KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine translation of multi-party meetings: Segmentation and disfluency removal strategies

Cho, Eunah 1; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Translating meetings presents a challenge since multi-speaker speech shows a variety of disfluencies. In this paper we investigate the importance of transforming speech into well-written input prior to translating multi-party meetings. We first analyze the characteristics of this data and establish oracle scores. Sentence segmentation and punctuation are performed using a language model, turn information, or a monolingual translation system. Disfluencies are removed by a CRF model trained on in-domain and out-of-domain data. For comparison, we build a combined CRF model for punctuation insertion and disfluency removal. By applying these models, multi-party meetings are transformed into fluent input for machine translation. We evaluate the models with regard to translation performance and are able to achieve an improvement of 2.1 to 4.9 BLEU points depending on the availability of turn information.


Verlagsausgabe §
DOI: 10.5445/IR/1000145019
Veröffentlicht am 10.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2014
Sprache Englisch
Identifikator KITopen-ID: 1000145019
Erschienen in Proceedings of the 11th International Workshop on Spoken Language Translation: Papers. Ed.: M. Federico
Veranstaltung 11th International Workshop on Spoken Language Translation (IWSLT 2014), Lake Tahoe, NV, USA, 04.12.2014 – 05.12.2014
Verlag ACL
Seiten 176-183
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page