KIT | KIT-Bibliothek | Impressum | Datenschutz

Detailed Analysis of different Strategies for Phrase Table Adaptation in SMT

Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper gives a detailed analysis of different approaches to adapt a statistical machine translation system towards a target domain using small amounts of parallel in-domain data. Therefore, we investigate the differences between the approaches addressing adaptation on the two main steps of building a translation model: The candidate selection and the phrase scoring. For the latter step we characterized the differences by four key aspects. We performed experiments on two different tasks of speech translation and analyzed the influence of the different aspects on the overall translation quality. On both tasks we could show significant improvements by using the presented adaptation techniques.


Postprint §
DOI: 10.5445/IR/1000145057
Veröffentlicht am 12.06.2025
Scopus
Zitationen: 16
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2012
Sprache Englisch
Identifikator KITopen-ID: 1000145057
Erschienen in Proceedings of the Tenth Conference of the Association for Machine Translation in the Americas (AMTA 2012), San Diego, 28th October -1st November 2012 AMTA 2012 - Proceedings of the 10th Conference of the Association for Machine Translation in the Americas2012 10th Conference of the Association for Machine Translation in the Americas, AMTA 2012San Diego28 October 2012 through 1 November 2012Code 123820
Veranstaltung 10th Conference of the Association for Machine Translation in the Americas (AMTA 2012), San Diego, CA, USA, 28.10.2012 – 01.11.2012
Verlag Association for Machine Translation in the Americas (AMTA)
Externe Relationen Abstract/Volltext
Siehe auch
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page