
makespan-oriented optimization and the RO model generate 
almost identical makespans, the robustness in the RO model is 
significantly higher.  

4.3. Outlook 

Modelling of the decentralized rescheduling with RL and the 
coupling mechanism are an ongoing implementation effort 
and currently only exist is simplified versions. In the next 
step, the decentralized rescheduling with RL will be tested in 
a simulation with different robustness requirements to the 
centralized planning and different time frames for 
rescheduling. This should confirm the utility of a coupling in 
an experimental setting. 

 

Fig. 3: Robustness and makespan for makespan-oriented and robust 
scheduling with different buffer sizes. 
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