KIT | KIT-Bibliothek | Impressum | Datenschutz

Incremental processing of noisy user utterances in the spoken language understanding task

Constantin, Stefan 1; Niehues, Jan ORCID iD icon; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

The state-of-the-art neural network architectures make it possible to create spoken language understanding systems with high quality and fast processing time. One major challenge for real-world applications is the high latency of these systems caused by triggered actions with high executions times. If an action can be separated into subactions, the reaction time of the systems can be improved through incremental processing of the user utterance and starting subactions while the utterance is still being uttered. In this work, we present a model-agnostic method to achieve high quality in processing incrementally produced partial utterances. Based on clean and noisy versions of the ATIS dataset, we show how to create datasets with our method to create low-latency natural language understanding components. We get improvements of up to 47.91 absolute percentage points in the metric F1-score.


Verlagsausgabe §
DOI: 10.5445/IR/1000145033
Veröffentlicht am 28.05.2025
Originalveröffentlichung
DOI: 10.18653/v1/D19-5535
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2019
Sprache Englisch
Identifikator ISBN: 978-1-950737-84-0
KITopen-ID: 1000145033
Erschienen in The Fifth Workshop on Noisy User-generated Text (W-NUT 2019) - proceedings of the workshop : Nov 4, 2019, Hong Kong, China : W-NUT 2019. Ed.: W. Xu
Veranstaltung 5th Workshop on Noisy User-generated Text (W-NUT 2019), Hongkong, Hongkong, 04.11.2019
Verlag Association for Computational Linguistics (ACL)
Seiten 265-274
Externe Relationen Siehe auch
Abstract/Volltext
Nachgewiesen in arXiv
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page