KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural Lattice-to-Sequence Models for Uncertain Inputs

Sperber, Matthias 1; Neubig, Graham; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

The input to a neural sequence-to-sequence model is often determined by an up-stream system, e.g. a word segmenter, part of speech tagger, or speech recognizer. These up-stream models are potentially error-prone. Representing inputs through word lattices allows mak-
ing this uncertainty explicit by capturing alternative sequences and their posterior probabilities in a compact form. In this work, we extend the TreeLSTM (Tai et al., 2015) into a LatticeLSTM that is able to consume word lattices, and can be used as encoder in an attentional encoderdecoder model. We integrate lattice posterior scores into this architecture by extending the TreeLSTM’s child-sum and forget gates and introducing a bias term into the
attention mechanism. We experiment with speech translation lattices and report consistent improvements over baselines that translate either the 1-best hypothesis or the lattice without posterior scores.


Verlagsausgabe §
DOI: 10.5445/IR/1000145006
Veröffentlicht am 03.06.2025
Originalveröffentlichung
DOI: 10.18653/v1/D17-1145
Scopus
Zitationen: 52
Dimensions
Zitationen: 37
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2017
Sprache Englisch
Identifikator ISBN: 978-1-945626-83-8
KITopen-ID: 1000145006
Erschienen in emnlp 2017 : Conference on Empirical Methods in Natural Language Processing : conference proceedings : Copenhagen, Denmark, September 7-11, 2017. Ed.: M. Palmer
Veranstaltung Conference on Empirical Methods in Natural Language Processing (EMNLP 2017), Kopenhagen, Dänemark, 07.09.2017 – 11.09.2017
Verlag Association for Computational Linguistics (ACL)
Seiten 1380–1389
Externe Relationen Siehe auch
Nachgewiesen in Dimensions
arXiv
OpenAlex
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page