KIT | KIT-Bibliothek | Impressum | Datenschutz

Toward Robust Neural Machine Translation for Noisy Input Sequences

Sperber, Matthias 1; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Translating noisy inputs, such as the output of a speech recognizer, is a difficult but important challenge for neural machine translation. One way to increase robustness of neural models is by introducing artificial noise to the training data. In this paper, we experiment with appropriate forms of such noise, exploring a middle ground between general-purpose regularizers and highly task-specific forms of noise induction. We show that with a simple generative noise model, moderate gains can be achieved in translating erroneous speech transcripts, provided that type and amount of noise are properly calibrated. The optimal amount of noise at training time is much smaller than the amount of noise in our test data, indicating limitations due to trainability issues. We note that unlike our baseline model, models trained on noisy data are able to generate outputs of proper length even for noisy inputs, while gradually reducing output length for higher amount of noise, as might also be expected from a human translator. We discuss these findings in details and give suggestions for future work.


Verlagsausgabe §
DOI: 10.5445/IR/1000145072
Veröffentlicht am 02.06.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2017
Sprache Englisch
Identifikator KITopen-ID: 1000145072
Erschienen in Proceedings of the International 14th International Workshop on Spoken Language Translation : 14th-15th December, 2017 Tokyo, Japan : IWSLT 2017. Ed.: S. Sakti
Veranstaltung 14th International Workshop on Spoken Language Translation (IWSLT 2017), Tokio, Japan, 14.12.2017 – 15.12.2017
Verlag ACL Anthology
Seiten 90-96
Externe Relationen Abstract/Volltext
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page