KIT | KIT-Bibliothek | Impressum | Datenschutz

Lexical Translation Model Using A Deep Neural Network Architecture

Ha, Thanh-Le 1; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper we combine the advantages of a model using global source sentence contexts, the Discriminative Word Lexicon, and neural networks. By using deep neural networks instead of the linear maximum entropy model in the Discriminative Word Lexicon models, we are able to leverage dependencies between different source words due to the non-linearity. Furthermore, the models for different target words can share parameters and therefore data sparsity problems are effectively reduced. By using this approach in a state-of-the-art translation system, we can improve the performance by up to 0.5 BLEU points for three different language pairs on the TED translation task.


Verlagsausgabe §
DOI: 10.5445/IR/1000145051
Veröffentlicht am 10.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2014
Sprache Englisch
Identifikator KITopen-ID: 1000145051
Erschienen in Proceedings of the 11th International Workshop on Spoken Language Translation : Papers, December 4-5, 2014, Lake Tahoe, California. Ed.: M. Federico
Veranstaltung 11th International Workshop on Spoken Language Translation (IWSLT 2014), Lake Tahoe, NV, USA, 04.12.2014 – 05.12.2014
Verlag ACL
Seiten 223-229
Externe Relationen Siehe auch
Nachgewiesen in arXiv
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page