KIT | KIT-Bibliothek | Impressum | Datenschutz

Continuous Space Language Models using Restricted Boltzmann Machines

Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

We present a novel approach for continuous space language models in statistical machine translation by using Restricted Boltzmann Machines (RBMs). The probability of an n-gram is calculated by the free energy of the RBM instead of a feedforward neural net. Therefore, the calculation is much faster and can be integrated into the translation process instead of using the language model only in a re-ranking step. Furthermore, it is straightforward to introduce additional word factors into the language model. We observed a faster convergence in training if we include automatically generated word classes as an additional word factor. We evaluated the RBM-based language model on the German to English and English to French translation task of TED lectures. Instead of replacing the conventional n-gram-based language model, we trained the RBM-based language model on the more important but smaller in-domain data and combined them in a log-linear way. With this approach we could show improvements of about half a BLEU point on the translation task.


Verlagsausgabe §
DOI: 10.5445/IR/1000145058
Veröffentlicht am 12.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2012
Sprache Englisch
Identifikator KITopen-ID: 1000145058
Erschienen in Proceedings of the Ninth International Workshop on Spoken Language Translation (IWSLT 2012)
Veranstaltung 9th International Workshop on Spoken Language Translation (IWSLT 2012), Hongkong, Hongkong, 06.12.2012 – 07.12.2012
Verlag Association for Computational Linguistics (ACL)
Seiten 164-170
Externe Relationen Abstract/Volltext
Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page