KIT | KIT-Bibliothek | Impressum | Datenschutz

Discriminative Word Alignment via Alignment Matrix Modeling

Niehues, Jan ORCID iD icon 1,2; Vogel, Stephan
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper a new discriminative word alignment method is presented. This approach models directly the alignment matrix by a conditional random field (CRF) and so no restrictions to the alignments have to be made. Furthermore, it is easy to add features and so all available information can be used. Since the structure of the CRFs can get complex, the in ference can only be done approximately and the standard algorithms had to be adapted. In addition, different methods to train the model have been developed. Using this approach the alignment quality could be improved by up to 23 percent for 3 different language pairs compared to a combination of both IBM4-alignments. Furthermore the word alignment was used to generate new phrase tables. These could improve the translation quality significantly.


Verlagsausgabe §
DOI: 10.5445/IR/1000145056
Veröffentlicht am 17.06.2025
Scopus
Zitationen: 40
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2008
Sprache Englisch
Identifikator ISBN: 978-1-932432-09-1
KITopen-ID: 1000145056
Erschienen in Proceedings of the Third Workshop on Statistical Machine Translation. Ed. C. Callison-Burch
Veranstaltung 3rd ACL Workshop on Statistical Machine Translation (WMT 2008), Columbus, OH, USA, 19.06.2008
Verlag Association for Computational Linguistics (ACL)
Seiten 18–25
Serie DL Hosted proceedings
Externe Relationen Abstract/Volltext
Siehe auch
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page