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Abstract

In the course of the energy transition, the share of electricity generation from

renewable energy sources in Germany has increased significantly in recent years and

will continue to rise. Particularly fluctuating renewables like wind and solar bring

more uncertainty and volatility to the electricity system. As markets determine

the unit commitment in systems with self-dispatch, many changes have been made

to the design of electricity markets to meet the new challenges. Thereby, a trend

towards real-time can be observed. Short-term electricity markets are becoming

more important and are seen as suitable for efficient resource allocation. Therefore,

it is inevitable for market participants to develop strategies for trading electricity

and flexibility in these segments.

The research conducted in this thesis aims to enable better decisions in short-

term electricity markets. To achieve this, a multitude of quantitative methods is

developed and applied: (a) forecasting methods based on econometrics and ma-

chine learning, (b) methods for stochastic modeling of time series, (c) scenario

generation and reduction methods, as well as (d) stochastic programming meth-

ods. Most significantly, two- and three-stage stochastic optimization problems are

formulated to derive optimal trading decisions and unit commitment in the context

of short-term electricity markets. The problem formulations adequately account

for the sequential structure, the characteristics and the technical requirements of

the different market segments, as well as the available information regarding uncer-

tain generation volumes and prices. The thesis contains three case studies focusing

on the German electricity markets.

Results confirm that, based on appropriate representations of the uncertainty

of market prices and renewable generation, the optimization approaches allow to

derive sound trading strategies across multiple revenue streams, with which market

participants can effectively balance the inevitable trade-off between expected profit

and associated risk. By considering coherent risk metrics and flexibly adaptable

risk attitudes, the trading strategies allow to substantially reduce risk with only

moderate expected profit losses. These results are significant, as improving trading

decisions that determine the allocation of resources in the electricity system plays

a key role in coping with the uncertainty from renewables and hence contributes

to the ultimate success of the energy transition.
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Chapter 1

Introduction

1.1 Motivation

Historically, the German energy sector is characterized by a strong dependency

on primary energy carrier imports and a large demand of industry. The German

electricity sector was traditionally dominated by the primary energy carriers hard

coal, lignite, natural gas, and uranium. The locations of power plants and the

structure of the transmission grid followed the needs of the demand and were

expanded accordingly by regional monopoly companies, which also operated the

electricity system and set the prices. The heritage of conventional generation

technologies can still be observed by looking at the generation mix or the installed

generation capacity by technologies1.

However, recent and current developments consist in a nuclear phase-out com-

bined with the aim for decarbonization of the electricity sector in order to meet

ambitious climate targets. Figure 1.1 illustrates the effect on installed conven-

tional capacity in Germany that comes with these phase-out plans. In the future,

this development shall ultimately result in a full decarbonization not only of the

electricity sector but also of the entire energy sector, including the energy demand

for transportation and heating. Complying to these developments means a fun-

damental shift in the organization of the electricity system and requires a new

approach to supply the electricity demand. This approach is based on large shares

1As these figures are reported in many public sources and may outdate fast after the publica-
tion of this thesis, the reader is referred to the annual monitoring reports provided by Germany’s
Federal Network Agency Bundesnetzagentur (cf. Bundesnetzagentur, 2021, for the latest version).

3
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Figure 1.1: Conventional power plant capacities in Germany following the nuclear and coal
phase-out plans without additional investments (own illustration based on data from S&P
Global Platts, 2015, and own assumptions regarding technical lifetimes).

of renewable energy sources (RES), and in particular volatile renewable energy

sources (vRES) such as solar photovoltaic (PV) and wind energy, resulting in a

fundamentally different environment for market participants.

The phase-out of nuclear, which is completed by the end of 2022, the phase-

out of coal, expected the latest to take place by 2038, the increasing age of the

existing conventional power plant fleet and the continuous expansion of vRES

in Germany raise fundamental questions about the future of electricity markets

and the linked economics that market participants face. A key characteristic of

these new economics is that market participants face more uncertainty and more

volatility. Market participants are used to the fact that strategic decisions are

subject to large uncertainty. However, these developments primarily affect the

short-term electricity markets, which prevents the use of established methods to

hedge risk, and require appropriate approaches to respond to them.
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1.2 Objective and overall research question

On an overarching level, the outlined development leads to one major research

question that will be pursued in this paper-based thesis. For each of the contained

papers, more specific research questions are developed. These are presented in the

respective sections in Chapter 4.

The overall research question is how to optimally operate and trade assets on

short-term electricity markets in the presence of uncertainty. This general question

can be precised with two questions: (a) How to model the uncertainty and (b) how

to make optimal trading decisions under uncertainty in the short-term electricity

markets. Compared to traditional trading, the market participants face a new

market structure with market segments such as intraday trading and complex

reserve products. In such a market design setting and with increasing uncertainties,

multiple uncertain revenue streams need to be assessed for an optimal operational

planning.

Based on the market environment and associated operational revenues of the re-

cent past, market participants build expectations about the market circumstances

in near future and the development of profitability as well as risk exposure of their

assets. Therefore, answering the research question not only derives a set of optimal

trading decisions, but also serves as a basis to asset valuation.

Almost naturally, question (a) translates into a need to model the uncertainty

of renewable generation, its effects on market prices and its impact on the risk

exposure for market participants as well as to investigate risk management strate-

gies. An essential element of this consists in developing forecasting methods and

stochastic models to characterize the interrelated uncertainties.

For question (b), it is inevitable to thoroughly understand the market design

setting. To be able to formulate the mathematical problem for an optimal trad-

ing decision on short-term electricity markets, both the temporal organization of

the competing market segments and the particularities of the market segments

themselves need to be taken into account. Compared to the market design in

the beginning of liberalization of power markets, substantial changes were imple-

mented to arrive at today’s market design.

However, up to now this is not done in a thorough and scientifically sound

manner in the scientific literature, and practitioners base their decisions mostly on
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simpler information and decision support tools, experience, and gut feelings. The

thesis hence contributes to this research gap by developing methods and providing

insights to risk management that take into account both, buying and selling par-

ties of the market. Furthermore, the risk implications of different customer tariff

designs for retailers are investigated.

1.3 Structure of the thesis

This thesis is organized in two parts. Part I provides the framework and the

theoretical background as well as summaries of the three papers included in the

thesis, Part II contains the manuscript versions of the Papers A, B, and C. In

Part I, Chapter 2 first wraps up the institutional framework and its developments

in Section 2.1. It presents the market design setting, for which the mathematical

problems are developed and applied in the case studies. Further, in Section 2.2

it introduces relevant definitions as well as a risk taxonomy to categorize the

uncertainties that affect participants in the short-term electricity markets.

Chapter 3 provides the methodological background to this thesis. As several

quantitative methods are applied and developed in this thesis, it contains three sub-

sections covering stochastic modeling of time series and forecasting (3.1), scenario

tree generation and reduction (3.2), as well as stochastic optimization approaches

(3.3).

In Chapter 4, the three papers and case studies are presented and summarized

(4.1, 4.2, 4.3). Chapter 5 critically reflects the developed approaches and the un-

derlying assumptions. It discusses limitations of the results and provides directions

of future research based on this thesis. Finally, Chapter 6 summarizes the main

findings and concludes the thesis.

The full manuscript versions of the three papers can be found in Part II of this

thesis. Paper A is published in the Journal of Forecasting. Paper B is published as

a working paper and submitted to the journal Energy Economics. Paper C is pub-

lished as a working paper and submitted to the European Journal of Operational

Research. The suggested citation for the papers is as follows:
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Chapter 2

Background

2.1 Institutional framework of the German electric-

ity market

2.1.1 The German electricity system

As previously mentioned, the German electricity system has a heritage with a large

industrial demand. In the old days, the electricity generation by the conventional

thermal power plant fleet followed the relatively inelastic demand. In recent years,

due to several developments taking place in parallel, this paradigm was shifted

towards increasing shares of inelastic supply from renewable generation, and con-

tinues to do so. The main driver behind this development is the promise of the

Energiewende, a term that refers to the shift of the entire German energy supply

from the unsustainable use of fossil and nuclear energy sources to a sustainable

use of carbon-free and renewable energy sources.

Hence, one of the cornerstones of the Energiewende is a continuous expan-

sion of renewable electricity generation. For this purpose, expansion paths for

the renewable technologies onshore wind, offshore wind, solar and biomass have

been legally anchored in Germany’s Renewable Energy Act Erneuerbare-Energien-

Gesetz (EEG). To remunerate renewable energy expansion and provide economic

incentives as well as a stable investment environment to investors, a multitude

of remuneration schemes are implemented across the world. In Germany, feed-in-

tariff schemes and one-sided contracts for difference, the so-called market premium,

9



10 2 Background

are implemented to foster the expansion of RES. To remain concise, the interested

reader is referred to Kitzing et al. (2012) and Newbery et al. (2018) for an overview

and a discussion of different mechanisms.

It is relevant to point out in the context of this thesis that the overarching

trend is the (exogenously given) fundamental change in the technology mix of

electricity generation away from a large share of dispatchable thermal generation

to increasing shares of volatile renewable generation. Further, an overarching

element relevant to this thesis is the consequence of this development to decision

takers in energy economics. For market participants, new challenges arise and the

exposure to uncertainties and associated risks requires new modeling approaches

and optimization methods to determine optimal decisions.

A prominent example for this is the market premium and the directly linked

obligation for direct marketing of renewable generation in the spot markets.

Whereas operators of newly installed renewable energy systems with a capacity

below 100 kW (i.e., sizes typical for PV rooftop installations) can still receive a

feed-in tariff under the EEG without having to worry about trading the electricity,

all operators with plants larger than 100 kW are obliged to trade the electricity

produced by the plant themselves or via a service provider. They also bear the

balancing responsibility for deviations and are obliged to develop strategies for

managing renewable feed-in uncertainty, such as participation in intraday trading.

According to the monitoring report for energy provided by the Bundesnetzagentur

(2021), the majority (81 percent) of the renewable electricity produced in Germany

in 2019 was marketed directly either by the operator or by a service provider.

According to the political agenda, in the near future new generation capacities

will most likely consist of only vRES and flexible gas-fired power plants2. Fur-

ther, utility-scale storages, such as lithium-ion and redox-flow batteries, appear

as mature technologies and available investment options for market participants.

Whereas the capacity expansion of vRES involves a tight interaction with the pol-

icy targets and the associated regulatory measures to achieve them, the investment

in new firm capacity, such as gas power plants but also utility-scale storages, shall

take place based on expected profitability in the electricity market setting. Their

2Moreover, the obligation to make arrangements for a future fuel switch from natural gas to
hydrogen is under discussion at the time of writing.
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profitability is however subject to a large set of uncertainties, such as commodity

and carbon prices, overall demand level, or future weather years.

In other countries, to ensure generation adequacy, capacity remuneration mech-

anisms (CRMs) are in place and shall provide security for investments in firm ca-

pacity. In this context, firm capacity refers to capacity that is dispatchable upon

request in a scarcity situation. For a thorough investigation of CRMs and the

impacts of different market designs on a national and international system level,

the reader is referred to Cramton and Ockenfels (2012), Cramton et al. (2013),

Newbery (2016), Bublitz et al. (2019), Bublitz (2019), and Fraunholz (2021).

It is common sense that the expansion of vRES combined with the stable or

decreasing level of firm generation capacity and a relatively inelastic demand will

lead to a more volatile electricity system. This volatility is particularly pronounced

when steep load gradients occur, e.g., in the morning (evening) hours when solar

PV generation increases (decreases) simultaneously as well as at the beginning

(end) of stormy weather situations with steep increase (decrease) of overall wind

generation within a short period of time.

In a market-based dispatch system, the volatility of the electricity system will

also reflect on the situation on the electricity markets. Already today, “sudden”

price increases and drops can be observed in the spot markets. Updates of vRES

generation forecasts create significant price spreads between the day-ahead and

the intraday markets. Finally, the balancing reserve markets (BRMs), for which

market participants consider the electricity spot markets as opportunities, are also

linked to the volatility and price levels of the electricity spot markets.

For a thorough understanding of how the German electricity system is oper-

ated, one must bear in mind that the generation dispatch and reserve capacity

reservation as well as their pricing are not centrally decided upon, as e.g. in parts

of the US, but follow the trading decisions of the market participants. Eventually,

the aggregation of these individual trading decisions emerges as the overall dis-

patch of the electricity system and its costs. Therefore, with inherent short-term

uncertainty in the system that is likely to further increase in the future, the ques-

tion on how to derive optimal trading decisions becomes increasingly important,

but turns out to be a challenging one. Besides the aim of maximizing profit or

minimizing costs, another important aspect for market participants in the light of

uncertainty consists in the exposure to risk that is linked to the trading decisions.
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To provide a background with regard to the market structure, the next section

outlines the market design setting that market participants face. It also aims at

providing the institutional context for the developed methods and case studies of

this thesis.

2.1.2 Design and development of the electricity wholesale mar-

kets

The structure of liberalized electricity markets with self-dispatch3 is similar across

the world. The two main dimensions in which trading with electricity and flexi-

bility can be distinguished are the geographical and the temporal dimension. The

geographical dimension implies the definition of market areas and the interaction

between connected market areas. In Europe, the market areas are typically defined

by the national country borders4. This stands in opposition to the locational or

nodal pricing approach, in which each node in the transmission grid is assigned a

single price that reflects the marginal costs and the grid situation in that particular

node (cf. Stoft, 1997).

However, European electricity markets are designed to have market areas that

cover a larger geographical and grid-topological scope. Within one market area,

the assumption of a copper plate (i.e., there are no grid congestions) leads to a

single market price for the entire market area. This is the main take-away regarding

the geographical dimension of trade for the remainder of this thesis. All market

participants in one market area face the same market signals, be it the prices on

the wholesale electricity market or the prices on the BRMs.

In the case of sufficient transmission capacity, multiple market areas are coupled

to be operated as a single market area. The rationale behind market coupling is

the maximization of economic welfare within the European internal market. As

this is not in the main scope of this work, the reader is referred to literature

on flow-based market coupling and market splitting for more information on the

3This thesis does not discuss market structures with central dispatch. However, the developed
approaches could in principle be adapted to a system with central dispatch.

4However, there are a few exceptions, such as Luxembourg and Germany forming one market
area and Italy as well as the Scandinavian countries being divided in several market areas.
These particularities are driven by the topology of the grid and the occurrence or absence of grid
congestions within a market area.
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geographical dimension of electricity markets (cf., e.g., van den Bergh et al., 2016;

Felling et al., 2019; Ringler, 2017; Bublitz, 2019; Fraunholz, 2021).

In the following, the focus is set on the temporal dimension of electricity trad-

ing. The market participants on the supply side as well as those on the demand

side face the electricity market as a sequence of distinct market segments. Fig-

ure 2.1 illustrates this market sequence and distinguishes between energy markets,

balancing reserve markets, and capacity remuneration mechanisms.

The time axis represents the market design setting with gate closure times

(GCTs) in force as of January 2022 in Germany. The exact GCTs may differ from

one country to another, yet the general setting is representative for liberalized

electricity markets with self-dispatch across the world. Even though there is no

explicit CRM in place in Germany5, it is featured in the illustration for two reasons.

Firstly, because it is a market design element in many countries in Europe as well as

across the world (see Bublitz, 2019, for an overview) and by European regulation,

asset owners in the German market area must be allowed to participate in the

CRMs that are in place in connected market areas. Secondly and more important,

because the implementation of CRMs is still under discussion in Germany and

at the time of writing it cannot be excluded that CRMs will play a key role for

market participants’ economics in the near future. However, CRMs will not be

discussed in detail in the following.

The core elements of the electricity market are the energy market segments,

also referred to as wholesale electricity markets. These segments have by far the

highest trading volumes and determine the economics of market participants to the

largest extent. For 2020, the European Commission reports a total of 7,000 TWh

of traded volume from OTC- and exchange-based electricity trading in Germany,

which corresponds to more than fourteen times the net electricity production for

the same year (European Commission, 2021; Fraunhofer ISE, 2021). The energy

markets can be distinguished into future and spot markets by their lead time

until realisation6. On future markets, contracts have lead times ranging from

one day over several weeks and months up to several years. These contracts are

5However, the existing reserves such as the so-called strategic reserve and the grid reserve can
be considered as capacity remuneration.

6One could also distinguish by contracts with financial and physical fulfillment. However, this
goes mainly hand in hand with the lead time, as contracts on the future market are typically
financially fulfilled and contracts on the spot markets are subject to physical fulfillment.
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Figure 2.1: Electricity market design in Germany as a sequence of market segments. The
red box indicates the day-ahead and intraday decisions this thesis puts the main focus on.
(Status: January 2022, own illustration)
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mainly traded to hedge mid- and long-term risks with regard to prices and volumes.

Historically, mainly generation from conventional power plants is sold in the future

markets with precisely defined base and peak load products. In recent years,

also renewable generation, particularly from large wind and PV parks, became

the underlying of trades several years into the future in so-called power purchase

agreement (PPA) contracts. These PPAs are a key measure to stabilize revenues

for vRES investments that take place outside of support schemes.

An additional feature of the future market is the distinction into trades agreed

over-the-counter (OTC) via so-called forward contracts and exchange-based trades

via future contracts. Forward contracts are bilateral contracts and can as well last

for several years. Among energy supply companies and large consumers, they are

typically complemented with other commodity futures or forwards (e.g., for fuels)

in order to derisk the cash flows for the assets or future electricity costs. On the

other hand, the exchange-based future market allows for liquid trading typically

only for the year ahead and shorter lead times. To remain concise, strategies for

trading electricity and hedging risk in the mid- and long-term will not be further

detailed. The key insight with regard to the scope of the thesis is that there

are several strategies and market segments to hedge price and volume risks until

the spot market stage. However, although the settlement of financial contracts is

organized with the spot market as the reference point, the spot market itself is due

to substantial uncertainty for market participants. As presented in Chapter 2.2 in

more detail, this short-term uncertainty is mainly introduced by vRES generation7.

The spot market can be distinguished into the day-ahead market and the in-

traday market. In Europe, only nominated electricity market operators (NEMOs)

are allowed to operate electricity markets. In Germany, as in most countries in

continental Europe, these markets are operated by the European Power Exchange

(EPEX Spot). Hence, the following paragraphs base on the market description

provided by EPEX Spot (2021). Note, that the market operator which tradition-

ally operated the electricity exchanges in the Scandinavian countries, Nord Pool,

is also a NEMO for the German market area and operates spot markets. However,

7There are also power plant outages, line outages, and short-term demand fluctuations as
sources of short-term uncertainty in the electricity system. However, balancing reserves in ac-
ceptable amounts can cope with these.
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Figure 2.2: Spot market volumes of EPEX Spot, the Austrian Energy Exchange (EXAA),
and Nord Pool for the German market area. The EPEX Spot has the main share and is
therefore the reference in this thesis (own illustration based on data from Bundesnetzagentur,
2021). After the split of the German-Austrian market area in 2019, EXAA has lost its
relevance for the German market area.

as illustrated in Figure 2.2, the EPEX Spot markets have a higher liquidity and

are therefore considered as the reference for market prices in this thesis.

The day-ahead market consists of an auction for the 24 hourly products of the

next day and takes place at 12 p.m. on the day ahead. The auction is a first-

price auction with uniform pricing, thus the volume (“market clearing volume”) is

determined at the intersect of the demand and the supply curve and the marginal

power plant sets the price (“market clearing price”) that is paid for all accepted

bids in an hour. The day-ahead market auction is followed by the so-called intraday

auction that – despite its name – takes place at 3 p.m. on the day ahead. It is

organized as a first-price auction with uniform pricing, in which the 96 quarter-

hourly contracts of the day ahead are traded. The main difference compared to the

day-ahead auction is the quarter-hourly resolution and that market participants

may have better information available with regard to the next day. Further, the

intraday auction works as a reference auction for the continuous intraday trading

that starts after 4 p.m. on the day ahead (EPEX Spot, 2021).

The importance of intraday trading has increased substantially in recent years,

mainly due to increasing shares of vRES, the linked economic opportunities, and

new duties for market participants, as can be seen in Figure 2.3. In particular, the
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Figure 2.3: Liquidity of intraday trading in Germany and other European market areas,
measured by the Churn factor. The Churn factor is defined as the volume of all trades in
a market segment divided by the overall electricity consumption (own illustration based on
data from ACER and CEER, 2021).

intraday market in Germany is very liquid compared to other European market

areas. As reported in the market monitoring report by ACER and CEER (2021),

for each consumed MWh in the German market area, roughly 0.13 MWh were

traded in the intraday market (cf. also Figure 2.3).

In opposition to the two previous auctions, in intraday trading market par-

ticipants fill order books with their sell and ask bids and the market is cleared

continuously, 24 hours per day and seven days per week. Therefore, prices for a

certain quarter hour contract change over time with new information becoming

available to the market. However, in reality, the continuous intraday trading turns

out to be liquid mostly in the last three hours before delivery and the most liquid

in the last hour before delivery. At the time of writing, intraday trading is possible

until five minutes before delivery in the German market area (i.e., a lead time of

five minutes) (EPEX Spot, 2021).

To find representative indices for the price level, besides to the overall volume-

weighted average price, the indices ID3 and ID1 are defined8. They are defined as

the volume-weighted average of all completed trades for a quarter hour contract in

the last three hours and in the last hour before delivery, respectively. In markets of

other countries, particularly in those with less intraday liquidity than the German

market, the intraday market is organized as a sequence of intraday auctions. Ocker

and Jaenisch (2020) present an overview over the current organization of different

8In Paper B and C, the ID3 index is used as representative for the intraday price.
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intraday markets in Europe and discuss advantages and disadvantages of auction-

based versus continuous intraday trading. They point out that the auction-based

design has advantages in terms of bundling of liquidity, resilience against market

power, and static allocation efficiency. Further, the auction-based design allows

for a more efficient use of cross-border transmission capacities.

However, the main disadvantage and the striking argument in favor of contin-

uous trading lies in the information efficiency, meaning that information should

be reflected in market signals as soon as it becomes available. In consequence,

this means that the value of the speed to have new information available, such as

having the fastest vRES generation updates, becomes more important and can be

a key to success over market participants with less advanced forecasts and trading

processes. Thus, assuming sufficient liquidity and perfect competition, as well as

taking into consideration that cross-border capacities are typically allocated in the

day-ahead market coupling, continuous trading is in theory a suitable and efficient

market design for the intraday market. It is successfully implemented in the Ger-

man and many other market areas, whereas e.g. in Italy and the Iberian peninsula

the intraday market is organized auction-based.

Since June 2018, the geographical scope of continuous trading has been ex-

panded within Europe, under the name cross-border intraday (XBID) market. At

the time of writing, the geographical scope of the intraday market coupling covers

23 countries in Europe (ENTSO-E, 2021b). However, this integration is mainly

implemented in terms of information technology. The physical grid situation rarely

allows trading from Northern Norway to Portugal or Sicily in the intraday mar-

ket, as cross-border capacities are mainly assigned by the market coupling of the

day-ahead market.

Apart from exchange-based intraday trading, in theory OTC trades would be

possible also in the intraday time frame. Due to liquidity, the short time to find

counterparts and to agree deals with them, this appears economically unreasonable

and is therefore not institutionalized.

For the remainder of this thesis the following is worth stressing. There is a

multitude of energy markets to trade electricity on, with different scopes, differ-

ent products and different market designs. The spot market with day-ahead and

intraday trading is the key market for trading electricity and flexibility. Further,

the balancing reserve market segments (blue boxes in Figure 2.1) are a second
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considerable revenue stream for market participants to trade the flexible capacity

of their assets and thus competes with the spot market for the available flexibility.

Yet, the purpose of the balancing reserve market is not to balance out potential

imbalances9 that are already known to market participants during intraday trad-

ing – it is a duty for each balancing responsible party (BRP) to balance these by

trading actions. Therefore, although competing for the same product (flexibility)

and being an economical opportunity to market participants, the two markets are

not redundant and have their own purpose.

The challenge for market participants is therefore to make optimal decisions in

the presented sequence of markets. In this thesis and in the included papers, the

focus is set on decisions the market participants have to take on the day ahead

and during the day until shortly before delivery. These are hence highlighted with

the red box in Figure 2.1. With regard to the trading sequence, please note, that

the bids for the capacity auctions in the BRM segments must be submitted before

the GCT of the day-ahead wholesale market. Likewise, the bids for the energy

auctions in the BRMs must be submitted before the GCTs of intraday trading for

the respective time steps.

In the next paragraphs, the principles of balancing reserves, its technical re-

quirements, and the particularities of the different segments of the BRM are

presented. These rather complex product definitions stand in opposition to the

straightforward definition of scheduled energy that is traded on the wholesale mar-

kets.

2.1.3 Design and development of the balancing reserve markets

After spot market trading has finished, the resulting schedule commitments are

forwarded to the transmission system operators (TSOs) that are responsible for the

system operation in the respective control zone of physical fulfillment. In order to

ensure the stable operation of the electricity system at the frequency of 50 Hz, the

9In the context of electricity and balancing markets, the term imbalance is defined as the
deviation of a balancing group’s (German: Bilanzkreis) announced feed-in or withdrawal com-
mitment (German: Fahrplan) from the actual feed-in or withdrawal from the grid. BRPs are
responsible to balance their balancing groups. In imbalance settlement, each BRP must match
the actual feed-in or withdrawal for each of his balancing groups with respective contracts for
each imbalance settlement period (in Europe typically 15 minutes). Imbalances are then charged
with the imbalance price, see Section 2.1.3.
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power balance of feed-in and withdrawal must be ensured at all time. The power

balance must be monitored continuously and corrective action must be taken if

necessary in the event of fluctuations or outages in feed-in and withdrawal.

In a self-dispatch market like the German electricity market, the task of balanc-

ing the system is carried out by the responsible TSOs. In terms of procurement and

activation of reserve capacities to fulfill this task, the TSOs distinguish the three

qualities Frequency Containment Reserve (FCR), automatic Frequency Restora-

tion Reserve (aFRR), and manual Frequency Restoration Reserve (mFRR). These

are also referred to as primary, secondary, and tertiary reserve. In case of an event

disturbing the system frequency, reserve activation takes place in three stages,

though not each event requires the application of all three stages. The following

description and Figure 2.4 present this procedure for the case of a shortage in the

system, caused e.g. by the unplanned outage of a power plant, and a resulting

frequency drop. For the reverse imbalance direction of a surplus in the system and

a rising frequency, the activation of reserves takes place in the same sequence, but

in the other direction.

Firstly, the FCR is activated within 30 seconds to stop the frequency drop

and stabilize the frequency at the lower level as quickly as possible. The FCR

is activated non-selectively among all contracted providers, not only in the Ger-

man control zones, but also in the entire International Grid Control Cooperation

(IGCC). The IGCC covers 24 control zones in continental Europe10. In the tech-

nical process of FCR activation, it is worth noting that no explicit control signal

is sent by the TSOs. Instead, the providers monitor and translate the deviation

from the set point of 50 Hz directly into their respective control signal via pro-

portional control with full activation at +–200 mHz frequency deviation (pro rata

activation).

To make the FCR available for another disturbing event and to restore the

frequency to the set point, the aFRR replaces the primary reserve. In Germany, the

10IGCC has 24 member TSOs in 21 countries: Austria (APG), Belgium (Elia), Bulgaria
(ESO), Croatia (HOPS), Czech Republic (CEPS), Denmark (Energinet), France (RTE), Ger-
many (50Hertz, Amprion, TenneT DE, TransnetBW), Greece (ADMIE), Hungary (MAVIR),
Italy (Terna), Luxembourg (CREOS), the Netherlands (TenneT NL), Poland (PSE), Portugal
(REN), Romania (Transelectrica), Serbia (EMS), Slovenia (ELES), Slovak Rebpublic (SEPS),
Spain (REE), and Switzerland (Swissgrid). In addition, three TSOs are associated as observer
to IGCC: Bosnia and Herzegovina (NOS BiH), Montenegro (CGES) and Republic of North
Macedonia (MEPSO) (ENTSO-E, 2021a).
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full activation time for aFRR is defined to five minutes. Although full activation

times are not fully harmonized in Europe yet, by 2025 aFRR providers throughout

Europe shall be able to fully activate the reserve capacity within five minutes

(ENTSO-E, 2021c).

The necessary and cost-optimal activation of aFRR is determined by the load-

frequency controller of the responsible TSO or network regulation cooperation,

such as the so-called Netzregelverbund (NRV) in Germany. The determined acti-

vation signal is then automatically transmitted to the reserve provider. Like that,

the reserve provider receives a set point to ramp up for aFRR provision on a second

basis. Hereby, providers are activated according to a merit order list (MOL), i.e.

in the order of the cheapest energy prices of bids that were awarded in the aFRR

market. More information on the market design will be provided in the following.

Most disturbing events can be resolved by the activation of FCR and aFRR.

However, some disturbances have a larger extent or may persist for longer time

periods without corrective trading actions on the intraday spot market. To make

the secondary reserve available for another disturbing event, the TSOs replace or

support the secondary reserve with the tertiary reserve (mFRR). In Germany, the

mFRR has a full activation time of 15 minutes, although in the scope of the Eu-

ropean harmonization, the European TSOs agreed on a reduction to 12.5 minutes

(Consentec, 2020). Like in the case of aFRR activation, the TSOs activate mFRR

according to a MOL. The activation is not issued automatically but “manually”

by the system control center of the responsible TSO.

As soon as possible, but the latest 60 minutes after the first frequency devia-

tion, the BRP causing the deviation must resolve the schedule imbalance. These

corrective measures are typically realized through intraday trading.

Like for the wholesale markets, there is an ongoing process of European harmo-

nization and integration of BRMs. In 2017, regulation 2017/2195/EU establishing

a guideline for system balancing in the electricity supply system – often referred to

as Electricity Balancing Guideline (EBGL) – was published by the European Com-

mission. The aim of the guideline is to create a functioning and liquid cross-border

internal energy market also in the area of system balancing (European Commis-

sion, 2017). The regulation sets a European guideline on how to define balancing

reserve products and on how to organize their procurement within Europe in the

future.
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Figure 2.4: Sequence of use of the three reserve qualities in the exemplary case of a frequency
disturbing event causing the activation of positive balancing reserve (own illustration).

The German TSOs have already been successfully organized in a network reg-

ulation cooperation (NRV) for several years and have been driving forces in the

process towards European harmonization. The principle of the NRV is based on

the idea that the TSOs cooperate in all steps of procurement and activation of

system balancing to realize synergies and to avoid inefficiencies. Between the four

German TSOs (50Hertz, Amprion, TenneT, and TransnetBW), there is a joint

dimensioning, joint procurement, and a joint cost-optimized activation of balanc-

ing reserves. In the same spirit, in the ongoing European projects PICASSO and

MARI, the European Network of Transmission System Operators for Electricity

(ENTSO-E) members aim at implementing a joint activation process for aFRR

and mFRR, with the German NRV as a blueprint.

However, as these project and their proposals are not operative yet, for the

works prepared in this thesis, a national scope is sufficient with regard to balanc-

ing reserves. As of 2021, the German TSOs procure approximately 600 MW of

FCR, 2000 MW of positive and 1800 MW of negative aFRR, as well as 1400 MW

of positive and 1000 MW of negative mFRR (Bundesnetzagentur, 2021). Thus,

compared to the volumes of the spot market, the size of the BRMs is relatively

small.
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In the following, the market design for procurement of balancing reserves in

Germany as of January 2022 is presented. The official market description is pro-

vided by Consentec (2020). The joint procurement is organized in tenders that take

place via the platform regelleistung.net11. As mentioned before, the three quali-

ties FCR, aFRR, and mFRR are tendered separately. Whereas for the FCR only

reserve capacity is auctioned, for the aFRR and the mFRR reserve capacity and

reserve energy are distinguished. This serves the purpose to discriminate between

the compensation for the reservation of flexible capacity and the compensation

for delivery of balancing energy upon request. For FCR, this discrimination does

not apply because in expectation there is no delivery of energy for the symmetric

definition of the product.

For aFRR and mFRR, this leads to a multi-part auction. The interested reader

is referred to e.g. Ocker (2018), Ocker et al. (2018), and Ehrhart and Ocker (2021)

for a thorough discussion on BRM design, an investigation of incentives and game-

theoretical analyses of this rather unusual multi-part auction setting. The author

of the present thesis also contributed to the discussion on the market design and

the analysis of bidding strategies in multi-part auctions (Kraft et al., 2018, 2019a).

The insights of these works that are most relevant for this thesis are twofold: (a)

The prices on the BRM can deviate from fundamental energy economic concepts

such as opportunity-cost-based pricing of reserves (see also Swider and Weber,

2007; Just and Weber, 2008, 2015, for analyses of interactions and equilibria be-

tween spot and reserve markets), because they are due to (tacit) collusion and

strategic bidding by market participants. (b) The market concentration in the

BRM and resulting market power leads to substantial price uncertainty for small

market participants and requires a trading approach that can cope with it by

considering both profit opportunities and risk exposure.

During the period of preparation of the different papers contained in this thesis,

these issues led to several market design adjustments like shorter lead times, shorter

product periods and lower minimum bid size to open up the BRMs also for new

and smaller reserve providers. During a short period, even the scoring rule was

11This is a difference to exchange-based markets with an independent market operator like
EPEX Spot or Nord Pool in the case of spot markets. Tenders are a special form of market-
based procurement, since the only market participant on the demand side is the union of TSOs
and the volume is defined in advance and not market-based. However, for a better readability,
in the context of BRMs the terms market, auction, and tender are used interchangeably.
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changed from capacity-price-bid-based scoring to an approach considering a linear

combination of capacity price and energy price bid as scoring criterion, which

raised major concerns of some market participants. In the end, it even led to a

threat to the security of supply of Germany’s electricity system and was revoked

quickly afterwards (Handelsblatt, 2019). However, the evolutionary process of the

BRM is not finished until today.

In November 2020, in accordance to the market design target model provided in

the EBGL, a new market segment for balancing reserve energy was introduced to

decouple capacity from energy price bids for aFRR and mFRR. In that sense, the

balancing energy auction, which is also open to bids that have not been awarded

in the balancing capacity12, takes place 60 minutes before the start of a deliv-

ery period and determines the merit order for aFRR and mFRR activation. In

the next years, the lead times and product periods are announced to be further

reduced to increase competition in and overall efficiency of balancing reserve pro-

curement. In addition, the implementation of the aforementioned PICASSO and

MARI initiative will lead to a European market coupling (50Hertz et al., 2020a).

Thus, the market circumstances for balancing reserve providers may again

change fundamentally in the near future. In the mean time, balancing reserve

providers have become more used to a changing environment rather than a stable

one. Against this background, it is particularly important to develop methods

that are adaptable to new market designs and do not necessarily require years of

historical data13 to calibrate. This applies to all the approaches chosen in this

thesis, meaning that the contributions and validity of the developed models and

findings hold. However, slight adaptions and updates might be necessary when

the market designs are changed in future.

In Figure 2.1, the temporal structure valid in the beginning of 2022 is shown.

The GCTs for the balancing reserve capacity auctions for FCR, aFRR, and mFRR

12This design option is also referred to as the allowance of free or voluntary bids and aims
at in increase of competition on the reserve energy price bids. See Ocker (2018); Kraft et al.
(2019a); Ehrhart and Ocker (2021); Ehrhart et al. (2021) for more insights into the balancing
energy market design.

13Market participants in the real world do also only have access to the publicly available data
on regelleistung.net and must derive their decisions based on limited information. Although
not addressed in the scope of this thesis, this may also be one source of price uncertainty in
the BRM, as existing trading models may react sensitively when calibrated to new data and as
market participants may explore new market designs with a trial-and-error approach.
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are on the day ahead at 8 a.m., 9 a.m., and 10 a.m., respectively, and thus before

the electricity spot market begins. In the BRM auctions, six time slices of four

hours each are distinguished (0–4 a.m., 4–8 a.m., etc.) in all segments. The

temporal interplay with the spot markets is particularly important when modeling

trading decisions in competing segments. With its 4-hour-resolution, the BRM

has a larger granularity and covers four hourly day-ahead market (DAM) and 16

quarter-hourly intraday market (IDM) products in each time slice.

The minimum bid size and the bid increment are 1 MW for all three qual-

ities. The product for FCR is defined as symmetric, meaning that the offered

reserve capacity must be provided in both upward and downward direction. In

opposition, the products for aFRR and mFRR are defined as non-symmetric, thus

separate products for positive and a negative reserve are auctioned. Furthermore,

the FCR auction is cleared with uniform pricing14. The aFRR and mFRR auc-

tions are cleared with pay-as-bid pricing, both the reserve capacity and the reserve

energy segment. Table 2.1 summarizes the key product characteristics of the three

qualities valid in the beginning of 202215.

The costs occurring for balancing the system are transferred by the TSOs in two

ways. The costs linked to the reservation of balancing capacity (i.e., the capacity

price payments) are considered inevitable for the provision of the public good

security of supply and are settled via the grid charges to connected consumers.

On the other hand, the costs linked to the activation of balancing energy (i.e., the

energy price payments) are settled according to the cost-by-cause principle. In

that sense, for each imbalance settlement period (i.e., 15 minutes), the costs for

reserve activation are summed up and then divided by the activation volume to

determine the imbalance price, in Germany referred to as regelzonenübergreifender

einheitlicher Ausgleichsenergiepreis (reBAP). Note, that in the case of negative

energy prices, which are common for negative reserves in aFRR and mFRR, also

revenues may occur for the TSO. The imbalance price can thus be negative, too.

14Please note, that the FCR market design to which the forecasting methods in Paper A are
applied, is slightly different. The data is based on a market design, in which the lead time as
well as the product period is one week, and the auctions are cleared with pay-as-bid pricing.
However, this does not affect the general functioning of the developed methodology.

15For readers that are familiar with older reserve product definitions and want to compare
them to the ones presented here, Consentec (2020) provides an overview table with the evolution
of product definitions since 2018.
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Characteristic FCR aFRR mFRR

Gate closure time (GCT)
reserve capacity auction

day ahead, 8 a.m. day ahead, 9 a.m. day ahead, 10 a.m.

GCT reserve energy auction n.a. 60 min before delivery 60 min before delivery

Product resolution 6 x 4 hours 6 x 4 hours 6 x 4 hours

Product directions symmetric positive and negative positive and negative

Minimum bid size 1MW 1MW 1MW

Bid increment size 1MW 1MW 1MW

Scoring rule capacity price bid capacity price bid capacity price bid

Clearing rule uniform pricing pay-as-bid pay-as-bid

Tendered volume (approx.) +-600MW +2000MW, -1800MW +1400MW, -1000MW

Table 2.1: Key product characteristics of the three balancing reserve qualities FCR, aFRR,
and mFRR valid at the time of writing (January 2022).

In imbalance settlement, the TSOs charge BRPs according to the direction of

system imbalance and to the deviations from the schedule commitments of their

balancing groups. In that way, BRPs are charged or paid the imbalance price for

their imbalances.

Although intentional imbalances are prohibited in the German market area,

frictions in the economic incentives between the spot market and the imbalance

settlement led to intentional imbalances threatening the security of supply in the

past (Consentec, 2012; Handelsblatt, 2019). Therefore, a few adjustments to the

imbalance price apply to prevent the BRPs from threatening the system by acting

economically rational. These are published by the TSOs (50Hertz et al., 2020b).

2.1.4 Supply flexibility and technical provision of balancing ser-

vices

Other relevant aspects of balancing reserves are the prequalification process, the

structure of the supply side, and the technical provision. The technical provision

varies for each technology. In general, it can be stated that the feed-in of a gen-

erator or the withdrawal of a consumption process must be adjusted quickly, and

that in general any generation technology can vary the feed-in to some extent,

though not at the same speed and to the same extent. To describe the flexibility

of a generation unit of a certain technology and thus its capability to provide bal-
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Figure 2.5: Illustration of technical parameters determining the flexibility of a power plant.
The start-up time defines the time to reach the minimum load output. Ramp rates are
relevant both in upward and downward direction and determine the operational flexibility
between minimum load and nominal capacity (own illustration based on Agora Energiewende,
2017).

ancing reserves, the plant parameters minimum load, the ramp rate as well as the

start-up time are considered. Figure 2.5 provides an illustration of the technical

parameters based on a exemplary load curve.

In addition, Table 2.2 provides an overview of typical ranges for the conven-

tional power plant technologies. It must be noted, that technological developments

led to considerable changes in the flexibility of power plants, particularly for coal-

and gas-fired power plants. This leads to the distinction between most commonly

used power plants, i.e., the existing power plants that dominate the energy sys-

tem, and state-of-the-art power plants. Overall, it can be observed that large-scale

power plants with electricity generation through steam processes – deploying the

so-called Rankine cycle – require longer start-up times compared to technologies

that use other energy conversion principles. This is mainly due to the thick-walled

components in the high-pressure part of the steam process, which can only tolerate

limited rates of temperature change and thus limit the start-up speed and ramping

rates of the power plant. The limited temperature change rate also explains the

difference between hot start-up (i.e., the power plant has been generating within

the last 8 hours and components are still hot) and cold start-up times (Albert,
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Parameter Unit(s) OCGT CCGT Hard coal Lignite Nuclear

Most commonly used
Minimum load [% installed power] 40–50 40–50 25–40 50–60 40–50
Average ramp rate [% installed power/min] 8–12 2–4 1.5–4 1–2 3.3–10
Hot start-up time [min] or [h] 5–11 min 1–1.5 h 1.5–3 h 4–6 h n.a.
Cold start-up time [min] or [h] 5–11 min 3–4 h 5–10 h 8–10 h 24–50 h

State-of-the-art (2017)
Minimum load [% installed power] 20–50 30–40 25–40 35–50 n.a.
Average ramp rate [% installed power/min] 10–15 4–8 3–6 2–6 n.a.
Hot start-up time [min] or [h] 5–10 min 30–40 min 1.33–2.5 h 1.25–6 h n.a.
Cold start-up time [min] or [h] 5–10 min 2–3 h 4–6 h 5–8 h n.a.

Table 2.2: Plant parameters determining operational flexibility for different power plant
technologies (own compilation based on Agora Energiewende, 2017; Schröder et al., 2013).

1996). Lignite and nuclear power plants are typically dimensioned in the largest

scales, leading to the longest start-up times and the slowest ramp rates.

More flexible in terms of start-up and ramping are generation technologies

based on the Joule cycle, such as open cycle gas turbines (OCGTs). In the Joule

cycle, instead of using steam as transmission medium for the thermal energy, a

mixture of compressed air and flue gas is directly expanded in a turbine to gen-

erate electrical energy. This simpler process leads to lower start-up times and

higher ramp rates, however at the expense of lower process efficiency (Agora En-

ergiewende, 2017). Note, that combined cycle gas turbines (CCGTs) combine a

Joule cycle with a subsequent steam-based Rankine cycle, which leads to technical

parameters similar to plants deploying the less flexible Rankine cycle.

The technologies used for electricity generation from biogas or biomass are het-

erogeneous, which also leads to heterogeneous typical plant parameters. Whereas

small installations can be based on combustion engines and are thus highly flexi-

ble regarding start-up times, minimum load, and ramp rates, larger installations

are based on the more efficient Rankine or Joule cycles and hence have technical

parameters in the ranges of the respective technologies mentioned in Table 2.2.

Finally, hydro power generation is based on the conversion of mechanical into

electrical energy. Hence, there are no limitations directly stemming from the ther-

modynamics of the energy conversion process, but natural parameters such as

inflow, reservoir size, fill levels and ecological restrictions dominate the limitations

to operational flexibility. Swider (2006) reports minimum loads of 20 to 30 percent

and ramp rates in the range of 1.5 to 2.5 percent per second in terms of nominal

capacity for the different turbine types Pelton, Francis, and Kaplan. The differ-
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ent types of hydro power plants can be distinguished into run-of-river, reservoir

storage, and pumped-storage hydro plants. Whereas run-of-river plants are able

to provide flexibility only to limited extent, installations with a reservoir – and

particularly those with a pumping operation mode – are able to ramp up within

minutes and adapt their output flexibly in order to provide balancing services

(Siemonsmeier et al., 2018).

A description of the technical execution of the output adaption according to

activation signals for each technology would exceed the scope of this work. The

interested reader is referred to, e.g., the dissertation of Swider (2006) for a descrip-

tion of the detailed technical realization of balancing reserve provision. Since the

generation output of a turbine is determined by the turbine efficiency, the enthalpy

difference between turbine inlet and outlet, and the steam mass flow through the

turbine, besides an increase or decrease of the amount of fuel used for combus-

tion, steam process control also provides short-term operational flexibility. With

steam process control based on fixed or variable pressure management, the steam

mass flow or the thermodynamic state of the steam at the turbine inlet can be

modified to control the turbine output. As Swider (2006) mentions, in real-world

applications, typically hybrid forms of fixed and variable pressure management are

applied.

As balancing services are deployed to ensure the security of supply and are

therefore considered part of a critical infrastructure, technical units need to prove

reliability and security with regard to the technical provision and the communi-

cation architecture in order to be allowed a market participation. In recent years,

prequalification requirements were adjusted to lower market entry barriers and to

open the BRM to new providers. Today, the BRM segments are open to small

technical units, pools of units, and also to storage technologies that can meet the

requirements. The valid requirements and a detailed description of the prequalifi-

cation process are published by the TSOs (50Hertz et al., 2020c).

As mentioned above and as can be observed in the publication of prequalified

reserve capacity that is displayed in Figure 2.6 and Table 2.3, various technologies

are able to provide balancing reserve (50Hertz et al., 2022). However, despite

the market entry of battery storage, biomass, and even vRES such as wind, the

majority of the market is still covered by large-scale thermal and hydro power

plants. When comparing the prequalified capacities to the tender volumes of the
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Figure 2.6: Prequalified balancing reserve capacity in Germany as of January 2022, see
Table 2.3 for the exact numbers (own illustration based on data from 50Hertz et al., 2022).

BRM, there appears to be sufficient demand coverage, even when subtracting the

soon to be phased-out technologies nuclear, hard coal, and lignite. Even though the

economics of reserve provision are changing and may further change significantly

in the future, it is hence unlikely that there will be a scarcity of reserve capacity

from a technical perspective.

2.1.5 Further system services

The scope of this thesis is clearly set on the electricity spot markets and the BRMs.

However, besides balancing reserves, further system services or so-called ancillary

services are distinguished. These system services are necessary to ensure a safe

and stable operation of the electricity grid. As in continental Europe the system

services aside balancing energy are nowadays mostly not traded in market-like

structures or are limited to special demand groups, they are mentioned here for

completeness but will not be further investigated in the thesis. However, for some

system services there are markets implemented in other countries. Even though
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Technology FCR aFRR+ aFRR– mFRR+ mFRR–

Nuclear 0.22 0.18 0.19 1.27 1.27

Lignite 0.56 1.20 1.21 4.16 4.20

Hard coal 0.48 1.05 1.07 2.98 2.88

Natural gas 0.35 3.53 3.57 7.10 6.94

Oil 0 0.26 0.03 1.28 0.09

Biogas/biomass 0.04 1.84 2.29 2.27 2.75

Hydro 4.79 15.10 15.15 13.99 14.01

Battery storage 0.48 0.08 0.06 0 0

Demand/DSM 0.02 0.12 0.07 0.20 0.14

Wind 0 0 0.03 0 0.22

Others 0 0.01 0.01 0.11 0.3

Table 2.3: Prequalified balancing reserve capacity in GW in Germany as of January 2022
(50Hertz et al., 2022).

these services do not offer a revenue stream for regular market participants as

of today, they might become more relevant in the future with less conventional

generation capacity in the system.

To guarantee frequency stability and the system balance, besides balancing

energy the interruptible loads are contracted by the TSOs. These are typically

energy-intensive industrial processes that can be suspended temporarily to sup-

port the electricity system. In Germany, quickly (activation within 15 minutes)

and immediately (activation within 0.35 seconds) interruptible loads are distin-

guished, and 750 MW of each are tendered on a weekly basis (50Hertz et al., 2021;

TransnetBW, 2021).

Another element of frequency stability is the so-called instantaneous reserve

(German: Momentanreserve) that intends to smooth frequency drops without de-

lay and thus limits frequency gradients and deviations. Whereas the other men-

tioned frequency containment or restoration reserves are based on an increase or

decrease of the power feed-in or consumption of a technical unit, the instanta-

neous reserve is based on the inertia of the technical units in the system. In the

current European electricity system, there are sufficient technical units that gener-

ate electricity based on masses in rotation with system frequency. These rotating

masses provide instantaneous reserve inherently (and could technically also not
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avoid to do so) and form a system with sufficient inertia, so that there is no need

for the TSOs to procure this service as of today. However, there are studies in-

vestigating the need for instantaneous reserve to preserve system inertia in future,

vRES-based electricity systems (e.g., dena, 2016, 2020). A prominent example of

a system lacking inertia is the United Kingdom, where the TSO National Grid

introduced a dynamic containment product. This dynamic containment product

with a full activation time of maximum one second corresponds to the provision

of instantaneous reserve. Among others, battery storages are technically able to

provide this service and generate a significant revenue stream by providing it.

Another ancillary service is the provision of so-called reactive power (German:

Blindleistung), and addresses the voltage stability in the alternating-current-based

grid. Reactive power is provided by various technical units, such as thermal power

plants, decentralized energy resources and even loads, but the effective range of

technical units providing reactive power in the grid is limited, leading to the ne-

cessity to ensure that sufficient reactive power is available regionally and on each

voltage level. This regional and grid-topological scope as well as today’s sufficient

provision of reactive power makes the setup of a market for it both challenging

and not necessary. However, with a higher capacity utilization of power lines, the

amount of reactive power required for stable grid operation will increase (dena,

2020).

The last ancillary service to be mentioned in this section is the so-called black-

start capability, and describes the ability of an electricity grid to re-establish opera-

tion after a blackout. However, this is also rather a future challenge, as today there

are sufficient large generation units on the highest voltage level to re-establish grid

operation and therefore no economic incentivization is necessary for the market

participants to provide black-start capability (dena, 2020).

The fact that the mentioned ancillary services are not part of the current mar-

ket design does not exclude them from market designs in the future. Particularly

providers of instantaneous reserves and reactive power, but also black-start capa-

bility will become increasingly important in a decentralized electricity system with

a dominant share of non-synchronous generation technologies that feed in inverter-

based and are not spinning synchronously with the system frequency. Therefore,

in case there is a need for explicit incentives to maintain system security, providers
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of these ancillary services will potentially be compensated explicitly in the future.

However, in the scope of this thesis, they can be neglected.

After the institutional framework of this thesis and the need for spot and

balancing reserve markets are introduced, the next section will summarize essential

theoretical concepts and definitions of uncertainty and risk. Further, a taxonomy

of risk will be provided to categorize the corporate risks that are addressed in the

papers included in this thesis.

2.2 Uncertainty and risk in electricity markets

2.2.1 Definitions of uncertainty and risk

In the previous section, the background with regard to the institutional circum-

stances of electricity markets was provided. The second basic element of this thesis

is uncertainty and the associated risk. On the one hand, these terms are often used

intuitively and without scientific claim to precision in daily life, and on the other

hand they are used in many scientific and business contexts. Therefore, in the

scope of this thesis, it is worth to define them. Further, a typology of risk sources

and measures to quantify risk exposure will be introduced to enable the reader to

categorize the approaches and models that are developed in this work.

According to the Oxford Learner’s Dictionary of Academic English (2021) un-

certainty is “the state of not knowing [...] exactly” and something uncertain is

“something that you cannot be sure about”. Ibidem, risk is referred to as “the

possibility of something bad happening at some time in the future” and “a situa-

tion that could [...] have a bad result”. These definitions are fully in line with the

intended use in this thesis and the included studies. However, to be able to treat

uncertainty and risk quantitatively, further definition of the terms is necessary.

The following assumptions and definitions are essential and remain valid in the

rest of this thesis.

The following definitions are adapted from and notation-wise in line with Birge

and Louveaux (2011) and Chung (2001). Let the future be describable by a finite

set of parameters that are relevant to the decision problem (i.e., the space of all

potential outcomes for the future). Whereas some of the parameters are determin-

istic, some others are subject to uncertainty and are represented by random vari-
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ables. Let the triplet (Ω,A,P ) be the probability space containing all outcomes of

random variables and combinations of them. Ω is the set of all potential outcomes.

A single outcome is referred to as an event A, andA is the set of all events. For each

A ∈ A, a probability P (A) is defined, such that 0 = P (∅) < P (A) ≤ P (Ω) = 1

and P (A1 ∪ A2) = P (A1) + P (A2), if A1 ∩ A2 = ∅.
Based on this definition, an important distinction can be made between un-

certainty and ignorance. Ignorance can occur in two ways: (a) It can occur in

the form of “unknown unknowns”, as former US Secretary of Defense Donald H.

Rumsfeld once put it (Rumsfeld, 2002), i.e., Ω is not completely known or A is

infinite. (b) It can further occur in the form of imprecise probabilities, i.e., even if

Ω and A are known completely and finite, there is no unambiguous representation

of the probability distribution of some or all events A ∈ A (Bradley, 2019). A

famous classic example for a probability space with ambiguous probabilities is the

Ellsberg problem (Ellsberg, 1961).

In the scope of this thesis, only decisions under uncertainty and not those

under ignorance are considered. A decision problem under uncertainty is hence

defined as a decision problem that satisfies the aforementioned probability space

characteristics. Where no confusion is expected, such a probability space will be

denoted leniently by Ω in the remainder of this thesis.

For a particular random variable ξ and a subset ω ⊂ Ω, in accordance with

Birge and Louveaux (2011), the following definitions hold. Let

Fξ(x) = P ({ω|ξ ≤ x}) (2.1)

be the cumulative distribution. This cumulative distribution can either be de-

scribed with a functional relation or by empirical data, in which cases the terms cu-

mulative distribution function (CDF) and empirical cumulative distribution func-

tion (ECDF) are used, respectively.

Further, the two cases of discrete and continuous random variables can be

distinguished. A discrete random variable can take a finite number of different

values. The probability distribution for a discrete random variable is defined with

the list of possible values, ξk, k ∈ K, and with associated probabilities, as

f(ξk) = P (ξ = ξk), s.t.
∑

k∈K
f(ξk) = 1. (2.2)
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On the other hand, a continuous random variable is described with the so-

called density function f(ξ). In the density function, the probability of ξ being in

an interval [a, b] is defined as (Birge and Louveaux, 2011)

P (a ≤ ξ ≤ b) =

∫ b

a

f(ξ)dξ. (2.3)

Please note, that the approaches deployed in the papers B and C of this thesis

use discrete probability spaces. This is mainly due to algorithmic reasons, as will

be outlined in Section 3.3. In discrete probability spaces, the events as realizations

of the future are typically referred to as scenarios. If the uncertainty unfolds in

multiple stages, the scenarios can be described as paths through a directed graph.

For the special case of a branching-out graph structure (i.e., each successor

has a single predecessor, but a predecessor has one or multiple successors), this

directed graph is also referred to as a scenario tree. Hereby, the different final states

ω ∈ Ω are perceived as the scenario leaves. A second special case of a branching

graph structure is the so-called scenario lattice, which is sometimes also referred

to as recombining scenario tree. Here, a successor may have several predecessors,

and thus a larger number of scenarios can be generated with a fewer number of

modelled states for each stage (Heitsch and Römisch, 2009). Both special cases

comply to desirable structures of probability spaces and are widely used to model

uncertainties in the electricity market context (cf., e.g., Wallace and Fleten, 2003;

Plazas et al., 2005; Weber, 2005; Keles, 2013; Löhndorf et al., 2013; Boomsma et al.,

2014; Wozabal and Rameseder, 2020, to name just a few). As the generation and

reduction of scenario trees is essential to this thesis, a separate section (3.2) is

dedicated to it.

Furthermore, in a situation of stochastic decision-making, the set of possible

decisions or actions X is defined by the action space X , which may contain discrete

and continuous decision variables. Further we assume a value function z(x, Ω) that

is defined for each decision x ∈ X and for all states in Ω, and maps them on R.

Note, that as a consequence, z is also a random one-dimensional16 variable defined

in Ω.

16Generally, a value function could also be multi-dimensional and map X and Ω on Rn. How-
ever, for the problems in the scope on this thesis, it is sufficient to consider one-dimensional value
functions.
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To be able to talk about risk in a quantitative and unambiguous way, let the

distribution of z, in the papers of this thesis typically a profit distribution, be

known in the form of the CDF or the ECDF. The risk exposure of a decision x can

then be expressed by measures (a) based on descriptive figures of the entire distri-

bution (e.g., variance), (b) based on predefined threshold values (e.g., the shortfall

probability), or (c) by measures based on predefined sections of the distribution

(quantiles). In the following these measures will be referred to as risk measures.

Please note, that the terms risk metric and risk measure are used interchangeably

in this thesis and the papers.

Artzner et al. (1999) define a set of four properties of risk measures that are de-

sirable for financial risk management: monotonicity, sub-additivity, homogeneity,

and translational invariance (cf., Artzner et al., 1999, for the mathematical formu-

lation of the properties). A risk measure that satisfies these properties is referred

to as a coherent risk measure. In the following, commonly used risk measures are

presented. For a more detailed discussion and calculation examples, the interested

reader is referred to Conejo et al. (2010).

The variance of z is one representative from group (a) of risk measures. Hereby,

the variance of a discrete random variable z(x,ω) 17 is defined as

Var(z) =
n∑

i=1

pi(zi − µ)2, (2.4)

with pi being the probability of i and

µ =
n∑

i=1

pizi (2.5)

being the expected value of z over all n observations in Ω. It provides a

measure on how much the values of z typically deviate from the expected value.

The square root of the variance is referred to as the standard deviation. The

variance is famously used by Markowitz (1968) in modern portfolio theory, in

which efficient decisions in mean-variance analysis are defined as non-dominated

pairs of expected value and variance of (stock) returns. However, the variance

17This means, z is dependent on decision x and realization ω. For better readability, the (x,ω)
will be dropped in the text in the following.
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takes into account both deviations in upward and in downward direction and is

sensitive to outliers. Further, the variance is not positively homogeneous and not

sub-additive, and thus not a coherent measure of risk. Therefore, different risk

measures that are more robust and focus on the risk of loss, have been developed.

An intuitive approach leads to group (b) of risk measures, using threshold val-

ues to quantify the risk. The shortfall probability SP is defined as the probability

of the random variable z(x,ω) to fall below a predefined threshold value µ. For

the discrete case this translates to

SP(µ,x) = P (ω|z(x,ω) < µ), ∀µ ∈ R. (2.6)

Based on the threshold µ, the expected shortage ES is defined as the expected

value of z, in case the realization of z is below µ. This leads to the formula

ES(µ,x) = µ− 1

SP (µ,x)
Eω∈Ω

{
max{µ− z(x,ω), 0}

}
, ∀µ ∈ R. (2.7)

However, the use of an arbitrarily fixed threshold can be impractical and further

does not comply with the properties of a coherent risk measure. Therefore, the last

group (c) of risk measures is based on quantiles of the profit distribution. Firstly,

the value-at-risk (VaR), denoted by VaR(α,x), is defined as the quantile of the

distribution of z at (1− α)-level. Thus, α denotes the probability, with which the

z will be lower or equal the VaR. Mathematically, the VaR is defined as

VaR(α,x) = max
{
µ : P (ω|z(x,ω) < µ) ≤ 1− α

}
, ∀α ∈ (0, 1). (2.8)

As the VaR only captures the quantile (point) value, it does not contain any

other information about the distribution of z (e.g., the profit distribution), partic-

ularly not about distribution below the quantile. This means, in case of a so-called

fat tail (i.e., a large loss with a low probability), the VaR would not be able to

capture the risk appropriately. Further, the property of sub-additivity cannot be

satisfied, meaning that it violates the diversification principle18 for some problem

structures. Thus, it is also not a coherent risk measure.

18The diversification principle refers to the intuition, that the risk exposure of a portfolio with
two elements is lower or equal than the risk exposure of the two elements considered alone.
Mathematically, it is ensured by sub-additivity.
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Another quantile-based risk measure that has gained a lot of popularity due

to desirable mathematical and computational properties is the conditional value-

at-risk (CVaR), denoted by CVaR(α,x). Based on the definition of the VaR, the

CVaR measures the expected value of z in case its value falls below VaR(α,x).

Mathematically, it can be expressed for a discrete distribution as (Conejo et al.,

2010)

CVaR(α,x) = max
{
µ− 1

1− αEω∈Ω

{
max{µ− z(x,ω), 0}

}}
, ∀α ∈ (0, 1). (2.9)

As the CVaR addresses all the major weaknesses of the other presented risk

measures, and also satisfies the properties of coherency defined by Artzner et al.

(1999), it is selected for the consideration of risk in Papers B and C. Further, the

CVaR is used in several papers handling risk in the electricity market context that

are published in prestigious journals (e.g., Morales et al., 2010; Laur et al., 2018;

Wozabal and Rameseder, 2020). Thus, it can be considered the state-of-the-art

benchmark at the time of preparing this thesis. A detailed formulation of how

to integrate the CVaR into stochastic optimization problems is provided in Paper

C19.

There is obviously a trade-off between profitability and risk exposure, meaning

that an optimized decision can either sacrifice expected profitability for a lower

risk exposure or increase expected profitability at the cost of higher risk exposure.

In this thesis, the risk exposure is integrated into the objective function of opti-

mization problems as a linear combination of expected profitability and the risk

measure (Eq. 2.10). In that sense, π∗ denotes the profitability metric including

risk, with α denoting the considered probability level of the CVaR, and λ denoting

the weight assigned to the risk measure. λ can hence be interpreted as the risk

aversion parameter. λ = 0 corresponds to risk-neutral decision making, whereas

λ = 1 only considers the risk measure, e.g. the expected value of the worst 5%

cases, and therefore corresponds to a high degree of risk aversion.

19One might expect the CVaR to be computationally very expensive. However interestingly,
the supposedly simpler VaR comes with comparably much higher computational expenses in
stochastic optimization problems, as many auxiliary binary variables are necessary. The inte-
gration of CVaR does not need auxiliary binaries and is therefore not only a mathematically
desirable coherent risk measure, but also computationally desirable.
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π∗ = (1− λ) · E (π) + λ · CVaRα (π) , ∀α ∈ (0, 1),λ ∈ [0, 1] (2.10)

Moreover, the tuple (α,λ) defines the risk attitude of a decision maker. This

risk attitude is determined by the share of the distribution to be considered worst

cases and the weight that should be given to their expected value in the decision-

making. In this logic, by varying α and λ in the problem formulation, efficient

decisions can be derived for different risk attitudes. In Papers B and C, the tuples

of E and CVaR of efficient decisions for different (α,λ)-combinations are referred

to as efficient frontiers of the decision problem.

Finally, please note that the presented framework generally can only consider

quantifiable risks, i.e., the distribution of z must be known. Qualitative risks or

hardly quantifiable risks pose a limitation to this decision-making framework. In

the next section, a taxonomy of risk as well as the major sources of uncertainty

for corporates and decision-makers in electricity markets are presented.

2.2.2 Taxonomy of risks and key uncertainties in the energy

sector

When single decisions or a set of interdependent decisions are optimized for prof-

itability and risk exposure, obviously only a small share of the entire corporate risk

of an electricity market participant (e.g., an energy supply company) can be cap-

tured. To gain an overview over the bigger picture of risks and the main sources of

uncertainty, this section presents a taxonomy of the corporate risks a company in

the energy sector may be exposed to. For more thorough treatments of this topic,

the interested reader is referred to existing literature, e.g., Bergschneider et al.

(2001), Pilipović (2007), and Mack (2014). That literature body might in parts

appear a little out of date, but still covers the main aspects of risk management

in the energy, and in particular the electricity sector. It will therefore serve as

a basis for the following paragraphs, and will be complemented by new aspects

where necessary.

The corporate risk can be distinguished into internal and external risks (Wolke,

2015). Whereas internal risks are risks that arise from the business strategy and
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operational processes, external risks are risks that stem from links to the business

environment. The temporal scope of the (internal) decisions is one dimension,

along which risks are typically distinguished.

Along the temporal scope, risks can be subdivided into strategic risks that

are associated to long-term (strategic) decisions such as mergers and acquisitions,

investments, research and development activities, or location planning, and oper-

ative risks that are linked to the operative decisions such as staff planning, project

development, technical operation of plants, or financing decisions. On the oper-

ative level, the risks can be further divided into risks associated with short-term

and with mid-term decisions. In particular, the short-term operative decisions

also contain the trading activity on electricity markets that is the main scope of

the Papers B and C. The main characteristic of internal risks is that they can be

actively influenced by the company’s business decisions.

Orthogonal to the temporal dimension, the external risks can be subdivided

into six subcategories, representing the interfaces to the business environment: (a)

market risks, (b) nature risks, (c) legal risks, (d) policy risks, (e) society risks, and

(f) other risks. The main characteristic of external risks is that they do not (or

hardly) lie in the influence of the company. Please note, that in aforementioned

literature (b) and (e) are sometimes included in (f) as other risks. However, in

the light of weather-dependent electricity generation, natural disasters, climate

change, and societal uprising against business activity20, they are listed separately

here. An example for other risks may be the counter-party risk.

Whereas the external risk categories cannot be treated completely independent,

this thesis sets the focus on decisions and the arising risks associated with markets.

However, it appears obvious that policy measures such as the implementation and

adaption of emission trading systems, phasing-out or subsidizing of technologies,

and European integration have an impact on electricity markets. Further, nature

risks such as droughts that impede hydro power generation, but also the logistics

and plant operation for conventional power plants and variations in vRES genera-

tion have a potentially huge impact on electricity markets, both in the short and in

the long term. It must be noted, that market risks do not only contain risks that

20The author wants to avoid subjectivity at this point. Though the motivations for demon-
strating against nuclear plants, opencast lignite mining, and emitting greenhouse gases, but
also against transmission grid expansion and wind turbines, are acknowledged, from a business
perspective these actions pose a risk.
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are directly linked to the electricity markets, but also risks linked to other markets,

such as resource commodity and carbon markets, stock, financial and real estate

markets, as well as the labor market. Further, as Weber (2005) mentions, there

are also model risks. This means, there is also the risk that the models, based on

which operative and strategic decisions are assessed and ultimately taken, can be

imprecise or even contain major errors and invalid assumptions.

Finally, to get the complete picture of the corporate risks for companies in the

electricity sector, it is helpful to consider the electricity value chain – consisting

of fuel extraction and transport, generation, trading, as well as sales and retail –

as a third dimension. Note, that the transportation and distribution of electricity

are not mentioned in this categorization, as these are typically not under compe-

tition but regulated. The presented taxonomy thus results in a three-dimensional

structure that is illustrated in Figure 2.7. In the next section, the papers included

in this thesis are allocated in this taxonomy.

2.2.3 Categorization and allocation of the thesis in the taxon-

omy of risks

For the reader, it might be interesting how the papers included in this thesis can

be categorized in the presented taxonomy of risks. For that purpose, the following

paragraphs and Figure 2.8 provide a categorization and allocate the scopes within

the presented taxonomy.

For a short-term price forecasting paper, such as Paper A of this thesis, it

comes quite natural that the main risk investigated is short-term market risk,

and is associated with trading. The forecasting framework developed in Paper

A thereby allows not only to derive a point forecast, but the different methods

also allow to derive confidence intervals as well as ensemble-based distributions

of the price expectation. These are valuable – if not inevitable – information for

managing market risks. However, Paper A does not consider the decision-making

aspect.

The main risks that are investigated in Papers B and C are the ones associated

with the short-term volume and price uncertainty in the considered balancing

reserve and spot market segments. These arise on the one hand from market-

inherent risks, such as the bidding decisions of other market participants or load
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Figure 2.7: Categorization of risks in the presented taxonomy of corporate risks for com-
panies in the electricity sector. The three dimensions “internal decision levels”, “external
risks”, and “electricity value chain” allow for a precise allocation of risk topics in the complex
environment of the electricity sector.
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uncertainty, but on the other hand also from nature risks such as the weather that

then translate into markets risks via volume and price effects. Risks linked to

the weather, such as water inflows to rivers or reservoirs and the overall electricity

demand, have been in the scope of research and business for a long time. However,

the risks associated with the generation of solar and wind power, and particularly

the proper translation into price and volume risks for market participants, is a

relatively new topic for energy economics. The generation of sound scenario trees

for various type days including information on prices, vRES generation volumes

and the (residual) load21, is hence a valuable set of information for risk management

by itself.

In addition, trading strategies are determined and analyzed that take the risk

exposure and different risk attitudes into account. Therefore, these papers provide

an important contribution to an effective management of the risks at the intersect

of market and nature risks. Undoubtedly, in the light of the decarbonization of the

electricity system, these risks gain more and more in importance when managing

the operative internal risks of a company. In that context, it must be stressed that

the market participants cannot use the traditional products of the future market

to hedge against these short-term market risks.

The papers in this thesis hence have a clear focus on risks on the short-term

decision level, while risks on the long-term and mid-term level are not considered

in detail. Figure 2.8 summarizes the categorization and delimitation of the papers

contained in this thesis in the broader taxonomy of corporate risks for companies

that are active in the electricity sector.

In the following Chapter 3, the methodological background of the models de-

veloped in the papers of this thesis is provided. Section 3.1 provides an overview

over times series modeling and forecasting methods, and addresses the modeling

of uncertainty. Section 3.2 discusses approaches to generate scenarios from it. The

subsequent use of the scenarios is such that they are used for decisions to maximize

profits from market operations, while taking the risk exposure into account (Pa-

per B and Paper C). For that purpose, Section 3.3 presents and discusses different

approaches of optimization under uncertainty.

21The term residual load refers to the overall load minus the generation of RES and corresponds
to the load that must be satisfied by conventional generation capacities.
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Chapter 3

Methodology

3.1 Modeling of time series and forecasting

3.1.1 Categorization of time series modeling approaches

When it comes to analyzing the energy system and electricity markets, building

(stochastic) models has a long tradition in energy economics. Although one can

think of many parameters to be modeled, for the sake of readability and to fit the

scope of this thesis, let the parameters of interest be the balancing reserve and spot

market prices. This is without loss of generality, however the prices appear to be

the most relevant and challenging parameters to model. In the field of modeling

electricity prices, there exists a variety of approaches that are distinguished into

three categories in this thesis. Other authors (e.g., Weber, 2005; Weron, 2014;

Lago et al., 2021) may present slightly different categories depending on their

scope, but the general structure of the typology remains consistent with the one

proposed here. The three proposed categories consist of the two classical categories

(a) fundamental models and (b) finance and econometric models (as distinguished

by Weber, 2005), and are complemented by the relatively new category (c) machine

learning models.

(a) First, there are fundamental models that try to capture the fundamental

relations in the system and derive the values for the parameter of interest from

it. There exist many fundamental modeling approaches, such as cost-minimizing

energy system models or agent-based electricity market simulation models. These

45
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models vary largely in complexity and temporal as well as technical resolution.

Although in other works a further distinction by optimization and simulation is

undertaken, they are included in one category in this thesis, as they share the

attempt to model the fundamental relations leading to the market prices. The

reader is referred to a rich body of literature for further reading on fundamental

models. Most relevant to this thesis, Maaz (2017) and Ortner (2017) develop

fundamental models of the BRM in order to derive its prices. Further, Genoese

(2010) develops a fundamental agent-based simulation model for the electricity

market in order to derive its prices22.

Chiodi et al. (2015) provide a starting point to the world of cost-minimizing en-

ergy system models that will not be discussed further due to conciseness. Further,

game-theoretical models (see, e.g., Ocker, 2018, for a model of the BRM) as well

as system dynamics models (see, e.g., Petitet, 2016) are deployed to explain prices

fundamentally. However, these model categories are also not further discussed in

this thesis.

(b) Second, finance and econometric models mostly neglect the fundamental

relations of price formation and attempt to capture the mathematical and statis-

tical relations and properties of the time series as precisely as possible. Therefore,

these are also referred to as statistical models or financial (mathematical) models.

As Weron (2014) describes it perfectly concise, econometric models use “a math-

ematical combination of the previous prices and/or previous or current values of

exogenous factors” to explain or forecast price time series.

These models are highly relevant to this thesis, as Paper A develops economet-

ric models and Paper B as well as Paper C base their modeling of uncertainty on

econometric models. However, not only econometric models are necessary to char-

acterize uncertainty appropriately. To model the properties of price dynamics and

uncertainty, such as in Paper B and C, financial models are widely used to model

the stochastic residuals of econometric time series models. The next Section 3.1.2

will therefore provide an introduction to this family of finance and econometric

models.

(c) Third, machine learning models, often also referred to as computational in-

telligence or artificial intelligence, attempt to model times series and have gained

22Many works build on this model and developed it further, see also Ringler (2017); Bublitz
(2019); Fraunholz (2021).
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increasing interest in recent years (Lago et al., 2021). This class is hard to de-

fine precisely and undergoes a very dynamic development. However, the main

approaches that are used for modeling prices time series are artificial neural net-

works (ANNs), models based on fuzzy logic, support vector machines and to some

extent also evolutionary computation approaches (cf. Weron, 2014).

From the mentioned approaches, this thesis deploys ANNs to model reserve

market prices in Paper A. Section 3.1.3 will therefore provide some background on

the general idea behind ANNs and their application to forecasting of time series.

The other mentioned approaches are not further discussed in the scope of this

thesis.

At this point, it is important to note that none of the introduced approaches is

strictly dominant over the other and therefore always preferable over all the others.

Some are the most accurate in the short-term, others in the long-term, some are

the most suitable in terms of explanatory power or replicating desired statistical

properties, others in computational tractability, or in treating situations of data

scarcity. The selection of the modeling approach is thus a challenge for itself.

Further, the mentioned approaches can also be combined to generate models to

explain and to forecast time series (see, e.g., Wallis, 2011, and references therein).

3.1.2 Finance and econometric time series models

Explaining and forecasting time series has been a challenge in statistics and finan-

cial mathematics for a long time. Precisely, the task is to explain the variation in

the values of a dependent variable over time by its previous values and by previous

or current values for exogenous variables (Weron, 2014). The forecasting task then

consists in predicting the future, i.e., in going one time step further and predicting

the next value(s) of the time series. The interested reader is referred to dedicated

books by Box et al. (2016) and Brockwell and Davis (2006, 2016) for basics on

econometric modeling of time series. Lütkepohl (2006) and Backhaus et al. (2015)

provide extensions to time series models for the multivariate case that enables to

model a vector time series. For the basics of mathematical finance models, the

reader is referred to Pliska (2007) or similar works.

The concept that is the most important for understanding the approaches used

in the papers of this thesis, is to decompose deterministic and stochastic com-
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ponents of a time series. In the most simple formulation, and by neglecting any

influence of exogenous variables on Xt, this can be summarized as23:

Xt = Xdeterministic
t +Xstochastic

t . (3.1)

However, it must be ensured that the stochastic component follows a stationary

process, that means that the (joint) probability distribution of the process, which

is a random variable in the terminology of section 2.2.1 does not change over time.

Therefore, inspired by Brockwell and Davis (2016) who formulate the classical de-

composition model with a trend component, seasonal component and a stationary

stochastic residual, a reformulation for Eq. 3.1 leads to a simple formulation of

a time series model with trend component mt and seasonality component st as

follows:

Xt = mt + st +Xstochastic
t . (3.2)

The idea is then to find a suitable model for the deterministic component(s)

and a suitable model for the stochastic component. Möst and Keles (2010) and

Keles et al. (2012) provide a review of model alternatives for this approach to

model the uncertainty of parameters in electricity markets in general and the one

of electricity prices as a parameter in particular.

Based on these, Papers B and C develop stochastic price models for reserve

prices for positive and negative aFRR as well as for spot market prices for the DAM

and the IDM. A special characteristic of the developed models for the spot market

is the joint modeling of the stochastic components for vRES feed-in, residual load,

and prices. This allows to meet the stochasticity of prices in electricity markets

with high vRES shares in the modeling.

When defining a stochastic model, the first step is the attempt to capture as

much variation of the time series in the deterministic components as possible24.

23In these puristic finance models, the fundamentals are neglected, and the goal is to model
the properties of a time series to be able to replicate them. However, when causal relationships
to exogenous variables are known, one can include these to improve the explanatory power of
the additive models, as done in the stochastic modeling in Paper B and Paper C. In doing
so, the stochastic component is typically reduced as more of the variation is explained by the
deterministic component and less remains with the stochastic component.

24However, it must be noted that the issue of overfitting a model with the data is often
underestimated, particularly when working with highly non-linear or machine learning models.
A maximization of the share of explained variation is therefore to be understood in such way
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For this purpose, the most common approaches are additive models. Typically,

these make use of the previous values of the dependent variable by including an

auto-regressive (AR) component, of the mean value of the previous values of the

dependent variable by including a moving average (MA) component, or by in-

cluding components that consider information from exogenous (X) explanatory

variables. A general auto-regressive moving average (ARMA) model can thus be

formulated as (Box et al., 2016):

Xt = α0 +
m∑

k=1

αkXt−k +
n∑

l=1

βlεt−l + εt, (3.3)

where αk capture the auto-regressive influence of previous prices Xt−k and βl cap-

ture the influence of previous errors εt−l on the dependent variable Xt, with horizon

m and l respectively. α0 is a constant and εt captures the error term.

To treat trends, Brockwell and Davis (2016) suggest two alternatives: (a)

adding a trend component to the additive model that is estimated as an exogenous

variable, or (b) to eliminate the trend by differencing the time series. In the con-

text of ARMA models, the second method is also referred to as integration, which

leads to integrated ARMA (ARIMA) models. However, the formulation remains

the same, but the estimation is done on the time series of the differences.

A variety of extensions and variants of the general ARMA model exists. The

interested reader is referred to, e.g., Weber (2005) and Möst and Keles (2010)

for descriptions of more advanced models. The most relevant configuration on an

ARMA model for this thesis is a variant that is applied to forecast the differenced

time series of FCR prices in Paper A. It takes into account seasonal components

as well as exogenous variables. In Paper A, this is labeled SARIMAX (seasonal

auto-regressive integrated moving average model with exogenous variables) and is

considered as the best econometric benchmark for the ANN approach.

As discussed in Möst and Keles (2010), there exists also a variety of approaches

to model the stochastic component. The simplest and most common one is to de-

fine it as a stochastic mean-reverting process, e.g., an Ornstein-Uhlenbeck process

(Uhlenbeck and Ornstein, 1930). Mathematically, the process is formulated as a

stochastic differential equation with the mean µ, the reversion speed κ, a Brow-

that it remains reasonable. When working with linear models or simple non-linear functions,
overfitting is a minor issue.
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nian motion (also referred to as Wiener process) Wt, and the diffusion factor σ.

Hereby, σ can be interpreted as the volatility of the process, whereas κ determines

the time the process requires to return to the mean:

dXt = κ(µ−Xt)dt+ σdWt. (3.4)

To be able to capture stochastic behavior that consists of alternating mean-

reversion processes (e.g., to account for regimes with price peaks and regimes with

regular prices), advanced stochastic processes have been developed. These contain

more than one regime and are called mean-reversion jump diffusion processes or

regime-switching mean-reversion processes. The transition from one regime to the

other can be defined by a Markov process. The calibration of the processes within

the regimes and the transition probabilities are done by the help of historical data.

This approach is used to derive the price processes for the DAM and the IDM in

Paper B as well as for the aFRR in Paper C of this thesis.

Another important insight, particularly with regard to providing theoretical

background to the papers of this thesis, consists in the further use of the stochas-

tic models. As described in more detail in Section 3.2, the stochastic models in

their closed mathematical formulation are of no practical use for taking complex

decisions under uncertainty. Therefore, they are used in Monte Carlo simulations

to simulate the stochasticity, and based on this to generate time series for the

stochastic component. Eventually, based on these time series, with scenario gen-

eration and reduction techniques, a set of discrete scenarios is derived. Finally,

the stochastic optimization approaches presented in Section 3.3 can be applied to

these scenarios.

At the end of this subsection on finance and econometric models, it is worth

spending a few words on the quality of time series models. Obviously, there is

a need for selection criteria to determine which lags (i.e., which previous values)

and which exogenous variables to consider to obtain the model that explains the

process the best. Further, there is a need to identify the model configurations that

are most likely to prevail in forecasting. This discussion is briefly addressed here.

For a detailed discussion, the reader is referred to James et al. (2013), Ding et al.

(2018), and Hyndman and Athanasopoulos (2021).
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In general, there are two approaches to compare the quality of models: (a)

To compare the errors of model estimation or training, and (b) to compare the

performance on a validation data set. These approaches are also referred to as in-

sample validation, which compares measures for the goodness-of-fit of the models

to the training data, and out-of-sample validation, which compares the predictive

performance of the models with unknown data.

For (a), there are several goodness-of-fit measures and selection criteria in

the literature. Besides the overall model fit, often depicted by the coefficient of

determination R2, these measures also consider the number of used predictors

to compare the expected predictive power. With the sum of squares of training

residuals RSS and the total sum of squares TSS of the time series, R2 is defined

as:

R2 = 1− RSS

TSS
(3.5)

An R2 of zero thereby corresponds to a model that explains no variation in

the data at all, and an R2 of one corresponds to a model for which all residuals

are zero. Intuitively, the R2 cannot become smaller, when additional predictors

are added to the model. Therefore, by adding an infinite number of exogenous

predictors that contain only random noise one can reach perfect model fit (R2 = 1).

However, this does not mean that the model can predict values outside the training

data set. Being parsimonious, which means using as few predictors as possible,

is therefore a quality criterion of models. With this rationale, for example the

adjusted R2, the Bayesian information criterion (BIC), the Akaike information

criterion (AIC), and the corrected AIC have been introduced to support model

selection (see, e.g., Ding et al., 2018; Hyndman and Athanasopoulos, 2021, for

the mathematical formulations). These penalize the number of used predictors in

different ways. It must be noted, that none of these criteria is exact and superior

to the others, but these are practical decision criteria.

For (b), the common approach is to compare figures like the root mean square

error (RMSE), the mean absolute percentage error (MAPE), or the directional

accuracy (DAC) for each of the proposed models and to rank them accordingly.

However, this does not inform the exact statement of which forecasting model is

better. For this statement, the goal is to compare the forecasting accuracy of

competing approaches. Diebold and Mariano (1995) compare several approaches
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to compare predictive accuracy and develop the so-called Diebold-Mariano test,

which is a statistical hypothesis test for superiority of competing forecast models.

The test compares two time series of forecasting residuals and indicates whether

forecast model is significantly better than the other. The Diebold-Mariano test is

applied in Paper A of this thesis. Please note that comparing the performance on

a validation data set is not limited to finance and econometric models, but can

equally be applied to all modeling approaches presented in this chapter.

3.1.3 Machine learning models

Machine learning models are a fast growing field and many different approaches

and fields of application exist today. Even when limiting the scope to modeling and

forecasting of time series, and particularly to electricity prices, several approaches

remain. As the scope of this thesis is limited, this section will not go into further

detail for the latter three, but focus on the most common approach to use ANNs.

Neural networks are a concept to describe the general functioning of the brain.

In a neural network, an uncountable number of neurons is connected and can

transmit information in a directed manner via synapses, if certain criteria are

met. The information bits treated by each neuron are relatively small. However,

the number and the structure of the neural network, as well as the training and

adaptation to similar information patterns, allows the neural network structure

to process complex and extensive input data. Eventually, it allows to determine

decisions based on processed information as an output. Artificial neural networks

are replicating this general functioning, and analogously consist of neurons that

are connected to each other with edges to build a network structure.

A single neuron is build up relatively simple. As shown in Figure 3.1, input

signals x are weighted with weights w and enter a transfer function Σ, typically

the weighted sum, in order to provide the net input for the activation function.

The activation function uses this net input and evaluates it by comparing it to

a threshold value. In case the threshold is met, the neuron fires the value of the

activation function to the next connected neurons, which means the neuron is

activated and information is transmitted to the next neuron. The next neuron

then uses this output as an input signal.
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Figure 3.1: Structure and activation of a single neuron j. The inputs are weighted with
weights w1j ...wnj to enter the transfer function Σ. The net input is then evaluated by the
activation function ϕ, and if a threshold is met, the neuron is activated and transfers the
output to the neuron it is connected to (own illustration).

With regard to neurons and neural networks, a few words should be spent on

the architecture and the training. The architecture of the network is a crucial com-

ponent when configuring an ANN. As shown in Figure 3.2, the general structure

consists of an input layer, an output layer, and – optionally – hidden layer(s) in

between. The main parameters are therefore the number of hidden layers and the

number of neurons per hidden layer. This allows to capture non-linear relation-

ships between input and output data. Intuitively, the more complex the network

is, the more complex these relationships can be25.

In feed-forward ANNs, this network structure is a directed graph and contains

no loops. However, there are also recurrent network structures and more com-

plex node types with inherent recurrent structure, such as gated-recurrent units

(GRU) or long-short-term-memory (LSTM) units, have been developed in the ma-

chine learning community. As there are many fields of application for ANNs, the

development is still ongoing and very dynamic. For this thesis, the most important

insight is that the standard architecture is a feed-forward ANN. This standard ar-

chitecture is available off-the-shelf, e.g., in the Python library keras (2021), and is

25As noted before, there is the risk of overfitting the data. However, as the findings of Paper
A show, a slight overfit sometimes can be helpful, if it is done consciously and carefully treated
afterwards.
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Figure 3.2: General structure of a feed-forward ANN with inputs x1...Xn, input layer, two
hidden layers, output layer, and outputs y1...yn (own illustration).

deployed in Paper A. Due to conciseness, more advanced ANN architectures are

not further discussed in this thesis.

In Paper A, different ANN configurations are developed and evaluated. For

typical machine learning problems with rich databases, the architecture can be

crucial to model quality. However, due to limited data availability, the case study

of reserve prices cannot be considered typical in the sense of machine learning

problems and requires a slightly different approach.

This approach is referred to as ensembling and pursues the idea of combining

the forecasts of many (individually) wrong models to jointly yield a precise and

robust forecast (cf., e.g., Hyndman and Athanasopoulos, 2021). The idea is to

train an ensemble of ANNs that vary in nothing but the random starting weights

of the neurons and then consider the distribution of different forecasts. Eventually,

calculating the average of all members of the ensemble leads to a single forecast

value26. In the scope of this thesis, the information contained in the distribution

of the ensemble can also be interpreted as a sample for the underlying random

variable, such as the reserve price. This distribution could also be used to char-

acterize the uncertainty of the reserve prices and would work as an information

basis to derive decisions. However, since this is a practitioner approach and has no

26For applications with rich databases, ensembling has hardly any impact as training many
models with the same architecture will yield convergence to a single model despite random
starting weights.
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proper mathematical foundation, the processes in Papers B and C are estimated

based on established stochastic modeling approaches instead.

Another hyperparameter in configuring an ANN is choosing the activation func-

tions in the neurons, see Figure 3.1. Activation functions can be chosen from a set

of linear and non-linear functions. The most simple one is the identity function,

however more common ones are the sigmoid, the hyperbolic tangent (tanh), the

rectifier linear unit (ReLU), the exponential linear unit (ELU), or the SoftPlus

activation function. The reader is referred to Sharma (2017) for the mathematical

formulations. Please note that in Paper A, the ReLU was chosen as activation

function.

After the architecture is set up, the ANN is ready to learn the relationships

it is designed to reproduce. This learning is typically referred to as training. In

the process of training, the weights of the neurons are considered as variables.

Thereby, training data (i.e., a set of known input and related output variables) is

fed into the ANN and by use of backpropagation, the values of the weights are

fit to the data by minimizing the training errors. However, the training can be

organized in various ways, as explained in more detail in Paper A. The main hy-

perparameters that define a training strategy are the choice of training data (i.e.,

which data is used for training), the number of epochs (i.e., how many training

sequences are run), and the number of iterations per epoch (i.e., how many iter-

ations of the backpropagation algorithm are run). In the case of ensembling, the

ensemble size (i.e., how many separate models are trained) complements the set

of hyperparameters.

With these parameters, an infinite number of training strategies can be de-

fined. In Paper A, the focus is set on the comparison of training strategies with

a slight overfit and larger ensembles with normal fit and smaller ensembles, under

different architectures. In the machine learning community, there are even more

hyperparameters to define more sophisticated training strategies. For example,

large amounts of data can be handled more efficiently with the help of batching

the training data. However, this exceeds the scope of this thesis and is moreover

not needed in the case study of reserve prices and sparse data.

To conclude, in Paper A, different combinations of network architecture and

the presented training strategies are implemented and benchmarked against econo-

metric models. It must be noted that data availability is a crucial issue when
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developing ANN structures, and must be taken into account when designing both

deep and shallow ANNs. Despite being a standard technique when working with

big data and machine learning and implementations are available off-the-shelf, the

adaptation of a particular case as well as a proper experimental design requires

considerable effort.

3.1.4 Limitations and extensions of forecasting

To conclude this section on time series modeling and forecasting, it is important

to recall three commonplaces, which are nevertheless essential insights: (a) First,

no model is perfectly able to capture reality. (b) Second, no data set is perfect.

Be it a lack in sheer availability or in the quality of the data, models can never be

better than the data used for training or estimation. (c) Third, and most relevant

for the remainder of this thesis, uncertainty can hardly be characterized by single

point forecasts as they tremendously undercomplexify the information. This third

insight can easily be underlined with the example of a dice. For a single throw, a

point forecast of the number of eyes of the dice is not trustworthy. For a decision

maker to determine sound decisions under uncertainty, it is much more relevant to

have an appropriate representation of the probability distribution for the potential

outcomes than to have the best point forecast.

In electricity markets as well as in many other domains, the approach of proba-

bilistic forecasting, i.e. forecasting intervals, density, or thresholds instead of points

(cf. also Weron, 2014), has gained more and more in importance. One important

representative of this approach is the so-called quantile regression. However, a

main weakness of these approaches is that they are not able to properly capture

complex relationships, such as conditional expectations for several uncertain pa-

rameters. Further, in forecasting applications, the error term is typically assumed

to be white noise. However, as presented above, stochastic processes of single

parameters tend to follow temporal patterns, too.

Therefore, to capture the uncertainty and to provide a solid information basis

for decision-making, a common approach is to derive stochastic processes and to

then sample from these with the help of Monte Carlo simulation. This generates

a large number of possible scenarios that represent realizations of the stochastic

processes, but can hardly be handled in decision making approaches. The next
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section will thus briefly introduce how to derive representative discrete scenarios

for decision making from the stochastic processes. In the sense of providing best

available information about the future, scenario generation is therefore a logical

extension of forecasting in uncertain situations.

3.2 Scenario tree generation and reduction

The previous section presented stochastic processes that enable to capture uncer-

tainty in a closed and typically continuous formulation. However, these closed

formulations cannot be used directly in the available algorithms to solve stochas-

tic optimization problems, but discrete representations are necessary. The general

idea behind scenario generation and reduction is therefore to create discrete infor-

mation sets that represent real-world data or the derived stochastic processes for

it as well as possible. Intuitively, there is a trade-off between information repre-

sentativeness and number of scenarios. The problem was already investigated in

the 1990s (e.g., Rockafellar and Wets, 1991) and early 2000s, however it is still

very relevant for today’s applications in stochastic modeling.

To have a common understanding of a multi-stage scenario tree, some defini-

tions are necessary. The following standard notation is based on Gorski (2017)

and slightly adapted where necessary. Let ξ be a multivariate random variable

with probability distribution P . Without loss of generality, let ξt describe its real-

izations on stage t ∈ {1, 2, ...,T} for the multi-stage setting (Heitsch and Römisch,

2009). Let ξt = {ξ1, ξ2, ..., ξt} be a scenario at stage t, consisting of realizations

of ξ for each stage up to stage t. Further, let P (ξt|ξt−1) be the edge probability,

i.e., the probability for realization ξt under the condition of ξt−1. The probability

of a path up to stage t is then defined as the product of the individual edge prob-

abilities of the path, i.e., P (ξt) = P (ξ1)
∏t

i=2 P (ξi|ξi−1). Further, let a directed

graph consisting of nodes – representing the discrete realizations of ξ – and edges

– containing the edge probabilities – be a multi-stage scenario tree.

The challenge of scenario generation is then to determine the tree structure

and size as well as to define discrete values and associated edge probabilities, such

that the uncertainty is captured in an appropriate way. To achieve this, several ap-

proaches and tree structures exist in the literature. Please note that in this regard

only few attention is paid to the tree structure in this thesis. This is mainly due
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Stage 2 Stage 3Stage 1

...
...

...

Figure 3.3: Exemplary scenario tree with three stages (own illustration).

to the fact that the developed optimization problems in this thesis consider only

two-stage and three-stage trees, for which intuitive branching is possible without

exploding numbers of distinct scenarios. Particularly for problems with many more

stages, the so-called curse of dimensionality leads to hardly tractable problems,

i.e., exponentially growing scenario trees when increasing the number of stages or

dimensions in the state space. This curse of dimensionality has been described

very early (e.g., by Bellman, 1961; Larson, 1967), and led to several algorithmic

developments as will be further discussed in Section 3.3. With regard to scenario

tree generation, this leads to structures that deviate from the intuitive expansion

with a certain number of distinct successors for each predecessor.

Most prominently, scenario fans and scenario lattices should be mentioned.

Fans only branch at certain stages of the tree, typically the first, and then con-

sist of single scenario paths for subsequent stages (i.e., after the branching stage

each predecessor has a single successor). On the other hand, scenario lattices,

also referred to as recombining trees, can be thought of as a Markov process and

allow to reach each possible state with some probability from each previous state.

The reader is referred to, e.g., Dupacova et al. (2003) and Heitsch and Römisch

(2009) for further reading on branching structures and to Löhndorf et al. (2013)

for an example of scenario lattices in multi-stage stochastic optimization. For the

remainder of this thesis, the tree structure of the problems is two- or three-stage

and each predecessor has a certain number of successors, as shown in Figure 3.3.
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After the structure of the scenario tree is determined, several approaches exist

to define the discrete values and edge probabilities. The most relevant approaches

can be classified into (quasi) Monte Carlo methods, methods based on probability

metrics, and methods based on moment matching (Löhndorf, 2016). Further ap-

proaches are based on internal sampling and decomposition (Higle and Sen, 1996;

Higle, 1998), direct sampling or bootstrapping from historical data (Kaut, 2021),

and conditional sampling (Kaut and Wallace, 2007). Due to the ready availability

of historical data compared to stochastic processes, the “naive” approach to sam-

ple or bootstrap from historical data is widely spread. However, it is not able to

capture complex stochastic processes and it cannot be guaranteed that the sam-

pling contains all relevant scenarios. Therefore, sophisticated methods to sample

from historical data are necessary, as discussed by Kaut (2021).

Many works developing scenarios for stochastic optimization are fundamentally

based on stochastic processes that are sampled based on Monte Carlo simulations

and afterwards clustered. In the process of scenario generation and reduction,

the first step is to simulate the stochastic process many times (e.g., 1000 times).

The second step then consists of clustering to reduce the number of discrete sce-

narios reasonably (e.g., Keles, 2013). A commonly used clustering algorithm is

k-means (MacQueen, 1967; Lloyd, 1982). After clustering typically the centroid

of each cluster is selected as representative with the relative frequency as proba-

bility. This approach is applied in Paper B and Paper C of this thesis to provide

the stochastic optimization with sound scenario trees. In that way, these papers

provide innovative applications of the state-of-the-art in stochastic modeling and

scenario generation in the electricity market context.

Another method to generate scenarios is based on moment matching. Due to

conciseness, it is not discussed in depth. The idea behind this approach is to match

the marginal moments and correlations of the original (multivariate) distribution.

For that purpose, in an iterative procedure, random variables are generated to

match the moments and then transformed to also satisfy the correlation structure.

However, this transformation changes the moments of the random variable, so that

it needs to be readjusted. Høyland et al. (2003) suggest an heuristic algorithm for

the case of multivariate distributions. The interested reader is referred to Høyland

and Wallace (2001), Kaut and Wallace (2007), Heitsch and Römisch (2009), and

Löhndorf (2016) for descriptions, variants, and applications of moment matching.
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Finally, approaches that generate an optimal approximation based on prob-

ability metrics shall be mentioned. The general idea behind scenario reduction

with the help of probability metrics is to determine the best approximation of the

original probability distribution by a discrete distribution. For this, the maximiza-

tion of a predefined probability metric is used as objective criterion in a separate

optimization. After the scenario tree is generated (e.g., by simulation of stochastic

processes), the idea is to summarize several distinct scenarios within a single sce-

nario without sacrificing too much of the information. This sacrifice is measured

with the help of the probability metric that is maximized, and allows to reduce

the total number of scenarios in a sophisticated way. For further reading and

the mathematical formulation, the reader is referred to a comprehensive body of

literature (Dupacova et al., 2000, 2003; Pflug, 2001; Heitsch and Römisch, 2003,

2009).

After the stochasticity is modeled and translated into a scenario tree, the essen-

tial last step is the stochastic optimization itself. The next section will therefore

discuss approaches to derive optimal decisions for problems under uncertainty.

3.3 Stochastic optimization approaches

3.3.1 Optimization under uncertainty in the energy context

This section aims to give a brief overview over operations research approaches

that derive optimal or optimized decisions under uncertainty. With regard to

the scope of the thesis, the focus is set on such solutions techniques that are

applied in energy economics when a comprehensive quantitative description of

the uncertainty is available and formulated in a discrete scenario tree. In energy

economics and particularly electricity markets, this is typically the case for short-

term operational planning.

The scope of operational planning has been very popular ever since mathemat-

ical programming techniques evolved. With the increase of weather-dependent

RES, the consideration of the stochasticity of the electricity system found its way

to operational planning models. Historically, first the uncertainty of hydro power

with stochastic seasonal inflows was included to determine mid-term optimal pro-
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duction schedules. In recent years, vRES, such as wind and solar power, became

relevant sources of uncertainty to be considered in short-term operational planning.

Stochastic optimization approaches are well-suited to cope with this kind of

problems, and are the logical extension of deterministic approaches for opera-

tional planning. The operational planning is often also referred to as unit commit-

ment, and can include many dimensions and scopes. By taking into account e.g.

non-linear grid constraints, non-linear technical constraints of generation units, or

complex dependencies of hydro-systems, the complexity of operational planning

models can easily exceed the tractable problem classes and problem sizes. Two

comprehensive recent literature review papers are available (Zheng et al., 2015; van

Ackooij et al., 2018) that summarize this development from the 1960s until today.

These reviews in parts build upon older reviews (such as Wallace and Fleten, 2003;

Conejo et al., 2010; Römisch and Vigerske, 2010).

One kind of unit commitment problem, in accordance with Aı̈d et al. (2016)

referred to as trading problem in this thesis, is of particular interest. By neglecting

any grid constraints and focusing on the generation (and consumption) units in the

own portfolio alone, the trader aims at maximizing the contribution margins by

bidding into the available market segments. As presented in Paper B and C, with

an appropriate modeling of the market segment, this leads to a complex decision

problem even if the grid is neglected and technical constraints are considered in a

simplified manner.

Following the idea of Rebennack (2010), the solution techniques that are rele-

vant for the trading problem under uncertainty are distinguished into three rather

general categories: (a) approaches replacing the stochastic model with determin-

istic models, (b) exact stochastic optimization techniques, and (c) stochastic op-

timization approaches that are based on sampling methods27.

van Ackooij et al. (2018) also include chance-constrained and robust optimiza-

tion as separate approaches for unit commitment problems under uncertainty. This

also leads Weber et al. (2021) to distinguish between five major approaches to de-

27Strictly speaking, the approaches in (b) and partly in (c) also replace the stochastic model
with a deterministic equivalent that is then treated with decomposition techniques. Category
(a) refers to approaches that replace the stochastic model with a non-equivalent deterministic
model.
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rive decisions under uncertainty for operational planning in energy economics28.

However, robust optimization approaches are mainly deployed to make solutions

robust and resilient against technical failures with low probability but large im-

pact, such as in the consideration of the grid or technical units in much detail.

It will therefore not be further discussed here, but the reader is referred to van

Ackooij et al. (2018) and Sun and Conejo (2021) for a detailed discussion and

applications.

Furthermore, chance-constrained approaches are mainly deployed when no re-

course action is available, i.e., no countermeasure to the realization of the uncertain

parameter exist. The idea behind chance-constraints is to guarantee a feasible so-

lution with a certain probability, so-called safety levels. However, this also does not

apply for the trading problem29, if intentional imbalances are excluded in the bid-

ding rationale. This thesis therefore focuses on the three categories distinguished

by Rebennack (2010).

3.3.2 Replacement of stochastic optimization models with de-

terministic models

Replacing a stochastic optimization model with deterministic models can be done

in many ways30. Weber et al. (2021) report replacing the uncertain parameters

by their expected values and running sensitivity analyses as an approach that

is still common practice in energy utilities. More sophisticated, another approach

consists in solving the distinct branches of the scenario tree separately. Afterwards,

a procedure must be defined how to determine a feasible solution. Progressive

hedging, as introduced by Rockafellar and Wets (1991), is one variant of doing so.

However, whenever the stochastic optimization model can be solved exactly or with

sampling-based methods, this should be done instead of relying on deterministic

28There are also heuristic solution techniques such as priority listing, guided random explo-
ration such as nature inspired or genetic algorithms. However, as stated by both van Ackooij
et al. (2018) and Weber et al. (2021), these are not competitive to mathematical approaches in
operational planning problems, and are therefore not considered.

29One could think of using chance-constraints for the energy balance of a BRP, i.e., ensuring
that the schedule is not violated at a certain safety level. However, this would introduce an
inappropriate risk to the trading strategy.

30At this point, it is not intended to address the replacement of a stochastic optimization
model with the deterministic equivalent, as suggested by Birge and Louveaux (2011) for two-
stage models.
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models. Besides the fact that convergence to an optimum can hardly be proven,

the deterministic model may not consider the uncertainty contained in the scenario

tree appropriately and lead to inefficient decisions.

3.3.3 Exact stochastic optimization techniques

Hence, exact stochastic optimization techniques are very popular. If the prob-

lem size is small enough, the trading problem can be solved by state-of-the art

solvers, as the representation of uncertainty with the discrete scenario trees is

possible within (mixed-integer) linear programming. For two-stage or relatively

small multi-stage problems, a solution with Gurobi or CPLEX as standard solvers

for mixed-integer linear programs (MILPs) is still possible on server computers.

However, particularly integer recourse, which refers to integer variables that affect

several or all stages of the decision problem, can pose a problem to computational

tractability. During modeling, much care was taken to keep the models mixed-

integer linear and to keep the number of binaries tractably small. Therefore, the

application of more sophisticated methods, as presented in the following, was not

necessary for the preparation of the Papers B and C in this thesis.

However, when extending the scope of the models in future research, at some

point decomposition methods become inevitable to solve the problems in reason-

able time. The idea behind decomposition is to split the mathematical problem

into several smaller problems that can be solved more easily. The preferable de-

composition strategy is typically closely associated with the structure of the prob-

lem, and aims at decomposing the original problem along complicating variables

or complicating constraints. Like that, units, scenarios, or decision stages are

solved isolated and afterwards the solutions are merged in an iterative manner.

Well-known decomposition techniques include (nested) Benders decomposition,

(augmented) Lagrangian relaxation, alternating direction method of multipliers

(ADMM) or Dantzig-Wolfe decomposition. Many works are dedicated to the de-

velopment and application of decomposition approaches. Due to conciseness, the

reader is referred to appropriate text books (e.g., Boyd, 2010; Birge and Lou-

veaux, 2011; Pflug and Pichler, 2014) for detailed descriptions and discussions of

advantages and disadvantages of the mentioned methods.
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Although there are many decomposition techniques, these techniques reach

their limits at a certain problem size and complexity. Particularly the nested

structure of decomposition can lead to a hardly tractable number of sub-problems

and/or very high computational expenses in the depth of the tree. Therefore, for

larger and more complex problems, computational tractability cannot necessarily

be guaranteed by decomposition alone, but must be complemented by approxi-

mate, sampling-based methods.

3.3.4 Sampling-based stochastic optimization methods

The last category includes approaches that approximate the optimal solution of a

stochastic problem by sampling. In deterministic optimization, a classic approach

to cope with multi-stage decision problems is dynamic programming (Bellman,

1961). By backward recursion, such problems can be solved from the last decision

backwards until the first decision. The key idea is to represent the value of being in

a certain state on a certain stage by a value function. For the stochastic case, e.g.

Keles (2013) and Xi et al. (2014) develop stochastic dynamic programming ap-

proaches for multi-stage stochastic decision problems. Rebennack (2010) provides

a thorough description and discussion of stochastic dynamic programming.

However as the major drawback, the curse of dimensionality restricts the use of

stochastic dynamic programming to certain model sizes and degrees of complexity.

This limits on the one hand, for example, the number of scenarios or the number

of considered technical units and on the other hand, for example, the degree of

technical detail or the use complicating constraints to model interdependencies be-

tween units or time steps, and makes approximate solutions necessary (Rebennack,

2010).

The standard approach for solving large-scale multi-stage stochastic problems

(MSSPs) in operational planning, mainly in the hydro power context, therefore

combines the ideas of Benders decomposition and dynamic programming31. By

applying Benders decomposition, an approximation of the value function is ob-

tained from the dual solutions of the stochastic problem at each stage. In doing

31Füllner and Rebennack (2021) also refer to it as “a sampling-based variant of nested Benders
decomposition”.
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so, the number of states to be considered is reduced. This enables to treat larger

sizes of the state space and thus to overcome the curse of dimensionality.

First introduced by Pereira and Pinto (1991), it is referred to as stochastic dual

dynamic programming (SDDP) until today. Rebennack (2010) and Füllner and

Rebennack (2021) present SDDP and various extensions of the original approach,

Shapiro (2021) dedicates a whole chapter to it. Most importantly for this thesis,

the original SDDP is limited to MSSPs that are linear and where stage-wise de-

pendent uncertain parameters do not enter the objective function. This allows to

consider uncertain inflows in hydro power operational planning. However, it does

not allow for stage-wise dependent uncertain prices or integer variables, which

are relevant for the trading problem under uncertainty. Therefore, several exten-

sions of SDDP exist. These include approximate dual dynamic programming (cf.

Löhndorf et al., 2013; Wozabal and Rameseder, 2020; Löhndorf and Wozabal, 2021)

that allows to consider uncertain prices with an approximate approach. Recently,

Downward et al. (2020) introduced another variant of the SDDP with objective

states, which also allows for stage-wise dependent uncertain parameters – such as

prices – in the objective function. Further, a new and promising approach is SDDP

that also allows for integer variables (SDDiP) (Zou et al., 2019b). However, the

two have not been widely applied to energy problems up to now, with exceptions

including Zou et al. (2019a) and Hjelmeland et al. (2019).

To conclude, the available stochastic optimization approaches for operational

planning are rich and still developing. Within the existing literature, the ap-

proaches developed to solve the trading problem in Paper B and C are rather

innovative applications than methodological breakthroughs in the field of oper-

ations research. Due to careful modeling, the developed models can be solved

with standard MILP solvers and do not require sophisticated decomposition and

approximation techniques. However, extensions and variants of the SDDP are con-

sidered most promising for future developments of the trading problem developed

in this thesis.





Chapter 4

Case studies

The following sections contain summaries of the papers that are included in this

thesis. For the detailed descriptions of methodology and results, the reader is

referred to Part II.

4.1 Paper A: Modeling of frequency containment re-

serve prices with econometrics and artificial in-

telligence

4.1.1 Background information

Paper A was presented in a preliminary version at the 11th International Energy

Economics Convention at TU Vienna (11. Internationale Energiewirtschaftstagung

an der TU Wien) in 2019 (Kraft et al., 2019b) and got awarded the best paper

award for authors under the age of 30. Afterwards, the approach was further

enhanced and published in the Journal of Forecasting in 2020 (Kraft et al., 2020).

The author of this thesis is the lead author. The co-authors Dogan Keles and

Wolf Fichtner contribute to the idea generation, the interpretation of results and

to the preparation and revision of the paper.

67
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4.1.2 Motivation and research question

The motivation behind the paper is to develop and compare state-of-the-art fore-

casting approaches to provide a hypothetical market participant in the German

electricity market with a forecast of the FCR price for the next auction. At the

time of preparation, the German reserve market for FCR is organized in weekly

auctions with pay-as-bid clearing. The pay-as-bid clearing makes accurate fore-

casting particularly important for market participants, as submitting bids with low

prices and getting accepted leads to unnecessary losses in profitability. However,

on the other hand, bidding too close to the expected marginal price may be risky,

if the expectation is not sound.

As the literature on forecasting techniques in general is rich, but there is a

lack of literature on forecasting of reserve prices, the motivation is to develop

several approaches stemming from the most relevant techniques for short-term

forecasting: econometric and machine learning models. A fundamental model, the

third major stream of models presented in Section 3.1, is not considered suitable.

To obtain highly accurate forecasts from a fundamental model, the interactions

of reserve markets with short-term electricity markets would require developing a

highly detailed and accurate fundamental model of these beforehand.

The major challenge of the forecasting task is the volatility of the time series

and the fact that due to market design changes, only 88 observations are available

for model training (or estimation, which will be used interchangeably for better

readability in the remainder of this section). Particularly for the machine learning

approach, this poses difficulties, as with scarce databases the trade-off between

model accuracy and overfitting is immanent. The forecasts are developed such that

this trade-off is carefully addressed and that both auto-regressive characteristics of

the time series and the influence of exogenous variables is appropriately accounted

for.

4.1.3 Methodology

The initial time series analysis leads to the conclusion, that the original price time

series is non-stationary, but the first difference of the time series is stationary.

Therefore, the change of prices from one auction to the next is modeled as depen-

dent variable. A large set of exogenous variables is considered to potentially have
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explanatory power. From this set, the price range of the FCR auction, the future

electricity price for the market area Germany-Austria (DE-AT), the one for France

(FR), the load in DE-AT, the load in FR, the planned unavailable capacity in DE,

and the planned unavailable capacity in FR are selected as set of exogenous vari-

ables32. This set is fixed for all modeling approaches in order to keep the results

comparable.

To respect the information availability of market participants in the real world,

an approach called rolling one-step forecasting with model re-estimation and ex-

panding window is implemented. The idea is – after an initial training – to fore-

cast the price of the next time step (i.e., the next auction), and then re-train the

forecasting model by including the observed data point in the training set. For

comparison of results, the time series of forecasted prices is created by putting the

single forecasts in a row.

For the econometric model, the model selection procedure yields a SARIMAX33

approach to be suitable, and is considered the benchmark for the machine learning

models. For the machine learning approach, shallow feed-forward ANNs are found

to be suitable for the scope. The ANNs are configured with one and two hidden

layers with ten and 20 neurons per layer, leading to four combinations. Further

configurations with recurrent structures and deeper feed-forward ANNs do not

significantly improve the forecasting performance, supposedly due to the scarce

data basis.

As the training data is limited, the ANNs are found to not converge to a unique

point forecast when trained with different starting weights. Therefore, ensembling

is done to stabilize them and to obtain a distribution of the ANN forecasts. By

allowing the model training to slightly overfit the data and at the same time

increasing the ensemble size to 100, an alternative to the best model fit and an

ensemble size of 50 is defined. Further moving and expanding windows of training

data are distinguished.

32Obviously, there is the risk of multi-collinearity when using the same exogenous variable for
neighboring market areas that also have causal relationships such as the load and the electric-
ity price. However, there are particularities such as technology mix in electricity generation,
temperature-sensitivity of the load, and dependency from certain fuel prices. These, as well as
statistical analyses, justify the use of this exogenous variables set.

33To be precise, the SARIMAX is applied to the undifferenced time series. So strictly speaking,
a SARMAX model was fitted to the differenced time series.
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To evaluate the different forecasting approaches, the performance indicators

RMSE, MAPE, and DAC, as well as the standard deviation to account for the

confidence of the forecasts, are considered. Further, Diebold-Mariano tests are

run to be able to conclude about the stastical significance of the superiority of one

approach over the other.

4.1.4 Results and conclusions

The results show a very good forecasting performance of the selected models, both

for the econometric and the machine learning approach. Among the investigated

models, ANNs with expanding training window yield the most desirable results and

outperform the SARIMAX approach. Simple models trained to a slight overfit and

a larger ensemble size outperform the simple models that were trained towards

the best fit. The former lead to the best and most robust forecasts. However,

among the best models, non is superior with statistical significance, and different

performance indicators lead to different rankings. Increasing the ANN complexity,

the positive effect of the slight overfit disappears. Further, it can be concluded

for the investigated case of FCR prices, that the overall forecasting performance is

not improved by more sophisticated models, as these suffer from overinterpreting

the relationships contained in the training data.

In the broader context of this thesis, it can also be concluded that the empirical

distributions and the confidence intervals of the forecast may be even more valuable

than the point forecasts themselves. As they allow to capture the uncertainty, they

can be useful for the development of methods to derive decisions under uncertainty.
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4.2 Paper B: Short-term risk management of elec-

tricity retailers under rising shares of decentral-

ized solar generation

4.2.1 Background information

Paper B (Russo et al., 2021) and Paper C (Kraft et al., 2021) were developed by

the same group of authors. When finding that the forecasting techniques that

were developed and successfully applied to FCR prices could hardly perform as

accurate on aFRR and mFRR prices, a new way to approach the problem was

selected. To appropriately address the opportunity of trading energy and flexibility

in the short-term spot markets (i.e., the day-ahead and the intraday market), the

information available to a market participant when preparing the bids for the

reserve market auction must be modeled appropriately. This information is due to

a large uncertainty, which is captured in scenarios that are used to derive optimal

trading decisions with the help of stochastic optimization problems.

In particular, the weather dependency and volatility of vRES introduces a ma-

jor uncertainty to the spot markets, with price spreads between the continuous

intraday market and the day-ahead market being hardly predictable. However,

the uncertainty can be characterized and captured in stochastic models. Trans-

lated into discrete scenario trees, these stochastic models provide the basis for

sound decisions under uncertainty on the short-term electricity markets. Based on

previous work by Keles et al. (2012), Keles (2013), and Russo and Bertsch (2020)

that focuses on longer time horizons, Paper B and Paper C extend the stochastic

modeling of short-term market uncertainty to inform the trading decisions of mar-

ket participants on the day ahead in markets with substantial vRES uncertainty.

With the scenarios obtained by the stochastic modeling, two case studies are pre-

pared that investigate two distinct problem settings as innovative applications of

stochastic optimization.

Paper B considers the case of a retailer with a customer portfolio consisting

of prosumers, i.e., consumers with PV self-generation, and regular consumers. A

two-stage stochastic optimization model is developed for optimal procurement and

risk management on the day-ahead and intraday market. The focus is thereby set
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on the stochastic modeling of the uncertainty of solar generation and its impact

on prices in the different spot market segments.

As presented in Section 4.3, Paper C takes the perspective of a trader offering

the generation volume and flexibility of a renewable generation portfolio in the

sequence of reserve and spot markets. Therefore, in Paper C a third stage is

added to the problem formulation and the scope is extended to also consider the

aFRR market with stochastic prices as an opportunity. Further, the technical

constraints of the generation units require the introduction of binary variables.

The manuscript of Paper B was submitted to Energy Economics in June 2021

and is published as a working paper (Russo et al., 2021). After receiving the

reviews, the manuscript was revised and resubmitted in January 2022. Marianna

Russo, who contributes the most to the stochastic modeling and writing, is the lead

author. The contributions of the author of this thesis lie in the conceptualization

of the problem, the development of the stochastic optimization model for the

retailer, as well as in the implementation and evaluation of the case study. Further,

Valentin Bertsch and Dogan Keles contribute as co-authors to the development of

the research idea, to the discussions of the design of the study, and by supporting

the preparation and revision process.

4.2.2 Motivation and research question

When it comes to volume risk exposure, compared to retailers in other sectors

of the economy, electricity retailers are traditionally in a relatively comfortable

position. On the one hand, they sell electricity to customers with existing contracts

only, and these contracts typically exceed the duration of a few months. On the

other hand, they are able to calculate the volumes to be procured based on the

standard load profiles of customer groups multiplied with the number of customers

per customer group. For the difference, i.e., consumption that is below or above

the standard load profiles, the responsible distribution system operator (DSO)

manages a separate balancing group (cf. Section 2.1.2) and charges the retailer a

price that orientates at average historical wholesale market prices. For the DSO

the risk exposure is traditionally relatively low, too, as the deviations are mainly

statistical noise, and wholesale market prices are not much affected by them.
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However, with an increasing share of households with PV self-generation and

self-consumption, accompanied with an increasing overall share of PV generation

in the energy system, the situation changes. As the procurement volumes are typ-

ically profiled34 by trading on the day-ahead market, there is substantial uncer-

tainty with regard to the eventual generation volumes of solar PV, both regarding

the volumes to be supplied to the customers, and the wholesale market prices at

which the supplied volumes are procured.

Even though in today’s German institutional framework, this is the risk of

the DSO managing the difference balancing group, from a general and scientific

point of view, the risk exposure lies with the retailer. Therefore, in order to yield

general and transferable results, the problem is framed to address the risk of the

retailer and to assess trading strategies to manage this short-term risk by trading

on the short-term electricity markets (i.e., day-ahead and intraday market)35. The

research question can hence be summarized to model the interrelated uncertainty

stemming from vRES generation and to determine risk managing trading strategies

for retailers to hedge against associated volume and price risks.

4.2.3 Methodology

The major challenge is to capture the interrelated uncertainty of vRES, and par-

ticularly PV, generation, residual load, and electricity prices on the day-ahead and

intraday market. To model these uncertain parameters and their dependencies,

a multi-variate stochastic differential equation is set up. This is done by firstly

estimating the deterministic components of the time series, such as auto-regressive

components to account for seasonal patterns.

The second step consists in modeling the stochastic residuals of the time series.

For the PV generation, this is done by modeling a so-called cloud component that

captures the deviation from ideal conditions for the considered season (i.e., clear

34Profiling refers to breaking down financial contracts from the future markets, typically split
in base and peak periods, into hourly profiles for the physical contracts on the hourly day-ahead
market.

35However, without loss of generality, in today’s German framework, the developed methodol-
ogy appropriately addresses the risk management problem of the DSO rather than the retailer.
As turned out in the interview with the head of market operations of a large German DSO, this
task is again sub-contracted to a trading company. So eventually, the problem is also in reality
treated as a trading problem.
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sky irradiation and typical temperature patterns for the season). The stochastic

process is then pasted into the stochastic model for the residual load, based on

which a second and interrelated stochastic residual for the residual load is identi-

fied. This second residual contains fluctuations in the overall demand as well as

fluctuations in other vRES generation, such as wind power generation36. After-

wards, the obtained model for the residual load enters a third interrelated equation

for the day-ahead market prices. Again, the stochastic residuals of this stochastic

price model are identified.

The three residuals are then jointly modeled by estimating stochastic differ-

ential equations with a multivariate mean reverting process with regime switches.

To account appropriately for the stochasticity in the electricity system and mar-

ket, the residuals are modeled with switching in between three regimes, a base

regime as well as jumps in upward and downward direction. The regime switching

probabilities are thereby determined based on historical data.

An analogous approach is developed to model the deviations from the day-

ahead stage when entering the intraday trading of the respective quarter hour.

In doing so, the uncertainty in terms of the three considered parameters (PV,

residual load, and price), that a real-world trader would face is appropriately

depicted. Please note, that the stochastic model for the “rolling” realization of

intraday uncertainty is therefore path-dependent.

To obtain discrete scenarios for the considered 18 type days37 from this mod-

eling approach, the stochastic processes are simulated via Monte Carlo and af-

terwards clustered. This allows for each of the type days to determine a two-

stage scenario tree. The first stage consists in the day-ahead scenarios, containing

PV generation forecast and day-ahead market price time series, the second stage

consists in the consecutive intraday scenarios, containing updated PV generation

forecast and intraday market price time series based on conditional expectation.

36The wind uncertainty is hence captured implicitly in this second residual, mainly because it
does in opposition to PV not follow daily patterns and therefore does not support the intended
study design with type days. However, for practical applications, the wind uncertainty could
also be modeled explicitly, if the uncertainty for the considered day is characterized.

37The three seasons summer, winter and a transition season, covering spring and fall, as well
as working and weekend days are distinguished. For these six combinations, three levels of the
parameter residual load are distinguished to end up with 18 type days, for which scenario trees
are created and the case study is evaluated.
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For the case study, scenario reduction leads to five scenarios for the day-ahead

market stage (stage one), and following each of them five scenarios for the intraday

stage (stage two), which leads to 25 scenario leaves with respective probabilities.

This rich set of scenario trees is applied to a computationally rather lean case

study of the retailer in Paper B. For Paper C, one additional stage containing the

uncertainty of prices in the secondary reserve market is added to the scenario trees,

leading to a computationally rather expensive three-stage stochastic optimization

model. However, the uncertainty characterization and the resulting scenarios for

the day-ahead and intraday market as well as the PV generation are identical in

Paper B and Paper C.

The retailer’s trading and risk management problem on the short-term elec-

tricity markets is modeled as a two-stage stochastic optimization model. The

retailer faces uncertainty, both, via the uncertain volume to be sold to its cus-

tomers with PV self-generation, and via the uncertain prices on the spot markets.

The objective of the risk-neutral retailer is to maximize the expected daily con-

tribution margins, i.e., tariff revenues minus the procurement costs. With the use

of the CVaR, the expected contribution margins and the risk exposure are jointly

optimized by building a linear combination as presented in Section 2.2. The de-

cision variables are the submitted bidding curves on the day-ahead market and

the intraday market for each time step. Thereby, the price levels of the bids are

predetermined by the discrete price levels taken from the scenario trees, so that

the submitted bidding volume on a price level is the decision to determine the

bidding curve.

In this study design, the impact of different shares of customers with PV self-

generation in the portfolio as well as the impact of different retail tariffs is evaluated

in terms of profitability and risk exposure. This prosumer share is varied between

0% and 100%. The retail tariffs are varied to be fixed tariffs or dynamic tariffs

that are indexed with the day-ahead market price. For the calibration of the

retail tariffs’ fixed and variable rates, real-world tariff data from the ten cheapest

tariffs in 39 locations is used. For the households, no deviation from the standard

load profile is assumed as reaction to dynamic tariffs. The dynamic tariff share

within the customer portfolio is varied between 0% and 100%, assuming an equal

distribution between regular and self-consuming customers.
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4.2.4 Results and conclusions

As outlined in the previous paragraphs, the study design yields an extensive

amount of results that can only briefly be summarized here. Overall, risk-hedging

trading strategies and tariffs are found to have a greater impact in summer and

with lower levels of system-wide residual load. This can be explained by the fact

that the solar generation uncertainty affects the households demand to be served

as well as the wholesale spot prices more strongly. Intuitively, the risk exposure is

more pronounced with a higher share of prosumers in the portfolio.

The results unveil the potential of dynamic electricity tariffs to support a fair

sharing of risks between retailers and prosumers. As a consequence, they might

support to avoid a potential risk adder to be billed by the retailer to all customer

groups – corresponding to a blind transfer of risks from retailer to customers and

thereby also charging the regular consumers for the risk induced by the prosumers.

Further, appropriate trading strategies enable the retailer to not only increase

profitability, but also to better manage the risks associated with a high penetration

of RES on the short-term electricity markets. Finally, it must be noted that a high

penetration of dynamic tariffs as a measure of risk hedging allows the retailer to

act more risk-seeking in procurement. This leads to an increased trading activity

on the riskier intraday market. However, in the type days that are evaluated for

the case study, this effect remains relatively small.
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4.3 Paper C: Stochastic optimization of trading

strategies in sequential electricity markets

4.3.1 Background information

As mentioned in the background information of the previous section, Papers B and

C use the same stochastic modeling for the PV generation, residual load, and spot

market price uncertainty. An important additional contribution of Paper C is the

consideration of coordination of bids for a renewable generation portfolio not only

on the spot markets, but also on the balancing reserve market (BRM). Further,

the consideration of technical constraints of the generation units necessitates the

introduction of binary variables to the problem, making the problem a MILP. The

methodology is applied to the case study of the German market setting with a

day-ahead balancing reserve auction (aFRR), followed by the day-ahead electricity

market, and the intraday electricity market.

The manuscript of Paper C was submitted to the European Journal of Opera-

tional Research in June 2021 and published as a working paper (Kraft et al., 2021).

The first review round, which was completed in October 2021, stated necessary

revisions to consider the manuscript for publication. At the time of writing, these

revisions are prepared in order to resubmit the manuscript in short.

The author of this thesis is the lead author and developed the research idea,

the study design, and the methodology. Marianna Russo as co-author is the main

contributor to the characterization of uncertainty and contributes to the prepara-

tion and revision of the manuscript. Further, Dogan Keles and Valentin Bertsch

contribute as co-authors to the research idea, to the interpretation of the results

as well as to the writing, submission and revision process of the manuscript.

4.3.2 Motivation and research question

Since the early years of electricity market liberalization, the massive uptake in

vRES generation and the changing structure of the composition of market par-

ticipants led to fundamental changes in how balancing reserves and electricity is

traded on the markets. A trader with a renewable generation portfolio, consisting

of both, dispatchable and intermittent RES, faces a complex market structure with
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several market segments competing for mostly the same goods – the energy and

the flexibility of the portfolio.

Further, there are substantial sources of uncertainty that affect the trading

problem: (a) The reserve market clearing prices are uncertain in advance and, due

to the pay-as-bid scheme, too conservative bids can lead to large regrets. This leads

to a first source of price uncertainty. (b) Further, the prices on the spot market

segments depend strongly on forecasts and forecast updates of vRES generation

and resulting residual demand that only unfold during the trading sequence from

the day ahead towards real-time. This leads to a second source of price uncertainty.

(c) Finally, the vRES generation uncertainty also induces a substantial volume

uncertainty to the trading problem.

In this setting, Paper C addresses the two research questions how to charac-

terize the uncertainty and how to optimally trade energy and flexibility in such

a sequential market design setting with high shares of renewable generation. To

precise the term “optimally”, these trading strategies intend not only to maximize

expected contribution margins (i.e., the risk-neutral case), but also to consider the

risk exposure determined by the CVaR as a coherent risk measure (i.e., the risk-

averse case). Whereas many articles are available in the literature that consider

parts of this scope, such an application of state-of-the-art stochastic modeling of

interrelated uncertainties and the development of a mathematical program to rep-

resent the real world setting in this degree of detail is new and innovative. Further,

it provides a valuable contribution not only to academia, but also to practitioners

faced with the problem in reality as well as policy makers aiming for a sound design

of short-term electricity markets.

4.3.3 Methodology

The approach identified to be suitable to address the research question consists

of two steps. First, the uncertainty is described by stochastic processes in order

to generate scenario trees based on them. In addition to what was described in

the previous section (that will not be repeated for the conciseness, but is equally

valid for Paper C), the stochastic modeling of BRM prices was a major challenge.

Please note, that only the balancing reserve capacity prices, i.e., the result of

the day ahead reserve capacity auction, are represented in the formulation of the
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trading problem, as the formulation of balancing reserve energy prices is considered

independent from the capacity auction. In the remainder of this section, for better

readability the term reserve price is used for the balancing reserve capacity price.

Further, the subsequent spot markets are assumed to be independent from the

realization of the reserve prices, whereas the positive and the negative products of

the reserve are modeled jointly.

The reserve price model contains the reserve price of the previous day, the

seasonal average reserve price, as well as the expected value of the PV generation

and the residual load as exogenous variables. Further, a dummy variable accounts

for the distinction between working days and weekend days. Through the use

of robust estimation – instead of ordinary least squares (OLS) estimation – the

residuals are not assumed to be independent and identically distributed and nor-

mally distributed. The residuals are then used to estimate the stochastic process

with mean-reverting processes and regime-switching behavior. By means of Monte

Carlo simulation and k-means clustering for scenario generation and reduction, for

each type day a set of ten scenarios with respective probabilities is generated. Each

scenario thereby consists of positive and negative reserve prices for the six time

steps that were explained in Section 2.1.3. Combined with the scenarios for PV

generation, residual load, and spot market prices, a three-stage scenario tree with

a total of 250 scenario leaves represents the uncertainty for each of the 18 type

days.

The second step of the methodology consists of a multi-stage stochastic opti-

mization of the trading decisions across the three stages (i) reserve market, (ii)

day-ahead market, and (iii) intraday market. In the risk-neutral case, the objec-

tive function is to maximize the expected contribution margins of the portfolio.

Further, as seen in Sections 2.2 and 4.2, by using a linear combination of the ex-

pected contribution margins and the CVaR as a coherent risk measure, the trading

problem can be formulated for the case of a risk-averse trader. The decision vari-

ables contain the bidding curves for each market segment and each time step for

the entire portfolio, thereby taking the price levels as pre-determined by the prices

of the scenarios. A trading strategy is thus defined as a set of trading decisions for

all market segments and time steps over all scenarios that leads to a technically

feasible unit commitment.
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One necessary simplification in modeling the problem is to collapse the intraday

market to a single stage that captures for each quarter hour the information state

roughly 60 minutes before real-time and represents the continuous trading as a

uniform pricing auction with the ID3 price as market clearing price38. Compared to

the real-world setting, in which 96 quarter hour products are traded in a continuous

trading, this simplification does not allow for trading profits from the continuous

trading. Further, the intraday price scenarios are characterized by a persistent

spread from the day-ahead market reference. However, this does not affect the

overall expected value of the price and is considered an appropriate simplification

to keep the problem computationally tractable. As discussed in the manuscript,

other authors in literature use this simplification similarly. As long as the operation

of the assets in the portfolio does not intend to profit from price fluctuations

within the intraday market, which would be the case for storage assets, the trading

strategies remain valid.

The generation portfolio is intended to contain vRES generation such as PV,

therefore besides prices the scenario tree also contains updates on the generation

forecast towards real-time. Further, the portfolio also contains biogas power plants

as dispatchable units with minimum load constraints. Hence, the trading problem

also has binary decision variables. These affect all decision stages and are thus so-

called complicating variables. Further, the load change gradient of the dispatchable

units is a crucial parameter that enters as complicating constraint. As the trading

decisions in all considered market segments can lead to load changes, these must

lead to market commitments remaining within the feasibility space.

Another characteristic of multi-stage stochastic optimization is the so-called

non-anticipativity. This term refers to the fact, that decisions at a certain stage

must be taken without knowledge about the realization of the next stage, thereby

not anticipating any unveiling of uncertain information. In the mathematical for-

mulation, this is realized by so-called non-anticipativity constraints that must hold

for all decisions that are taken in one node of the tree.

A last particularity to be mentioned here is the appearance of two distinct

pricing schemes. In the German market design setting which is the blueprint for

the case study the BRM is cleared via pay-as-bid pricing, whereas the day-ahead

38The ID3 is the weighted average price of all trades closed in the last three hours before a
respective delivery period. In these three hours, the intraday trading is typically liquid.
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market and – in the used simplification – the intraday market are cleared via

uniform pricing. This is interesting insofar, as the pricing scheme might lead to a

different optimal bidding behavior, especially in the presence of uncertainty and

considering the opportunities in the given setting.

The developed trading problem is applied to an extensive case study with a

renewable generation portfolio consisting of distributed PV generation and biogas

plants as non-dispatchable and dispatchable units. The case study uses the Ger-

man market design setting as well as generation data and prices for the considered

market segments from the German market area. Analogously to the case study in

Paper B, 18 type days are distinguished. Further, for each type day, ten optimal

trading strategies for different risk attitudes were evaluated: the risk-neutral case

as a benchmark as well as the combinations of three different confidence levels for

the CVaR (α ∈ {0.90, 0.95, 0.99}) and three different weights of the CVaR as risk

measure in the objective function (λ ∈ {0.10, 0.25, 0.50}).

4.3.4 Results and conclusions

The results can be discussed on three levels of aggregation. The first level consid-

ers the overall relation between expected contribution margins and associated risk

exposure for the distinguished trading strategies. This can be done graphically by

plotting the two parts of the objective function for the different trading strategies

(α-λ-combinations) as so-called efficient frontiers. When interpreted to be contin-

uous, these efficient frontiers are found to have a concave shape for all considered

cases. This shape suggests a moderate expense in terms of expected contribu-

tion margins for decreasing the risk exposure moderately. However, when a stark

reduction of risk exposure is considered, this can be only achieved by sacrificing

profitability substantially.

The second level considers the distribution of contribution margins for a single

trading strategy. This is achieved by ordering the contribution margins of all

leaves in the scenario tree in increasing order. With the known probabilities of the

leaves, an ECDF is constructed and informs transparently about the profits and

losses that can be expected. The rather risk-neutral trading strategies are thereby

characterized by a large variability between profits in worst cases and best cases,

whereas for strategies with stronger risk aversion the variability of the contribution
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margins is significantly reduced. A similar evaluation consists in creating profit-

and-loss (PnL) diagrams for single market segments that display the performance

of different trading strategies for different scenarios (i.e., realizations of market

prices). However, due to the coordinated bidding, these PnL diagrams need to be

considered together with the diagrams for all market segments, and can only be

directly compared for scenarios that are the successors of the same node.

The third level considers the submitted bidding curves in each market segment.

Due to the detailed modeling of the bidding problem and the uncertainty, for

each bidding strategy, each market segment39, and each time step, the optimal

bidding curve can be investigated separately. Obviously, such extensive results

must be interpreted with care and always bearing in mind the interrelations and

dependencies between the market segments and scenarios. For the reserve market

bidding, the most interesting finding is a different reaction to uncertainty and the

pay-as-bid pricing for the negative and the positive product.

For the case in which the spot market prices allow a profitable operation of

the dispatchable unit, the opportunity to provide positive reserve is relatively

high, and interchangeable with the opportunities in the later stages. The positive

reserve bids in such a case a therefore typically very risky, the trader is betting

on high(est) prices, being aware of the later stages as a sort of safety net for the

profits. Contrary, since the plant will be running anyways, the opportunity for the

negative reserve provision is relatively low. As there is no interchangeable profit

opportunity on the later stages, i.e., the spot markets, the trader diversifies the

bids and is also willing to accept lower and therefore less risky prices.40

With regard to the submitted bids in the day-ahead and the intraday market, a

clear pattern is observed. The intraday prices tend to be higher in expected value,

but riskier. For a risk-neutral trader, this leads to more intraday trading activity,

as not selling on the reserve and day-ahead markets conserves the highest chances

for larger contribution margins on the last stage. In the bad or even worst cases,

however, the trader is exposed to the risk to the full extent. In contrast, securing

contribution margins in early stages, even if they are slightly lower in expectation,

is the strategy of a risk-averse trader. Therefore, a general finding of this paper

39For the bids submitted in the second and the third stage, the bidding curves are even based
on the realizations of the previous stages.

40In different constellations of the economics of dispatch, the opportunities and rationales can
change. This example is presented here because it is the most intuitive for the reader.
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consists in the insight that risk hedging can be effectively done by moving the

trading activity to the early stages. It can be further concluded that the price

spread in expected values between day-ahead and intraday market, which is also

observed in reality, does not correspond to inefficient markets, but to a pricing of

the risk associated with the uncertainty in the intraday stage.

Concluding, this paper develops a valuable tool for coordinated bidding on

three sequential markets and associated operational planning that allows to con-

sider uncertainties in the short-term electricity markets. An essential input to the

mathematical problem is a sound modeling of the uncertainties, thereby consider-

ing apparent interdependencies between generation uncertainty and price risks in

the different market segments. The investigated case study shows the inevitable

need for transparent controlling of risk when trading on the short-term electricity

markets. Further, stochastic optimization is a powerful mean to not only increase

profits in increasingly uncertain circumstances, but also to support an effective

and economically efficient risk management.

Further, the considered type days and other sensitivities can be used for asset

and portfolio valuation as well as to inform strategic decisions such as investments

or acquisitions. For policy makers, the tool can be used to investigate the incentive

structures and its changes when considering potential market design changes in a

complex and interrelated setting.





Chapter 5

Critical reflection and outlook

Models and associated case studies are used to represent the real world, not to

be the real world. Therefore, it is important to be aware of the limitations of the

models and to critically reflect them. The reflection in this chapter addresses both

criticism on the methodological level and criticism on the content level. However,

each point can also be interpreted as a promising direction, in which the developed

approaches can be enhanced in future research.

Although very much effort has been put in the development of models, stark

simplifications are necessary to capture the complexity of the decisions in a math-

ematical model. From an outsider’s perspective it must appear oversimplified to

approximate continuous stochastic processes by discrete scenario trees.

This is particularly valid for the scenarios and decision-making approach de-

veloped in this thesis, as the price levels on which bids are placed are taken from

the scenarios. However, due to the power of state-of-the-art operations research

methods, this is necessary as highly non-linear problems are hardly tractable. Fur-

ther, the exponential growth in problem size, referred to as curse of dimensionality,

prevents a strong increase of the number of discrete scenarios to approximate the

continuous nature of the parameters. It will hence remain a challenging task to find

a balance between representativeness to the real world and tractability of the prob-

lem. For the degree of modeling detail and the resulting problem sizes considered

in this thesis, it appears unrealistic to deploy analytical optimization approaches

on the continuous distributions of parameters that do not rely on sampling- or

approximation-based solution techniques in the near future.
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In this context, the number of scenarios to appropriately represent the uncer-

tainty of a parameter under consideration may have a significant impact on the

quality of the entire approach in real-world applications and may thus be cho-

sen based on the degree of faced uncertainty case by case. However, to be able

to compare the results between the considered type days and to keep the prob-

lems mathematically tractable, the selected static number of scenarios considered

to represent parameter uncertainty in each stage of the type days’ scenario trees

seems to be an appropriate choice. However, investigating the optimal number

of scenarios in each stage or for each type day as well as the impact on resulting

trading strategies appears as a promising direction for further case studies.

Similarly, the number of stages limits the approaches developed in this thesis.

With regard to problem structures in reality, the multi-stage setting could defi-

nitely be expanded to increase the validity of the models. This could be done by

considering all reserve market segments from the primary reserve to the balancing

energy auctions, or a better representation of the intraday trading structure. Par-

ticularly, a more precise representation of the continuous intraday market might

help to improve the insights for the present case studies. On the one hand, the

continuous nature of the intraday market is simplified by considering price indices

instead of the order books and the development of stochastic price processes to-

wards GCT. These price processes can as well be exploited commercially by trading

actions, which is not included in the developed models. On the other hand, the

developed intraday market price scenarios are rigid to the extent that they do not

contain the possibility of a sign change of the difference between day-ahead and

intraday prices throughout the day, but within one scenario intraday prices remain

above, below or on the same level compared to the respective day-ahead prices.

By breaking down the representation of the intraday market to several stages,

each covering smaller time intervals instead of a single stage covering the whole day,

one could introduce the possibility of such a sign change with associated transi-

tion probabilities. However, as the unit commitment of the considered generation

units contains hardly any temporal interdependence exceeding the start-up and

load ramping behavior, this would not change the overall findings with regard to

the trading decisions, but mainly make the problem more complex. Finally, the

intraday stage in the first place serves as an approximation for the opportunity to

be considered in the previous stages, so that this simplification is justified.
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Moreover, in the context of the reserve market, only bids for the balancing ca-

pacity auctions are considered in the trading decisions, whereas balancing energy

bids are not subject of the investigation. However, the technical limitations aris-

ing from possible reserve activation are considered in the problem constraints, but

the activation is not explicitly modelled or simulated. In the developed approach,

the balancing energy bids are considered as a trading decision that is indepen-

dent from the previous trading decisions. This is reasonable in that the balancing

energy bids do not constrain the other decisions and economic theory suggests

bidding with marginal costs under perfect competition. Excluding the balancing

energy bids from the model – and thus assuming there is no potential additional

revenue from reserve activation – is therefore a reasonable simplification, but re-

sults in a conservative estimate of reserve market revenues. Further research could

investigate the optimal bids for the balancing energy market and incorporate the

associated revenue expectations in the trading problem. The main challenges here

are to appropriately represent the interdependence between the intraday market

and the reserve activation scenarios, and to determine the expected position of a

bid in the merit order of activation and the corresponding activation probability.

For topical extensions such as the optimal trading strategy for battery stor-

ages in the presented multi-market setting, breaking down the intraday stage into

several stages as mentioned above and including reserve activation scenarios will

definitely be necessary. As the extension to storages introduces new time-coupling

constraints that the presented approach could not handle appropriately, sampling-

based techniques such as SDDP and variants of it appear to become inevitable.

Another aspect that is simplified is the intraday market liquidity. As the in-

traday market liquidity has increased significantly in the German market area and

relatively small portfolios are considered, for the case studies developed in this

thesis this seems to be an acceptable assumption. However, when transferring the

models to other market areas or larger portfolios, adding intraday market liquidity

as a parameter to the stochastic processes might become necessary.

Related to the size of the portfolio and market liquidity, another crucial simplifi-

cation is the price taker assumption. As the derived bids are to be submitted to the

market, a price effect – particularly for market participants with larger portfolios

– is not unlikely, especially for the relatively small balancing reserve markets and

the intraday market. An extension of the models to address price making appears
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reasonable. Most interesting but most likely also most challenging for modelers in

that context is the consideration of scenario- or even price-level-dependent price

effects, in order to capture the non-linear shape of the merit order in different

situations and curve segments.

Further, the scope of the developed models is limited to short-term deci-

sions. To capture decision-making under uncertainty in electricity markets also

for the mid- and the long-term decision horizon, the scope requires extension of

the stochastic models and stochastic optimization approaches to also include mid-

and long-term uncertainty. Particularly, the development of demand, commodity

prices and relations among them can heavily influence the electricity markets and

the economics of its participants. This is once more proven by the recent devel-

opments in the context of the COVID-19 pandemic such as decreasing and then

steeply increasing prices for fuels and carbon emission allowances. Moreover, it

shows that quantitative risk management in the real world should always be com-

plemented by a qualitative risk management. However, the qualitative dimension

is not part of this thesis.

Future research should also address how to derive strategic planning decisions,

such as generation and storage expansion planning, in an increasingly uncertain

economic environment. Strategic decisions typically take horizons of several years

up to decades into account, for which serious predictions of economic, technolog-

ical, and political parameters are essentially not available. Associated with this

question, impacts of different decision rationales of agents in large-scale and long-

term electricity market models can be used to study urging questions about the

market design. Long-term price forecasts and stochastic processes are excluded

in the papers in this thesis. However, a first attempt to address uncertainty in

strategic planning is presented in Fraunholz et al. (2021), to which the author of

this thesis also contributed. Albeit considering long-term uncertainty of renewable

generation in that publication, the long-term price forecasts are heavily dependent

on the assumed fuel and carbon emission allowance prices of the scenarios. Further,

substantial policy uncertainty and technology developments are not addressed.

In order to appropriately support strategic decision-making under uncertainty,

such as generation and storage expansion planning, thorough scenario-based anal-

yses and deep dives into real option and portfolio theory would be necessary.

However, this is not in the scope of this thesis and is left for further research. This
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thesis provides a promising starting point in terms of methods and approaches to

make better operational decisions. In next steps, these can be applied and ex-

tended to serve as a profound basis for methods to investigate short-, mid- and

long-term decisions under uncertainty in electricity markets.





Chapter 6

Summary and conclusion

The aim of this thesis is to provide new methods for making better decisions under

uncertainty in the short-term electricity markets. The presence of uncertainty

is not new to decisions in the energy sector and is certainly prevalent in many

industry sectors. Therefore, much effort has been put in supporting decisions

under uncertainty in the literature. However, recent and current developments in

the energy sector present new challenges that require approaches that go beyond

the state of the art.

As identified in the initial chapter, the German energy sector undergoes a num-

ber of parallel developments that affect the decision-making of market participants.

The phasing-out of nuclear power and simultaneous pursuit for decarbonization

to achieve ambitious climate targets lead to fundamental changes in the organi-

zation of the electricity system and, consequently, the electricity markets. The

selected approach to satisfy the energy demand in the future is based on a high

share of renewable energy sources such as photovoltaics and wind energy. Their

main characteristic is the fact that their generation capacity cannot be dispatched

on demand but is highly dependent on weather conditions. Hence, a large share

of renewable generation introduces uncertainty and volatility to the system. As a

consequence, market participants rely on forecasts, not only with regard to the de-

mand to be satisfied, but also with regard to the available supply. This ultimately

leads to more uncertainty and more volatility in market prices.

In the electricity market, these fundamental changes have been accompanied

by the introduction of new market segments that are cleared sequentially until

91
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close to real time and determine prices of energy, flexibility, and related services.

For market participants, these can be viewed as different revenue opportunities

with different profit and risk characteristics.

Thus, the overarching research question investigated in this thesis is how to

optimally operate and trade assets in the short-term electricity markets in the

presence of uncertainty. This question is subdivided into (a) how to appropri-

ately model the uncertainty and (b) how to make optimal trading decisions under

uncertainty in the sequence of short-term electricity markets.

Against this background, this thesis presents the institutional framework of the

electricity market with a focus on Germany and Europe. Then, necessary defini-

tions of uncertainty and risk are introduced and a taxonomy of corporate risks in

energy sector is developed. Subsequently, the thesis presents and develops several

methods that are essential to address the formulated research questions. First,

approaches for modeling and forecasting time series are presented and transferred

to the stochastic context. Second, the extension of these approaches to stochastic

modeling is discussed and approaches for scenario generation and reduction are in-

troduced. Third, mathematical methods for determining optimal decisions under

uncertainty are introduced. Based on these approaches and the related findings,

three case studies are developed to answer the research questions.

Price forecasts make predictions about the future and are essential to derive

trading decisions under imperfect information. In Paper A, several time series

models are developed and applied to reserve price forecasting. Methods from

econometrics and machine learning are compared, all of which are found to be

suitable. Among the models that perform well, artificial neural network ensembles

are found to be the most accurate forecast models.

In some cases, however, price forecasts are not sufficient to capture the uncer-

tainty faced by market participants. In such cases, having an adequate representa-

tion of the uncertainty and possible scenarios is more valuable for deriving optimal

decisions than having a point forecast. Paper B provides such a modeling approach

to capture the uncertainty introduced by volatile renewable energy sources in the

short-term electricity market context. Using historical data, interrelated stochastic

processes are modeled and estimated for solar generation, residual load, and the

prices on the considered markets. Two-stage scenario trees containing the uncer-

tain parameters relevant for the day-ahead and the intraday market are generated
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for different type days and applied to the case study of a retailer. The retailer

faces not only the uncertainty of market prices, but also the uncertainty of the

quantity to be supplied to its prosumers. By means of trading strategies – derived

by stochastic optimization – and different tariff schemes, options for appropriate

risk management under different risk attitudes are derived. It can be concluded

that an increasing share of prosumers in the portfolio increases the risk exposure

of the retailer and that dynamic tariffs are an efficient mean for a fair sharing of

risks between prosumers and the retailer.

For generation portfolios that provide balancing reserve and sell energy in the

spot markets, the sequence of trading decisions and associated uncertainties be-

comes even more complex. Paper C addresses this scope by including the secondary

reserve market as a third market segment besides the day-ahead and the intraday

market into the trading problem under uncertainty. For a portfolio consisting of

dispatchable and intermittent renewable generation units, optimal trading deci-

sions are derived using a three-stage stochastic mixed-integer linear problem, and

the trade-off between profits and risk exposure is balanced efficiently. Different lev-

els of risk aversion are distinguished to derive a set of optimal trading strategies for

decision support. With regard to the market segments, it can be concluded that

risk-neutral decision-making tends to focus on the intraday market, and thereby

exposes the profits to a large risk. A reduction of risk exposure – at the price of a

moderate reduction of expected profits – can be achieved through trading in the

day-ahead market and the reserve market. The developed case studies provide a

rich set of insights regarding the particularities and the interplay of reserve and

spot markets from a market participant’s perspective. However, as highlighted in

the outlook, several promising extensions to the developed methodology and case

studies, as well as their application to new technologies, are ready to pave the way

for future research.

Overall, the thesis highlights the importance of adequately accounting for un-

certainty when deriving trading decisions in short-term electricity markets. The

new challenges for market participants associated with the ongoing changes in the

energy sector require sophisticated methods and solutions. Optimal trading and

risk management on an operative level is essential for the success of the energy

transition, as it enables not only an optimal allocation of goods and assets, but

also of risks. Moreover, it enables new technologies to enter the electricity mar-
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kets based on sound business models and transparent profit and risk estimates.

In electricity systems organized by liberalized power markets, these aspects are

fundamental building blocks of the decarbonization projects of Germany and the

world.
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Abstract

The forecasting of prices for electricity balancing reserve power can essentially

improve the trading positions of market participants in competitive auctions.

Having identified a lack of literature related to forecasting balancing reserve

prices, we deploy approaches originating from econometrics and artificial

intelligence and set up a forecasting framework based on autoregressive and

exogenous factors. We use SARIMAX models as well as neural networks with

different structures and forecast based on a rolling one-step forecast with

reestimation of the models. It turns out that the naive forecast performs rea-

sonably well but is outperformed by the more advanced models. In addition,

neural network approaches outperform the econometric approach in terms of

forecast quality, whereas for the further use of the generated models the

econometric approach has advantages in terms of explaining price drivers. For

the present application, more advanced configurations of the neural networks

are not able to further improve the forecasting performance.

KEYWORD S

artificial neural network, balancing reserve, econometrics, electricity price, time series

forecasting

1 | INTRODUCTION AND
MOTIVATION

Transmission system operators (TSOs) have responsibility
for a secure electricity system operation, which includes
ensuring a stable grid frequency of 50 hertz within their
designated control areas. This is achieved by continu-
ously balancing power feed-in and withdrawal.

To balance frequency perturbations, balancing
reserve capacity is deployed by the TSOs. Balancing
reserve capacity is characterized by a short reaction time
and the ability to increase or decrease the power feed-in
quickly upon request. Depending on the response and
the activation time, three different qualities are

distinguished in continental Europe. The different quality
requirements lead to market segments for primary (fre-
quency containment reserve, FCR), secondary (automatic
frequency restoration reserve, aFRR), and tertiary (man-
ual frequency restoration reserve, mFRR) balancing
reserve power, in which FCR has, at 30 seconds, the
shortest activation time. In the past, mainly conventional
generation such as nuclear, coal and gas power plants,
but also hydropower, were the only providing technolo-
gies of balancing reserve power. In recent years, new
technologies entered the market and, by today, renew-
able energies such as biomass, photovoltaics and wind
power, but also battery storage, are technically capable of
providing balancing reserve. Because market

Received: 31 July 2019 Revised: 17 March 2020 Accepted: 9 April 2020

DOI: 10.1002/for.2693

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Journal of Forecasting published by John Wiley & Sons Ltd

Journal of Forecasting. 2020;39:1179–1197. wileyonlinelibrary.com/journal/for 1179

118 Paper A – Modeling of frequency containment reserve prices with . . .



liberalization TSOs are not allowed to own generation
capacity, they procure positive and negative reserve
capacities meeting different quality requirements through
public tenders. These markets for balancing reserve coex-
ist alongside derivative and spot markets for electricity,
enabling additional return opportunities for generators
by meeting the respective requirements.

The auctions for FCR take place on a weekly basis
each Tuesday at 3 p.m. and are dedicated to the provision
of FCR in both a positive and negative direction for the
following week. Market participants place a capacity
price bid and are compensated according to pay-as-bid
pricing.

This paper focuses on forecasting the prices of the
largest European FCR market, in which the TSOs of the
control zones of Austria, Belgium, France, Germany, the
Netherlands, and Switzerland jointly1 procure roughly
1.4 gigawatts of FCR capacity for the upcoming week in
an auction. Providers of FCR are compensated for capac-
ity reservation based on the reserve power price, whereas
delivered energy itself is not a matter of compensation.2

Therefore, market players require appropriate forecasts
of the week-ahead FCR power prices to be successful in
the related auctions.

An individual supplier faces the tradeoff between the
profit from selling FCR and the opportunity costs of the
alternative use of flexible capacity, like bidding on the
day ahead or the intraday market. Additionally, if the
supplier decides to provide FCR, the technical unit has to
be online for the entire week of provision. In the case of
a power plant with minimum load requirements, the pro-
vider risks costs induced by negative contribution mar-
gins. Therefore, in order to prepare an adequate offer for
the FCR tender and the other market segments, high-
quality price forecasts are inevitable.

However, forecasting of FCR power prices has hardly
been addressed in the forecasting literature (see Sec-
tion 2). For this reason, we develop and introduce ade-
quate forecasting models based on seasonal integrated
autoregressive moving average (ARMA) models with
exogenous regressors (SARIMAX) as explanatory vari-
ables and compare their results with methods from a sec-
ond model family, the neural-network-based models.
From the latter, we set up an experiment design to
develop high-performing neural networks. The goal of
this study is to find not only well-performing forecast

methods but also their appropriate configuration in terms
of hyperparameters and training strategies.

We find that both neural networks and SARIMAX
models are capable of forecasting FCR prices reasonably
well. For the neural networks, the simple network struc-
tures outperform the more sophisticated ones. The
applied overfitting and ensembling techniques lead to sig-
nificantly better forecast results and provide a solution to
the problem of training data scarcity.

The main contributions and novelty of this paper are
as follows:

1 Application and comparison of statistical and neural
network models to price forecasting in reserve power
markets that increasingly gain more importance in the
energy transition era.

2 Description and discussion of training strategies for
forecasting reserve power prices with neural networks
on a scarce data basis.

3 Definition and discussion of appropriate target vari-
able in the case of FCR prices in a market that is
designed as a pay-as-bid auction.

4 Discussion on suitability and performance of simple
and more sophisticated network structures for the
mentioned market prices.

In this context, the paper is structured as follows. In Sec-
tion 2, we review different approaches to forecast short-
term electricity market prices in the literature. In Sec-
tion 3, we deploy forecasting approaches considering
autoregressive processes and exogenous drivers: precisely,
a SARIMAX approach and artificial neural network
models (ANN). Hereby, we consider feedforward units
and set up an experiment design which deploys different
model structures and training strategies. Finally, in Sec-
tion 4, we apply the approaches to the stated forecasting
problem and compare the performances. In Section 5, we
conclude the findings and provide an outlook on future
developments.

2 | RELATED LITERATURE

Among the first looking into the issue of reserve pricing
and costs from a market perspective are Kirsch and
Singh (1995). They provide an overview over the cost
components of reserve power: opportunity costs of fore-
gone sales, costs of uneconomic operation, potential
startup and shutdown costs, costs resulting from frequent
load changes and costs caused by efficiency losses. In
addition, as applies for pricing electricity in the wholesale
market, on the one hand the short-term marginal costs
have to be considered. These are mainly determined by

1Note that France joined the procurement union in 2017 and
subsequently provides more than a third of the required FCR. However,
the market entry of France is considered in the model building, as the
structural change may have introduced correlations and dynamics,
which data from before 2017 do not contain.
2This is due to the fact that activation is hardly predictable and the
delivered energy amount has an expected value of zero.
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fuel and operation costs and can be increased due to par-
tial load operation and decreased efficiency. On the other
hand, the capital costs and other fixed costs need to be
recovered by contribution margins generated in the mar-
ket in the long term.

Weron (2014) finds that the actual modeling and fore-
casting of prices from balancing reserve and ancillary ser-
vices markets has been comparatively rare in the
literature. Exceptions include Olsson and Söder (2008),
who model real-time balancing reserve power market
prices in the Nordic market by using combined SARIMA
and discrete Markov process models. They conclude that
the developed model combination is suitable to use for
the generation of real-time balancing power price scenar-
ios. Klæboe, Eriksrud, and Fleten (2013) benchmark
time-series-based forecasting models, and Dimoulkas,
Amelin, and Hesamzadeh (2016) apply a hidden Markov
model to forecast balancing reserve market prices for the
Nordic market. They argue that activation of the
balancing reserve occurs randomly and an activation-
based price is therefore hardly predictable. Unfortu-
nately, unlike the tenders considered in the present
paper, the considered market design in the Nordic mar-
ket is based on payments for reserve activation and not
for the provision of reserve power.

Just and Weber (2008) consider an equilibrium
model with two alternative competitive markets: the
secondary balancing reserve power and an hourly elec-
tricity spot market. They valuate the provision of
balancing reserve by quantifying the opportunity to spot
market sales and deduce a development of capacity
prices for secondary balancing reserve power for the
German case. However, they do not apply the equilib-
rium model to forecast prices and do not include FCR
in their investigations.

Finally, Wang, Zareipour, and Rosehart (2014) inves-
tigate the application of established stochastic approaches
for modeling the behavior of operating reserve and regu-
lation prices in the North American electricity markets,
which, like the Nordics, are based on activation rather
than provision of balancing reserve power. The investi-
gated models are descriptive and not designed for gener-
ating short-term forecasts. The authors point out that
reserve and regulation prices are characterized by higher
volatility, lower mean, more frequent price spikes, and a
more skewed distribution compared to electric energy
prices. Thus modeling reserve power prices is potentially
more challenging.

In contrast to forecasting reserve market prices, fore-
casting of electricity spot market prices is a field that has
been pervasively studied (Weron, 2014). For example,
Kiesel and Paraschiv (2017) and Bublitz, Keles, and
Fichtner (2017) mention fundamental price drivers such

as load, fuel prices, unavailable generation capacity, and
renewable energies' feed-in as suitable exogenous regres-
sors to forecast electricity prices.

ANN forecasting of hourly day-ahead electricity
prices and a comparison to econometric benchmarks was
first applied by Catal~ao, Mariano, Mendes, and
Ferreira (2007), who find a good forecasting performance
of ANN on the Spanish and the Californian market.
Lago, Ridder, and Schutter (2018) study the Belgian day-
ahead electricity market and consider a large set of possi-
ble forecasting models, concluding a significant domi-
nance of machine learning over the statistical models in
terms of forecasting accuracy. Ugurlu, Oksuz, and
Tas (2018) and Oksuz and Ugurlu (2019) forecast the
Turkish day-ahead and intraday market electricity prices
with different neural networks configurations, including
feedforward, gated recurrent unit (GRU) and long short-
term-memory (LSTM) model designs. The authors con-
clude a significant dominance of GRU model designs and
state an improvement with increasingly sophisticated
network structures. Giovanelli, Sierla, Ichise, and
Vyatkin (2018) forecast the hourly day-ahead balancing
prices of the Finnish market and compare neural net-
works in various parameter configurations with support
vector regression and autoregressive integrated moving
average (ARIMA) models. They find that the amount of
training data is a key impact on the forecasting perfor-
mance of the models, whereas different training strate-
gies, algorithms, and activation functions performed
similarly well.

The methodological approach of comparing models
originating from econometrics with machine learning
models has been applied to several scopes in the litera-
ture. Chatfield (1996) and Adya and Collopy (1998) pro-
vide a theoretical foundation for the need to consider
both econometric models and machine learning
approaches such as neural networks in forecasting. They
conclude that the model setup requires a careful choice
of external regressors with regard to out-of-sample-fit in
order to respect model uncertainty (Chatfield, 1996) and
that well-designed ANN models have the potential to out-
perform econometric approaches in forecasting applica-
tions (Adya & Collopy, 1998). Early studies deploying
both econometric and ANN models include applications
in forecasting electricity demand (Liu et al., 1991), con-
sumer expenditure (Church & Curram, 1996), retail sales
(Alon, Qi, & Sadowski, 2001), foreign exchange rates
(Qi & Zhang, 2001; Yao & Tan, 2000), gross domestic
product (GDP) growth (Tkacz, 2001), stock returns
(Olson & Mossman, 2003; Qi & Zhang, 2001), and infla-
tion rates (Binner, Bissoondeeal, Elger, Gazely, &
Mullineux, 2005). The studies confirm the conclusion
regarding the forecasting potential of well-designed
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neural networks drawn by Adya and Collopy and suggest
the adaption of the study design to FCR price forecasting.

However, for all mentioned studies the data basis for
training the model is comprehensive. In particular, the
studies on electricity prices rest on hourly data of several
years and the neural networks thus have plenty of obser-
vations to learn from. Further, spot market prices are typ-
ically well explainable by fundamental factors (see,
e.g., Bublitz et al., 2017; Kiesel & Paraschiv, 2017;
Weron, 2014). Conversely, a challenge in forecasting
balancing reserve market prices lies in the fact that they
are hardly explainable by fundamental drivers (Kraft,
Keles, & Fichtner, 2018; Ocker, Ehrhart, & Belica, 2018).
However, Ocker and Ehrhart (2017) find evidence for col-
lusion among market participants and serial correlation
in the auction results of the secondary reserve market.
Another key challenge in this paper is based on a rela-
tively sparse database, consisting of weekly data from the
years 2017 and 2018. To cope with the data scarcity, we
deploy ensembling and overfitting strategies (see Sec-
tion 3) that, to the best knowledge of the authors, have
not been deployed in electricity price forecasting before.

We are well aware that commercial providers offer
forecasts for the considered FCR market. Unfortunately,
however, these commercial providers publish neither
their methodologies in detail nor historic forecast time
series as a benchmark. In the next section, we will there-
fore follow Weron (2014), who classifies short-term price
forecasting models into time series analysis approaches
and artificial intelligence or machine learning
approaches. We will set up and deploy forecasting models
for the FCR price based on both time series analysis
(SARIMAX) and ANN.

3 | METHODOLOGY

The literature review in the previous section displayed a
lack of scientific publications in the field of FCR price
forecasting and suggested the application of, on the one
hand, approaches coming from time series analysis, and,
on the other hand, approaches coming from machine
learning. To obtain a benchmark that is neither time
series based nor machine learning based, a naive fore-
cast3 is taken as a benchmark. Preliminary analyses
showed that for FCR prices the naive forecast outper-
forms linear regression and can well compete with a
SARIMA approach (Kraft, Rominger, Mohiuddin, &
Keles, 2019). In Section 3.1, owing to the pay-as-bid auc-
tion design, first the dependent variable is defined and its

time series is analyzed briefly. In Section 3.2, the exoge-
nous variables required for the forecasting approaches
are introduced and their preprocessing is explained. Sec-
tions 3.3 finally presents the setup and training of the
SARIMAX and ANN models.

3.1 | Definition of dependent variable and
time series analysis

As FCR tenders are pay-as-bid auctions, there is no uni-
form settlement price but each market participant
receives its price bid as remuneration. Prior to setting up
a highly sophisticated forecasting model, it is necessary
to define a suitable dependent variable. Analysis of the
FCR market results from 2014 to 2018:Q3 (Figure 1)
shows the range of accepted bids as well as the capacity-
weighted average price in each auction. From the rela-
tively low gap between the capacity-weighted average
price and the respective marginal price (except for single
spikes), we conclude that the capacity-weighted average
is a suitable target variable for the forecast. The main
errors induced by using the capacity-weighted average
instead of the maximum price, for example, arise in
periods with price spikes. However, considering that a
risk-neutral trader would not speculate on the height of
price spikes, the capacity-weighted average remains the
favorable forecast target.

The time series contains seasonality, mainly induced
by a strong price increase over the Christmas holidays
and a moderate price increase in early summer of each
year. In general, the time series shows a decreasing trend.
To check the time series for stationarity, it was tested
with Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit
root tests (Kwiatkowski, Phillips, Schmidt, & Shin, 1992).
The nondifferenced time series rejects the stationarity
null hypothesis at 1% significance; the series of first dif-
ferences (shown in Figure 2) does not reject the
stationarity null hypothesis. The econometric models will
therefore be estimated with a SARIMAX approach with

FIGURE 1 FCR price development from 2014 to 2018:Q3

(own illustration based on data from regelleistung.net, 2019)

3The naive forecast equals the expectation of having the same price as
in the last auction.
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the undifferentiated time series of capacity-weighted
averages as dependent variable y. The SARIMAX
approach allows us to endogenously model the first dif-
ferences Δy of the time series in order to derive forecasts
regarding the forecast target. The autocorrelation func-
tion (ACF) of the differenced time series indicates a sig-
nificant correlation with lag 1, lag 2, lag 50, and lag
52 (see Figure 3). Thus, for model training and predic-
tion, Δyt − 1, Δyt − 2, Δyt − 50, and Δyt − 52 are supplied as
the respective lags.

For the ANN models, the dependent variable is
defined as the first difference Δy of the capacity-weighted
price time series, corresponding to the difference between
the price of the current and the price of the previous auc-
tion. In order to return to the desired FCR price predic-
tion, the predicted difference is added to the FCR price of
the previous auction. This procedure complies intuitively
with the SARIMAX model, which likewise intends to
estimate the first differences instead of the actual forecast
target, and is therefore considered a suitable comparative
approach.

Table 1 summarizes the statistical properties of mean,
median, standard deviation, skewness, and kurtosis for
the times series of the differences of FCR prices in the
period of investigation 20174 to 2018:Q3 with a total
number of 88 observations.

3.2 | Identification and pre-processing of
exogenous variables

As there is no explicit literature on exogenous regressors
with regard to balancing reserve prices, several regressors
that are commonly used in models for other electricity
prices (see, e.g., Bublitz et al., 2017; Kiesel &

Paraschiv, 2017) are considered as exogenous regressors
in this study. Representing, among others, opportunity
costs for reserve provision and a scarcity in the market,
the following possible predictors are identified:

• price range and skewness of FCR bids in previous auc-
tion (regelleistung.net, 2019);

• average electricity price of week-ahead future
German–Austrian (DE-AT)5 and French (FR) market
area (EEX, 2019);

• average day-ahead electricity spot market price in DE-
AT and FR (EEX, 2019);

• average load forecast and realized load for DE-AT and
FR (ENTSO-E, 2019);

• number of German public holidays in a week (ENTSO-
E, 2019);

• planned unavailable capacity in DE-AT and FR
(ENTSO-E, 2019).

Note that exogenous factors like wind and photovoltaic
power feed-in are not considered, as the auction for FCR
procurement takes place 1 week ahead and the volatile
renewable feed-in is hardly predictable at these time-
scales. However, the future price includes the effect of
the expected wind and photovoltaic power feed-in in the
respective week due to the merit-order effect. We thus
implicitly consider for volatile renewable energy sources
to some extent.

For the selection of predictors from the list above, the
corrected Akaike information criterion (AIC; Hyndman &

FIGURE 2 First differences of capacity-weighted average of

accepted FCR bids from 2014 to 2018:Q3 (own illustration based on

data from regelleistung.net, 2019)
FIGURE 3 Autocorrelation function (ACF) of differenced

time series (own illustration based on data from regelleistung.

net, 2019) [Colour figure can be viewed at wileyonlinelibrary.com]

4As France joined the joint auction at the start of 2017, data from before
that date may not include all interdependencies and lead to a wrong
model fitting.

5As the DE-AT future product was split up into DE and AT future
products, the volume-weighted average of DE-AT and DE futures is
taken for 2018.
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Athanasopoulos, 2013) of a linear regression model6

applied to 2017 data is used. Other popular information
criteria for model selection contain the regular AIC and
the Bayesian information criterion (BIC). By penalizing
the number of parameters, the corrected AIC accounts
for and adjusts the tendency of the AIC to prefer models
with too many parameters when sample sizes are rela-
tively low. Due to the relatively low sample size, the AIC
was not considered in predictor selection. By penalizing
the number of parameters, the corrected AIC accounts
for and adjusts the tendency of the AIC to prefer models
with too many parameters when sample sizes are rela-
tively low. Among all predictor combinations, the set of
exogenous predictors containing the FCR price range, the
future price DE-AT, the future price FR, the load in DE-
AT, the load in FR and the planned unavailable capacity
in DE achieved the lowest corrected AIC, corresponding
to the best fit in the linear regression on the 2017 data. A
selection based on the BIC leads to a similar parameter
set as the ranks of the models sorted by BIC are compara-
ble to the ranks sorted by the corrected AIC. For exam-
ple, the best model in terms of BIC chooses the load
forecast in FR instead of the realized load in FR and drops
the future price of FR. For the scope of the paper to con-
figure and compare the SARIMAX and ANN forecasts,
we consider the choice of regressors according to the
corrected AIC to be suitable. As French nuclear power
plants contribute a significant share to the FCR provi-
sion, the planned unavailable capacity in FR is added to
the predictor set chosen by the corrected AIC. Although
the chosen predictor set x may not be the best for all
models, all forecasting approaches are deployed in the
following with the same selected set for reasons of consis-
tency and comparability.7

The preprocessing consists of a validity check of the
raw data, the calculation of descriptives to be used in the
modeling (e.g. weighted average, range or skewness), and
finally a normalization. Normalization has been dis-
cussed at many points in the context of time series fore-
casting and neural networks (see, e.g., Kaastra &
Boyd, 1996; Keles, Scelle, Paraschiv, & Fichtner, 2016).
For ANN, it is particularly important to choose the nor-
malization range according to the intended activation
function of the neurons. As having a common value
range of all target and predictor variables leads to a more
stable functioning of the related fitting algorithms and
does not change the results, we normalize the data
between zero and one by subtracting the minimum value
and dividing by the range of values.

3.3 | Setup and training of models

For training and forecasting with the SARIMAX and
ANN models, a cross-validation approach called rolling
one-step forecast with model reestimation is set up (see,
e.g., Arlot & Celisse, 2010). In this approach, models are
fitted with training data in order to predict the value of
the single next step. In the reference training strategy the
training data set is extended by one step for each forecast
step, which is also referred to as an expanding window.
In our case, the initial training data set consists of the
52 observations from 2017. As can be seen in Figure 4,
the training data set for week 1 of 2018 consists of all
2017 data, the training data set for week 2 of 2018 con-
sists of the 2017 data plus week 1 of 2018, and so on. In
this way, the best information available to the trader at
the forecasting time is used in the forecast. As a conse-
quence, there is no single model but as many models as
forecasting steps for each approach presented in the fol-
lowing paragraphs.

As the analysis of the price time series in Section 3.1
revealed different price characteristics over time, in addi-
tion to the expanding window, a rolling window of size
10 is considered in the experimental design for training
the ANN. The rationale behind having a rolling window
is to make the networks more adaptive to changing
dependencies over time and to focus on the recent obser-
vations, not distorting the network learning from nonre-
levant information from the past. However, the rolling
window obviously bears the risk of further enhancing the
data scarcity problem and leading to worse prediction

TABLE 1 Descriptive statistics of the differences of FCR prices

Variable n Mean Median SD Skewness Kurtosis

Differences, FCR price 88 −8.13 9.62 178.58 1.91 15.38

6Linear regression models the differences of the FCR price time series
(dependent variable = Δy) with the different sets of exogenous
variables. The regression was chosen over a simple correlation analysis
as the latter might not respect interdependencies between the
independent variables. In particular, load and electricity prices are
highly correlated and should thus not be handled independently.
7The predictor set containing the planned unavailable capacity in
France instead of the planned unavailable capacity in Germany was the
eighth best (of 16,383) behind variations of the highly correlated load
and load forecast in Germany and in France. The corrected AIC
penalizes adding a predictor to the set; thus the predictor set finally
used was not among the favorites of corrected AIC. Nevertheless, as
mentioned above, we consider the unavailable capacity in France a
relevant predictor variable and included it in the investigation.
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results as well as less robust models. In this way, the
strength of more sophisticated network structures cannot
be exploited in the same way that is possible with a larger
training data set.

3.3.1 | SARIMAX model

The setup of a SARIMA(p,d,q) (P,D,Q)m model consists of
defining the optimal values for the hyperparameters
(Brockwell & Davis, 2016):

• p: trend autoregression order;
• d: trend difference order;
• q: trend moving average order;
• P: seasonal autoregression order;
• D: seasonal difference order;
• Q: seasonal moving average order;
• m: time steps for a single seasonal period.

In addition, to apply a SARIMAX model we include the
exogenous predictor variables x presented in Section 3.2
with the same order as the trend autoregression order.8

As mentioned in Section 3.1, the KPSS test suggests a dif-
ference order d = 1. The ACF of the differenced time
series indicates a significant correlation with lag 1, lag
2, lag 50 and lag 52 (see Figure 3). Therefore, the SAR-
IMAX model is set up with the trend autoregression
order p = 2 to consider lags 1 and 2; lags 50 and 52 are
considered by the seasonal hyperparameters. For the
remaining hyerparameters, a parameter grid search is
performed to fit the optimal model of SARIMAX class to
the training data by deploying a variation of the
Hyndman–Khandakar algorithm. It deploys and com-
bines iterative unit root tests, minimization of the AICc
and maximum-likelihood estimation to obtain the opti-
mal model order. The training of the models is a side
effect of the used algorithm and based on maximum-
likelihood estimation. For further details, see Hyndman
and Khandakar (2008).

3.3.2 | Artificial neural networks

Whereas the econometric approach fits the model to the
training data by assuming linear relationships between
inputs and outputs, ANN are capable of training
nonlinear relationships of the input data to explain the
variations in the dependent variable. In the following
paragraphs the configuration and training of the ANN
are presented, which comprises the description of the
important hyperparameters—neurons per hidden layer,
number of hidden layers, which training data to select,
and which training hyperparameters to apply—and their
variations in the experiment design. In a first step, the
ANN are set up by defining the network structure and
units. In a second step, training strategies are defined to
specify the way the training data are processed through
the networks. However, there are infinite possible combi-
nations of network configurations as well as training
strategies.

In the following, we present a reference model config-
uration and an experimental design with variations in
the number of hidden layers and number of neurons per
layer. As the application of forecasting FCR prices offers
– compared to other applications of neural networks such
as picture classification or language processing – few
training data, in this paper multilayer perceptron
feedforward models are deployed. In the working pro-
cess, further advanced model developments such as
recurrent network structures with GRU as neurons were
also assessed but yielded no improvement. Therefore,
they are not presented in the following. For the sake of
completeness, the hyperparameters and training configu-
rations and results of the GRU forecasts are provided in
Tables A and B in the Appendix.

As a reference, a feedforward model with one hidden
layer and 10 neurons using a rectifier activation function,
often referred to as rectified linear units (ReLU),9 is

FIGURE 4 Visualization of the rolling

one-step forecast with model reestimation and

expanding window (own illustration). Time

steps in light gray mark the training data that

are used for forecasting the dependent variable

in the time steps (in dark gray)

8With p = 2 leading to xt − 1 and xt − 2 as model input.

9Rectifier activation functions have become very well known in deep
learning recently, outperforming the more known logistic and
hyperbolic tangent activation functions (see, e.g., Glorot, Bordes, &
Bengio, 2011; LeCun, Bengio, & Hinton, 2015; Ramachandran,
Barret, & Quoc, 2017).
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configured. The choice of the number of neurons per hid-
den layer is important in the setup of a network. Gener-
ally, there is no optimal model configuration algorithm,
but there are many rules-of-thumb. One of them suggests
a number below the half of input nodes and approxi-
mately two thirds of the sum of input and output nodes.
Although this is only a rule-of-thumb and the choice is
problem specific, we conclude 10 to be a reasonable num-
ber of neurons per hidden layer for the reference model.
To gain insight into the sensitivity of the number of neu-
rons per layer, in the experimental design the design vari-
able is varied with levels 10 and 20.

The second hyperparameter choice in the model con-
figuration is the number of hidden layers. For the refer-
ence model, one hidden layer is chosen. Originating from
the structure, deeper networks are more adaptive to the
training data and thus able to learn more complex rela-
tionships. A drawback of deep networks, especially those
that are trained with relatively few data, is the risk of
overfitting. To investigate the dependency of the predic-
tion on the amount of layers, a second configuration with
two hidden layers is deployed.

As important as the configuration of the model struc-
ture is the definition of the training strategy. In this
paper, the term training strategy comprises the selection
of training data to be available and the way these are
processed in the training process, defined by the training
hyperparameters. To provide the networks with the same
input data as the SARIMAX approach, for each predic-
tion a lookback of two steps into the data is implemented,
containing the values of the dependent variable and their
lags of 50 and 52 as well as seven exogenous variables,
leading to 22 input nodes.

The last stage before training and evaluating the net-
works is the definition of the training hyperparameters.
As applies for the network configuration, the training is
subject to the tradeoff between utilizing all information
that is contained in the training data and overfitting the
model to the training data. Training the models requires
the setting of the hyperparameters number of batches,
number of epochs, and iterations per epoch, defining the
way the training data set is split into training batches and
how the training in terms of weight optimization is exe-
cuted. As our models face relatively small data sets, bat-
ching the training data is not necessary (number of
batches = 1).

For the other hyperparameters, number of epochs = 30
(representing the number of training sequences), and iter-
ations per epoch = 20 (representing the number of itera-
tions optimizing the tensor weights per sequence) lead to
favorable training results for the reference model config-
uration with the expanding window training data out-
lined above. As shown in Figure 5, the choice of

hyperparameters yields a desirable training fit and avoids
overfitting. Hereby, due to the rolling one-step forecast
with model reestimation setup, we consider it suitable to
take a 10% validation split randomly selected from the
training data and do not apply a hold-out-sample valida-
tion. The validation split is only conducted for the hyper-
parameter selection. After the hyperparameters are
selected, owing to data scarcity the validation split is
dropped for model training. The training of the ANN is
thus conducted with the entire training data set to
account for all relevant information.

Since the model training starts with random weights
and is therefore indeterministic, an ensemble of networks
is deployed for each configuration. Ensembling is a com-
mon technique similarly proposed by Hyndman and
Athanasopoulos (2013). For applications with rich data-
bases (see Section 2 for examples) for model training and
validation, ensembling is not very important as model
training mostly converges to a single model. However, in
our case with a scarce training data basis, ensembling
allows us to obtain robust forecasts from numerous inde-
terministic models. For the reference training hyper-
parameters, we run the fitting process 50 times to obtain
50 independent ANN of each model structure for each
forecasting step. The prediction values of these are then
averaged to obtain a single representative prediction
value for the respective forecast step. As a measure of
robustness, the standard deviation of the different fore-
casts within the ensemble is reported in Section 4.
Although different hyperparameters could yield better
training results, they also bear the risk of overfitting
the data.

An alternative training strategy consists of intention-
ally overfitting the training data to some extent and com-
pensating the overfit by increasing the ensemble size. To

FIGURE 5 Exemplary training history of the reference

feedforward network with training hyperparameter set “fit”

(number of batches = 1, number of epochs = 30, iterations per

epoch = 20). The black line depicts the loss of model training, and

the gray line depicts the loss of a random 10% validation split

extracted from the training data
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examine the performance of this strategy compared to
the reference “fit” hyperparameter set, a second set of
training hyperparameters “overfit” is implemented.
Increasing the number of epochs to 50 and the iterations
per epoch to 30 leads to a slight overfit for the reference
model configuration. As the exemplary training history
in Figure 6 shows, the performance of the model on the
validation data becomes worse as the model fit increases
with advancing training. However, equipped with an
ensemble size of 100, these intentionally overfit models
might, on average, perform better than the fit models as
the overfitting residuals balance each other out.

In the end, the presented experiment design with four
factors and two levels each leads to 16 different model
configurations. Table 2 summarizes the factors and their
levels in the network configuration and training process.
In the following, the abbreviation for a combination of a
network configuration and a training strategy is built by
combing the entries of Table 2—for example,
“FF1_10_E_F” for the reference with one hidden layer,
10 neurons per hidden layer, an expanding training win-
dow, and the training hyperparameters “fit.”

The training and evaluation of the ANN models are
implemented in keras,10 a common machine learning
library available for Python and R. On a machine with a
2.50 GHz 64-bit processor (central processing unit, CPU)
and 16 GB RAM, depending on the model configuration
and training strategy, the training and evaluation of one
setup takes between 2 and 6 hours for the 37 forecasting
steps. However, the training time could be significantly
reduced by the use of parallelization and a graphics
processing unit (GPU) for the computations.

4 | RESULTS

The results consist of the out-of-sample performance of
the presented model framework. The forecasted time
series for a selection of approaches in comparison to the
real time series of FCR prices of the testing period
(01/2018–09/2018) are presented in Figure 7. The selec-
tion consists of the naive forecast, the SARIMAX
approach, as well as ANN approaches “FF1_10_E_F,”
“FF1_20_E_F,” “FF1_10_E_Ov,” “FF1_20_E_F,”
“FF2_10_E_F,” and “FF2_10_E_Ov.” Due to conciseness,
the plots for the complete set of examined configurations
of the ANN experiment design have been moved to
Figure A in the Appendix.

A first graphical comparison of the developed fore-
casts (Figure 7) indicates that both the econometric and
ANN approaches are able to forecast the level of the FCR
price quite well. For the SARIMAX approach, both the
point forecast and the 95% confidence intervals are pro-
vided. The latter indicate the robustness of the estimated
model for each forecast step. It can be observed that for
all time steps the prediction target (dashed line) lies
within the confidence interval, complying with a desir-
able robustness. As there is no mathematical equivalent
for confidence intervals in the ANN approaches, the
robustness of the models is determined with the standard
deviation of the point forecasts obtained from ensembling
for each forecast step (provided by Table 3). An artefact
confidence interval for the ANN approaches could be
constructed from the residuals' distribution of sufficiently
large ensembles (e.g. 1,000 networks instead of 50). The
residuals would then represent an empirical distribution,
whose 2.5% and 97.5% quantiles could be interpreted as
the confidence interval. However, computational limita-
tions do not allow us to generate ensembles of size 1,000
for each forecasting step and all model designs. We can-
not build a reliable distribution for the residuals based on
an ensemble of size 50. Without a reliable distribution,
no confidence interval in a mathematical sense can be
derived and the construction of confidence intervals for
ANN is excluded.

The good fit also counts for the naive approach, so
that the benefit of the more sophisticated models does
not become clear at the first inspection of the results. A
second view reveals that the deviation between the fore-
casted values and the real test data is especially smaller
when the overall price level and in particular the price
variations decrease. For the high price levels (first parts
of the price curve), it is observable that the ANN
approaches perform better and almost approach the real
price curve. These differences become more visible if the
residuals—that is, the single forecast errors—are directly
analyzed. Figure 8 shows that, compared to the naive and

FIGURE 6 Exemplary training history of the reference

feedforward network with training hyperparameter set “overfit”

(number of batches = 1, number of epochs = 50, iterations per

epoch = 30). The black line depicts the loss of model training, and

the gray line depicts the loss of a random 10% validation split

extracted from the training data

10For more information on keras see https://keras.io/.
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the SARIMAX approach, the errors of the ANN
approaches are particularly lower for the first part of the
test period (until April), when real FCR prices have a
strong decline and are exposed to more fluctuations. The
residuals indicate a serial correlation that was also
reported in more detail in the preliminary works of Kraft
et al. (2019). Generally, the residuals of well-fitted SAR-
IMAX models should be independent and identically dis-
tributed. In the rolling one-step forecast with model
reestimation setup deployed in this paper, each forecast-
ing step reestimates the model, which leads to distinct
SARIMAX models for each forecasting step.

Further investigations address the structure of the
SARIMAX residuals to check for conditional

heteroskedasticity. Figure 8 therefore exemplarily pro-
vides the residuals of the SARIMAX model estimated
for the last forecasting step. It can be observed that the
residuals are not perfectly homoskedastic. Although no
substantial autocorrelation is observable, the volatility
of the time series appears to be heterogeneous over
time. The residuals in 2017 are larger compared to
those in 2018 and, in particular, the year change from
2017 to 2018 produces two data points with a larger
volatility compared to the rest of the time series. To
address the suspected heteroskedasticity of the SAR-
IMAX residuals, a SARIMAX–generalized auto-
regressive conditional heteroskedasticity (GARCH)
approach was tested. However, the limited data basis

FIGURE 7 Selection of FCR price

forecasts in test period 2018:Q1–Q3

(original FCR price data from

regelleistung.net, 2019). Solid lines are

the forecasted FCR prices, and dashed

lines represent the realized FCR price.

All forecasting approaches show a

relatively good fit

TABLE 2 Experimental design for neural networks

Factor Level reference Level variation

Network configuration

Number of hidden layers FF1 (1 hidden layer) FF2 (2 hidden layers)

Number of neurons per hidden layer 10 20

Training strategy

Training data E (expanding window) R (rolling window)

Training hyperparameters F (fit): Ov (overfit):

number of batches = 1, number of batches = 1,

number epochs = 30, number epochs = 50,

iterations per epoch = 20, iterations per epoch = 30,

ensemble size = 50 ensemble size = 100

Note. A design consists of a combination of the hyperparameters’ number of hidden layers, number of neurons per hidden layer and the
training strategy defined by the training data and the training hyperparameters
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(residuals contain only 52–88 observations for the dif-
ferent forecasting steps) impedes the deployment of
GARCH models, as the estimation does not converge.
Related literature suggests sample sizes of at least
500 (respectively 700) are required to obtain good
results for GARCH volatility estimation (Hwang &
Valls Pereira, 2006; Ng & Lam, 2006). Unfortunately,
in our case the data basis is too scarce to apply
GARCH and we are restricted to the chosen SARIMAX
approach as econometric comparative to the ANN.

The naive approach is performing similarly well
(respectively even better) in periods when prices remain
more or less constant over time. However, this is quite
obvious, as this approach applies the last week's real
value to the current week's forecast. In periods with

hardly any changes, the approach will therefore produce
desirable results.

However, we are more interested in approaches that
can also capture periods when prices undergo price
changes, as future FCR prices might change much more
frequently and in a more pronounced way. The market is
more and more opened for new players and technologies,
such as battery storage, that will bring much more
dynamics into the market. In this respect, the ANN
approaches are able to capture price dynamics, which
obviously cannot be covered by the naive approach.
Moreover, in the case of FCR prices, ANN approaches
cover the dynamics in volatile periods significantly better
than the applied SARIMAX approach.

Interestingly, Figure 8 demonstrates that SARIMAX
errors are more frequently fluctuating around
0 EUR/MW, while those of the ANN forecasts remain in
the positive or negative scale longer. As Figure B in the
Appendix indicates, the fluctuations around 0 EUR/MW
also apply to the ANN configurations with a rolling train-
ing window, and for some forecasting steps a rolling win-
dow training strategy can yield a better forecast than an
expanding window approach. This indicates that, by
including seasonal factors or limiting the training data to
a rolling window, the performance of the ANN
approaches can be improved for some time periods. How-
ever, determining such factors based on the short period,
for which weekly FCR prices are available, leads to over-
fitting for other periods, and therefore does not improve
the overall forecasting performance itself. The concerns
regarding the impeded exploitation of strengths of the
ANN approach that are discussed in Section 3.3 prove

FIGURE 8 Exemplary residuals time series of the SARIMAX

model for the last forecasting step. It can be observed that the

residuals do not contain substantial autocorrelation and that the

volatility of the residuals is increased at the year change from 2017

to 2018

TABLE 3 Root mean square error (RMSE), mean absolute

percentage error (MAPE), directional accuracy (DAC), and mean

standard deviation (σ) of the model forecasts

Design RMSE MAPE DAC σ

Naive 158.16 5.24% 91.70% n/a

SARIMAX 136.82 5.18% 75.00% 140.03

FF1_10_E_F 86.38 2.78% 100.00% 127.81

FF1_20_E_F 94.13 3.27% 91.70% 125.75

FF1_10_E_Ov 72.16 1.97% 97.20% 108.05

FF1_20_E_Ov 72.71 2.89% 97.20% 120.78

FF1_10_R_F 185.71 6.32% 66.70% 183.35

FF1_20_R_F 190.94 6.52% 75.00% 175.02

FF1_10_R_Ov 194.97 6.43% 72.20% 178.68

FF1_20_R_Ov 194.05 6.80% 72.20% 167.71

FF2_10_E_F 101.42 3.94% 80.60% 147.43

FF2_20_E_F 119.77 4.75% 77.80% 134.81

FF2_10_E_Ov 104.07 3.45% 86.10% 147.30

FF2_20_E_Ov 114.96 4.79% 80.60% 128.12

FF2_10_R_F 181.49 6.22% 69.40% 158.77

FF2_20_R_F 189.05 6.23% 72.20% 131.80

FF2_10_R_Ov 192.37 5.74% 80.60% 142.14

FF2_20_R_Ov 184.20 6.02% 77.80% 120.63

Note. For ANN the reported σ is calculated as the empirical stan-
dard deviation of residuals, whereas for SARIMAX σ is the mean
theoretical σ of the 37 forecast models. The simplest design
FF1_10_E_F reaches 100% of DAC, but is dominated by
FF1_10_E_Ov and FF1_20_E_Ov in terms of RMSE. The best
design by RMSE and MAPE is FF1_10_E_Ov. These three designs
are indicated in bold font. The more sophisticated designs and the
designs with a rolling training window have a similar performance
to the SARIMAX and naive forecast. All designs involving
ensembling show a moderate standard deviation, indicating robust
model training and the need for ensembling
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right. As the rolling window training strategies cannot
exploit the entirety of training data provided to the
expanding window training, the overall forecasting per-
formance decreases. Training with an expanding window
is therefore preferable to the rolling window approach. In
particular, if the network structures become more sophis-
ticated, the model requires as many training data points
as possible to be performant.

The residuals of the ANN approaches are distributed
relatively symmetrical around zero, as can be seen in the
illustration of error histograms in Figure C in the Appen-
dix. However, to derive further insights regarding the dis-
tribution of the residuals, the number of forecasting steps
is too small.

Whereas Figures 7 and 9 enable a qualitative discus-
sion, Table 3 presents the quantitative performance and
robustness measures. The performance measures again
indicate that having a mean absolute prediction error
(MAPE) below 7% all proposed models perform reason-
ably well. With regard to the root mean square errors
(RMSE) and the MAPE, the feedforward ANN with an
expanding training window all outperform the naive fore-
cast and the SARIMAX models. The directional accuracy
(DAC) confirms these observations. Whereas the best
model in terms of RMSE and MAPE fails to predict the
direction of change once (97.2% accuracy), the model
design FF1_10_E_F reaches 100% accuracy in the consid-
ered forecasting steps.

Surprisingly, adding a second layer to the networks
does not improve the forecasting. The dominating
designs for the prediction task are the ANN with one

hidden layer and an expanding training window. With an
RMSE of 72.16 and a MAPE of 1.97%, the configuration
with 10 neurons per layer and the “overfit” training
(FF1_10_E_Ov) yields the best results. Increasing the
number of neurons to 20 (FF1_20_E_Ov) or changing the
training strategy to “fit” (FF1_10_E_F) leads to slightly
worse results. Interestingly, the FF1_20_E_Ov design
dominates the FF1_10_E_F design in terms of RMSE but
is outperformed in terms of MAPE, meaning the resid-
uals are on average larger but have smaller large resid-
uals, which is penalized more strongly in the RMSE
measure.

The design variable neurons per layer reveals an inter-
esting, yet intuitive, pattern. Apart from the best-
performing design with one hidden layer, expanding win-
dow and overfit training, the forecasts of the networks
with 20 neurons per layer are more robust than the com-
parable networks with only 10 neurons. However, except
for two cases with rolling window, the performance in
terms of RMSE and MAPE is better for the configurations
with only 10 neurons per hidden layer. The increased
number of neurons leads to more convergence in the
weight optimization and thus to more stable results, yet
the convergence may be prone to overtraining of the rela-
tionships in the training data compared to the simpler
configurations with only 10 neurons.

The last variable in the experimental design are the
training hyperparameters, for which the two sets “fit”
and “overfit” are distinguished. For the simple networks
(one hidden layer, 10 or 20 neurons), the strategy to over-
fit and build a larger ensemble yields a massive

FIGURE 9 Residuals of FCR price

forecasts in test period 2018:Q1–Q3

(original FCR price data from

regelleistung.net, 2019). Due to the

larger ensemble size, the ANN

approaches with overfit (Ov) produce

smoother residuals compared to those

with fit (F)
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improvement in forecasting performance. Regarding
robustness, there is a slight increase (decrease in mean
standard deviation of model forecasts) in the overfit train-
ing configurations.11 Increasing the ensemble size from
50 to 100 has a smoothing effect on the ANN forecasts
and results in an increased forecasting performance. This
observation goes hand in hand with the residuals illus-
trated in Figure 9, where the overfit designs produce
smoother residuals compared to their respective fit
design. The observation holds for the more sophisticated
networks in terms of robustness, whereas both fit and
overfit designs provide sufficiently robust forecasts. As
was observed for the number of neurons per hidden
layer, the models in the overfit configurations tend to
converge more strongly as more weight optimizations are
conducted in the training process, which turns out to be
slightly more robust. However, the overfit does not

necessarily yield a better performance. The RMSE and
MAPE show no clear tendency towards the “fit” or “over-
fit” training as both perform similarly well.12 Generally,
the standard deviation of the forecasts within the ensem-
bles indicates the necessity to build ensembles as the
training results in different networks. Conversely, for the
SARIMAX approach, only one model is calculated for
each forecasting step. The average standard deviation of
all SARIMAX models is 140.03. However, this robustness
measure is hardly comparable to the standard deviation
of the ANN described above. While for the ANN we
report an empirical standard deviation of residuals, the σ
of SARIMAX is the mean theoretical standard deviation
of the 37 forecast models.

To verify the statistical significance of the results,
Figure 10 presents the results of a one-sided Diebold–
Mariano test. The test compares two time series of resid-
uals and indicates whether one is significantly lower than
the other—that is, whether one forecast model is signifi-
cantly better than the other (Diebold & Mariano, 1995).
We find that the results reported in Table 3 mostly prove
significant. The designs with expanding training window
are significantly better than those trained with rolling
training window on at least 5% significance level. The
best three models in terms of MAPE and RMSE
(FF_10_E_F, FF_10_E_Ov, FF_20_E_Ov) are better than
the SARIMAX approach at the 1% significance level.

11The standard deviation amongst the 50 predictions of each model for
each type is calculated for each step and then averaged over all
prediction steps. In the presentation of results, it was considered that
the ensemble size of the “overfit” designs is twice that of the “fit”
designs. However, repeatedly sampling 50 observations from the overfit
ensembles shows that the ensemble size is not decisive for the
robustness measure. However, the forecasting performance decreases
with reduction of the ensemble size in the overfit training strategy,
particularly strong in configurations with rolling training windows.
12As mentioned earlier, a further sophistication of model configurations
with recurrent structures and gated-recurrent units did not yield
improvements compared to the networks presented in this paper. This
is in line with the results for the configurations with two hidden layers
compared to the one with one hidden layer and the tendency to

overtraining for the more sophisticated configurations in the results
presented. For more details, see the Annex.

FIGURE 10 Results of Diebold–

Mariano testing whether the forecasts

obtained from design 1 are significantly

better than the forecast obtained from design

2. It can be observed that the designs with

expanding training window dominate those

with rolling training window. Only the best

three models (FF_10_E_F, FF_10_E_Ov,

FF_20_E_Ov) are better than the SARIMAX

approach at the 1% significance level and six

ANN models perform better at the 5%

significance level
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However, the SARIMAX and naive approach compete
well with the forecast performance of the ANN with
rolling training window. The best ANN design in terms
of MAPE and RMSE (FF_10_E_Ov) dominates all but the
second-best design in terms of RMSE (FF_20_E_Ov) at
5% significance level.

To conclude, the variety of models examined in this
paper offers another approach to forecasting. A solution
to ally the strengths of the model classes and configura-
tions and to balance out the shortfalls can consist of com-
bining the different approaches. However, to build the
best combination of approaches for each forecasting step,
one must be aware of the strengths and weaknesses of
the approaches and build a subjective market expecta-
tion. For this task, human experience is inevitable.

Finally, it is worth mentioning that the goal of this
paper is to investigate approaches and configure a suit-
able model framework to forecast FCR prices. The pre-
sentation of the results focuses rather on the comparison
of the different approaches than on the detailed discus-
sion of single models and their coefficients' interpreta-
tion, as our goal was not to uncover the influence of the
explaining variables, but to determine the performing
modeling approaches and model configurations for FCR
price forecasting. However, to gain more insights regard-
ing the interdependencies and predictive power of the
single exogenous variables, a detailed investigation of
exemplary models from the considered approaches is an
interesting direction for future research.

5 | CONCLUSION AND OUTLOOK

In this paper, we investigated approaches to forecast the
price of FCR, the fastest balancing reserve that is jointly
procured in weekly auctions by TSOs in Austria, Bel-
gium, France, Germany, the Netherlands, and Switzer-
land. As this research scope was not formerly discussed
in literature, several approaches were deployed, consider-
ing autoregressive and exogenous variables. Such a model
framework has, to our knowledge, not been formerly set
up or discussed.

The exogenous factors with most explanatory power
are identified as the price range of the previous auction,
the future prices of the German–Austrian and the French
market area, the load in the German–Austrian and the
French market area and the planned unavailable capacity
in Germany and France. The models based on auto-
regressive and exogenous factors are suitable to forecast
prices. Within the developed models, ANN with expan-
ding training window yield desirable results and clearly
outperform the naive forecast and the SARIMAX
approach. Simple models equipped with a slight overfit

and a larger ensemble size outperform the simple models
that were trained aspiring to the best fit and lead to the
best and most robust forecast results in the case of fore-
casting FCR prices. With an increase in model complex-
ity, the positive effect of the slight overfitting strategy
vanishes. Furthermore, the overall forecasting perfor-
mance is not improved by more sophisticated models, as
these might overtrain the relationships in the training
data.

In the interpretation of these results, one must always
bear in mind that econometrics and artificial intelligence
approaches are only capable of drawing conclusions from
data of the past. Thus changed bidding behavior by mar-
ket participants or technological changes in FCR market
are hardly predictable by these kinds of forecasting
models. Based on assumptions (e.g., market diffusion of
battery storages, market exit of conventional power
plants) we could consider forecasts for the long-term
FCR price development. However, this is not in the scope
of this paper and needs to be addressed by future
research. The main contributions of this paper are the
application and comparison of statistical and neural net-
work models to FCR price forecasting. This comprises
the definition of an appropriate target variable as well as
the discussion of modeling techniques and training strat-
egies for forecasting on a scarce data basis. Finally, a dis-
cussion on the suitability and performance of simple and
more sophisticated network structures for FCR price fore-
casting completes the contributions.

In the ongoing research, the models will be used as a
basis for the formulation and optimization of bidding
strategies in the European balancing reserve market. In
this context, the application of SARIMAX models has the
advantage that the models are open to an interpretation
of the estimated coefficients, whereas the ANN
approaches tend to be black boxes that yield the best
results, especially in times of increased FCR price volatil-
ity, but lack interpretability. The reestimation and num-
ber of models complicate a fundamental model
interpretation, as model lags, parameters and coefficients
vary between the models. However, the goal in this paper
is to make the forecast as accurate as possible, and
reestimation increases the quality of the forecast.

Finally, the market design for FCR is in an ongoing
process of change. On the one hand, the involved TSOs
changed the product duration from 1 week to 1 day
beginning July 2019 and intend to move to 4-hour
products in the near future. This makes the consider-
ation of forecast-based exogenous factors like wind and
solar generation possible and necessary in price forma-
tion and therefore needs to be included in future stud-
ies of FCR prices. In the course of these changes, the
pricing rule changed from pay-as-bid to uniform
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pricing. However, the approaches developed in this
study are well suited and extendable to cope with these
changes and to produce reliable forecasts of FCR prices
in a modified market design.
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FIGURE A Histograms of

residuals of FCR price forecasts

in test period 2018:Q1–Q3. It can

be observed that the ANN

residuals follow a relatively

symmetric distribution around

zero. The better models have a

higher count in the bins closer to

zero. To derive more insights

regarding the residuals'

distribution, more observations

would be required

APPENDIX A

Here, supplementary illustrations of the results are presented as well as the hyperparameters, training strategies, and
results of the network structures with GRU that were mentioned but not reported in Sections 3 and 4.

Figure A shows the histograms of residuals of FCR price forecasts in the test period. Figures B and C show the
FCR price forecasts and residuals in the test period that were not shown in Figures 7 and 9 but reported in
Table 3.

Tables A and B show the experimental design deployed for the GRU neural networks and the forecasting
results. Hereby, one design consists of the combination of the hyperparameters number of hidden layers, number of
neurons per hidden layer, and the training strategy defined by the training data and the training hyperparameters
that are provided in Table A. Table B provides, analogously to Table 3, the performance indicators RMSE, MAPE,
and DAC, and the robustness measure σ of the model forecasts for the GRU networks. Regarding forecasting per-
formance, no improvement to the feedforward networks can be observed. However, regarding robustness, the stan-
dard deviations are generally smaller, which indicates model training is converging more strongly compared to the
feedforward networks. To conclude, in our case the models with GRU lead to more robust forecasts around less
accurate estimates.
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FIGURE B FCR price forecasts in test period 2018:Q1–Q3 (original FCR price data from regelleistung.net, 2019). Solid lines are the

forecasted FCR prices, and dashed lines represent the realized FCR price. In addition to the choice of models presented in Section 4, for

completeness all deployed model designs reported in the results are shown, indicating a suitable fit for all designs

FIGURE C Residuals of FCR price forecasts in test period 2018:Q1–Q3 (original FCR price data from regelleistung.net, 2019). For

completeness and supplementary to the choice of models presented in Section 4, all deployed model designs reported in the results are

shown. The residuals of similar model configurations show similar residual shapes

1196 KRAFT ET AL.

135



TABLE B Root mean square error (RMSE), mean absolute percentage error (MAPE), directional accuracy (DAC), and mean standard

deviation (σ) of the model forecasts with GRU networks

Design RMSE MAPE DAC σ

GRU1_10_E_F 124.47 4.65% 91.70% 50.58

GRU1_20_E_F 190.71 5.49% 86.10% 170.09

GRU1_10_E_Ov 142.55 4.81% 88.90% 68.92

GRU1_20_E_Ov 174.25 6.03% 83.30% 69.37

GRU1_10_R_F 166.00 7.99% 86.10% 62.56

GRU1_20_R_F 205.11 10.24% 77.80% 57.60

GRU1_10_R_Ov 197.59 9.35% 80.60% 74.79

GRU1_20_R_Ov 220.20 10.57% 77.80% 99.65

GRU2_10_E_F 151.74 5.10% 88.90% 44.48

GRU2_20_E_F 174.61 5.66% 86.10% 70.13

GRU2_10_E_Ov 216.30 9.52% 80.60% 80.16

GRU2_20_E_Ov 205.19 6.71% 77.80% 195.88

GRU2_10_R_F 196.78 8.52% 80.60% 55.06

GRU2_20_R_F 224.23 10.05% 77.80% 55.64

GRU2_10_R_Ov 217.63 9.68% 77.80% 79.12

GRU2_20_R_Ov 224.86 10.12% 77.80% 83.73

Note. No improvement compared to the feedforward networks is achieved. The standard deviations are generally smaller, which indicates a
more robust model training, but RMSE, MAPE, and DAC indicated no better forecasting performance.

TABLE A Experimental design for GRU neural networks

Factor Level reference Level variation

Network configuration

Number of hidden layers GRU1 (1 hidden layer) GRU2 (2 hidden layers)

Number of neurons per hidden layer 10 20

Training strategy

Training data E (expanding window) R (rolling window)

Training hyperparameters F (fit): Ov (Overfit):

number of batches = 1, number of batches = 1,

number of epochs = 30, number epochs = 50,

iterations per epoch = 20, iterations per epoch = 30,

ensemble size = 50 ensemble size = 100
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Abstract

Electricity retailers face increasing uncertainty due to the ongoing expansion of unpredictable, dis-
tributed generation in the residential sector. We analyze how increasing levels of households’ solar PV
self-generation affect the short-term decision-making and associated risk exposure of electricity retail-
ers in day-ahead and intraday markets. First, we develop a stochastic model accounting for correlations
between solar load, residual load and price in sequentially nested wholesale spot markets across seasons
and type of day. Second, we develop a computationally tractable two-stage stochastic mixed-integer
optimization model to investigate the trading portfolio and risk optimization problem faced by retailers.
Through conditional value-at-risk we assess retailers’ profitability and risk exposure to different levels
of PV self-generation by assuming different retail tariff schemes. We find risk-hedging trading strate-
gies and tariffs to have greater impact in Summer and with low levels of residual load in the system, i.e.
when the solar generation uncertainty affect more the households demand to be served and the whole-
sale spot prices. The study is innovative in unveiling the potential of dynamic electricity tariffs, which
are indexed to spot prices, to sustain a high penetration of renewable energy source while promoting
risk sharing between customer and retailer. Our findings have implications for electricity retailers facing
load and revenue risks in wholesale spot markets, likewise for regulators and policy-makers interested
in electricity market design.
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1 Introduction

Increasing levels of distributed and large-scale variable renewable generation have different ef-

fects on short-term wholesale power markets. The uncertainty and intermittency introduced by

weather-dependent generation translate into both volume and price risks, which affect the prof-

itability and decision-making of retailers and generators. With large-scale renewable generation,

day-ahead predictions on high levels of renewable energy increase the risk-related hedging pres-

sure of generators. Furthermore, with distributed renewable generation, growing renewable power

production raises the hedging needs of retailers (Koolen et al., 2021), particularly when consider-

ing rooftop solar PV installations (Russo and Bertsch, 2020). The deployment of rooftop solar PV

systems has significantly expanded in recent years, mostly by virtue of supporting policies, such as

net metering and fiscal incentives. In some markets, incentive schemes for households lead to an

economic preference for solar PV self-consumption compared to buying electricity from the grid

(IRENA, 2019). The competitiveness of distributed solar PV systems is apparent from their de-

ployment in large markets, such as Brazil, China, Germany and Mexico. At a global level, around

40% of total solar PV capacity in 2050 would be distributed (rooftop), with the remaining 60%

utility scale (IRENA, 2019). Yet, as far as rising solar PV self-generation increases the need of

retailers for forecast adjustments, large adjustment volumes influence subsequent spot (day-ahead

and intraday) prices and the retailers’ risk exposure in short-term wholesale power markets, thus

exacerbating the already-existing optimization issues faced by the electricity retailer to manage un-

certainty in power markets. In the light of market efficiency considerations, increasing attention is

to be paid thus on the short-term risk of electricity retailers, following a surge in the decentralized

variable renewable generation and consumers’ engagement as prosumers.

In this paper we have chosen to investigate the risk optimization problem faced by the electricity
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retailer acting in the day-ahead and intraday markets, while considering volume risk induced by the

households’ solar PV self-generation. The retailer’s decision-making problem with intermittent re-

newables has been explored in the literature (e.g. Conejo et al., 2010; Yang et al., 2017). Whereas

the potential for risk transfer through derivative products can rise significantly for wind power,

hedging solar risk is likely to remain difficult (Hain et al., 2018), mainly for retailers increasingly

exposed to the volume risk driven by growing levels of solar PV self-generation on the demand side

(Russo and Bertsch, 2020; Koolen et al., 2021). The variability of the electricity demand, its short-

term inelasticity, and the supply rigidity expose retailers to a real-time volume risk, which is more

complex to hedge within the day-ahead market, since high differences can emerge between predic-

tions in the day-ahead and intraday market. Engaging in risk management strategies in the intraday

market, which is closer to the actual realization, has proved to offer higher efficiency compared to

the day-ahead and therefore weekly, monthly and yearly forward market (Boroumand et al., 2015,

2019). Nonetheless, pre-positioning in the day-ahead market and adjusting in the intraday mar-

ket can result in a complex task for the retailer, mainly when risk management strategies fail to

transfer the real-time unpredictability of self-generation to the consumer. The role of the intraday

adjustment trading, and the extent to which this trading may foster risk sharing between electricity

retailers and prosumers have been less explored in literature and are the focus of this paper. In

addressing the short-term risk optimization problem faced by electricity retailers with households’

self-generation, this study engages with practitioners and policy makers interested in the power

market dynamics following increasing penetration of distributed renewable energy sources, and in

the adequacy of price signals for investments and market design.

The contribution of this paper is threefold: First, we explicitly model the stochastic process

of prices and solar generation in the day-ahead and intraday market, likewise inter-dependencies

within and between the two markets. Simulations are thus carried to account for uncertainty in the

ensuing stochastic optimization problem. We consider the German market since it is at the forefront

of decentralized solar PV installations worldwide. Furthermore Germany shares a similar intraday

continuous trading design with other electricity markets, such as in France and the Scandinavian

3

140 Paper B – Short-term risk management of electricity retailers . . .



countries. Therefore, lessons learned from the German case should provide others with valuable

insights concerning managing renewable energy risk in modern liberalized electricity markets. Sec-

ond, we model the multistage trading problem faced by the retailer in the day-ahead and intraday

market. We assume a computationally tractable two-stage stochastic optimization problem where

day-ahead trading decisions for one single day are modeled in the first-stage, and the intraday bal-

ancing decisions under uncertainty are modeled in the second stage. Since we explicitly assume

that the retailer faces the uncertainty of fluctuating rooftop solar PV generation until delivery, this

approach aims to accurately model the underlying information flow between day-ahead and in-

traday market, thus reducing biases and often over-optimistic decisions (Wozabal and Rameseder,

2020). Third, we explore different retail pricing schemes with progressive levels of indexation to

the wholesale spot prices. Since the retailer faces the risks caused by volatile customer demand

and spot market prices, we investigate the potential for spot-indexed retail tariffs to represent a

risk-sharing tool for retailers exposed to rising shares of decentralized solar PV self-generation.

The rest of the paper is organized as follows. In Section 2 we review related work on the re-

tailer short-term decision-making process and the pertaining uncertainties requiring the solution

of a complex optimization problem involving several uncertain quantities. The input variables are

describe in Section 3. In Section 4, we describe our methodological approach. We present the

stochastic model developed to jointly capture load and price uncertainties in the day-ahead and

intraday markets, and elaborate on a set of simulations to represent the retailer’s uncertainty in

wholesale spot markets. Therefore, we define the retailer trading optimization problem under un-

certainty, and extend it to the short-term risk management problem, subject to increasing levels

of solar PV self-generation. In Section 5, we present our results in relation to the retailer’s opti-

mization problem and their short-term risk management. Results and implications are discussed in

Section 6, while Section 7 offers concluding remarks and directions for future research.

4

141



2 Literature on The Retailer’s Short-Term Decision-Making Pro-

cess

Electricity markets are organized as a sequence of nested forward energy markets, allowing par-

ticipants to trade different contracts (from yearly to quarter-hourly) at different points in time (Ela

et al., 2018; Cretì and Fontini, 2019). This market design is thought to provide participants with

the opportunity to adjust their positions up to a few minutes before the delivery, thus accommodat-

ing the inherent uncertainties of electricity markets. Since electricity for the same delivery period

is traded in multiple markets, the retailer trading problem on these nested markets is interdepen-

dent. As intermediaries in competitive electricity markets, retailers need to procure the electricity

required by their customers (i.e. load) in wholesale markets through different sources, like futures

and bilateral contracts, or on the spot markets. While in wholesale markets the load uncertainty is

adjusted in the spot markets through spot prices, in retail markets prices are based on tariffs, gener-

ally fixed for a longer period (Boroumand and Zachmann, 2012; Batlle, 2013). Therefore, serving

the electricity demand of the residential sector at pre-specified tariffs and partially for pre-specified

volumes is an obligation posed to the retailers (Newbery et al., 2018).

By procuring electricity for resale to final consumers, retailers are exposed to the volume risk,

mostly over short-term horizons, i.e. from a few days or hours to real-time. While intraday markets

allow for a finer adjustment of the day-ahead positions up to 15-minute resolution, the electricity

generated by the renewable energy facilities has to be traded day-ahead to be adjusted intra-daily

(Kiesel and Paraschiv, 2017). Furthermore, significant differences can emerge between day-ahead

and intraday prices depending upon substitution effects between thermal and renewable energy

generation (i.e. merit order effect), with intraday prices decreasing relatively to the day-ahead

prices for increasing levels of renewable generation, or vice versa (Karanfil and Li, 2017; Kiesel

and Paraschiv, 2017). Due to the surge in the distributed variable renewable generation, and the

resulting greater requirement for close to real-time adjustments (e.g. Di Cosmo and Malaguzzi Va-

leri, 2018; Goodarzi et al., 2019), increasing attention is to be paid on the retailer’s short-term re-

5
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balancing in the intraday market and implications for market efficiency. The empirically observed

positive correlation between price and load in wholesale electricity markets (e.g. Deng and Oren,

2006; Weron, 2007; Gelabert et al., 2011) implies an increasing short-term risk exposure for the

retailers, depending on the difference between spot and retail prices (Willems and Morbee, 2010;

Aïd et al., 2011; Dagoumas et al., 2017; Russo and Bertsch, 2020). With increasing penetration of

rooftop solar PV systems and greater intraday uncertainties, imbalance costs are expected to raise

for retailers, thus leading to potential financial distress for retailers who fail to hedge properly.

The importance of assessing the short-term effects of variable renewable energy generation on

electricity markets is highlighted by the growing interest in the impact of wind and solar power

forecast errors on intraday electricity prices (e.g. Garnier and Madlener, 2015; Bunn et al., 2018;

Kath and Ziel, 2018; Kulakov and Ziel, 2019; Maciejowska et al., 2019; Uniejewski et al., 2019;

Gianfreda et al., 2020; Kremer et al., 2020; Messner et al., 2020; Narajewski and Ziel, 2020a,b; Li

and Paraschiv, 2021). Specularly to generators (Garnier and Madlener, 2015; Bunn et al., 2018;

Maciejowska et al., 2019), retailers are confronted with the optimal decision of where to buy the

electricity required to satisfy the customers’ demand. This decision-making process depends upon

the load uncertainty and the relation between prices in the day-ahead and intraday markets. Some

previous research addresses the short-term trading problem faced by the electricity retailer in spot

markets (Nojavan et al., 2019; Dadashi et al., 2020; Deng et al., 2020, and references therein). Yet,

there is a paucity of studies addressing the optimal trading problem faced by electricity retailers in

wholesale spot markets following increasing levels of solar PV self-generation, and consequently

greater load uncertainty in the residential sector.

Various methods have been explored in the literature to model the optimal procurement problem

in electricity markets. These methods include stochastic approaches (Ruszczyński and Shapiro,

2003; Wallace and Fleten, 2003) and robust optimization (Ben-Tal et al., 2009; Bertsimas et al.,

2011). By considering a finite batch of possible realizations, stochastic approaches are adopted by

practitioners and researchers due to their suitability in capturing uncertainty (e.g. Van Der Weijde

and Hobbs, 2012; Morales et al., 2014; Mohan et al., 2015; Abbaspourtorbati et al., 2016; Boffino

6

143



et al., 2019; Dadashi et al., 2020; Deng et al., 2020; Laur et al., 2020). In contrast, in robust

optimization models uncertainty is represented through uncertainty sets, often derived from the

historical data, thus resulting in flexible and computationally tractable models (Parisio et al., 2012;

Zugno and Conejo, 2015; Nojavan et al., 2017; Nazari-Heris and Mohammadi-Ivatloo, 2018; No-

javan et al., 2019). Nonetheless, as argued by Wozabal and Rameseder (2020), research involving

trading strategies in electricity markets often models price or renewable generation as stochastic

but fails to model the multi-settlement structure of the power markets. Similarly, in optimization

problems some research often treats all the variables as deterministic.

In dealing with the optimal trading problem of the electricity retailer, who faces load and price

uncertainties in wholesale spot markets while maximizing their revenue stream, we follow the

approach in Conejo et al. (2010) and Wozabal and Rameseder (2020). We propose a two-stage

stochastic optimization model for the German short-term electricity market where the first stage

models the retailer’s decision-making process on the day-ahead market; the second stage models

their decision-making process in the intraday market. Uncertainty enters the problem via stochastic

solar PV generation and short-term electricity prices. Yet, compared to previous research, in our

optimization problem, we consider the impact of such stochasticity on prices through econometric

modeling the inter-dependencies between load and prices in wholesale spot markets. With the

increasing penetration of distributed renewable energy sources in worldwide power markets still

only a recent phenomenon, to the best of our knowledge the research in this paper is the first

to combine all the mentioned uncertainties via joint stochastic modeling, portfolio optimization

and empirical validation to analyze the implications of distributed renewable technologies, such as

rooftop solar PV systems on the short-term risk management problem of the retailer in wholesale

spot power markets.

7
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3 Input Variables: Definition and Data Sources

The German electricity market has been subject to a high renewable energy sources (RES) penetra-

tion, in particular rooftop solar PV systems in the residential sector, making this market a suitable

case study to investigate retailers’ risk exposure to increasing self-generation. The period under

investigation runs from the 1st July 2019 to the 29th February 2020. This sample period is chosen

to account for some major changes in the German market design, occurred during 2018 until July

2019, including the split of the Austrian market from the German market in October 2018. As

the market split changed both the demand and the supply structure, price formation on both the

day-ahead and the intraday market was affected. We use data until February 2020 to overcome the

implications of COVID-19 and consequent lockdown on electricity markets starting from March

2020. Therefore, the period July 2019- February 2020 results as the most recent period where no

structural market changes and economic downturns happen, which may have affected both the de-

mand and supply of electricity in the German market. To study this risk exposure we consider three

different seasons: a Transition season (September-November), Summer (July-August) and Winter

(December-February). For each season, we consider a typical (i.e. average) working day and a

typical weekend day.

In this study, both the day-ahead and the intraday market are considered. The day-ahead market

is operated through a sealed-bid auction which takes place once a day, all year round. All hours of

the following day are traded in this auction. The buy and sell volume-price bids are submitted by

the market participants before the closure of the gate, at 12 pm. Aggregated demand and supply

curves are thus recovered based on respectively the buy-bids and sell-bids for each hour of the

following day. The hourly uniform market clearing price, namely the day-ahead price, lies at the

intersection of both curves. Therefore, to recover the structure of the day-ahead market, data on

the day-ahead forecast of the total, solar and wind loads at quarter-hourly frequency were collected

from the ENTSO-E Transparency Platform (in MW)1. The German hourly day-ahead auction price

1https://transparency.entsoe.eu/
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(DE-LU, EUR/MWh) was retrieved through the EPEX-Spot2.

The intraday set of information consists of a further forecast update of the wind and solar load

(and consequently for the total load) at 8:00 am of the actual delivery day, wherein however forecast

is conditional on the day-ahead forecasts3. Consequently, intraday forecast and actual (realized)

total, solar and wind loads were also recovered from the ENTSO-E platform at quarter-hourly

frequency. Finally, the actual, day-ahead and intraday residual load were computed by subtracting

the wind and solar loads from the corresponding total load, likewise a thermal generation must-run

requirement of 23 GW4.

On the continuous intraday market, trade is executed as soon as a buy- and sell-order match and

electricity can be traded up to five minutes before delivery. The ID3 price index for the continuous

intraday market is the volume-weighted average of the price of all trades taking place in the time

window starting from three hours before the delivery and up to thirty minutes before the delivery.

So, for example the ID3-price for the delivery in the quarter from 12 pm to 12:15 pm is the volume-

weighted average of all transactions with time stamp between 9 am and 11:30 am. Hence, market

participants use the intraday market to make last minute adjustments and to balance their positions

closer to real-time. Similarly to the day-ahead auction price, the continuous intraday ID3 price

index was obtained from EPEX-Spot5.

To fit the electricity demand of the residential sector the households’ standard load profile (SLP)

is used. This profile is based on historical data for households with an annual consumption of 3,500

kWh at quarter-hourly resolution (BDEW, 2021). While the load profile of individual households

can deviate from the SLP, the SLP is a suitable indicator for the electricity demand of larger groups

of households(Hayn et al., 2018), thus representing a standard tool for retailers. Table 1 provides an

overview of the variables used in the empirical analysis, along with their frequencies and sources.

2http://www.epexspot.com/en/market-data/dayaheadauction
3ENTSO-E also admits current forecast, where wind and solar forecast is the last update of the current forecast,

which shall be regularly updated and published during intraday trading. The forecast published at 8 am of the delivery
day is published twice, as “current forecast” and “intraday forecast at 8.00".

4The must-run capacity also includes technical restrictions and market commitments. Source: Bundesnetzagentur
(2019)

5ibid.
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4 Overview of the Methodological Approach

To model uncertainties in day-ahead and intraday markets, while preserving the sequential market

setting, and the key characteristics of each market, we develop a two-step procedure. In the first

step, we jointly model and simulate load and price uncertainties in the day-ahead market at hourly

resolution, while accounting for season and type of day specificities as detailed in Section 4.1.

Based on these simulated series, different scenarios are generated. In the second step, uncertain-

ties in the intraday marker are jointly modelled at quarter-hourly resolution. For each day-ahead

scenario, coherent intraday realizations are generated, thus resulting in distinct scenario trees that

capture the retailer’s uncertainties in the day-ahead and intraday markets, as outlined in Section

4.2. In a third stage, the scenario trees are used to evaluate the retailer’s trading decisions under

uncertainty. More detailed, we consider the trading portfolio optimization of the electricity retailer

via a two-stage stochastic mixed-integer linear program, as described in Section 4.3. The scenar-

ios and stochastic programming approach are used to investigate the decision-making problem of

the retailer wishing to optimize their contribution margins and the associated risk exposure in the

day-ahead and intraday markets with increasing levels of solar PV self-generation in the residential

sector, as described in Section 4.4. An overview of the whole methodological approach is given in

Fig.1.

4.1 Modeling uncertainty in the day-ahead market

In modeling uncertainty in the day-ahead market, the dynamic relationships between solar infeed,

residual load and prices are considered in a stepwise procedure. First, we account for negative

values and outliers in the residual load and price time series. The time series of the day-ahead and

intraday residual load are shifted up so to reach the smallest recorded positive value over the full

sample period and the two markets, which however does not occur in the sample. This permits

a correct recoding of the series in the simulation process (Keles et al., 2012). Hence, the series

are logarithmized to reach variance stabilization. A similar procedure is applied to the day-ahead

11
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Electricity prices

Deterministic components

Residual load

Solar generation

Day-ahead market Intraday market

Data curation:
Transform negative 
values
Remove outliers

Three-stage least
squares (3SLS)

Historical series

Three-stage least
squares (3SLS)

Least squares (OLS)

Uncertainty modeling: Stochastic components

Jointly simulated for 
the three series 

Jointly simulated for 
solar generation and 
residual load series 
Simulated for the

price series

Mean-reverting OU 
processes
Base, upper, lower
regimes

Simulated
day-ahead series 

Simulated
intraday series 

Scenario generation & reduction

Two-stage stochastic mixed-integer optimization

Retailer’s
day-ahead trading 

decisions under 
uncertainty

Retailer’s intraday 
trading

decisions under 
uncertainty

Different solar PV 
self-generation rates 

Different spot-
indexation rates in 
the retail tariffs 

AR components
Weekly cycles
Daily cycles
Forecasting adjustment
(in the intraday market) 
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Figure 1: Overview of the whole methodological approach

and intraday price series. Outliers, i.e. observations above and below the upper and lower 2.5%

percentiles of the empirical distribution in the season and in the market are also removed and

replaced with the corresponding percentile (e.g. Janczura et al., 2013).

4.1.1 Solar PV generation

In this study, we assume that the rooftop solar PV generation of the retailer’s households is per-

fectly correlated with the system-wide solar generation published by the TSOs. This complies with

an evenly distributed customer portfolio. Therefore, we model the system-wide solar PV profile,

likewise the seasonal and daily features of the deviations of the solar PV generation from its theo-

retical profile. As in Lingohr and Müller (2019), the solar PV generation process is described by a

continuous-time process St, t ≥ 0:

St = ICt × Λt × Vt, (1)
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where St ≥ 0; ICt ≥ St ≥ 0 is the installed capacity; Λt ≥ 0 is a deterministic function describing

seasonal variations; and Vt ≥ 0 denotes any irregular influence. Λt can be regarded as the nor-

malized theoretically possible maximum solar PV generation profile and represents the ’clear sky’

solar radiation (Bacher et al., 2009). As in Russo and Bertsch (2020), it is computed as the average

of the clear sky solar radiation of thirty-nine locations in Germany, weighted for the installed solar

PV capacity in the area around selected locations. Therefore, ICt × Λt represents the normalized

theoretically possible maximum solar PV generation profile, while Vt assumes the physical inter-

pretation of cloud component. This component causes deviations of the actual solar generation

from its theoretically possible maximum profile and is explicitly modelled to account for its impact

on the residual load and prices.

After logarithmizing the data in Eq.1, the discretized hourly cloud component vt is assumed to

be characterized by an autoregressive component, as in Benth and Ibrahim (2017), and by an hourly

seasonal component, as in Keles et al. (2013) for the wind capacity utilization. To account for this

hourly seasonal component of the cloudiness, the average value v̄DAh of the cloud component vDAt

is determined for each hour h=0,...,23, of the day throughout each season over the sample period

(Summer, Transition season, Winter). Therefore, the following dynamic for the cloud component

is assumed:

vDAt =
P∑

p=1

vDAt−p +
23∑

h=0

v̄DAh ∗ 1(h|h = t mod 24) +XDA
t , (2)

where the resulting residual component XDA
t contains neither seasonal or intraday regularities and

is thus suitable for stochastic simulations.

4.1.2 Residual load

The hourly residual load lDAt is assumed to be a function of the cloud component vDAt and defined

in an additive way:

lDAt = f(vDAt ) +
23∑

h=0

l̄DAh ∗ 1(h|h = t mod 24) +Weekends+ Y DA
t , (3)

13
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where f(vDAt ) is a deterministic function of vDAt , capturing the relationship between cloudiness and

residual load; l̄DAh is a hourly cycle, which similar to the cloud component is defined as the hourly

average of the residual load in the season. Public holiday effects and weekend effects (Weekends)

are also considered, which account for differences in the load of a typical business day with re-

spect to a weekend/holiday. The residual component Y DA
t represents thus the deseasonalized and

stochastic component of the residual load. A polynomial function is used to approximate the deter-

ministic function f(vDAt ) of the cloud component in Eq.2, as implied by Fig.2.

Figure 2: Relationship between the log residual load and cloudiness in the day-ahead market

4.1.3 Day-ahead prices

Following Burger et al. (2004), Schermeyer et al. (2018), and Benth and Ibrahim (2017) the hourly

day-ahead price pDAt is modeled as a function of the residual load and an autoregressive component

as follows:

pDAt =
K∑

k=1

lDAt−k +

Q∑

q=1

pDAt−q +
23∑

h=0

p̄DAh ∗ 1(h|h = t mod 24) +Weekends+ ZDA
t , (4)

where p̄DAh is an hourly cycle, defined as the residual load and cloudiness cycles while (Weekends)

account for public holiday and weekend effects. Finally, ZDA
t represents the residual and stochastic

component of the day-ahead prices. Following the visual inspection of the scatter plot in Fig.3, the

14
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relationship between residual load and price in the day-ahead market is assumed to be linear. Eq.2 -

Figure 3: Relationship between log prices and residual load in the day-ahead market

Eq.4 result in a system of three equations, which for each season is jointly estimated through three-

stage least squares (3SLS) (Zellner and Theil, 1992) to reflect the daily blind auction mechanism

of the German market described above. The 3SLS estimation method is adopted since it allows to

obtain efficient estimates in the presence of contemporaneously correlated residuals, which would

be expected since the day-ahead forecast of solar PV generation, residual load and price are jointly

determined.

4.1.4 Modeling and simulating the stochasticity of the solar PV generation, residual load,

and day-ahead price processes

Similar to Keles et al. (2012) and Coulon et al. (2013), the remaining stochastic components of

the day-ahead solar PV generation, residual load and price variables, i.e. XDA
t , Y DA

t , ZDA
t respec-

tively, are assumed to be mean-zero Ornstein–Uhlenbeck (OU) processes, since their mean levels

are incorporated in the deterministic/seasonal functions in Eq.2 - Eq.4. Because logarithms of

the variables are modeled, a multivariate OU process can be formulated for their changes through

stochastic differential equations (SDEs) via Itô’s lemma. Yet the relationship between the three

variables can be dimmed by the consequences of outages, transmission problems and other con-

straints. Consequently, jumps in the series can occur, even at periods of low or average demand

15
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(Christensen et al., 2009; de Lagarde and Lantz, 2018). Furthermore, similarly to wind, the volatil-

ity of solar generation has been observed to increase the electricity price volatility, due to the high

day-to-day variability of the solar generation (Ballester and Furió, 2015; Rintamäki et al., 2017).

Therefore, as in Keles et al. (2012) and Coulon et al. (2013), jump processes are added to the OU

process to mimic this additional stochastic variability.

To accommodate the features above, and in the spirit of Keles et al. (2012), solar generation,

residual load and prices are assumed to mainly remain at a base level, defined “base regime” and

then to simultaneously jump into a higher (or lower) "jump regime", where they are assumed to

remain for some hours according to their mean reverting dynamics, before jumping back to their

base regime. Higher and lower jump regimes are defined as values that are above and below 3σ,

respectively (after assuming a mean-zero OU process, as mentioned above). Base, higher jump

and lower jump regimes are separately computed for the summer, transition and winter seasons.

Consequently, the base regime corresponds to values in the interval [−3σ; +3σ].

A regime-switching approach, with a different model for the base, higher jump, and lower jump

regime is thus introduced. The base regime is modeled through a system of SDE as follows:

dUDA,Base
t = −βDA,BaseUDA,Base

t dt+ ΣDA,BasedWDA,Base
t , (5)

where UDA,Base
t is the 3× 1 vector of the stochastic processes XDA

t , Y DA
t , ZDA

t in the base regime;

βDA,Base is the 3 × 3 drift matrix, which determines the “reversion speed” of the stochastic com-

ponents towards their long-term mean zero. The stochastic component ΣDA,BasedWDA,Base
t corre-

sponds to a multivariate Brownian motion: ΣDA,Base is the 3 × 3 covariance matrix, and WDA,Base
t

is a 3-dimensional vector of independent Wiener processes. Hence, dWDA,Base
t = εtdt

1/2 follows

a multivariate normal distribution where each Wiener process has mean zero and variance dt. By

applying the Itô’s lemma and following Meucci (2009), the solution to the system of SDE in Eq.5

is:

Ut+δ = e−βδUt + υt+δ, (6)
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where υt+δ ≡
∫ t+δ
t

eβ(s−δ)ΣdWs ∼ N (0, Ω). (Note that in Eq.6 we dropped the superscripts

DA,Base to ease the notation.) δ is the time difference of the day-ahead series between t and t+1,

i.e. one hour. The solution in Eq.6 is a vector autoregressive process of order one, i.e. VAR(1),

which reads Ut+1 = AUt + υt+1 where A is a suitable 3 × 3 matrix, such that A = e−βδ while is

Ω ≡ ΣΣ′ (Meucci, 2009). The Maximum Likelihood (ML) estimator is used to recover the param-

eter matricesA and Ω from the historical stochastic componentsXDA
t , Y DA

t , ZDA
t . The substitution

of A and Ω delivers the original parameter matrices −β and Σ of the exact solution in Eq.6, which

are used to generate the simulated paths of the three stochastic components in the base regime.

The jump regimes are defined as extended versions of the base regime. Upward and downward

jumps in the stochastic components of the day-ahead solar generation, residual load and prices are

replaced by their mean values in the estimation of the mean reversion parameters in Eq.5, so to

preserve the sample length. The added or subtracted “jump height” to the base regime process

corresponds to the deviation of the jump value from the mean. A multivariate normal distribution

is thus used to model the jump heights of the three stochastic processes XDA
t , Y DA

t , ZDA
t . The

distribution is based on the means and covariance matrix estimated from the historical deviations

of the jump values from their corresponding mean. Accordingly, the upper and lower regimes are

defined as:

UDA,uJ
t = UDA,Base

t + εDA,uJt , εDA,uJt ∼ N (µDA,uJ , ΣDA,uJ),

UDA,lJ
t = UDA,Base

t − εDA,lJt , εDA,lJt ∼ N (µDA,lJ , ΣDA,lJ),
(7)

where εDA,uJt (εDA,lJt ) represents the upward (downward) jump height; µDA,uJt (µDA,lJt ) is the 3-

dimensional mean vector of the upward (downward) jump heights; and ΣDA,uJ (ΣDA,lJ ) is the

3 × 3 covariance matrix of the upward (downward) heights. It is noteworthy that this approach

is separately applied for the summer, transition and winter season series. Transition probabilities

for the upward and downward jumps of the three stochastic components XDA
t , Y DA

t , ZDA
t are thus

separately computed for the three seasons. The probabilities of switching from the base regime to
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the upper regime and backwards are defined by:

PBB =
card {Ut ∈ [µ− 3σ, µ+ 3σ] ∧ Ut+1 ∈ [µ− 3σ, µ+ 3σ]}

card {Ut ∈ [µ− 3σ, µ+ 3σ]} ;

PBU =
card {Ut ∈ [µ− 3σ, µ+ 3σ] ∧ Ut+1 ∈ [µ+ 3σ,max (U)]}

card {Ut ∈ [µ− 3σ, µ+ 3σ]} ;

PUB =
card {Ut ∈ [µ+ 3σ,max (U)] ∧ Ut+1 ∈ [µ− 3σ, µ+ 3σ]}

card {Ut ∈ [µ+ 3σ,max (U)]} ;

PUU =
card {Ut ∈ [µ+ 3σ,max (U)] ∧ Ut+1 ∈ [µ+ 3σ,max (U)]}

card {Ut ∈ [µ+ 3σ,max (U)]} .

(8)

where the superscript DA is dropped to ease notation. PBB is the probability of remaining in the

base regime; PUU is the probability of remaining in the upper jump regime; PBU and PUB are the

probabilities to move from the base to the upper jump regime, and vice versa respectively. The

probabilities of switching from the base to the lower jump regime and backwards (PBL, PLB, PLL)

are computed analogue to Eq.8, whereas the corresponding interval for downward jumps is defined

as [min(U), µ− 3σ]. These probabilities are thus combined to define the transition probabilities

matrix Tt:

T =




PBB PBU PBL

PUB PUU PUL

PLB PLU PLL



, (9)

where PUL = PLU=0, i.e. no transition from the upper jump to the lower jump regime, and vice

versa, as suggested by empirical evidence. Based on their computed transition matrices, the hourly

regime switching of three stochastic processes XDA
t , Y DA

t , ZDA
t are simulated for each season fol-

lowing the approach in Keles et al. (2013). A state parameter δ is used to identify the regime. For

δ=0, a base regime is identified and thus used in the simulation process. If δ=1 (δ=-1), an upper

(lower) jump regime is instead identified and a upper (lower) jump is thus added (subtracted) from
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the simulated, i.e.:

UDA,Sim
t,s =





UDA,Base
t,s + εDA,uJt,s , εDA,uJt,s ∼ N (µDA,uJ , ΣDA,uJ) if δ = 1

UDA,Base
t,s if δ = 0

UDA,Base
t,s − εDA,lJt,s , εDA,lJt,s ∼ N (µDA,lJ , ΣDA,lJ) if δ = −1

(10)

For s = 1, 2, ..., S, UDA,Base
t,s , εDA,uJt,s , and εDA,lJt,s represent the sth simulated processes obtained

from Monte Carlo simulations of the multivariate processes in Eq.5 and Eq.7.

To capture and describe the uncertainty in the day-ahead market, Monte Carlo simulations are

conducted for each season by considering S=1,000 trials. After assuming for each trial a burn-in

period of 28 days or 672 hours, 24 hours from 12 am to 11 pm are extracted from each simulated

series. These series correspond to 1,000 simulations of the stochastic components of the day-ahead

cloudiness, residual load and price for one day. Therefore, the deterministic components in Eq.2

- Eq.4 are added to the simulated stochastic components. These log series are thus transformed to

retrieve their levels, while the residual load and price series are also shifted down to recover their

original levels. This procedure allows to obtain 1,000 hourly cloudiness, residual load and price

series of one typical working day (Monday-Friday) and 1,000 hourly cloudiness, residual load and

price series of one typical weekend day (Saturday-Sunday) for each of the three seasons. There-

fore, distinct and seasonal paths are recovered for working and weekend (and holidays) days, which

account for the historically observed differences in the load and price values between working days

and weekends/holidays across the seasons. In contrast, while cloudiness paths are differentiated

across seasons, they are assumed to be the same in working and weekend days. The 1,000 se-

ries resulting from the Monte Carlo simulation are "reduced" to a recombining stochastic tree. This

scenario generation-and-reduction is carried out by implementing the k-means clustering algorithm

(MacQueen et al., 1967). This algorithm aims to partition a set of simulations s1, ..., sn intom clus-

ters C1, ..., Cm such that an intra-cluster distance is minimized. The k-means algorithm used in this

study employs the city block distance. Therefore, for each cluster, the absolute distance is computed

with respect to the median of the points in that cluster. The number of clusters is identified by us-
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ing silhouette plots and values to analyze the results of different k-means clustering solutions. The

k-means algorithm is a mainstay clustering approach in many application domains, e.g. biology,

market segmentation, internet search, digital imaging, power network allocation (Likas et al., 2003;

Jain, 2010). It has been extensively used in the literature on energy systems for trading off comput-

ing time and precision (Green et al., 2014; Osório et al., 2015; Zhang et al., 2021, and references

therein). A similar scenario generation-and-reduction approach is adopted by Gröwe-Kuska et al.

(2000) and Heitsch and Römisch (2009). Fleten and Kristoffersen (2007) apply the approach in a

similar way to stochastic programming of trading strategies for hydro-power in electricity markets.

For scenario reduction, the authors use Lagrangian relaxation of a optimization problem instead of

k-means clustering, as used in this study. Nonetheless, both the Lagrangian relaxation and k-means

clustering follow the same goal of preserving the variety and uncertainty of the simulations and

reducing the number of scenarios to be considered.

By following the k-means clustering approach above, three clusters are identified for each typi-

cal day (working day and weekend) and season (Summer, Winter, Transition season), which corre-

spond to a high, medium, and low scenario of the solar PV generation. For each scenario, numerous

consistent nodes can be derived by symmetrically defining deviation ranges. We use the following

approach. For each scenario, simulations in the cluster are grouped and averaged in five nodes,

based on their distance from a reference point, assumed to be the mean of the simulated residual

load series in the cluster, as computed at 12 pm. Starting from this first node, four nodes are identi-

fied by averaging simulations in the range up to one standard deviation above and below the mean

of the cluster, and simulations above and below one standard deviation from the mean of the cluster.

Therefore, the three nodes in the range up to one standard deviation from the mean are assumed

to be equally probable, with a probability of 25%. Equal probability is also assumed for the nodes

above and below one standard deviation from the mean (12.5%). In all, these probabilities resemble

probabilities drawn from a normal distribution. Finally, a spline interpolation method is used to ob-

tain cloudiness and residual load series at quarter-hourly resolution. The quarter-hourly day-ahead

price series are obtained by assuming the hourly day-ahead price constant in the quarter-of-hour
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segments of the specific hour. The resulting fifteen nodes of the three series, i.e. five nodes for

each of the three scenarios (high, medium and low) are used to design the intraday realizations and

scenario trees, as described below.

4.2 Modeling uncertainty in the intraday market

In the intraday market, series at quarter-hourly resolution are taken. The updated forecast of the

load and solar generation is used to model the uncertainty towards real-time. Since intraday solar

and residual load forecasts follow their respective day-ahead forecasts, we use the same economet-

ric approach adopted for the day-ahead market. Yet, since the ID3 price index is determined in

the continuous market and up to thirty minutes before the delivery, the stochastic process of the

intraday prices is modeled separately from the solar and residual load stochastic processes.

4.2.1 Solar PV generation

Similar to the day-ahead market, we model the intraday cloud component, that is the deviation of

the intraday solar PV generation from its theoretical (seasonal and intraday) profile, and from the

day-ahead profile, i.e.:

vIDτ = vDAτ +
P∑

p=1

vIDτ−p +
95∑

q=0

v̄IDq ∗ 1(q|q = τ mod 96) +XID
τ , (11)

where the intraday cloud component vIDτ is assumed to be a function of the day-ahead cloud compo-

nent, likewise of an autoregressive component and a seasonal component. Similar to the day-ahead

process, the seasonal component is obtained as the average value v̄IDq of the cloud component vIDτ

for each quarter-of-hour in the day (q=0,...,95) and for each season in the sample period (Sum-

mer, Transition season, Winter). The resulting residual component XID
τ is thus used for stochastic

simulations.
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4.2.2 Residual load

Following updates in the intraday forecasts of the solar PV and wind generation, forecasts of the

residual load lIDτ are also updated at quarter-hourly resolution, and assumed to be a linear function

of the day-ahead forecasts and of the intraday cloud component. An autoregressive component is

also considered in the process:

lIDτ = lDAτ + vIDτ +
P∑

p=1

lIDτ−p +
95∑

q=0

l̄IDq ∗ 1(q|q = τ mod 96) +Weekends+ Y ID
τ , (12)

where l̄IDq is a quarter-of-hour cycle is defined as the quarterly hour average of the intraday residual

load in the season. Public holiday effects and weekend effects (Weekends) are also considered.

The residual component Y ID
τ represents thus the deseasonalized and stochastic component of the

residual load factor in the intraday market. Parameter estimates in Eq.11-12 are obtained through

the 3SLS estimation method to account for contemporaneous correlations between the jointly de-

termined intraday solar PV generation and residual load forecasts.

4.2.3 Intraday prices

Following Kiesel and Paraschiv (2017), the intraday ID3 price process is described in terms of its

distance from the day-ahead price, i.e. pIDτ − pDAτ = ∆pτ . The day-ahead price pDAτ , at quarter-

hourly resolution, is obtained from the hourly series pDAt via spline interpolation (Lahmiri, 2015;

Steinert and Ziel, 2019). The model specification reads as follows:

∆pτ =
J∑

j=1

∆pτ−j + pDAτ−1 + ∆pIDτ−1 +
K∑

k=3

∆lτ−k +
R∑

r=3

∆vτ−r +
95∑

q=0

∆̄pτ ∗ 1(q|q = τ mod 96)+

+Weekends+ ZID
τ ,

(13)

where pDAτ−1 is the first-order lag of the day-ahead price at quarter-hourly resolution; ∆pIDτ−1 repre-

sents increments in the intraday price series. As in Kiesel and Paraschiv (2017), these increments

account for the price formation process in the intraday market, which is based on continuous trades
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of several quarter-hourly products. Therefore, the increment captures the change in the price of a

certain quarter of an hour when new information on solar forecasts becomes available. ∆lτ is the

distance of the actual (realized) residual load from its intraday forecast lIDτ ; likewise ∆vτ is the

distance of the actual solar generation from its intraday forecast vIDτ , thus representing the solar

forecast error. Here the actual residual load and solar generation are assumed to be exogenous and

corresponding to the 15-minute average of the historical actual observations for the season in the

sample period. Parameters in Eq.13 are estimated through least-square error.

4.2.4 Modeling and simulating the stochasticity of the solar PV, residual load and intraday

price processes

Similar to the day-ahead market, the remaining stochastic components of the intraday solar PV

generation and residual load, i.e. XID
τ and Y ID

τ respectively, are assumed to follow a multivariate

mean-zero OU process. Jump processes are thus added to account for the uncertainty. Base, higher

and lower jump regimes are identified following the approach described in Section 4.1 and by

taking as upwards and downwards the values of XID
τ and Y ID

τ that are above and below 3σ their

corresponding mean values in the season. The base regime is thus modeled through SDE as follows:

dU ID,Base
τ = −βID,BaseU ID,Base

τ dτ + ΣID,BasedWID,Base
τ , (14)

where UDA,Base
τ is the 2 × 1 vector of the stochastic processes XID

τ , Y ID
τ in the base regime;

βID,Base is the 2 × 2 positive definite symmetric drift matrix; ΣID,Base is the 2 × 2 constant

diffusion matrix and WID,Base
τ is a 2-dimensional Wiener process. The jump regimes are thus

defined as extended versions of the base regime like for the day-ahead market:

UID,uJ
τ = UID,Base

τ + εID,uJτ , εID,uJτ ∼ N (µID,uJ , ΣID,uJ),

UID,lJ
τ = UID,Base

τ − εID,lJτ , εID,lJτ ∼ N (µID,lJ , ΣID,lJ),
(15)
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where εID,uJτ (εID,lJτ ) represents the upward (downward) jump height; µID,uJτ (µID,lJτ ) is the 2-

dimensional mean vector of the upward (downward) jump heights; and ΣID,uJ (ΣID,lJ ) is the 2 ×

2 variance-covariance matrix of the upward (downward) heights. Finally, the probabilities for XID
τ

and Y ID
τ to switch from the base regime to the upper regime and backwards are computed as in

Eq.8 and used to define the transition probabilities matrix as in Eq.9.

Similarly to the day-ahead series, the stochastic component of the intraday ID3 price ZID
τ is

assumed to follow an univariate mean-reverting OU process with a base, upper jump and lower

jump regimes, i.e.:

dZID,Base
τ = −βID,BaseZID,Base

τ dτ + σID,BasedW ID,Base
τ ,

ZID,uJ
τ = ZID,Base

τ + εID,uJτ , εID,uJτ ∼ N (µID,uJ , σID,uJ),

ZID,lJ
τ = ZID,Base

τ − εID,lJτ , εID,lJτ ∼ N (µID,lJ , σID,lJ).

(16)

The parameter estimates in Eq.11-Eq.13 and the simulated day-ahead scenarios are thus used to ob-

tain intraday scenarios. For each of the five nodes of the high, medium and low day-ahead scenarios,

the corresponding intraday node is retrieved for the cloudiness, residual load and ID3 price index,

thus generating high, medium and low intraday scenarios coherent with the day-ahead scenarios.

Yet still the intraday nodes represent the deterministic and predictable component of the intraday

series, to which a stochastic component is added as obtained from Monte Carlo simulations of the

processes in Eq.14-Eq.16 with 1,000 trials. Similar to the day-ahead market, for each scenario,

numerous consistent nodes can be derived by symmetrically defining deviation ranges. We assume

the average of the simulated processes as the representative node for the intraday cloudiness, resid-

ual load and price. Therefore, for each of these nodes, we assume a range of possible realizations,

which are obtained by adding (subtracting) to the node one and two standard deviations of the his-

torical differences between intraday and day-ahead series, as computed for each quarter-of-hour in

the season. For each day-ahead node, five possible realizations are assumed in the intraday market,

resulting in 5 × 5 nodes. Intraday nodes in the range up to one standard deviation from the mean

are assumed to be equally probable, with probability of 25%. Equal probability is also assumed
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for the nodes above and below one standard deviation from the mean (12.5%), thus resembling

probabilities drawn from a normal distribution.

In all, for a typical working/weekend day, we obtain a scenario tree of 3 × 5 × 5 possible

states. It follows that to obtain the ID3 price index realizations, the corresponding realizations

for the intraday cloudiness and residual load series are used. The resulting scenario tree, which

is depicted in Fig.4, permits to characterize the uncertainty surrounding the forecasting process in

liberalized electricity wholesale spot markets through a discrete representation of its realizations in

a probability space.

Intraday
Market

Day-Ahead 
Market

j

k

Scenario
i

i = High, Medium, Low

i

Node
j

Node
k

D-1 D

Figure 4: Scenario tree with different nodes in the day-ahead and intraday markets

4.3 Retailers’ trading portfolio optimization problem

When an electricity retailer faces volume and price risks in purchasing load to be served from

the wholesale market, conventional risk management optimization methods are observed to be

quite inefficient due to the difficulty of formulating a multi-period optimization that incorporates

correlated price and demand risks (Kettunen et al., 2010). In this context, we develop a two-stage

stochastic optimization approach, which accounts for correlated uncertainties of both electricity

prices and loads, and which permits the consideration of the conditional value-at-risk (CVaR) as
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risk metric to optimize risk hedging across intermediate stages in the planning horizons. Hereby,

the retailer procures electricity on the spot markets (day-ahead spot market and continuous intraday

trading) in order to resell it via predefined tariff schemes to household customers according to their

residual demand, i.e. according to the standard load profile net of the solar PV generation in case

the household has a solar installation. It is worth noting that we do not consider the potential impact

of battery storage systems on temporal shifts in residual demand, or smart metering and intelligent

electric devices for demand side management. Therefore, in this study, the hypothesis that the

retailer can participate in short-term demand response programs to adjust the uncertainty brought

by the self-sufficiency is not considered6.

We consider input data for the German market area and a hypothetical retailer with 100,000

household customers, that are spatially distributed such that the German PV generation is repre-

sentative for the portfolio PV generation. For customers without PV generation, the load to be

served by the retailer in a typical working/weekend day of the season corresponds to the standard

load profile qqh, where qh represents the quarter-of-hour of the day. For customers with PV gen-

eration, the residual demand qRD
qh to be served by the retailer is calculated as qqh minus the solar

PV self-generation. This self-generation is determined under uncertainty in the intraday cloudiness

vID
qh , as described in Section 4.2. For each scenario j of the day-ahead market, and corresponding

realization k in the intraday market, the residual demand to be served after accounting for the PV

self-generation is defined as follows:

qRD
j,k,qh = max {qqh − (1− vID

j,k,qh) · P inst., 0}, (17)

where P inst. represents the rooftop solar PV installed capacity. Therefore, in the absence of

cloudiness, i.e. vj,k,qh=0, the solar PV self-generation reaches its theoretical maximum, given a

certain amount of installed capacity. Following the approach in Ruppert et al. (2016) and Russo

and Bertsch (2020), rooftop solar PV systems with capacity up to 12 kW are considered, i.e. in-

6We refer to Fett et al. (2021) who investigate potential impacts of household PV battery storage systems on day-
ahead electricity markets on a system level.
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stallations for residential buildings up to 80 m2, and with a median size of 7 kW7. Therefore, in our

empirical analysis, P inst. in Eq.17 is assumed to be 7 kW.

According to the last published statistics, the number of residential buildings in Germany

amounted to 19.2 million at the end of 20198, while almost 2 million rooftop solar PV systems

were installed in Germany, thus representing an installation rate φ of PV systems in the residential

sector of 10% 9. Due to the lack of granular data on generation from solar PV systems, the solar

system load and capacity factor is used indeed to infer the profile of self-generation at quarter-

hourly basis. On average, a solar PV capacity factor of 10% was observed in Germany during

the sample period, as recovered from the historical data. This factor is used to compute the total

amount of solar PV self-generation. For each season, the quarter-hourly self-generation profile in a

typical day is obtained by assuming the same quarter-hourly profile of the system solar load on an

average day of the season in the sample10.

We frame the retailer’s trading strategy problem and risk investigation by assuming metering of

deviations from the standard load profile on a quarter-hourly basis, as supposed after completion

of the smart meter roll-out program11. In this case, the participation of the retailer in the wholesale

spot markets to balance all the potential profit and loss is mandatory. We also rule out the hypothesis

that the retailer has self-consumption, or storage and generation facilities to cope with deviations of

the actual load from the standard load profile, as led by solar PV self-generation. Consequently, the

amount of self-generation exceeding households’ demand is not accounted for, since this excess

7Source: Core Energy Market Data Register Ordinance, MaStRV. https://www.bundesnetzagentur.de/
EN/Areas/Energy/Companies/CoreEnergyMarketDataRegister/CoreDataReg_node.html.

8Source: Statista Research Department. https://de.statista.com/statistik/daten/studie/
70094/umfrage/wohngebaeude-bestand-in-deutschland-seit-1994/. Access on 31.05.2021.

9Source: Strom-Report: Photovoltaik in Deutschland. https://strom-report.de/photovoltaik/.
Access on 31.05.2021.

10While this approach represents a simplification, it is reasonable for retailers with a national customer portfolio, as
assumed in this study, the aggregated PV load profile of which largely follows the same pattern of the system solar PV
load profile.

11Currently, the majority of households are metered on a semi-annual or annual basis. This metering system makes
it hard for the retailer to identify and account for deviations from the standard load profile in the short term. In
Germany, dedicated distribution system operators actively manage so-called difference balancing groups on the spot
markets to balance expected deviations from the standard load profile. The costs of these deviations are thus rolled
over to the involved retailers via an excess/shortage price, determined on a monthly basis. Accordingly, the developed
methodology can be easily applied to manage different balancing groups in the current German market design.
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is fed into the grid either based on a remuneration scheme or sold by the household itself. We

finally assume that the household electricity demand is inelastic to wholesale spot prices due to the

prevalence of fix components (i.e. taxes, grid fees and renewables support levy) in the retail tariffs,

which represent a distortion to the price signals coming from the market.

A risk-neutral retailer maximizes the expected value of contribution margins E(j,k)∈Ω(πj,k) over

all scenarios (j, k) in the discrete probability space Ω, which contains the tariff revenues from

the customers E(j,k)∈Ω(ρtariff
j,k ), the procurement costs on the day-ahead and intraday markets, i.e

E(j,k)∈Ω(κDA
j,k ) and E(j,k)∈Ω(κID

j,k), and the potential imbalance costs E(j,k)∈Ω(κImb
j,k )12, that is:

E(j,k)∈Ω(πj,k) = E(j,k)∈Ω(ρtariff
j,k )− E(j,k)∈Ω(κDA

j,k )− E(j,k)∈Ω(κID
j,k)− E(j,k)∈Ω(κImb

j,k ). (18)

The tariff revenues are determined by fixed and dynamic base rates, namely τbase,fix and τbase,dyn,

which represent the fix components of the retail prices. The tariff revenues are also determined by

fixed and dynamic energy rates, i.e. τ energy,fix and τ j,qhenergy,dyn, which are energy-based and thus

proportional to the served load. As mentioned above, we distinguish between retailer’s customers

with and without PV self-generation (qRD
j,k,qh and qqh in Eq.17, respectively). By assuming n to be

the number of households, φ ∈ [0, 1] the share of customers with rooftop solar PV systems, and

δ ∈ [0, 1] the share of customers with dynamic tariffs. Hence, the tariff revenues from the costumers

are given by:

E(j,k)∈Ω(ρtariff
j,k ) =

J∑

j=1

prj

K∑

k=1

prk

(
(1− δ) · (τbase,fix + ((1− φ) · qqh + φ · qRD

j,k,qh) · τ energy,fix)+

(δ · (τbase,dyn + ((1− φ) · qqh + φ · qRD
j,k,qh) · τ energy,dyn

qh )
)
· n. (19)

Procurement costs on day-ahead market and intraday market are based on the day-ahead sce-

12The contract of German balancing responsible parties explicitly forbids intentional imbalances while forcing to
close positions with market operations. To cope with this rule, in this study we assume an imbalance price sufficiently
high and equal to 10,000 EUR/MWh to ensure imbalance volumes and costs to be zero.
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narios j and corresponding intraday realizations k, as described Sections 4.1 and 4.2. The scenario-

based prices lda and lid represent the price levels at which the retailer can place volumes as selling

and buying bids, i.e. xDA,bid,buy/sell
lda,j,h and xID,bid,buy/sell

lid,j,k,qh in the day-ahead market and in intraday mar-

ket, respectively. Price-volume bids lead to demand and supply curves, which are submitted on

at hourly time step h in the day-ahead market, and at quarter-hourly time step qh in the intraday

market.

By using binary acceptance parameters βDA
lda,j,h and βID

lid,j,k,qh, trades are determined from the

submitted bids, thus allowing for modeling the retailer’s non-anticipative trading strategies and

scenario-based contribution margins13. As bids are possible in both buying and selling direction,

the retailer might intentionally take either a short or a long position to profit from potential price

spreads between the day-ahead and intraday market. Procurement costs on the intraday market are

defined as:

E(j,k)∈Ω(κID
j,k) =

J∑

j=1

prj

K∑

k=1

prk

( QH∑

qh

LID∑

lid

(
(1−βID

lid,j,k,qh)·xID,bid,buy
lid,j,k,qh ·pID

j,k,qh+βID
lid,j,k,qh·xID,bid,sell

lid,j,k,qh ·(−pID
j,k,qh)

)
·4t
)
,

(20)

where the term 4t adapts for the 15 minutes resolution of the intraday market (i.e., 4t = 0.25).

Following Ottesen et al. (2018) and Laur et al. (2018), and using the approach in Kraft et al.

(2021), we model the continuous intraday market as one hypothetical auction, with the intraday

ID3 index price pID3
τ in Section 4.2.3 as the price for each quarter hour qh. In doing so, we consider

the hypothetical auction as a uniform pricing auction, thus limiting the potentially greater price

volatility and risk exposure due to the arrival process towards gate closure time in the continuous

intraday. It is worth noting that if the retailer is short in one market segment, the term of the costs

can potentially become negative indicating revenues. Procurement costs in the day-ahead market

13In Kraft et al. (2021), a bidding framework is developed that allows for both selling and buying bids. To remain
consistent, β denotes the acceptance of selling bids. To evaluate the buying bids predominant in this study, the opposite
of the binary parameter, i.e. (1− β), is applied.
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are defined analogously to Eq. 20.

Based on the current contract for balancing responsible parties in Germany, the volume of a

short or long position on the spot markets is limited to a certain percentage qmax,short/long of the

maximum schedule volume of the day14. As the retailer does not trade any generation, storage, or

demand apart from the load to be served, the maximum short position on the day-ahead market is

defined as follows:15

− max
qh∈QH

(
(1− φ) · qqh + φ ·max

k∈K
qRD
j,k,qh) · n · qmax,short ≤ xDA,trade

j,h ∀j ∈ J, h ∈ H. (21)

(The short position constraints for the intraday market are defined analogously.)

Since the market design requires closed positions, any imbalances ximb
j,k,qh in the day-ahead and

intraday positions (xDA,trade
j,h and xID,trade

j,k,qh , respectively) need to be balanced by the TSO, i.e.:

xDA,trade
j,h + xID,trade

j,k,qh + ximb
j,k,qh = xDA,trade

j,h + xID,trade
i,j,k,qh ∀(j, k) ∈ Ω, h ∈ H, qh(h) ∈ QH(H), (22)

where xDA,trade
j,h and xID,trade

i,j,k,qh represent all trades in the day-ahead and the intraday markets, respec-

tively. The notation qh(h) indicates a mapping of quarter hours to the respective hour, that is qh1,

qh2, qh3, and qh4 represent the four quarters of hour h1 of the day, and so on. To ensure the

non-anticipativity of the trading strategy, the retailer submits the same bids under the same set of

information. For the bids submitted to the day-ahead market, this constraint translates into:

xDA,bid
lda,j,h = xDA,bid

lda,j+1,h ∀lda ∈ LDA, {j ∈ J | Ord(j) < |J |}, h ∈ H, (23)

with Ord(j) representing the ordinal number of the scenario j in the set J and |J | the cardinality

of set J . The intraday market constraints on the realizations k are defined in analogous way.

One major shortfall of determining trading strategies in a risk-neutral way and with the associ-

14In the current contract, a strategic position of 10% is allowed, which is thus used in this study.
15Note, that considering the maximum scenario value maxk∈K qRD

j,k,qh of residual load over all k in Eq. 21 is a rather
relaxed interpretation of the strategic position constraints. However, the peak demand of the standard load profile is
observed in the evening. At that time, the uncertainty in solar generation is low and the scenarios differ only slightly.
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ated uncertainty is that the probability distribution of potential scenario outcomes is reduced to one

single figure, i.e. the expected value. Yet, the expected value is affected by abnormal values in the

distribution, thus driven by a few scenario leaves with extreme values but low probabilities. Fur-

thermore, the risk-neutral determination of trading strategies does not take into account outcome

uncertainty, which is of particular relevance for a retailer under competitive pressure. Therefore,

the hypothesis of risk-neutrality may lead to trading strategies overestimating the retailer’s risk

exposure in terms of low contribution margins and thus profitability. With increasing volumes of

variable renewable generation in the energy system, and consequent impact on electricity prices, it

becomes paramount for the retailer to assess the distribution of contribution margins by including

risk considerations within the probability space Ω.

We use the approach of Conejo et al. (2010) as reformulated by Kraft et al. (2021), and include

into the retailer’s trading problem the conditional value-at-risk (CVaR) risk metric with a level

α=95% (see e.g. Alexander, 2008; Conejo et al., 2010, for the mathematical definition)16. By

including the expected value and the CVaR, the target function is extended to a multi-objective

optimization where λ ∈ [0, 1] denotes the weight allocated to the risk metric: λ=0% is equivalent

to the risk-neutral problem above; increasing values of λ correspond to a growing risk-aversion.

We also include into the target function two additional constraints: the first, η, represents the value-

at-risk, i.e. the quantile value at (1-α%); the second, s, represents the (positive) difference between

η and the contribution margin π in a single scenario. Hence, the retailer’s decision-making problem

under uncertainty is reformulated as follows (see Conejo et al., 2010; Kraft et al., 2021, for further

details):

max (1− λ) · E(j,k)∈Ω(πj,k) + λ ·
(
η − 1

1− α
J∑

j=1

prj

K∑

k=1

prk · sj,k
)

(24)

16As a coherent risk metric, the CVaR has the properties of monotonicity, sub-additivity, homogeneity, and transla-
tional invariance. With regard to portfolio problems, the sub-additivity is a particularly desirable property as it allows
to scale or combine portfolios, and thereby ensures the validity of the decision calculus in terms of risk exposure. The
level of α denotes the quantile of the loss distribution assumed to assess the risk exposure. In this study, we consider
α = 95% as suitable level in the determination of bids, thereby capturing the expected value of the 5% greatest losses
for the retailer.
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η − πj,k ≤ sj,k ∀(j, k) ∈ Ω (25)

sj,k ≥ 0 ∀(j, k) ∈ Ω (26)

In the next section, the developed approach is used to solve the retailer’s trading optimization

problem and investigate the retailer’s risk exposure and trading adjustment to increasing levels of

PV self-sufficiency.

4.4 Retailer’s risk-management problem with increasing solar PV self- gen-

eration: A case study with fixed and dynamic energy tariffs

The retailer’s risk-management problem, and their risk exposure to increasing levels of solar PV

self-generation are investigated by assuming different installation rates of PV systems in the res-

idential sector, i.e. different shares of residential houses with installed rooftop solar PV systems.

An installation rate φ=10% is assumed, which is the status quo in Germany (Section 4.3). We

also assume installation rates φ=30% and φ=50%, which are in line with the solar photovoltaic

expansion targets in Germany (from 54 to 150 GW by 2030, and 25% of electricity needs powered

with solar energy by 2050 (Bundesministerium für Wirtschaft und Energie, 2021). By maintaining

the solar PV capacity factor constant at 10%, the levels of PV self-generation corresponding to the

different penetration rates are computed for a typical day in the season, as described in Section 4.3.

Hence, the computed self-generation levels are subtracted from the standard load profile to obtain

the residual demand of the residential sector, as in Eq.17.

We notice that a lower demand from customers with PV systems implies lower revenues for the

retailer, as generated by the energy rates (Eq.19). To evaluate the impact that more dynamic retail

tariffs may have on the risk exposure and management of the retailer, we consider two different

retail tariff schemes. In the first scheme, we assume a fixed retail tariff, i.e. the most common

and currently applied tariff structure in Germany. This tariff is composed of a fixed base rate and
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a fixed energy rate. The fixed base rate is valued in EUR per time interval (e.g. EUR/a), while

the fixed energy rate is valued in EUR per unit of energy demanded (e.g. EUR-ct/kWh). We

collect from GET AG17 the ten most competitive retail tariffs from the 39 locations considered in

the stochastic modeling of solar generation and subtract the fixed rate (i.e. taxes, grid fees and

renewables support levies) to isolate energy rate used to evaluate the retailer’s net revenues. Fig. 5

depicts the collected fixed base rates and fixed energy rates. For the purpose of our study, we use

the median value as representative of the sample in the empirical analysis. The median fixed base

rate is 6.87 EUR/month or 0.23 EUR/day; after removing levies, taxes and grid fees as provided

by GET AG, the median fixed energy rate is 0.058 EUR/kWh (i.e. 58.24 EUR/MWh). In the
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Figure 5: Fixed base rates and energy rates in Germany for 39 different locations, net (Source:
GET AG)

second tariff scheme, we consider a dynamic tariff with a fixed base rate and a time-varying energy

rate. The time-varying energy rate is assumed to be indexed to day-ahead electricity prices. In this

second scheme, the fixed base rate is calibrated so as to obtain the same contribution margin of

the fixed tariff scheme in the sample. This guarantees the reliability of our analysis on the impact

of increasing self-sufficiency and dynamic tariffs on the retailer’s net revenues and risk exposure.

17https://www.get-ag.com/
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For the second tariff scheme, a fixed base rate of 0.453 EUR/day is computed. We maintain the

assumption of price-inelasticity of electricity demand, likewise the assumption of no electricity

storage allowing for adjustments to the PV feed-in and self-generation patterns in the retailer’s

portfolio.

We investigate the retailer’s trading optimization problem with increasing levels of solar PV

self-generation by assuming an increasing number of costumers with PV generation in the retailer

portfolio, as defined in Eq.17, and consistent with installation rates φ=30% and φ=50%. We assume

a hypothetical retailer with 100,000 household customers as in Section 4.3, and consider the im-

plications of increasing self-sufficiency under the two tariff schemes described above by assuming

that customers with and without PV self-generation and costumers with fixed and dynamic tariffs

are equally distributed in the retailer portfolio18. φ denotes the share of customers with PV instal-

lations, i.e. the PV installation rate, while the share of customers with a dynamic tariff is denoted

by δ. In our case study, we consider δ=0%, i.e. the status quo of the market with no indexation to

the day-ahead prices in the energy rate, and δ=50% and δ=100%. This case study is of particular

interest to assess the extent to which tariff schemes can affect risk sharing in electricity markets

with increasing levels of distributed variable renewable generation. Results from the stochastic

modeling and retailer’s trading optimization are presented in the following section.

5 Results

Table 2 shows descriptive statistics of the time series for dependent variables used in the empiri-

cal analysis. We distinguish between Summer, Transition season and Winter, and observe that in

Summer and Winter, the intraday solar PV generation and ID3 price are on average above their

day-ahead values for the corresponding delivery period. The opposite holds during the Transition

season. Not surprisingly, differences between the intraday and day-ahead solar PV are larger and

18Although a bias introduced by the self-selection of certain customers’ group towards certain tariffs is possible, we
consider this assumption to be legitimate as there is no technical flexibility to be exploited economically. However,
extending the approach to customers with PV battery storage systems would require a investigation of individual
economic incentives.
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more volatile in Winter. Differences between intraday and day-ahead price are larger, in absolute

value, during the Transition season but more volatile in Winter, is response to the greater uncer-

tainty of the solar PV generation, and consequently of the residual load. Overall, skweness and

kurtosis imply a departure from the assumption of a Gaussian distribution, as also suggested by the

Jarque-Bera statistics and their p-values (JB and JB p-value in columns nine and ten of the table).

The Augmented Dickey-Fuller tests reject the null hypothesis of non-stationarity.

5.1 Day-ahead and intraday stochastic modeling

Parameter estimates of deterministic components of the day-ahead and intraday series, as described

in Eq.2-Eq.4 and Eq.11-Eq.13 are presented in Appendix A.1 and A.2, respectively. The OU pa-

rameter estimates for the day-ahead stochastic components Xt, Yt, Zt in the base regime are shown

in Tab.3. The mean-reverting parameters in the diagonal of the matrix βDA,Base point to a higher

persistence of the residual load when compared to the cloudiness and price series across the sys-

tem. In contrast, the prices series show the lowest persistence. Higher volatility is observed in the

residual load and price series during the Transition season and in Winter, as indicates by the param-

eters in the diagonal of the matrix ΣDA,Base. The opposite holds for the cloudiness component,

which is more volatile in Summer. Overall, the out-of-diagonal parameters of the matrix validate

the positive correlation linking cloudiness, residual load and price. Lower jump regime produce

more spiked series compare to the upper jump regime, as implied by the parameters µ in Tab.4.

In all, the lower regime is also more volatile than the upper regime, as indicated by the estimated

covariance matrices Σ. Series in the lower regime are also more volatile than in the base regime,

thus in line with findings in Coulon et al. (2013).

Parameter estimates of the stochastic component of the intraday cloudiness and residual load

series (Tab. 5) are in line with the results observed in day-ahead market, thus suggesting the highest

persistence of the cloudiness across seasons with respect to the residual load. Yet, residual load is

found to be more volatile than cloudiness in the intraday market across the seasons. Furthermore,

in contrast to the day-ahead market, more spiked series are observed in the upper rather than in
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Table 3: Parameter estimates of the stochastic components in base regime: Day-ahead series

Summer βDA,Base ΣDA,Base

X Y Z X Y Z
X 0.3286 -0.0311 -0.1836 0.00614 0.00014 0.00006
Y -0.0016 0.2415 0.2695 0.00014 0.00207 0.00011
Z -0.0055 0.0022 1.9412 0.00006 0.00011 0.00056
Transition season βDA,Base ΣDA,Base

X Y Z X Y Z
X 0.612 -0.143 0.462 0.00432 0.00039 0.00014
Y -0.004 0.343 1.473 0.00039 0.00476 0.00017
Z -0.003 0.030 2.198 0.00014 0.00017 0.00078
Winter βDA,Base ΣDA,Base

X Y Z X Y Z
X 0.641 -0.019 0.022 0.00036 -0.00002 0.00002
Y 0.050 0.437 0.930 -0.00002 0.01019 0.00041
Z 0.037 0.019 2.270 0.00002 0.00041 0.00116

Table 4: Parameter estimates of the stochastic components in the upper jump and lower jump
regimes: Day-ahead series

Summer εDA,uJ εDA,lJ

µ Σ µ Σ
X 0.018 0.008527 0.000028 0.000021 0.0310 0.0150021 0.0001185 0.0000143
Y 0.001 0.000028 0.000262 0.000001 0.0001 0.0001185 0.0000287 0.0000001
Z 0.001 0.000021 0.000001 0.000032 0.0005 0.0000143 0.0000001 0.0000226
Transition season εDA,uJ εDA,lJ

µ Σ µ Σ
X 0.050 0.031659 0.000078 0.000003 0.0631 0.040807 0.014639 0.000040
Y 0.001 0.000078 0.000290 -0.000001 0.0168 0.014639 0.022301 0.000011
Z 0.001 0.000003 -0.000001 0.000044 0.0006 0.000040 0.000011 0.000032
Winter εDA,uJ εDA,lJ

µ Σ µ Σ
X 0.058 0.02063 0.00019 -0.00004 0.0623 0.039472 0.004743 -0.000031
Y 0.004 0.00019 0.00168 0.00004 0.0101 0.004743 0.004888 0.000021
Z 0.001 -0.00004 0.00004 0.00010 0.0014 -0.000031 0.000021 0.000108

the lower regimes (Tab.6), thus implying more frequent upward adjustments in the cloudiness and

residual load intraday forecasting process. High persistence and volatility are also observed in the

intraday ID3 prices when compared to the day-ahead price series (Tab.7). Similar to the cloudiness

and residual load series, ID3 prices are in all more spiked and volatile in the higher regime. Param-

eter estimates of these stochastic components are thus used to generate 1,000 path over one typical

working and weekend day for each of the three seasons. The resulting scenario trees are presented

in the next section.
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Table 5: Parameter estimates of the stochastic components in the base regime: Intraday cloudiness
and residual load series

Summer βID,Base ΣID,Base

X Y X Y
X 0.1665 -0.0065 0.000022 0.000002
Y 0.0883 1.2913 0.000002 0.000167
Transition season βID ΣID,Base

X Y X Y
X 0.3221 0.0097 0.000002 0.000001
Y -0.4380 1.2956 0.000001 0.000171
Winter βID,Base ΣID,Base

X Y X Y
X 0.7539 -0.0061 0.000007 0.000002
Y -0.3567 1.0473 0.000002 0.000417

Table 6: Parameter estimates of the stochastic components in the upper jump and lower jump
regimes: Intraday cloudiness and residual load series

Summer εID,uJ εID,lJ

µ Σ µ Σ
X 0.0052 0.000292 0.000002 0.0060 0.000530 0.000002
Y 0.0006 0.000002 0.000023 0.0004 0.000002 0.000018
Transition season εID,uJ εID,lJ

µ Σ µ Σ
X 0.0096 0.000830 0.000009 0.0085 0.000858 0.000003
Y 0.0010 0.000009 0.000047 0.0007 0.000003 0.000038
Winter εID,uJ εID,lJ

µ Σ µ Σ
X 0.0126 0.001144 -0.00002 0.0097 0.001139 0.000005
Y 0.0018 -0.000018 0.00016 0.0018 0.000005 0.000162

Table 7: Parameter estimates of the stochastic component in base regime of the intraday ID3 price

βID3,Base σID3,Base

Summer 1.744 0.0029
Transition season 2.064 0.0087
Winter 1.437 0.0047

Table 8: Parameter estimates of the stochastic component in the upper jump and lower jump
regimes of the intraday ID3 prices

εID3,uJ εID3,lJ

µ σ µ σ
Summer 0.0010 0.0107 0.0007 0.0087
Transition season 0.0030 0.0245 0.0025 0.0218
Winter 0.0027 0.0212 0.0036 0.0255

5.2 Scenario trees

In all, the scenario generation-and-reduction procedure described in Section 4.1.4 and Section 5

results in totally 540 nodes, and 90 scenario trees across the three seasons (Summer, Transition
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season, Winter) and the two typical days (working and weekend day), as depicted in Fig.4. For

illustration purposes, we plot the scenario trees for the low, medium and high scenario obtained for

one typical working day in Summer. These scenarios correspond to high, medium and low levels

of solar PV generation respectively, i.e. low, medium and high levels of cloudiness, residual load

and prices in the scenario generation-reduction, as filtered through the clustering algorithm. The

choice of driving attention on a working day in Summer is motivated by the intuition that solar PV

generation and self-generation should have a greater impact on the retailer’s trading decisions and

risk-exposure in Summer and during a business day, i.e. when the levels of solar generation and

total load are expected to be higher.

Fig.6 shows the obtained nodes for the day-ahead solar PV generation, residual load and prices

in the low (left charts), medium (mid) and high (right) scenarios. Solid black line show the historical

values, i.e. the average working day in the sample season as computed from the hourly averages;

solid blue lines represent the expected day-ahead profile j1 obtained from the scenario-reduction

procedure. Dashed lines represent day-ahead profiles j2 and j3, which are above and below one

standard deviation from the expected profile. These nodes have 25% probability of realization;

dotted lines correspond to more extreme day-ahead profiles j4 and j5, which are above and below

one standard deviation from the expected profile and have 12.5% probability of realization. Despite

the limited randomness of the solar PV generation (top charts), the simulated paths well capture

the iconic duck-curve effect of the solar PV generation on the residual load, and the load-to-price

relationship, while the three scenarios remain consistent with the historical values19. Fig. 7 provides

distributional information of the historical and simulated day-ahead series through boxplots. On

each blue box, the central red mark indicates the median, the bottom and top edges of the box

indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme

data points, which are not considered outliers. The simulated five nodes in the medium scenario

(mid plots) well reproduce the distribution of the historical series, being this scenario obtained

19As solar PV generation increases during the day, it reduces the residual load. The residual load drops in the middle
of the day (like a belly) and then raises as the solar generation reduces (like a neck), thus leading to the definition of a
duck-curve
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from the partition of simulated paths that are in the variance cluster closest to the median of all the

simulated paths. Nodes in the high and low scenarios (left and right plots, respectively) represent

the partitions of simulated paths in highest and lowest variance clusters respectively, and such

that their median point is above and below the all-point median of the corresponding nodes in the

medium scenario. Therefore, consistent with the identified three scenarios, boxplots indicate that

the correlation structure between solar PV generation, residual load and price in the day-ahead

market is well reproduced across nodes in the three scenarios. Results for the simulated series in

transition and Winter seasons are reported in the Appendix. The scenario trees depicted in Fig.8

show the possible intraday realizations k of the day-ahead node j1 in the low, medium and high

scenario in Fig.6. These scenario trees reflect the adjustment process occurring between day-ahead

and intraday market, following the arrive of new information and consequent update of the solar

forecasting error. The intraday realizations k1 represent expected intraday profiles minimizing

the forecasting error, thus leading to intraday realizations close to the expected day-ahead profiles

(blue solid lines in the plots). For growing forecasting errors, greater deviations are observed in the

intraday residual load and price profiles, which are consistent with the duck-curve effect and the

positive correlation between residual load and price, as also unveiled by the historical values (black

solid lines). Furthermore, the intraday realizations well capture the empirically observed jagged

pattern of the intraday prices, as noticed by comparing the historical observations (black solid

lines) with the simulated values. This pattern is of particular interest when investigating trading

strategies in the intraday market, and thus the retailer’s trading and risk optimization problem with

increasing levels of solar PV self-generation. Results from this analysis are presented below.

5.3 Retailer’s trading optimization in the day-ahead and intraday market

In this section, the results of the retailer’s trading optimization problem are presented. For illus-

tration purposes and in line with the scenario trees presented in Section 5.2, the results for the

day-ahead node j1 and all its possible intraday realizations k in the typical summer working day

are shown, and for the low and high scenarios, i.e. for high (low) and low (high) levels of solar PV
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generation (residual load) since these scenarios can be expected to better represent the implications

of high levels of self-sufficiency for a retailer serving customers with decentralized self-generation.

Results concerning the retailer’s trading strategies in the medium scenario, and for the transition

and Winter seasons are reported in the Appendix.

Fig.9 and Fig.10 summarize the retailer’s optimal trading strategies in the day-ahead and in-

traday markets in the low scenario. These figures show the buying and selling bids of the retailer

in the two markets for different levels of their risk aversion, as indicated by the parameter λ, with

increasing levels of solar PV generation (corresponding to installation rates of 10% and 50%) and

under the two different retail tariff schemes, i.e. for 0% and 100% indexation of the dynamic en-

ergy rate to the day-ahead price20. Buying/selling positions are denoted by the direction of the

marker in the plots; the acceptance probability of the bids is denoted by the colour gradation while

bidding volumes are indicated by the size of the marker. It should be noted that bids submitted on

the day-ahead market do not anticipate realizations in the intraday market, and are thus consistent

over the represented scenario tree.

In the low scenario, a risk-neutral retailer (λ=0%) takes buying positions in the day-ahead mar-

ket during the solar generation peak between 11 am and 3 pm (left column of Fig.9). This trading

strategy is consistent across different levels of self-generation and tariff schemes, and implies the

preference of a risk-neutral retailer to buy electricity in the day-ahead market for the solar-peak

hours against the expectation of potentially higher prices in the intraday market, as driven by lower

than expected levels of solar generation (Fig.10). Yet, in all the risk-neutral retailer is more prone

to take buying positions in the intraday market, in particular in the evening, i.e. when the expected

price benefit of the solar generation and the impact of self-generation are less evident.

Differently from a risk-neutral retailer, a more risk-averse retailer (λ=10%) prefers to take

buying positions in the day-ahead market, in particular for the hours starting from 7 pm onward

20The increasing solar PV penetration level is not considered to take place on a system level in the stochastic price
model. For the results to remain comparable, we rather compare larger shares of households with rooftop solar PV
systems in the retailer’s portfolio by assuming unchanged market circumstances and solar system load. However, this
assumption is likely to underestimate the importance of risk hedging under higher penetration of distributed renewable
generation, since price volatility is likely to increase with increasing shares of variable generation.
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and for low levels of self-generation. This trading behavior is more evident in the tariff scheme

without indexation to the day-ahead price, thus in line with a strategy focused on reducing the risk

exposure to the solar self-generation in the intraday market. This reasoning is supported by the

observed selling positions in the intraday market for the morning and evening hours, i.e. when

the impact of the solar generation (and self-generation) uncertainty on residual load and price is

higher (Fig.8). The trading positions of a moderately risk-averse retailer are mixed and imply a

propensity to take selling positions in the day-ahead market, mostly at the sunrise and sunset, and

in the case of tariff with 0% indexation to the day-ahead prices. The mirroring buying positions

in the intraday market suggest some trading adjustment to benefit of lower than expected intraday

prices. Yet, the exposure of this retailer in the intraday market reduces for high levels of self-

generation, when buying positions in the day-ahead market increase, mostly in the night hours and

despite the presence of a more dynamic tariff (100% day-ahead price-indexation). In the high

scenario, i.e. with lower levels of solar generation and high levels of residual load (Fig.11 and

Fig.12), the risk-neutral retailer takes buying positions on the day-ahead market during the solar-

peak hours and in the evening. This is more evident at 10% of self-sufficiency, regardless of the

tariff scheme. Exposure in the intraday market increases for increasing levels of self-sufficiency

thus under the expectation of potentially lower prices in the intraday market. Thus similar to the

low scenario, arisk-neutral retailer in the high scenario is probably willing to take buying positions

in the intraday market. The day-ahead buying positions of risk-averse retailers visibly increase in

the high scenario, in response to lower levels of solar generation. Interestingly, buying positions

in the day-ahead market are greater with the first retail tariff scheme, with 0% indexation to the

day-ahead price. In contrast, the selling positions of a risk-averse retailer increase in the intraday

market, mainly for high levels of self-generation and for the evening hours, i.e. after the sunset, thus

implying some trading adjustment with respect to the day-ahead buying positions. Implications for

the retailer’s risk exposure of these trading strategies are discussed in the next section.
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Figure 9: Retailer’s day-ahead trading strategy in the summer working day: Low scenario
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Figure 10: Retailer’s intraday trading strategy in the summer working day: Low scenario
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Figure 11: Retailer’s day-ahead trading strategy in the summer working day: High scenario
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Figure 12: Retailer’s intraday trading strategy in the summer working day: High scenario
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5.4 Retailer’s portfolio risk management with increasing solar PV self - gen-

eration

In this section, we present evidence of the retailer’s risk exposure and management in the low and

high scenarios presented in the previous section. Fig. 13 and Fig.14 show the empirical cumula-

tive distribution functions (ECDFs) of the contribution margin of the retailer at 10% and 50% of

solar PV self-generation and under the two retail tariff schemes (0% and 100% day-ahead price

indexation of the retail energy tariff). The ECDFs are depicted for values of the risk preference λ

in the target function in Eq.24: 0% (risk neutral, red line in the figures), 5% (low risk aversion, in

yellow), and 10% (high risk aversion, green) and for a CVaR level at confidence level α = 95%.

The horizontal lines in the plots represent the expected contribution margins at each level of λ.

In all, these figures point to a reduction of the retailer’s expected contribution margin for in-

creasing levels of self-generation without any indexation to the day-ahead price in the retail tariff.

This reduction is higher in the low scenario, i.e. with higher solar PV generation (from around

40,000 EUR/day to 35,000 EUR/day, Fig.13) compared to the high scenario (from around 37,500

EUR/day to 32,000 EUR/day, Fig.14). Yet, under a highly dynamic tariff scheme with complete

indexation to the day-ahead price (δ = 100%), the expected contribution margin of the retailer

remains almost unchanged for increasing levels of self-sufficiency and across scenarios (45,000

EUR/day). Interestingly, the ECDFs imply greater but more uncertain and dispersed contribution

margins at lower levels of self-sufficiency for different risk preferences. For instance, in the low

scenario (Fig.13), 10% of self-sufficiency implies a contribution margin for a risk-neutral retailer

(red line) ranging from 17,000 EUR/day to 60,000 EUR/day with a 0%-indexed tariff, and from

24,000 EUR/day to 65,000 EUR/day with a 100%-indexed tariff. At 50% of self-sufficiency, these

margins range from 20,000 EUR/day to 49,000 EUR/day with the 0%-indexed tariff, and from

30,000 EUR/day to 60,000 EUR/day with the 100%-indexed tariff. Same dynamics are observed

in ECDFs under the high scenario (Fig.14), where however lower dispersion in the contribution

margin is observed. Further evidence concerning the variability of the risk exposure of the retailer

is provided in the bar plots in Fig.15 and Fig.16, which depict the contribution margin of the retailer
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Figure 13: Empirical cumulative distribution functions of contribution margins for the summer
working day: Low scenario
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Figure 14: Empirical cumulative distribution functions of contribution margins for the summer
working day: High scenario
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across the five possible intraday realizations of the day-ahead node j1 in the low and high scenarios,

respectively. As mentioned above, the j1 node represent the typical, i.e. expected summer working

day in the low and high scenario. The charts point to a lower contribution margins across scenarios

for 50% of solar PV self-generation when compared to 10% levels. Yet, variability across intraday

realizations for a risk-neutral retailer (λ = 0%) and with a 10% self-generation. This variability is

clearly reduced for risk-averse retailers (λ = 5% and λ = 10%, respectively). Contribution mar-

gins in the intraday market are higher and more dispersed in the low scenario with high solar PV

generation, and with fixed tariffs (0% indexation). In contrast, dynamic tariffs (100% indexation)

contribute towards higher and less volatile margins, particularly at 50% of self-generation 21. In

all, these findings imply higher risk exposure in the intraday market for a risk-neutral retailer with

static tariffs and increasing levels of solar PV generation and self-generation. Fig.17 depicts the

retailer’s efficient frontiers in the low (top charts) and high (bottom charts) scenarios for different

levels of self-generation (10% and 50%) and with fixed (0% day-ahead price indexation) rather

than highly dynamic (100% day-ahead price indexation) retail tariffs. These frontiers depict the

highest expected contribution margin at each given level of risk (indicated by the corresponding

CVaR), and risk preference λ. From the perspective of the risk-neutral retailer, in the leftmost

end of the curves, greater risk exposure is observed for increasing levels of self-generation. In

the low scenario and with a static retail tariff (i.e. Dyn. tariff=0%), for comparable CVaR val-

ues ( 18,500-19,000 EUR/day) the retailer’s expected contribution margin diminishes from around

40,000 EUR/day at 10% of self-generation to around 35,000 EUR/day at 50% of self-generation.

In the high scenario, the expected lost contribution margin amount to around 11,000 EUR/day, i.e.

from around 35,000 EUR/day at 10% of self-generation to roughly 26,000 EUR/day at 50% for

CVaR values of approximately 19,000 EUR/day and 21,000 EUR/day. Yet, when considering more

dynamic retail tariff, i.e. Dyn.Tariff=100%, the risk exposure of the risk-neutral appears to increase.

21It should be noted that due to lower levels of (residual) load, wholesale spot prices are typically below the yearly
average in Summer. The dynamic indexation captures this seasonal variation. The fixed tariff scheme however is
constant throughout the year, which implies higher specific contribution margins (EUR per served MWh) in Summer
compared to Transition season and Winter. We refer to the Appendix for results on the transition and Winter season
with higher wholesale spot prices.
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Figure 15: Retailer’s contribution margin variability in the intraday market: Low scenario
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Figure 16: Retailer’s contribution margin variability in the intraday market: High scenario
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This finding is intuitive as the price uncertainty has an influence on both the tariff revenues and the

procurement costs. In the low scenario, the expected contribution margin remains almost constant

to roughly 46,500 EUR/day for increasing levels of self-generation against CVaR values increasing

from 24,000 EUR/day at 10% to 31,000 EUR/day at 50% of PV self-generation. A comparable

effect is observed in the high scenario.

From the perspective of the most risk-averse retailer (λ=10% in the rightmost end of the curves),

an increase in the risk exposure is also noticeable when considering a static retail tariff in the low

scenario, the retailer’s expected contribution margin reduces from around 39,5000 EUR/day at

10% of self-generation to around 35,500 EUR/day at 50% of self-generation for CVaR values of

approximately 36,500 and 37,500 EUR/day. In contrast, in the high scenario, thus for lower lev-

els of solar PV generation, the expected contribution margin increases of around 2,500 EUR/day,

i.e. from around 35,000 EUR/day at 10% of self-generation to roughly 37,500 EUR/day at 50%,

against a decrease in the CVaR of approximately 3,000 EUR/day (from 32,000 EUR/day at 10%

of self-sufficiency to 29,000 EUR/day at 50%). When considering more dynamic retail tariff,

i.e. Dyn.Tariff=100%, an expected contribution margin of approximately 45,500 EUR/day is ob-

served in the low scenario against a CVaR value of 43,500 EUR/day at both 10% and 50% of

self-generation. Similar values are observed in the high scenario. Therefore, with highly dynamic

retail tariff assuming 100%-indexation of the energy rate to the day-ahead price, the risk exposure

of the risk-averse retailer remains unchanged for increasing levels of self-generation, and this is

consistent across different scenarios of solar PV generation. The implications of the results pre-

sented in this section are discussed in the next section.

6 Discussion

The comprehensive investigation above provides interesting insights to evaluate the risk optimiza-

tion problem faced by the retailer with increasing levels of solar PV self-generation in the resi-

dential sector. While a higher volume-risk has been observed in previous research with greater
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Figure 17: Efficient frontier of trading decisions for different risk preferences of the retailer

self-generation (Russo and Bertsch, 2020; Koolen et al., 2021), results in this study offer a broader

understanding of the trading decision and risk optimization problem faced by the retailer in the

day-ahead and intraday markets to adjust to this increasing short-term risk.

Results on the retailer’s optimal trading strategy in Fig.9-Fig.12 imply that increasing PV self-

generation, while affecting a risk-neutral retailer only marginally , has a significantly larger impact

on a risk-averse retailer. The risk-neutral retailer remains exposed to the higher load uncertainty

of the intraday market by preferring to take buying positions in the day-ahead market only for the

solar-peak hours, i.e. when solar load uncertainty is greater and, in the high scenario, at the sunset,

i.e. when the expected solar generation is lower and its expected uncertainty is also higher. This

trading strategy remains unchanged despite changes in the retail tariff scheme and is consistent
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with a risk-neutral retailer preferring to adjust the position on the intraday market, where prices

are expected to be lower with high solar self-generation. Interestingly, we do not find evidence of

selling positions in the day-ahead and intraday market, thus suggesting the preference of a risk-

neutral retailer for adjusting the positions in the intraday market by buying at prices above the

expected level rather than by selling at prices below the expected level. In contrast, we observe

that the risk-averse retailer is more likely to increase the exposure in the day-ahead market to cope

with the higher load uncertainty driven by the self-generation. In all, our results are in line with

Kettunen et al. (2010) and Kraft et al. (2021). Yet, findings in this study also imply an increase in

the day-ahead buying positions likewise in the intraday selling positions of the risk-averse retailer

for higher levels of solar PV self-generation. We can therefore infer that a risk-averse retailer is

more likely to accept buying in the day-ahead market and lower selling prices in the intraday market

to reduce their load-risk exposure. We also highlight that trading strategies in the day-ahead and

intraday markets are found to be driven by the retailer’s risk preferences and by the levels of self-

generation, which directly affect the retailer’s load-risk exposure. Trading strategies are instead

unaffected by the considered retail tariff schemes, and the presence or not of indexation to the

day-ahead prices. However, such indexation is relevant when investigating the retailer revenue-risk

exposure and their risk-management problem.

While the ECDFs in Fig.13 and Fig.14 unveil the adverse impact of increasing self-generation

on the contribution margin of the retailer, they also point to the role of differently designed re-

tail tariff schemes as hedging instrument for retailers exposed to increasing revenue-risk. While

self-generation significantly reduces the expected contribution margin of the retailer, dynamic re-

tail tariffs, with energy rates partially or fully indexed to the spot (day-ahead in this study) prices,

may offset this reduction and potentially increase the expected margin of the retailer. The efficient

frontiers in Fig.17, which are defined by the highest (i.e. non-dominated) expected contribution

margins for 95%-CVaR for different risk attitudes, open the possibility for dynamic tariffs to allow

a transfer of the load-risk from the retailer to the consumers thus preserving the expected contri-

bution margin of the retailer. This is mostly evident for a risk-averse retailer by noticing that both
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their expected contribution margin and 95%-CVaR remain unchanged for increasing levels of self-

generation with a dynamic tariff fully indexed to the day-ahead price, while in the case a risk-neutral

retailer this tariff contributes to maintain the expected contribution margin unchanged against an

increase of the 95%-CVaR. With a 0%-indexed tariff and for increasing levels of self-generation,

we observe both an increase in the 95%-CVaR and a reduction of the expected contribution margin

of the risk-neutral retailer, thus implying a significant increase of their revenue-risk exposure with

self-generation compared to a risk-averse retailer.

7 Conclusions and Outlook

This paper investigates the risk management problem faced by electricity retailers in day-ahead and

intraday markets following the uncertainty driven by increasing levels of solar PV self-generation

in the residential sector. Compared to previous studies, we jointly model the solar generation, load

and price stochasticities in the nested day-ahead and intraday markets, thus capturing the inherently

correlated price and quantity uncertainties. We consider these uncertainties to assess the retailers’

trading problem in a two-stage stochastic optimization model, which thus accounts for the risks

rising from both uncertain prices and quantities. We mark a contribution in considering the retail-

ers’ multi-stage trading optimization and decision-making in the day-ahead and intraday market

while explicitly incorporating solar generation, load and price risks. These move stochastically in

path-dependent and correlated processes, such that the risk optimization is effectively carried out

along the considered short-term trading horizon. Therefore, the approach in this study allows to

draw valuable insights on the risk exposure and optimization of retailers procurement strategy with

increasing levels of solar PV self-generation.

In all, the results of the risk optimization unveil greater load-risk exposure for retailers in the

day-ahead market with higher levels of self-generation, as implied by an increase of the buying

positions in this market. The results also indicate a growth of the price-risk exposure in the intra-

day market, where an increase of selling positions is observed for lower and more volatile intraday
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prices. These dynamics become even more evident when considering a risk-averse rather than a

risk-neutral retailer, thus highlighting the importance of risk preferences when evaluating retailers’

optimal trading strategies. Our findings imply a reduction of the retailer’s expected contribution

margin of 10% on a typical summer working day when assuming a increase of self-generation in

the residential sector from 10% to 50%. Yet, findings also imply that this reduction can be offset

when assuming more dynamic and spot-indexed retail tariffs, which allow a risk-averse retailer to

transfer load and price risks to the consumers. While this outcome may rely on the assumed inelas-

ticity of the households’ electricity demand to wholesale spot prices, thus representing a limitation

of this study, nonetheless our findings are of particular interest for practitioners, policymakers and

regulators. First, they highlight the role of intraday trading to cope with the increasing short-term

uncertainty driven by the penetration of distributed (variable) generation and consumers’ engage-

ment. Therefore, our findings contribute towards a better understanding of the importance of well-

functioning and liquid intraday markets for the profitability and risk-mitigation costs of retailers.

Second, in emphasizing the importance of intraday trading adjustment for retailers, findings in this

study also point to the need for different hedging approaches to mitigate the greater risk-exposure

implicit in more prosumer-oriented electricity markets. In particular, our results unveil the poten-

tial for electricity tariffs, which are indexed to the spot price, to induce retailer-consumer/prosumer

risk sharing. Whereas this outcome relies on the German market considered in this study, and does

not account for price (in)elasticities in retail markets and/or for the efficiency and costs of such

spot-indexed tariffs, it represents a contribution in a still under-researched question concerning the

optimal design of the retailer-prosumer relationship. This questions is relevant for practitioners,

policymakers and regulators and further research is needed for considerations of risk exposure and

sharing in evolving electricity markets.
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A Appendixes

A.1 Parameter estimates for the deterministic component of the day-ahead

series

Table 9: Summer season

Summer CloudinessDA Residual loadDA PriceDA

Coeff. Std.err. Coeff. Std.err. Coeff. Std.err.
Intercept -0.623*** 0.178
CloudinessDAt−1 0.160*** 0.013
CloudinessDAt−24 0.601*** 0.020
CloudinessDAt 0.107*** 0.027
(CloudinessDAt )2 0.114*** 0.037
(CloudinessDAt )3 0.021* 0.012
Residual loadDAt 0.161*** 0.007
Residual loadDAt−1 0.882*** 0.009 -0.138*** 0.008
PriceDAt−1 1.009*** 0.023
PriceDAt−2 -0.189*** 0.019
Daily cycleDA 0.255*** 0.024 0.179*** 0.018 0.132*** 0.010
Weekends -0.002* 0.001
Daily cycleDA× Weekends -0.005*** 0.001
Adjusted R-squared 0.873 0.945 0.942
S.E. of regression 0.184 0.067 0.014
Durbin-Watson stat 0.877 0.407 1.774
Mean dependent var -0.405 10.47 5.041
S.D. dependent var 0.517 0.288 0.059
Sum squared resid 49.52 6.628 0.292
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Table 10: Transition season

Transition season CloudinessDA Residual loadDA PriceDA

Coeff. Std.err. Coeff. Std.err. Coeff. Std.err.
Intercept 0.354*** 0.049
CloudinessDAt−1 0.147*** 0.009
CloudinessDAt−24 0.778*** 0.013
CloudinessDAt 0.218*** 0.019
(CloudinessDAt )2 0.125*** 0.009
(CloudinessDAt )3

Residual loadDAt 0.197*** 0.007
Residual loadDAt−1 0.935*** 0.013 -0.154*** 0.008
PriceDAt−1 0.874*** 0.019
PriceDAt−2 -0.149*** 0.019
Daily cycleDA 0.085*** 0.014 0.013*** 0.013 0.115*** 0.010
Weekends -0.003** 0.001
Daily cycleDA× Weekends -0.002* 0.001
Adjusted R-squared 0.871 0.760 0.952
S.E. of regression 0.288 0.175 0.016
Durbin-Watson stat 1.036 1.623 1.982
Mean dependent var -0.514 10.46 5.037
S.D. dependent var 0.800 0.357 0.073
Sum squared resid 178.4 65.76 0.559

Table 11: Winter season

Winter CloudinessDA Residual loadDA PriceDA

Coeff. Std.err. Coeff. Std.err. Coeff. Std.err.
Intercept -0.580*** 0.131 0.399205*** 0.058
CloudinessDAt−1 0.100*** 0.010
CloudinessDAt−24 0.759*** 0.014
CloudinessDAt 0.268*** 0.027
(CloudinessDAt )2 0.1501*** 0.015
(CloudinessDAt )3

Residual loadDAt 0.176*** 0.007
Residual loadDAt−1 0.938*** 0.007 -0.144*** 0.007
PriceDAt−1 0.875*** 0.021
PriceDAt−2 -0.071*** 0.020
Daily cycleDA 0.147*** 0.017 0.118*** 0.014 0.049*** 0.010
Weekends
Daily cycleDA× Weekends -0.005*** 0.001 -0.001*** 0.000
Adjusted R-squared 0.899 0.932 0.958
S.E. of regression 0.261 0.135 0.022
Durbin-Watson stat 0.807 0.739 1.993
Mean dependent var -0.538 10.27 4.979
S.D. dependent var 0.819 0.520 0.106
Sum squared resid 146.4 39.49 1.017
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A.2 Parameter estimates for the deterministic component of the intraday

Series

Table 12: Cloudiness and residual load: Summer season

Summer CloudinessID Residual loadID

Coeff. Std.error Coeff. Std.error
Intercept
CloudinessDAt 0.987*** 0.002
CloudinessIDt−1 0.021*** 0.002
CloudinessIDt 0.002*** 0.0003
Residual loadDAt 0.181*** 0.005
Residual loadIDt−1 1.188*** 0.014
Residual loadIDt−2 -0.096*** 0.020
Residual loadIDt−3 -0.194*** 0.020
Residual loadIDt−4 -0.089*** 0.012
Daily cycleID -0.001* 0.001 0.010*** 0.001
Weekends 0.172*** 0.022
Daily cycleID× Weekends -0.017*** 0.002
Adjusted R-squared 0.997 0.999
S.E. of regression 0.031 0.010
Durbin-Watson stat 0.166 1.690
Mean dependent var -0.398 10.47
S.D. dependent var 0.521 0.284
Sum squared resid 5.644 0.635

Table 13: Cloudiness and residual load: Transition season

Transition season CloudinessID Residual loadID

Coeff. Std.error Coeff. Std.error
Intercept
CloudinessDAt 0.996*** 0.001
CloudinessIDt−1 0.021*** 0.001
CloudinessIDt 0.001*** 0.0002
Residual loadDAt 0.132*** 0.004
Residual loadIDt−1 1.333*** 0.011
Residual loadIDt−2 -0.236*** 0.018
Residual loadIDt−3 -0.133*** 0.018
Residual loadIDt−4 -0.095*** 0.010
Daily cycleID -0.001* 0.0004 -0.001** 0.0005
Weekends 0.110*** 0.018
Daily cycleID× Weekends -0.011*** 0.002
Adjusted R-squared 0.997 0.999
S.E. of regression 0.043 0.012
Durbin-Watson stat 0.605 1.799
Mean dependent var -0.524 10.45
S.D. dependent var 0.857 0.365
Sum squared resid 16.20 1.336
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Table 14: Cloudiness and residual load: Winter season

Winter CloudinessID Residual loadID

Coeff. Std.error Coeff. Std.error
Intercept
CloudinessDAt 0.984*** 0.001
CloudinessIDt−1 0.010*** 0.002
CloudinessIDt
Residual loadDAt 0.148*** 0.004
Residual loadIDt−1 1.059*** 0.006
Residual loadIDt−2

Residual loadIDt−3 -0.134*** 0.013
Residual loadIDt−4 -0.084*** 0.010
Daily cycleID -0.005*** 0.001 0.010*** 0.001
Weekends 0.120*** 0.020
Daily cycleID× Weekends -0.012*** 0.002
Adjusted R-squared 0.996 0.998
S.E. of regression 0.050 0.023
Durbin-Watson stat 0.240 1.578
Mean dependent var -0.538 10.28
S.D. dependent var 0.837 0.504
Sum squared resid 22.18 4.586

Table 15: ∆ price (ID3-DA)

Summer Transition season Winter
Coeff. Std.error Coeff. Std.error Coeff. Std.error

Intercept -0.793*** 0.060 0.518*** 0.089 -0.692*** 0.091
∆ Pricet−1 -0.700*** 0.039 0.551*** 0.017 0.495*** 0.039
∆ Pricet−2 0.0223** 0.010 0.037*** 0.012
∆ Pricet−3 0.030*** 0.010 0.020* 0.012
∆ Pricet−4 0.371*** 0.011 0.285*** 0.016 0.450*** 0.035
PriceDAt -1.22*** 0.042
PriceID3

t−1 1.063*** 0.043 -0.102*** 0.014 -0.306*** 0.041
∆ Residual loadt−3(Act.− ID) 0.037*** 0.009 -0.205*** 0.054 0.128*** 0.030
∆ Cloudinesst−3(Act.− ID) 0.002** 0.001 0.002** 0.001
Daily cycle 0.317*** 0.014 -0.09*** 0.018 0.259*** 0.018
Weekends 0.222** 0.111 -0.230* 0.152 0.421*** 0.155
Daily cycle x weekends -0.046** 0.022 0.045* 0.030 -0.085*** 0.031
Adjusted R-squared 0.603 0.745 0.584
S.E. of regression 0.032 0.057 0.052
Durbin-Watson stat 1.639 1.831 1.643
Mean dependent var -0.001 -0.009 0.003
S.D. dependent var 0.051 0.112 0.081
Sum squared resid 6.075 27.87 23.96
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A.3 Scenario trees
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A.4 Retailer’s trading strategies with increasing solar PV self-generation
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Figure 33: Retailer’s day-ahead trading strategy in the summer working day: Medium scenario

l = 0% l = 5% l = 10%

D
yn. tariffs =

 0%

P
V

 share =
 10%

D
yn. tariffs =

 100%

P
V

 share =
 10%

D
yn. tariffs =

 0%

P
V

 share =
 50%

D
yn. tariffs =

 100%

P
V

 share =
 50%

qh
1

qh
17

qh
33

qh
49

qh
65

qh
81

qh
1

qh
17

qh
33

qh
49

qh
65

qh
81

qh
1

qh
17

qh
33

qh
49

qh
65

qh
81

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

qh Time Slice

B
id

 P
ri

ce
 [

E
U

R
/M

W
]

Volume [MW]

10

20

30

40

50

Direction

buy sell

Scenario Leaf Probability

0.02

0.03

0.04

0.05

0.06

0.00

0.25

0.50

0.75

1.00
Acceptance Probability

Figure 34: Retailer’s intraday trading strategy in the summer working day: Medium scenario
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Figure 35: Retailer’s day-ahead trading strategy in the summer weekend day: Medium scenario
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Figure 36: Retailer’s intraday trading strategy in the summer weekend day: Medium scenario
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Figure 37: Retailer’s day-ahead trading strategy in the transition season working day: Medium
scenario
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Figure 38: Retailer’s intraday trading strategy in the transition season working day: Medium sce-
nario
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Figure 39: Retailer’s day-ahead trading strategy in the transition season weekend day: Medium
scenario
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Figure 40: Retailer’s intraday trading strategy in the transition season weekend day: Medium sce-
nario
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Figure 41: Retailer’s day-ahead trading strategy in the winter season working day: Medium sce-
nario
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Figure 42: Retailer’s intraday trading strategy in the winter season working day: Medium scenario
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Figure 43: Retailer’s day-ahead trading strategy in the winter season weekend day: Medium sce-
nario
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Figure 44: Retailer’s intraday trading strategy in the Winter season working day: Medium scenario
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Figure 45: Empirical cumulative distribution functions of contribution margins for the Summer
working day: Low scenario
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Figure 46: Empirical cumulative distribution functions of contribution margins for the Summer
working day: High scenario
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Figure 47: Empirical cumulative distribution functions of contribution margins for the Summer
working day: Medium scenario
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Figure 48: Empirical cumulative distribution functions of contribution margins for the summer
weekend day: Medium scenario
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Figure 49: Empirical cumulative distribution functions of contribution margins for the transition
season working day: Medium scenario
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Figure 50: Empirical cumulative distribution functions of contribution margins for the transition
season weekend day: Medium scenario
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Figure 51: Empirical cumulative distribution functions of contribution margins for the winter work-
ing day: Medium scenario
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Figure 52: Empirical cumulative distribution functions of contribution margins for the winter week-
end day: Medium scenario
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Figure 53: Retailer’s contribution margin variability in the intraday market for a summer working
day: Low scenario
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Figure 54: Retailer’s contribution margin variability in the intraday market for a summer working
day: High scenario
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Figure 55: Retailer’s contribution margin variability in the intraday market for a summer working
day: Medium scenario
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Figure 56: Retailer’s contribution margin variability in the intraday market for a summer weekend
day: Medium scenario
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Figure 57: Retailer’s contribution margin variability in the intraday market for a transition season
working day: Medium scenario
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Figure 58: Retailer’s contribution margin variability in the intraday market for a transition season
weekend day: Medium scenario
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Figure 59: Retailer’s contribution margin variability in the intraday market for a winter working
day: Medium scenario
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Figure 60: Retailer’s contribution margin variability in the intraday market for a winter weekend
day: Medium scenario
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Abstract

Quantity and price risks determine key uncertainties market participants face in electricity

markets with increased volatility, for instance due to high shares of renewables. In the time from

day-ahead until real-time, there lies a large variation in best available information, such as between

forecasts and realizations of uncertain parameters like renewable feed-in and electricity prices. This

uncertainty reflects on both the market outcomes and the quantity of renewable generation, making

the determination of sound trading strategies across different market segments a complex task.

The scope of the paper is to optimize day-ahead and intraday trading decisions jointly for a portfolio

with controllable and volatile renewable generation under consideration of risk. We include a reserve

market, a day-ahead market and an intraday market in stochastic modeling and develop a multi-

stage stochastic Mixed Integer Linear Program. We assess the profitability as well as the risk

exposure, quantified by the conditional value at risk metric, of trading strategies following different

risk preferences. We conclude that a risk-neutral trader mainly relies on the opportunity of higher

expected profits in intraday trading, whereas risk can be hedged effectively by trading on the day-

ahead. Finally, we show that reserve market participation implies various rationales, including the

relation of expected reserve prices among each other, the relation of expected reserve prices to spot

market prices, as well as the relation of the spot market prices among each other.

Keywords: OR in energy, Electricity markets, Multi-stage stochastic programming, Uncertainty

modeling, Risk modeling.
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1 Introduction

With increasing uncertainties in the energy system in recent years, reserve and spot electricity markets

have been moving towards higher granularity and trading decision times appear to move more and

more to the short-term and even close to real-time. The increasing shares of weather-dependent

volatile renewable generation and the introduction of intraday markets imply many changes in the

design of short-term markets, but also in the trading rationales in sequential market structures and

the risk exposure of individual market participants. The complexity of trading decisions leads to

myriads of possible strategies to bring the flexibility and energy of a power plant portfolio profitably

to the electricity markets. Hereby, not only the market segments themselves are subject to uncertainty,

but also the relationship and interplay of the market segments need to be considered when deriving

trading decisions. Another aspect that is relevant in the course of the energy transition is the actor

structure in the energy sector. As more and more small market participants enter the market, that are

sensitive to risk but unable to develop sophisticated methods, the demand for insights and approaches

to determine sound trading strategies for all market segments increases.

As of today, trading decisions are typically determined with the help of deterministic programming

approaches, basic stochastic considerations as well as the gut feeling of traders, and do not consider

all market segments as a whole. In the literature, there are several studies that highlight the need

to consider different market segments and associated uncertainties in thorough (Boomsma, Juul and

Fleten, 2014; Möst and Keles, 2010, e.g.,). Yet, due to rising shares of renewables from different

sources and market adaptions the relationship and interplay of uncertainties and market prices has

become more complex and continues to do so. This requires to extend existing modeling approaches,

that consider one or a few sources of uncertainty independently from each other, by including the

conditional relations of uncertainties of the relevant parameters, too. (Russo, Kraft, Bertsch and

Keles, 2021)

With the proposed approach, we are able to model the uncertainty of the main drivers of power

plant portfolios economics at different points in time and to determine sound trading strategies under

uncertainty that also take into account the associated risk exposure and attitude. We model the

relevant quantity and price risks from the morning of the day ahead until the gate closure of intraday

trading and include all key characteristics of the reserve market, the day-ahead spot market as well as

the intraday spot market. To estimate and apply the developed models, we provide a case study for

the German electricity market design and a renewable generation portfolio consisting of volatile and

controllable units.

The results consist on the one hand in a transparent assessment of the expected profits and risks under

different trading strategies. In this study, besides the expected value we include risk metrics such as the

conditional value at risk into decision-making, as introduced in Conejo, Carrión and Morales (2010).

We present efficient frontiers and profit distributions associated with optimal trading decisions. On the

other hand, we derive and discuss valuable insights on trading rationales both within and across the

market segments. Like that, we provide not only an innovative application of stochastic programming

to a complex real-world problem, but also interesting insights for scholars, traders, and ultimately

policy makers designing markets for the energy transition.

The remainder of the paper is organized as follows: In Section 2, we discuss approaches in the literature

to face the trading problem with stochastic optimization and further specify the research gap. Section 3

2
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presents the considered sequential market setting and key characteristics of the single market segments.

In Section 4, we describe the trading problem and develop a methodology to derive optimal trading

strategies based on a multi-stage stochastic mixed-integer linear problem. Further, Section 4 includes

the stochastic modelling of uncertainties that serves as input for the trading problem. Section 5 applies

the developed approach to the case of a power plant portfolio in the German market and discusses

results and underlying trading rationales. Finally, Section 6 summarizes the main conclusions for

different stakeholder groups and provides an outlook to future developments and applications.

2 Literature Review and Research Gap

Decisions in energy economics are often categorized into strategic (i.e., mostly investment) and oper-

ational or short-term decisions. This paper sets a clear focus on short-term decisions. Optimization

approaches to provide decision support for short-term decisions of actors in energy economics can

be further distinguished into the optimal use of the technical units and the optimal interaction with

revenue streams, i.e. the markets for flexibility and energy. As this paper focuses on the European

setting of a self-dispatch system with balancing responsible parties (BRP), we will not address ISO

optimization approaches, which are deployed mainly in the US (e.g., CAISO in California). We are

focusing on approaches from the perspective of individuals.

In the literature, the two short-term optimization problems that are relevant for this paper are, the

optimal dispatch problem or unit commitment problem for a power plant portfolio, and the optimal

trading problem. However, in most cases these two cannot be separated strictly from each other.

Whereas the first describes the problem of delivering a defined schedule of energy or providing a de-

fined flexibility on activation request at minimal cost, the second enhances the scope by taking into

account the (expected) market outcomes and optimizing the bids, which lead to the profit-maximizing

operation. As the objective function is defined to maximize the contribution margins and as the mar-

ket commitments are not known ex ante, the unit commitment problem is not modeled explicitly but

implicitly. Whereas unit commitment rather focuses on technical constraints of the plant or the plant

portfolio, the trading problem rather addresses the market operations in more detail.

Obviously, there are many previous works considering the deterministic unit commitment and trad-

ing problem. Typically, although technical constraints are non-linear in reality (e.g. efficiency for

partial load), the problem is formulated as a Mixed-Integer Linear Program (MILP) to keep the

problem mathematically tractable with standard solvers. However, deterministic approaches fail to

address for increasing uncertainty and to depict the risk, even more so with rising shares of weather-

dependent renewable generation and uncertain market prices. We therefore focus on approaches of

stochastic programming. For handling uncertainty, the main stochastic optimization approaches in-

clude exact solution methods and approximation techniques (see, e.g., Birge and Louveaux, 2011, for

an overview). Zheng, Wang and Liu (2015) provide a review of stochastic optimization approaches for

the unit commitment problem and distinguish between stochastic programming, robust programming

and (approximate) stochastic dynamic programming. For the literature overview to remain concise,

at this point we focus on works that apply stochastic programming approaches to electricity market

bidding in sequential market settings and refer to Möst and Keles (2010), Klaboe and Fosso (2013),

and Zheng et al. (2015) for more thorough reviews of stochastic modelling in energy economics.

Fleten and Kristoffersen (2007) deploy stochastic programming to determine optimal bidding strategies

3
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for hydropower plants with a cascade structure. Boomsma et al. (2014) model coordinated bidding in

electricity spot and balancing power markets in the Nordic market design with the help of a multi-stage

stochastic program and compare the risk exposure of different bidding strategies. Ottesen, Tomas-

gard and Fleten (2018) deploy a multi-stage stochastic program to derive an optimal trading strategy

for a portfolio of demand side management units in three market segments: Starting with an option

market that is cleared for an entire week, followed by a daily spot market and an hourly flexibility

market, the trader faces three possible revenue streams with uncertain prices as in the Nordic mar-

ket design. Klæboe, Braathen, Eriksrud and Fleten (2019) continue the investigation of coordinated

bidding strategies for hydropower plants in the Nordic market with a similar multi-stage stochastic

approach.

Plazas, Conejo and Prieto (2005) deploy the case of the Spanish market design to investigate bid-

ding strategies in three market segments of the electricity, aiming at maximizing the expected profit.

Pandžić, Morales, Conejo and Kuzle (2013) formulate a multi-stage stochastic problem for offering

and operating a virtual power plant in a market setting with spot and balancing market. For the

perspective of the operator of a local energy market, Laur, Nieto-Martin, Bunn and Vicente-Pastor

(2018) present a multi-stage stochastic approach to procure flexibility services in distribution network

and discuss risk implications.

This paper stands in line and pursuits similar ideas with the presented papers, although we face a

significantly different problem structure. The existing studies do not match the structure of short-

term electricity markets and all their relevant design elements that we observe in a real-world market

setting as presented in Section 3. For this reason, the study fills this gap by presenting a comprehen-

sive problem description for the trading decisions of a portfolio manager with volatile and controllable

renewables and applies it to the case of the German market design. Furthermore, we cover the entire

market risk and uncertainties such a portfolio faces in the operations on the short-term markets.

We address these by considering a multi-stage stochastic approach for trading in sequential markets

including different temporal resolutions, pay-as-bid and uniform pricing, and high uncertainty of prices

and volumes stemming from various sources. The German balancing reserve market in particular is

known for hardly explainable prices, supposedly due to a high market concentration. In the past,

the design of and actor structure in the reserve markets often led to undesirable and noncompetitive

results. Therefore it has been adapted several times in recent years. Several studies deal with these

issues and present implications for the development of the market (Ocker and Ehrhart, 2017; Kraft,

Keles and Fichtner, 2018, see, e.g.,). We refer to Ocker, Ehrhart and Ott (2018) and Kraft, Ocker,

Keles and Fichtner (2019) for in-depth analyses of incentives and game-theoretical discussions of the

market design.

Further, the need to consider a stochastic approach for trading in sequential markets becomes in-

creasingly important in contexts with rising shares of renewables and increasing uncertainty in spot

markets. Forecast errors on the day-ahead are unavoidable and lead to significant price and quan-

tity risks for any market participant. Addressing these adequately in the decision process requires a

thorough analysis and modeling of the stochastics and consequently an approach that considers all

aspects, the uncertainty and the technical and market constraints. With the approach presented in

this paper, we aim at filling this gap in the existing literature.
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Figure 1: Sequence of markets for electricity and flexibility with gate-closure times in the German market design
from November 2020 on. The considered market segments reserve (”aFRR capacity auction”), day-ahead spot
market (”Day-ahead auction”) and intraday spot market (”Continuous intraday”) are marked with the red
boxes.

3 Market Description

In European power markets, the products relevant for a power plant portfolio trader can be distin-

guished into the mere delivery of electricity and the provision of reserve power for the transmission

system operator (TSO) to balance the system. Whereas the former is organized in large electricity

exchanges and the market design has been harmonized internationally to a large extent, the latter is

still organized in distinct national designs. Rising shares of generation by renewable energy sources

(RES) led to an increasing relevance of close-to-realtime decisions. This applies not only for reserve

products that are procured with shorter lead times, but particularly for the interplay of day-ahead

and intraday spot market operations.

The setting that is studied in this paper includes a balancing reserve power market with separate

products for positive and negative direction, a day-ahead electricity market, and an intraday electric-

ity market. This threefold organization is typical for European power markets and can be found with

small variations in many countries. With regard to the balancing reserve, we focus on the secondary

reserve market (i.e., automatic Frequency Restoration Reserve, aFRR) with its lead times and product

requirements, the segments for primary and tertiary reserve are left out in this market description

to remain concise. For better readability, the term ”reserve” is used synonymously with secondary

reserve and aFRR in the following. Figure 1 provides an overview over a typical market sequence until

real-time and highlights the market segments relevant for this study. To substantiate the products and

lead times in a concrete case, we choose the market design setting of Germany. The procurement of

reserve products by the TSOs in Germany is organized in a two-stage procedure. The first stage, the

so-called capacity market auction for the day ahead, takes place prior to the day-ahead spot market

at 9 am and determines the reserve providers for the following day. In this auction, the prequalified

reserve providers can place bids consisting of the capacity price (in EUR/MW) and a volume (in MW).

Providers are allowed to submit several distinct bids. The 24 hours of the day are split into six time

slices consisting of four hours each (0-4, 4-8, ..., 20-24). Further, reserves for the negative (downward

5
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regulation) and the positive (upward regulation) direction are auctioned as separate products. This

leads to twelve distinct aFRR auctions each day, which are remunerated according to pay-as-bid pric-

ing. In the second step of reserve procurement, the so-called aFRR energy market auction takes place

during the day 45 minutes before the gate closure time of the intraday market, and determines the

prices and merit order of activation. The successful bid in the capacity market obliges the trader to

trade in the reserve energy market, however also free energy bids are allowed. For the scope of this

paper, the aFRR energy market is left out for two reasons. First, the energy price bid can only lead

to positive contribution margins if above the variable costs of provision and therefore poses no risk

of losses to the portfolio profit. Second and most important, the bid into the energy market can be

considered independently from the other trading decisions. For it is rather a complementing element

than an opportunity, the aFRR energy market can be neglected.

After the aFRR capacity market, at 12 am the day- ahead spot market auction takes place, in which

energy delivery for the next day is traded in hourly resolution with uniform pricing. Subsequently, at

3 pm the intraday auction takes place, in which energy can be traded in quarter-hourly resolution.

The intraday market is then open for continuous trading of energy in quarter-hourly products until

30 minutes before delivery1. To cope with the temporal structure of the rolling gate closure times and

respective 96 arrival processes of prices of continuous intraday trading, we require a simplification.

In accordance with Ottesen et al. (2018) and Laur et al. (2018) the intraday market is approximated

with one hypothetical auction, with the index price ID3 of the trades completed in the last three hours

(denoted with pID3) as representative price for each quarter hour. As pID3 averages completed trades,

we handle the hypothetical auction as a uniform pricing auction. This corresponds to modeling the

intraday trading as one hypothetical auction with rolling gate closures 30 minutes before the respec-

tive delivery. Note that this simplification neglects profit from potential re-positioning in reaction to

the volatility of the continuous price process during intraday trading. Further, we assume that the

trader acts as a price-taker and is always able to find a counterparty to sell electricity for the pID3

price. With regard to low liquidity this would have been a very strong assumption in the early years

of intraday trading. In the meanwhile, however, intraday trading has become sufficiently liquid. For

the relatively small trading volumes related to the investigated portfolio and as the scope of the paper

is particularly to determine optimal trading strategies on the day ahead, the assumption is considered

well reasonable.

In conclusion, the trader faces three markets to be considered: The aFRR capacity market with six

four-hour products, the day ahead market with 24 hourly products and the intraday market with 96

quarter-hourly products. Considering both the price uncertainty of the three markets and the volume

uncertainty of the renewable generation, the trades faces a complex decision problem with numerous

decision variables.

1Note, that half-hour and hour products are also traded in the intraday market. However, as the 15 minute product
is the best approximation for the value of the 15 minutes period if contained within a product with larger resolution,
including further product resolutions for intraday trading would not essentially change the trading strategies but result
in substitution trades. We do not aspire to optimize for trades across intraday products, but for trading strategies across
the considered decision stages. Therefore, this paper focuses on the 15 minute products alone.
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Table 1: Overview over information available to the optimization as deterministic or realized information and
as stochastic information in form of scenarios.

Deterministic / realized Stochastic

Stage 1 deterministic:
Expected value RES generation
forecast, technical constraints,
market constraints

scenarios i:
Marginal reserve prices for nega-
tive and positive direction

Stage 2 scenarios i:
Reserve market result and com-
mitment

scenarios j:
Day-ahead RES generation fore-
cast, day-ahead market prices

Stage 3 scenarios j:
Day-ahead market result and
commitment, day-ahead RES
generation forecast

scenarios k:
Intraday update RES generation
forecast, intraday market prices

4 Methodology

The methodology presented in the following subdivides into the formulation of the optimization prob-

lem and the generation of input data by means of stochastic modeling. The optimization is formulated

as a mixed-integer linear multi-stage stochastic problem. First, the formulation for a risk-neutral

trader is presented. Second, the formulation is extended to a problem that allows for consideration

risk-aversion of the trader. After the constraints the optimization is subject to are presented, we

finally introduce the modeling and characterization of uncertainties considered in the problem.

4.1 The Trading Problem

For the bidder, the determination of the optimal bids implies both price risks and a quantity risks.

The information available to the trader in the optimization problem is summarized in Table 1. In-

formation like the residual load forecast and its updates are not explicitly provided to the problem,

but are contained in the price processes as described above. Note further, that logically the stochastic

information on later stages is implicitly considered in the decisions of the early stages. The structure

of the decisions on the three stages will be explained in more detail in Section 4.2.

4.2 Target Function

We formulate the target for the risk-neutral problem straight forward as maximization of expected

contribution margins π throughout the scenarios (i, j, k) in Ω in all market segments and time steps

as the revenues (ρ) minus the costs (κ).

maxE(i,j,k)∈Ω(πi,j,k) = E(i,j,k)∈Ω(ρi,j,k)− E(i,j,k)∈Ω(κi,j,k) (1)

with the expected revenues ρ being the sum of reserve (aFRRpos and aFRRneg) market, day-ahead

(DA) market and intraday (ID) market revenues.

E(i,j,k)∈Ω(ρi,j,k) = E(i)∈Ω(ρaFRRpos
i ) + E(i)∈Ω(ρaFRRneg

i ) + E(i,j)∈Ω(ρDA
i,j ) + E(i,j,k)∈Ω(ρID

i,j,k) (2)

7

246 Paper C – Stochastic optimization of trading strategies in . . .



One key challenge in the formulation of the trading problem consists in addressing the reserve market

design with its particularities. As pay-as-bid pricing intuitively comes with both the price and the

volume as decision variables, an alternative formulation must be deployed for the problem to remain

a mixed-integer linear problem (MILP). However, the modelling of uncertainty yields discrete values

for reserve prices for positive and negative direction (LP and LN , respectively) for each reserve price

scenario i. We therefore define these price levels paFRRpos
lp (paFRRneg

ln ) as fixed bidding levels and define

only the bid volume xaFRRpos,bid
lp,i,ts (xaFRRneg,bid

ln,i,ts ) on price level lp (ln) as decision variable for positive

(negative) reserve market bidding. In this way, we define a bidding curve with volumes on several

price levels to be submitted to each segment of the reserve market.

As we model the uncertainty with a discrete probability space, the trader has no incentive to bid on

price levels distinct from the given scenario prices. The eventual acceptance of a bid on price level

lp ∈ LP for the positive reserve product (or on price level ln ∈ LN for negative reserve) in time slice ts

and scenario i is modelled with the help of the binary acceptance parameters βaFRRpos
lp,i,ts and βaFRRneg

ln,i,ts ,

that translate the marginal prices into acceptance or decline of a bid as described in Equation (51).

The resulting expected revenues from the positive reserve market over all time steps and scenarios are

then defined as (negative follows analogously):

E(i)∈Ω(ρaFRRpos
i ) =

I∑

i=1

pri

TS∑

ts=1

LP∑

lp=1

(
βposlp,i,ts · p

aFRRpos
lp · xaFRRpos

lp,i,ts

)
(3)

pri, prj , prk denote scenario probabilities for i ∈ I, j ∈ J , and k ∈ K, as described in 4.7. Note, that

this formulation takes into account the reserve market to be cleared according to pay-as-bid pricing

and the spot market segments according to uniform pricing. The considered price for an accepted bid

paFRRpos
lp is therefore indexed with the respective price level and reflects the pay-as-bid pricing.

In contrast, the day-ahead and intraday market are cleared with uniform pricing2. Hereby, pDA
j,h ,

pID
i,j,k,qh denote the prices on the day-ahead and intraday market for the different time steps and

scenarios, respectively. The expected revenues on the day-ahead market are defined as the trading

volume xDA,trade
i,j,h multiplied by the uniform price pDA

j,h in scenario j, summed up over all hours.

E(i,j)∈Ω(ρDA
i,j ) =

I∑

i=1

pri

J∑

j=1

prj

H∑

h=1

pDA
j,h · xDA,trade

i,j,h (4)

The day-ahead market is modelled such that the trader submits a bid curve to the market, consisting of

volume bids on defined fixed price levels lda. For the evaluation of bidding strategies, we distinguish

between bids to sell generation, xDA,gen,bid
i,j,h , bids to take a short position (i.e., selling more than is

expected to be generated), xDA,short,bid
i,j,h , and bids to take a long position (i.e., buying electricity on the

day-ahead market), xDA,long,bid
i,j,h .

Again, there is no incentive to deviate from the market prices contained in the scenarios j for the day-

ahead market decision stage. With the help of the binary parameter βDA
lda,j,h, denoting the accepted

price levels lda of day-ahead market bids for selling electricity in hour h and scenario j, the traded

volume is defined as follows. We stress at this point that the trader does not only have the option

2As described in Section 3, we model the intraday auction as an uniform pricing auction with the ID3 price as clearing
price.
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of purely selling the generation, but also to prepare a good position for potential intraday trading.

Thus, both building a short position that exceeds the expected generation and going long (i.e., buying

electricity to sell it later and profit from rising prices) is within the trader’s action space. The bids

to take a long position in the day-ahead market (i.e., buying electricity) have the opposite acceptance

structure of selling bids (1− βDA
lda,j,h)3.

xDA,trade
i,j,h = xDA,gen,trade

i,j,h + xDA,short,trade
i,j,h − xDA,long,trade

i,j,h (5)

with

xDA,gen,trade
i,j,h =

LDA∑

lda=1

βDA
lda,j,h · xDA,gen,bid

lda,i,j,h (6)

xDA,short,trade
i,j,h =

LDA∑

lda=1

βDA
lda,j,h · xDA,short,bid

lda,i,j,h (7)

xDA,long,trade
i,j,h =

LDA∑

lda=1

(1− βDA
lda,j,h) · xDA,long,bid

lda,i,j,h (8)

However, the long and the short position of the portfolio are constrained to the extent allowed in BRP

contracts as will be presented in Equations (23) and (24). The revenues from the intraday market are

defined analogously. The factor 4t captures the difference in temporal resolution between hour h and

quarter hour qh (i.e. 4t = 0.25), so that the energy amount equals the integral of the power output.

E(i,j,k)∈Ω(ρID
i,j,k) =

I∑

i=1

pri

J∑

j=1

prj

K∑

k=1

prk

QH∑

qh=1

pID
j,k,qh · xID,trade

i,j,k,qh · 4t (9)

The realized intraday trades, xID,trade
i,j,k,qh , are defined by (10), the intraday trade summands are defined

analogously as for the day-ahead market in (6)-(8).

xID,trade
i,j,k,qh = xID,gen,trade

i,j,k,qh + xID,short,trade
i,j,k,qh − xID,long,trade

i,j,k,qh (10)

The expected costs occurring in each market segment sum up to the total costs. To account for

potential active schedule violations in a future application, the term κImb
i,j,k completes the formulation

of the trading problem.

E(i,j,k)∈Ω(κi,j,k) = E(i)∈Ω(κaFRRpos
i ) + E(i)∈Ω(κaFRRneg

i ) + E(i,j)∈Ω(κDA
i,j )

+ E(i,j,k)∈Ω(κID
i,j,k) + E(i,j,k)∈Ω(κImb

i,j,k) (11)

The pure provision of capacity is valued at no costs. For positive reserve (aFRRpos), the reserve

activation may lead to additional fuel consumption and thus additional variable costs. On the other

hand, an activation of negative reserve (aFRRneg) may lead to fuel savings and thus a reduction

of the costs arising from the spot market operation. However, the cost effects of potential reserve

3This formulation implies that in case pDA
j,h = pDA

lda,j,h a selling bid gets accepted at price level lda, whereas an ask
bid is declined. A successful ask bid must be at least one price level above, despite being valued with price level lda.
We thereby reflect a certain bid-ask spread and avoid opposite bids that cancel each other out and only inflate trading
volumes.
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activation can be easily addressed by appropriate energy bids. As the costs of a potential positive

reserve activation are independent from the bidding decision on the reserve power market, we consider

it reasonable to value them at zero costs. The same applies for the negative reserve.

E(i)∈Ω(κaFRRpos
i ) = 0 (12)

The activation of reserves is not further considered in this paper. The only assumption that needs

to be made is that the energy to meet the activation is available for the controllable plants u. The

costs for the day-ahead market operation consist of variable costs for the controllable plant u and the

renewable source res. The costs for a potential long position are already accounted for in the revenues

in Equation (4) and (9).

E(i,j)∈Ω(κDA
i,j ) =

I∑

i=1

pri

J∑

j=1

prj

H∑

h=1

( U∑

u=1

κvar
u · xDA,dispatch,U

i,j,u,h +

RES∑

res=1

κvar
res · xDA,dispatch,RES

i,j,res,h

)
(13)

κvar
u denotes the variable cost of unit u, xDA,dispatch,U

i,j,u,h denotes the energy dispatched (i.e., sold with

xDA,gen,bid
lda,i,j,h ) from unit u on the day-ahead market. The dispatch for renewable source res is defined

analogously.

E(i,j,k)∈Ω(κID
i,j,k) =

I∑

i=1

pri

J∑

j=1

prj

K∑

k=1

prk

QH∑

qh=1

( U∑

u=1

cvar
u · xID,dispatch,U

i,j,k,u,qh +

RES∑

res=1

cvar
res · xID,dispatch,RES

i,j,k,res,qh

)
· 4t (14)

E(i,j,k)∈Ω(κImb
i,j,k) =

I∑

i=1

pri

J∑

j=1

prj

K∑

k=1

prk

QH∑

qh=1

(ximb,+
i,j,k,qh + ximb,−

i,j,k,qh) · pimb
qh · 4t (15)

with the absolute value of the energy imbalance ximb
i,j,k,qh denoted by the sum of the positive and

negative share (ximb,+
i,j,k,qh +ximb,−

i,j,k,qh) valued with the imbalance price pimb
qh .4 Logically, the imbalance can

only either be positive or negative, which is reflected by the constraints (21) and (22) in Section 4.5.

4.3 Consideration of Risk

A major advantage of the stochastic over the deterministic problem formulation consists in the ability

of the presented approach to quantify and to take into account risks when determining the trading

strategy. Based on theory provided in textbooks such as Conejo et al. (2010) and Birge and Louveaux

(2011), we distinguish between risk-neutral decision making and decision making under consideration

of risk. Whereas the risk-neutral decision is based solely on the expected value of the profits over all

scenarios as presented in (1), a real-world trader most likely will also want to consider the risk exposure

related with the trading decision. In order to determine trading decisions with less risk exposure, we

therefore introduce risk to our approach. This enables us to make use of the characterization of

4As intentional imbalances are prohibited by the up-to-date German BRP contract, ximb
i,j,k,qh is forced to equal zero

with a sufficiently large number BIGM as pimb
qh . In the presented case study BIGM equals 100,000 EUR/MWh. In

the general formulation, pimb
qh may be equipped with a close-to-real-time forecast to reflect an expected imbalance price

(reBAP ), if intentional imbalances want to be taken into account in future extensions of the model. However, this
exceeds the scope of this paper.
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uncertainty, which contains more information than a single figure, such as the expected value, can

capture.

In finance literature, the risk exposure is quantified with the help of risk metrics. Commonly used

metrics include the variance, the shortfall probability, the expected shortage and as well as value at

risk (VaR) and conditional value at risk (CVaR, also referred to as average value at risk or expected

shortfall) (Conejo et al., 2010). However, for the trading problem to remain scalable and flexible, the

use of a coherent risk metric5, particularly one satisfying sub-additivity, is of practical use. As the

CVaR meets the properties of coherence, we modify the problem formulation in order to include the

CVaR into the target function (adaptation of Conejo et al. (2010)). Further details and the definition

of the CVaR and the VaR are provided in Annex A.3.

4.4 Modelling the Conditional Value at Risk

In adaption of Conejo et al. (2010) the target function is augmented by the variable η, that corresponds

to the VaR, the parameter α representing the probability level of the VaR and the non-negative

continuous variable si,j,k defined by equation (17) to the maximum of the VaR η minus the contribution

margin πi,j,k in a scenario and zero. The optimization objective is now the weighted sum of expected

value and the CVaR of the contribution margins throughout the scenarios, with λ ∈ (0, 1) as weight

in the target function. λ can be referred to as parameter of risk aversion.

max (1− λ) · E(i,j,k)∈Ω(πi,j,k) + λ ·
(
η − 1

1− α
I∑

i=1

pri

J∑

j=1

prj

K∑

k=1

prk · si,j,k
)

(16)

η − πi,j,k ≤ si,j,k ∀(i, j, k) ∈ Ω (17)

si,j,k ≥ 0 ∀(i, j, k) ∈ Ω (18)

In the remainder of this paper, sets will be dropped from the notation to remain concise, ∀(i, j, k) ∈ Ω is

equivalent to ∀(i, j, k), ∀qh ∈ QH equivalent to ∀qh, and so on. The chosen multi-criteria formulation

as weighted sum allows us to consider both the expected value of contribution margins and the CVaR

at level α. The parameters λ and α will be used in the case study to distinguish between and evaluate

different risk strategies. Further, for the interested reader we provide the problem formulation using

the VaR as risk metric in Annex A.3.

4.5 Constraints

Besides the aforementioned constraints for modelling the risk, we include constraints from three cate-

gories in the problem formulation that will be presented in the subsequent paragraphs. First, several

constraints regarding the trading logic, the market design and the market rules need to be considered.

Further, the operational constraints of the technical units in the portfolio to fulfill energy delivery

and provide the reserve products need to be considered in modelling the trading decision. Hereby, we

distinguish between the volatile renewable sources (RES), indexed with res, and controllable (renew-

able) units (e.g., a biogas power plant), indexed with u. The third category of constraints comprises

5Coherent risk metrics satisfy the conditions of monotonicity, sub-additivity, homogeneity, and translational invari-
ance.
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the stochastic programming constraints, in which we summarize the constraints required for the for-

mulation of the multi-stage stochastic problem and further auxiliary constraints.

4.5.1 Market Constraints

The energy balance over the two spot markets (i.e., day-ahead and intraday market) needs to be zero

as short- or long-selling beyond the intraday market, i.e. speculating on imbalance prices lower or

higher than spot market prices, is prohibited by the market rules. To give the trader the option to

close its balance sheet and to deploy bidding strategies between the day-ahead and the intraday stage6,

the short-selling variables comply with volumes sold but not dispatched in the respective stage and

vice versa the long-selling variables comply with the generation volumes not sold or additional energy

that is bought on the respective stage. Eventually, the energy schedule needs to be balanced for each

qh. In the following, qh(h) denotes the mapping of the quarter hours contained in an hour to the

respective hour h (e.g., qh(1) = {1, 2, 3, 4}). As mentioned earlier, the imbalances (split up in positive

and negative part to be able capture the absolute value) ximb,+
i,j,k,qh and ximb,−

i,j,k,qh enter the target function

as positive variables, penalized with BIGM, via equation (15) and are thus forced to equal zero.

xDA,trade
i,j,h + xID,trade

i,j,k,qh + ximb
i,j,k,qh = xDA,gen,trade

i,j,h + xID,gen,trade
i,j,k,qh ∀(i, j, k), h, qh(h) (19)

with

ximb
i,j,k,qh = ximb,+

i,j,k,qh − x
imb,−
i,j,k,qh ∀(i, j, k), h, qh(h) (20)

For the absolute value consideration of the imbalance volume in (15), a BIGM formulation with the

auxiliary binary δimb
i,j,k,qh leads to the following equations to ensure that ximb,+

i,j,k,qh and ximb,−
i,j,k,qh are not

greater than zero at the same time.

ximb,+
i,j,k,qh ≤ BIGM · δimb

i,j,k,qh ∀(i, j, k), qh (21)

ximb,−
i,j,k,qh ≤ BIGM · (1− δimb

i,j,k,qh) ∀(i, j, k), qh (22)

Traders have incentives, if one spot market is dominating the other (e.g. price expectations for the

intraday are favorable compared to the day-ahead market), to realize unlimited profit opportunities7

of short and long trades between the markets. To account for the trades to be related to the portfolio

and not to a purely speculative arbitrage strategy, we introduce volume limits for the short and long

position related to the portfolio generation 8. Equations (23) and (24) limit the short and the long

trade volume in the day-ahead market. In consequence, the respective trade volumes are implicitly

6According to European Federation of Energy Traders (EFET), not bidding in the forward or day-ahead market in
expectation of higher prices in the intraday markets is no capacity withholding and speculation about higher prices in
consecutive markets is no market manipulation but a legitimate bidding strategy.

7An alternative term sometimes used in this context is arbitrage opportunity. However, we define an arbitrage trade
to lead to risk-free profit. As this is not necessarily given, yet the trader might still favor one market expectation over
another, we refer to expected profit under risk as profit opportunity.

8The up-to-date contracts for balancing responsible parties in Germany provide the regulation that the short or long
volume must not exceed a proportion qshort/long of 10 percent of the maximum schedule value of the day. To avoid
the maximum operator with decision variables, we consider the sum of the maximum value in the renewable generation
forecast and the installed capacity of the controllable plants as approximation for the maximum schedule value of the
day instead of maxi,j,k,h,qh(h)(x

DA,gen,trade
i,j,h + xID,gen,trade

i,j,k,qh ).
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limited for the intraday market, too.

xDA,short,trade
i,j,h ≤

(
max
qh

( RES∑

res=1

PRES
res · φDA

qh,res

)
+

U∑

u=1

PU
u

)
· qshort ∀(i, j), h (23)

xDA,long,trade
i,j,h ≤

(
max
qh

( RES∑

res=1

PRES
res · φDA

qh,res

)
+

U∑

u=1

PU
u

)
· qlong ∀(i, j), h (24)

Further, to avoid bids on the same price level that cancel each other out and inflate bidding volumes,

Equations (25) and (26) ensure for the day-ahead market that the trader either submits a sell bid or

an ask bid on level lda. The analog formulation applies for the intraday market.

xDA,gen,bid
lda,i,j,h + xDA,short,bid

lda,i,j,h ≤ BIGM · δDA,ask/sell
lda,i,j,h ∀lda, (i, j), h (25)

xDA,long,bid
lda,i,j,h ≤ BIGM · (1− δDA,ask/sell

lda,i,j,h ) ∀lda, (i, j), h (26)

Finally, the bids the trader submits to the day-ahead and the intraday market are aggregated for

evaluation purposes in the variables xDA,bid
lda,i,j,h and xID,bid

lid,i,j,k,qh as defined in (27) and (28). These can be

interpreted as bid curves submitted to the markets.

xDA,bid
lda,i,j,h = xDA,gen,bid

lda,i,j,h + xDA,short,bid
lda,i,j,h − xDA,long,bid

lda,i,j,h (27)

xID,bid
lid,i,j,k,qh = xID,gen,bid

lid,i,j,k,qh + xID,short,bid
lid,i,j,k,qh − x

ID,long,bid
lid,i,j,k,qh (28)

4.5.2 Technical Constraints

Several technical constraints need to be respected in the formulation of the bids in order to guarantee

the feasibility of the market results for the operation of the plant portfolio. Firstly, the portfolio

must be able to provide the reserve commitments, which are defined by the accepted bids for the

4-h-slice ts. As the reserve commitment can be covered by a pool of technical units with any spatial

distribution within the market area, each single unit can contribute with its flexibility to reach the

market commitment. Thereby, we consider the flexibility contributions of the units to the portfolio to

be constant for quarter hours. From technical perspective, we assume reserve provision from both, the

units u and the volatile renewable sources res, to be technically feasible9. The condition is formulated

in (29) for the positive direction, the condition for the negative direction is derived analogously.

LP∑

lp=1

βposlp,i,ts · x
aFRRpos
lp,i,ts ≤

RES∑

res=1

xaFRRpos,RES
i,qh,res +

U∑

u=1

xaFRRpos,U
i,qh,u ∀ts, qh(ts), i (29)

Secondly, the portfolio must fulfill the schedule defined by spot market commitments, which are derived

from the accepted bids for each hour in the day-ahead market (and analogously for each quarter hour

9Although relatively few capacity of renewable sources is prequalified in today’s reserve market, this is caused by
rather economical than by technical consideration (see e.g., Brauns, Jansen, Jost, Siefert, Speckmann and Widdel, 2014,
for a feasibility study). The main barriers are necessary investments in communication infrastructure and the sheer
economics of renewables in providing reserve.
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in the intraday market.

xDA,gen,trade
i,j,h =

U∑

u

xDA,dispatch,U
i,j,h,u +

RES∑

res

xDA,dispatch,RES
i,j,h,res ∀(i, j), h (30)

To obtain a feasible dispatch schedule, the minimum load requirement of controllable unit u is modelled

with the help of a semi-continuous variable xdispatch,U
i,j,k,qh,u which can only take values that are either 0 or in

[Pmin
u , PU

u ]. As the market constraints distinguish between day-ahead and intraday market dispatch,

the overall scheduled dispatch for u is described in (31).

xdispatch,U
i,j,k,qh,u = xDA,dispatch,U

i,j,h,u + xID,dispatch,U
i,j,k,qh,u ∀(i, j, k), h, qh(h), u (31)

Thirdly, for a unit u or res to provide negative reserve, it must at least run on that level to be able

to decrease the generation. The potential activation of negative reserve capacity must also not violate

the minimum load requirement. Likewise, to provide positive reserve, it must at least run on minimum

load and a potential activation must not violate the capacity constraint. Equations (32)-(36) formulate

these minimum load constraints.

xaFRRneg,RES
i,qh,res ≤ xdispatch,RES

i,j,k,qh,res ∀(i, j, k), qh, res (32)

xdispatch,U
i,j,k,qh,u − x

aFRRneg,U
i,qh,u ≥ Pmin

u · δaFRRneg,U
i,j,k,qh,u ∀(i, j, k), qh, u (33)

xaFRRneg,U
i,qh,u ≤ BIGM · δaFRRneg,U

i,j,k,qh,u ∀(i, j, k), qh, u (34)

xdispatch,U
i,j,k,qh,u ≥ Pmin

u · δaFRRpos,U
i,j,k,qh,u ∀(i, j, k), qh, u (35)

xaFRRpos,U
i,qh,u ≤ BIGM · δaFRRpos,U

i,j,k,qh,u ∀(i, j, k), qh, u (36)

Fourthly, the provision of positive reserve and the dispatch of a unit u is limited by its nominal capacity

PU
u , leading to capacity constraint (37). Likewise, a unit res is naturally limited by its nominal

capacity PRES
res derated with the generation forecast φDA/ID ∈ [0, 1]. As described in Section 4.7

we distinguish between the deterministic day-ahead forecast and the scenario-based intraday update.

Hereby, to respect the potential downward or upward correction of an intraday forecast update φID
k,qh,res

compared to φDA
qh,res, the possible reserve provision of a renewable unit xaFRRpos,RES

i,qh,res and dispatch must

satisfy two capacity constraints (38) and (39). With this formulation, the positive reserve provision is

implicitly limited to the minimum out of the day-ahead and the intraday updates of the generation

forecast contained in Ω.10

xaFRRpos,U
i,qh,u + xDA,dispatch,U

i,j,h,u + xID,dispatch,U
i,j,k,qh,u ≤ PU

u ∀i, j, k, h, qh(h), u (37)

xaFRRpos,RES
i,qh,res + xDA,dispatch,RES

i,j,res,h ≤ PRES
res · φDA

qh,res ∀(i, j), h, qh(h), res (38)

xaFRRpos,RES
i,qh,res + xDA,dispatch,RES

i,j,h,res + xID,dispatch,RES
i,j,k,qh,res ≤ PRES

res · φID
k,qh,res ∀(i, j, k), h, qh(h), res (39)

Further, the fuel storage capability for the dispatchable RES plants onsite (e.g., for a biogas plant) is

limited, which leads to a minimum and maximum daily generation νmin/max of unit u as proportion

10This goes perfectly in line with the feed-in potential based approach to quantify reserve provision potential of volatile
renewable sources (Brauns et al., 2014).
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of a baseload operation of the installed capacity.

|QH| · PU
u · νmin

u ≤
QH∑

qh=1

xdispatch,U
i,j,k,qh,u ≤ |QH| · PU

u · νmax
u ∀(i, j, k), u (40)

with |.| as the cardinality of a set.

Finally, each unit u has a limited load change gradient 4Pu, which needs to be respected to obtain

technically feasible results. We consider it to be the same for upward and downward load changes and

define it as proportion of the installed capacity PU
u . At the transition between two quarter hours, load

changes can originate from all considered market segments. Therefore, some additional constraints are

required. Logically, the maximum possible load changes from all market segments, including potential

reserve activation gradients, must comply with the load change gradient of u. To depict the potential

reserve activation gradient between two consecutive quarter hours qh and qh + 1, the change in the

flexibility contribution of u is split into the negative and positive part with positive variables. To

model the negative reserve direction, the summands for qh and qh + 1 are swapped, leading to (41)

and (42).

xaFRRpos,U
i,qh,u − xaFRRpos,U

i,qh+1,u = 4xaFRRpos,U,+
i,qh,u −4xaFRRpos,U,−

i,qh,u ∀i, qh, u (41)

xaFRRneg,U
i,qh+1,u − xaFRRneg,U

i,qh,u = 4xaFRRneg,U,+
i,qh,u −4xaFRRneg,U,−

i,qh,u ∀i, qh, u (42)

Similarly, the spot market schedule changes for u are split with positive variables in upward and

downward direction. As for the overall scheduled dispatch in (31), the day-ahead and the intraday

market are considered together.

xdispatch,U
i,j,k,qh,u − x

dispatch,U
i,j,k,qh+1,u = 4xspot,U,+

i,j,k,qh,u −4x
spot,U,−
i,j,k,qh,u ∀(i, j, k), qh, u (43)

To ensure that the changes in market commitments are not simultaneously non-zero, following BIGM

formulations must hold for all the considered market segments. For conciseness, only the constraints

for the changes in spot market commitments are presented. Formulations for the reserve segments

follow analogously.

4xspot,U+
i,j,k,qh,u ≤ BIGM · δ

spot,U
i,j,k,qh,u ∀(i, j, k), qh, u (44)

4xspot,U−
i,j,k,qh,u ≤ BIGM · (1− δ

spot,U
i,j,k,qh,u) ∀(i, j, k), qh, u (45)

The binary variable δdispatch,U
i,j,k,qh,u indicates whether the dispatch changes in upward or downward direction

at the transition from qh to qh + 1. With (41)-(43), the load change constraint in upward and in

downward direction for a technical unit u formulates as denoted by (46) and (47). Note, that the chosen

formulation with quarter hour resolution of spot market commitments and flexibility contributions to

the portfolio’s reserve provision implicitly respects the different temporal resolutions of reserve (4h),

day-ahead (1h) and intraday (15min) markets. If these were modeled according to the respective

product duration, separate cases for (a) the transition to the first quarter hour of a time slice, (b) the

transition to the first quarter hour of an hour, and (c) the transition to an intra-hour quarter hour
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should be distinguished.

xaFRRpos,U
i,qh,u + xaFRRneg,U

i,qh,u +4xaFRRpos,U,+
i,qh,u +4xaFRRneg,U,+

i,qh,u +4xspot,U,+
i,j,k,qh,u −4x

spot,U,−
i,j,k,qh,u

≤ Pu · 4Pu ∀(i, j, k), qh (46)

xaFRRpos,U
i,qh,u + xaFRRneg,U

i,qh,u +4xaFRRpos,U,−
i,qh,u +4xaFRRneg,U,−

i,qh,u +4xspot,U,−
i,j,k,qh,u −4x

spot,U,+
i,j,k,qh,u

≤ Pu · 4Pu ∀(i, j, k), qh (47)

Whereas (37) only considers the sheer capacity of u, (46) and (47) emphasize the value of the flexibility,

both in upward and downward direction, and make clear that all market segments are competing for

the flexibility of the portfolio. For example, during a scarcity of upward flexibility, a reduction of the

spot market dispatch releases upward flexibility to be used for other commitments. It enhances the

reserve potential (both positive and negative) and creates the option to increase the positive (decrease

the negative) reserve contribution of u to the portfolio’s reserve provision. Obviously, it is upon the

trader to determine a strategy in which market segments and at which price to allocate the available

resources.

4.6 Stochastic Programming Constraints

The problem is formulated as a multi-stage stochastic program. However, for one trading decision

with the same information (at the same node of the tree), the decisions have to be consistent for

the consecutive stages. Therefore, non-anticipativity constraints for all trading decisions are included

in the model formulation according to the information relations: Reserve bids must be consistent

throughout all i ∈ I, as well as bids on the day-ahead (j ∈ J) and intraday (k ∈ K) market. With

Ord(.) defined as the ordinal number of an element in its set and |.| as the cardinality of the set, we

formulate the constraints for the positive reserve (48) and the day-ahead market (49) bids11.

xaFRRpos,bid
lp,i,ts = xaFRRpos,bid

lp,i+1,ts ∀lp, {i | Ord(i) < |I|)}, ts (48)

xDA,bid
lda,i,j,h = xDA,bid

lda,i,j+1,h ∀lda, i, {j | Ord(j) < |J |}, h (49)

4.7 Characterization and Modelling of Uncertainties

For the methodology to deliver meaningful results, it is essential to describe the uncertainty of the

real-world problem as accurate as possible. For the sake of computational tractability, we describe

the uncertainty as a finite probability space Ω defined by scenarios ω spanning a scenario tree in three

stages with scenario branches i ∈ I, j ∈ J , and k ∈ K. The first stage scenario branching, denoted

by i, represents the uncertainty of the marginal auction price of the reserve market for the positive

and negative product. For our models we use information that is available at 8 am on the day before

delivery, one hour before the tender for automatic Frequency Restoration Reserve (aFRR) closes.

As mentioned in Section 2, the reserve market prices cannot be completely explained by fundamental

11Note, that considering only the aggregated bids enables the switch between short volume and dispatch of generation
units as scenarios unfold. Formulations for the negative reserve and intraday market bids follow respectively.
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Figure 2: Illustration of the scenario tree with indices i, j and k for the uncertainty considered in the decision
stages. The stages correspond to the market segments balancing reserve, day-ahead spot market and intraday
spot market.

drivers. This creates a situation where the reserve market prices are subject to an inherent uncertainty,

that especially small market participants are exposed to. The marginal reserve prices12 are modelled

with the help of an additive model and a simulation of the stochastic components applying mean-

reverting processes with jump regimes, as proposed by Keles, Genoese, Möst and Fichtner (2012) for

modeling uncertain prices in electricity markets. The additive model explains the marginal prices

yreserve
s,w,t and includes the mean seasonal price for the time slice yreserve

s,t , the day-ahead PV generation

forecast xPV
t , the day-ahead residual load forecast xRL

t , and the price of the previous day’s auction

for the respective time slice yt−6. Further, weekend days and working days are distinguished with a

dummy variable δw. Combined with seasonal distinction by winter, summer, and transitional season

(i.e., spring and fall)13, six logarithmic models are estimated by the following model equation:

log yreserve
s,w,t = cs + β1 · log yreserve

s,t + β2 · log xPV
t + β3 · log xRL

t + β4 · log yt−6 + β5 · δw+

β6 · δw · log yreserve
s,t + β7 · δw · log xPV

t + β8 · δw · log xRL
t + εt (50)

Alternative potential fundamental drivers like carbon emission and fuel prices or derivatives like the

clean dark spread14 have not been found significantly improving the goodness-of-fit of the additive

model or suffered from strong multicollinearity and were therefore not further considered. We provide

model results for model alternatives including the omitted variables in Table 4 in Annex A.2. Please

note, that the seasonal mean yreserve
s,t to some extent implicitly captures the price influence of the

omitted fundamentals.

The series of stochastic residuals εt is modelled with the help of a mean-reversion process (Orn-

stein–Uhlenbeck process, see Uhlenbeck and Ornstein, 1930) and and jump regimes. Regime switch-

ing probabilities and calibration of the mean-reversion process are modelled adapting the procedure

introduced by Keles et al. (2012). To determine scenarios for the optimization, the obtained stochastic

models are simulated 1000 times and reduced by means of k-means clustering. In Annex A.2, more

details for the modeling of the reserve prices as well as a validation are provided. For the application

in the case study, we use ten scenarios with probability according to the clustering to describe the

uncertainty of reserve prices.

12Precisely, to obtain a smoother time series, the 90 percent quantiles of the accepted bids in each auction are considered
as marginal reserve prices.

13Winter: December, January, February; Summer: June, July, August; Transition: rest.
14The clean dark spread is defined as the difference between the spot market price and the costs for fuel and emission

certificates of a hard coal power plant with typical efficiency.
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The marginal reserve prices preserve,pos
i,ts (and preserve,neg

i,ts ) determine the acceptance for potential reserve

bids on price level lp (and ln) for the positive (and the negative) product in scenario i and time slice

ts. For the formulation of the optimization problem, the acceptance of a bid is translated to the binary

parameter βposln,i,ts as follows (analogously βnegln,i,ts for the negative product):

βposln,i,ts =





1, if lp ≤ preserve,pos
i,ts

0, otherwise.
(51)

The second stage scenario branching, denoted by j, depicts the price uncertainty of day-ahead market

prices. This uncertainty is on the one hand driven by potential changes in renewable generation and

load forecasts between the gate closure of the reserve market (9 am, d-1) and that of the day-ahead

spot market (12 am, d-1). On the other hand, a stochastic component for the day-ahead market itself

is modelled. Potential changes in residual load forecasts (including the modeling of renewable genera-

tion and consecutively residual load) until gate closure of the day-ahead market, influence of forecast

changes and stochastic nature of day-ahead market prices, are modelled with a mean-reversion process

(Ornstein–Uhlenbeck process, see Uhlenbeck and Ornstein, 1930), provided with the information at

12 am on the day-ahead (d-1). As in this paper a price-taking trader is modelled, the scenarios consist

of price levels and respective probabilities.

Analogously to the reserve market, to use the price scenarios in the problem formulation, the price

levels are translated into a binary parameter βDA
lda,j,h indicating whether a bid on a certain price level

lda in hour h is accepted or declined in scenario j. Note, that the second stage is assumed to be

independent from the first stage, meaning that the realization of reserve prices (i) has no influence on

day-ahead spot market prices.

Based on the second stage the third stage scenario branching, denoted by k, captures an updated re-

newable generation and load forecast under conditional expectation, resulting in an updated residual

load forecast. These are sources of quantity uncertainty and result in a price uncertainty with regard

to intraday market prices in the quarter hours qh in the scenario leaves k, reflecting the information

uncertainty 60 minutes from real-time.

To thoroughly model the effects as well as the stochastics of changing residual load forecasts on spot

market prices, three different sources of uncertainty are distinguished and modeled: the uncertainty of

solar generation, the stochastic component of the residual load (to be interpreted as changes in either

wind generation or the system load) and the stochastic component of the day-ahead and intraday

market themselves. Note, that wind generation as a source of uncertainty is not modeled explicitly.

In comparison to the solar generation, that follows a usual daily pattern and can be categorized into

levels relatively straight forward, the wind generation does not follow a usual daily pattern but rather

day-specific patterns and is therefore difficult to model with the use of a limited number of type days.

We therefore include the forecasting uncertainty of wind generation in the model for the residual load

uncertainty. Referring to the idea of type days, in this way we consider for the uncertainty of wind

generation but relate these to seasonal-average wind days. For deriving trading decisions in real-world

applications, we consider it reasonable to include forecasts for the renewable generation and conse-

quently for the residual load on a daily basis into the approach. In particular, this allows to account

for day-specific wind patterns and their risk implications.

The modeling of the solar infeed, the residual load, as well as the spot market prices follows the basic
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ideas of Keles et al. (2012) and Lingohr and Müller (2019). However, the integrated modeling of mu-

tual dependencies requires an enhanced approach. To capture the character and relations adequately,

multivariate mean-reverting processes and stochastic differential equations are estimated based on

empirical data and simulated with Monte Carlo. Based on the stochastic simulations, scenarios are

derived by k-means clustering, as is presented in further detail in Russo et al. (2021). The stochastic

modeling is applied to three seasons (summer, winter, transition) and distinguishes between working

and weekend days as well as three levels of residual load (low, medium, high). In total, 18 distinct

scenario trees are generated to apply the optimization to the most relevant type days. The transition

from stage two to stage three is not assumed to be stage-wise independent, but the presented approach

deploys conditional expectations to obtain consistent and arbitrage-free scenarios across the stages.

For the case study, five scenarios for the j and k, respectively, are derived with probabilities according

to the assumed normal distribution of the σ-ranges15 in the scenario definition. In the notation, for

five scenario leafs, j1 is followed by k1− k5, j2 by k2− k10, and so on. Analogously to the previous

market segments, to use the price scenarios in the problem formulation, the price levels are translated

into a binary parameter βID
lid,j,k,qh denoting whether a bid on a certain price level lid in quarter hour

qh is accepted or declined in scenario j’s follow-up scenario k. Combined with the 10 reserve price

scenarios, each of the type days’ scenario tree considers 250 possible scenarios to characterize the

uncertainty from the day-ahead towards real-time.

An illustrative scenario tree to demonstrate the extent of the price uncertainty in the considered seg-

ments and the solar generation uncertainty estimated with the stochastic modeling based on empirical

data is provided for the typeday tra216 in the Annex A.2 and A.4 in Figures 14-16.

5 Case Study

In this section, we conduct a case study in which we apply the proposed methodology to an exemplary

power plant portfolio in the Germany market design setting. Germany with its high renewable shares,

high data availability, and liquid day-ahead and intraday trading is particularly suitable to demonstrate

our approach. We present characteristics of optimal bidding strategies under different considerations

of risk. To define risk preferences, we enumerate combinations of the parameter α at levels 85%,

90%, and 95% (i.e., consideration of the 15%, 10%, and 5% worst cases) and λ at levels 10%, 25%,

and 50% (i.e., the weighting of the CVaR on α-level compared to the expected value of contribution

margins). Where necessary, for the results to remain concise, we present mainly the results for the

risk strategy with α = 95% and λ = 50%, corresponding to a strong risk aversion. As a benchmark,

we present results for the risk-neutral case (i.e., λ = 0%). The complete results for the other strategies

are provided in the supplementary material.

15As discussed by Keles (2013) and deployed in adapted manner by Russo et al. (2021), the scenarios are derived from
the expected mediod value of the stochastic simulation by deviating defined multiples of the standard deviation for each
time step and type day respectively. To derive five scenarios, the expected mediod (denoted with j1) is complemented
by the values +/ − σ (denoted with j2/j3) and the values +/ − 2 · σ (denoted with j4/j5) with probabilities according
to an assumed Normal distribution. This leads to prj = 0.25 for j1, j2, and j3, and prj = 0.125 for j4 and j5. Same
applies for the leafs denoted by k.

16A working day with medium PV feed-in and medium residual load in the transition season.
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5.1 Data and Practical Implications

For Germany, market results of the reserve market are publicly available at regelleistung.net (2021),

and for day-ahead market on the ENTSO-E transparency platform (ENTSO-E, 2021). As no histor-

ical feed-in forecast data other than the ones from ENTSO-E are available publicly, the generation

forecast for the PV plants in the trader’s portfolio are assumed to be perfectly correlated with the

system-wide generation forecast, in line with the assumption in Russo and Bertsch (2020). This im-

plies a spatial dispersion of the PV plants that is representative for the overall German PV portfolio17.

Hereby, the stochastic process for the PV intraday forecast update is fed by two inputs to model the

information available to the trader as accurate as possible: firstly, the intraday forecast φID
qh,res update

for the respective renewable plant res and quarter hour qh, provided by ENTSO-E in the morning of

the trading day. Secondly, to account for the latest available information at the time of the intraday

decision on stage three, the forecast error between the intraday forecast for qh−2 and the (meanwhile

available) realisation of qh−2, denoted by xreal
qh−2,res, is considered. Including the latest realised quarter

hour qh− 2 enables to capture the latest information on PV generation in the decision. We stress at

this point, that the difference (φID
qh,res − xreal

qh,res) is strongly auto-correlated at a lag of two.

With regard to the price risk, the stochastic price process captures effects of intraday renewable gen-

eration and load forecast updates. As mentioned in Section 3, a simplification is applied by taking the

price index pID3 (published by EPEX Spot, 2021), the weighted average price of all trades closed in the

last three hours before the delivery period. For a more profound representation of continuous intraday

price processes and intraday trading strategies, we refer to Kath and Ziel (2018) and Narajewski and

Ziel (2020).

The selection of an appropriate recent time horizon of data to estimate the models turns out to be

challenging, as both the spot markets and the reserve markets in Germany went through several ad-

justments in recent years. For the models to provide meaningful scenarios as input for the trading

problem, unfortunately a trade-off between the number of observations and the absence of structural

changes (e.g., induced by market design adjustments) is necessary.

First and foremost, the reserve market plays a crucial role, as major market design changes were

introduced in July 2018, October 2018, July 2019, and November 2020. In July 2018, the temporal

resolution and lead times were reduced from weekly off-peak and peak products to 4-hour products

that are auctioned on a day-ahead basis. Then, in reaction to strategic bidding and excessive energy

price bids, in October 2018 a new scoring rule was introduced calculating a scoring value as linear

combination of the capacity price bid and the energy price bid. However, strategic bidding under this

scoring rule led to undesirable, security-of-supply-threatening impacts. In July 2019, the market de-

sign change was therefore reversed to a capacity-price-based scoring. Since November 2020, a separate

auction for balancing energy price bids takes place 60 minutes before real-time, in which also bidders

without accepted capacity price bid may participate.

Secondly, due to unwanted ring flows through Poland and the Czech Republic the formerly single

market area Austria-Germany was split from October 2018 on. As the market split changed both the

demand and the supply structure for the German market participants, price formation on both the

day-ahead and the intraday market was affected.

17However, in the real-world (commercial) application, the availability of the required portfolio-specific forecast data
would be no limiting factor.
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We therefore use data from the time horizon between July 2019 and the first COVID19-caused lock-

down in March 2020 to estimate the stochastic price processes. In this period, we observe stable

market circumstances and no structural changes on either the demand or the supply side.

5.2 Composition of Portfolio

The portfolio, for which the presented methodology is particularly relevant, should meet certain char-

acteristics regarding the cost-structure. In order to compete with the reserve market prices, the

variable costs of the portfolio should be close to average spot market price levels. Just and Weber

(2015) refer to the relation between variable costs and spot market price levels as marginality and

distinguish between infra-marginal (i.e., κvar < pspot), marginal (i.e., κvar = pspot) and extra-marginal

(i.e., κvar > pspot) power plants. In this terminology, the portfolio should change between being infra-

marginal, marginal, and extra-marginal for different time steps and scenarios.

For the case study, we consider a portfolio consisting of a set of electricity-led and thus controllable

biogas power plants, and a set of PV plants as volatile renewable source to be suitable to reflect the

strengths of the presented approach. Firstly, it depends upon both, the uncertainty of generation

quantities (relevant for res units) and the uncertainty of price levels (relevant for both u and res

units). Secondly, the variable costs κvar
u1 are roughly in the range of price variations of the spot mar-

kets. Finally, the portfolio is able to provide flexibility in both upward and downward direction or to

use the flexibility to profit from spot market prices.

The portfolio for the case study is therefore defined as presented in Table 2. For conciseness, the plants

are aggregated and handled as single unit u1 and res1, respectively. The only limitation associated

with this is that if multiple smaller units are considered, the minimum load requirement (Pmin
u ) could

be handled more flexibly.

Table 2: Composition of plant portfolio and techno-economic parameters for case study.

Parameter Symbol Unit Value

Installed capacity PV generation res1 PRES
res1 [MW] 100

Maximum load change of res1 within 5 min-
utes, as share of P res

res1

4PRES
res1 [-] 1.00

Installed capacity controllable generation u1 PU
u1 [MW] 100

Minimum load requirement of u1, as share of
PU
u1

Pmin
u1 [-] 0.20

Minimum daily generation of u1, as share of
baseload operation at PU

u1

νmin
u1 [-] 0.50

Maximum daliy generation of u1 νmax
u1 [-] 0.95

Variable costs of u1 κvar
u1 [EUR/MWh] 40

Maximum load change of u1 within 5 min-
utes, as share of PU

u1

4PU
u1 [-] 0.50

5.3 Evaluation of Trading Strategies for the Portfolio

As the results for all investigated 18 type days are very extensive, we present the results for an ex-

emplary type day in detail, and based on that we discuss the findings more generally. We present the

results for a weekday with a medium level of PV generation and a medium residual load level in the

transition season.
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Before investigating the decision variables as well as the rationales and characteristics behind the dif-

ferent trading strategies, we first look at the values of the target function and the overall results. To

visualize the terms contained in the target function with risk consideration (i.e., expected contribution

margins and CVaR), we define the efficient frontier as all combinations of expected contribution mar-

gins and CVaR for trading strategies, that were found not to be dominated by another set of decision

variables.

Figure 3 presents the efficient frontier plot for all considered combinations of α and λ, as well as for the

risk-neutral case. For all investigated CVaR-intervals α, a similar concave pattern can be observed.

Obviously, the consideration of risk decreases the expected value of the trading decision, and at the

same time with an increasing weight of the risk metric the risk exposure is reduced. Noteworthy, the

increase in λ from risk-neutral (0%) to 10% comes with a large impact, likewise the increase from

10% to 25%. In the former, the expected contribution margins decrease considerably (decrease of

1,228-1,903 EUR/day), whereas the CVaR increases strongly (27,763-35,330 EUR/day), indicating a

lower risk exposure. In the increase from 10% to 25%, the expected contribution margins decrease

stronger (decrease of 5,110-5,659 EUR/day compared to risk-neutral), but yields further benefits with

regard to the risk exposure (CVaR increase of 51,000-56,003 EUR/day compared to risk-neutral).

However, the increase in λ from 25% to 50% has comparably a small impact. The reduction of the

expected contribution margins outweighs the small changes in risk exposure. Overall, a concave shape

of the efficient frontier can be observed for all α levels. Table 5 in Annex A provides an overview over

the numbers determining the efficient frontier. We stress at this point, that none of the defined and

evaluated risk strategies strictly dominates another. In a real-world application, a trader would still

be required to choose the risk preference, yet based on information about the opportunities and risks

related with the trading decision.

In order to gain insights about the distributional patterns of the contribution margins in the different
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Figure 3: Efficient frontier of trading decisions for different levels of CVaR interval (α) and risk aversion (λ),
medium weekday transition season (tra2).
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scenarios18, we arrange the contribution margins in increasing order for each trading strategy. This

visualization can be compared to an empirical cumulative distribution function (ECDF) of a distri-

bution and reads as follows: The contribution margin is lower or equal to the value on the vertical

axis with the probability level indicated by the horizontal axis. To be able to identify fat tails in the

distribution, a second plot zooms into the interval considered for the risk metric CVaR. The expected

value of the contribution margin and the CVaR are respectively included into the plots as horizontal

lines. Figures 4 and 5 show the EDCF for the strategies with α=95%. One intuitive result derived

from the visualization of the risk distribution is that the consideration of risk drastically lowers the

spread between the worst and the best cases and thus narrows the distribution, at the expense of a

moderate loss in expected contribution margins. Evaluations for the other α-values show analogous

patterns.

Investigating the contribution of each market segment to the portfolio’s contribution margins in

the different scenarios for different trading strategies, we find the main source of risk and the major

lever of risk hedging strategies to lie in the spot market decisions, i.e. how to submit bids to the

day-ahead and intraday market. To present key differences of of risk-neutrality and risk aversion in

trading strategies, Figures 6 to 7 show the trader’s optimal bids on the day-ahead market and intraday

market for the risk-neutral and the strongly risk-averse strategy (α = 95%, λ = 50%). As these bids

are submitted on the second (day-ahead) and third (intraday) stage of the problem, we summarize

the bids for the representative realization i1 of the first stage. Note that the actual bids submitted on

a stage do not anticipate realized information from later stages and are thus consistent for all j and

k for the day-ahead and the intraday market, respectively (see Eq. 48-49).

Figure 6 shows for the risk-neutral day-ahead market bids. The expectation of potentially higher

prices in the intraday market yields buying bids, indicating the trader is willing to take a long posi-

tion. These bids are in the range of the trader’s allowed long/short position range (see Eq. (24) and

(23)), and are not linked to the portfolio dispatch. The risk-neutral trader seeks to sell the electricity

generation on the intraday market, that offers (in expectation) a slightly higher, yet more volatile price

level, and even increases a high selling position to sell more volume than the generation capability. On

18In total, we distinguish 250 scenario leafs with non-equally distributed probabilities. See Section ?? and Annex A.2
for more details on the construction of the trees and probabilities.
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λ = 0%, risk neutral α = 95%, λ = 50%
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Figure 6: Day-ahead market bids for risk-neutral strategy, medium weekday transition season (tra2). day-ahead
market bids for risk-averse strategy (α = 95%, λ = 50%), medium weekday transition season (tra2).

the other hand, the risk-averse strategy focuses on reducing the risk exposure early on by selling most

of the generation on the day-ahead market at secure yet in expectation slightly lower prices. Notably,

the day-ahead trading volumes of the risk-averse trading strategy are considerably higher. Further,

the risk-averse strategy contains ask bids on price levels below the variable costs of the dispatchable

unit u, allowing to re-buy generation that was sold in the day-ahead market at a higher price. The

risk-neutral intraday bids contain less bids to re-position the portfolio, but rely on the (in expectation)

higher prices on the intraday market.

The submitted bids on the day-ahead market and the eventual market result determine the position
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Figure 7: Intraday market bids for risk-neutral strategy, medium weekday transition season (tra2). Intraday
market bids for risk-averse strategy (α = 95%, λ = 50%), medium weekday transition season (tra2).

of the trader when facing the intraday stage. Figure 7 shows the submitted intraday market bids, that

follow the respective day-ahead market bids for the risk-neutral and the risk-averse trading strategy.
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It can be observed in the lower string of bids, that driven by the pre-positioning (long position) from

the day-ahead market, the risk-neutral strategy mainly consists in selling the electricity at any price

on the intraday market. In case the intraday market settles at a higher price level, these bids will be

remunerated with the higher price, too, which stands in opposition to bids on the reserve market. It

can further be observed, that a considerable amount of bids is placed on price levels, that are linked

to a low acceptance probability.

For the representative scenario realizations i1 and j1, Figures 8 and 9 present the resulting contribu-

tion margins from the day-ahead and the intraday market for the considered trading strategies. As

discussed before, the risk-averse bids prevent the trader from taking a long position on the day-ahead

market and result in profitable sales, which to some extent depends on the realization of j. On the

other hand, the risk-neutral ask bids lead to considerable costs (i.e., negative contribution margins),

and no positive contribution margins on the day-ahead market. The value of the long position then

strongly swings with the realized intraday market scenario, leading to further negative contribution

margins if prices are low (k5 and k3) and to very profitable sales if prices are high (k2 and k4)19.

Inspecting the successors of the lower (j3 and j5) and higher (j2 and j4) day-ahead market price

scenarios (see Figure 8) yields the same relations yet differently pronounced. The remaining strategies

with a moderate risk-aversion follow a compromise.

The day-ahead bids do not contain ask bids to profit from potentially higher prices in the intraday

market, yet a share of the (expected) portfolio generation is offered only at high price levels with low

acceptance probabilities on the day-ahead market. Such a mixed bidding behavior allows for both,

profiting from secure day-ahead market revenues as well as profiting from higher or lower prices in

the intraday market. It avoids excessive ask or sell pressure in the intraday market and provides

a balance between the advantages of the day-ahead market (low uncertainty, in expectation lower

prices) and the ones of the intraday market (high uncertainty, in expectation higher prices). Whether

and which bids are submitted to the reserve market is determined by the opportunities the reserve

market and the following spot markets offer and at which costs in terms of operational constraints,

such as scheduling restrictions and inflexibility, the reserve can be provided by the portfolio. The

19Note that the scenarios are not equally probable. As mentioned in Section 4.7, the probability of the moderate
scenarios (three scenarios in the center of the plot) is 25% each, and the probability of the outer scenarios is 12.5% each.
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opportunities are three-fold: First, the pay-as-bid remuneration opens up a strategy space to decide

among different reserve price levels and volumes to bid on them. Hereby, the rationale is to avoid

the winner’s curse introduced to economic theory by Thaler (1988). Second, the expected level of

spot market prices and thus the expected profits require to consider which market is more profitable.

Third, the opportunity to profit from price variations between the day-ahead and the intraday spot

market by flexibly adjusting to new information.

It therefore occurs, as in the case of the considered typeday tra2, that the spot market opportunities

dominate the reserve market prices for the positive direction and no bids are submitted to the positive

reserve segment. Investigating the economics of the reserve market segments (see Just and Weber,

2008, 2015, for formal descriptions of the interplay between spot and reserve markets), it becomes

clear that providing positive reserve competes with spot market operations, whereas providing nega-

tive reserve can be considered a complementary element to spot market operations20, and brings only

little operational restrictions. A main finding is therefore, that the reserve bids determined with the

stochastic optimization differ fundamentally for negative and positive reserve provision.

The bids submitted for the positive reserve, if any are submitted, are placed only on high price levels.

In the however unlikely case of a high reserve price scenario, the trader profits from the accepted

bid(s). In the case the submitted bids are rejected, the following spot markets offer similar profit

opportunities. This rationale is further confirmed by the pay-as-bid remuneration, as it incentivizes

riskier reserve market bids. On the other hand, the bids submitted for the negative reserve are not

balancing potential reserve market profits with potential spot market profits. The rationale aims at

balancing the opportunities among the reserve price levels.Therefore, more diversification in bids and

patterns for different risk strategies can be observed. To illustrate this, Figure 19 in the Annex A

compares the bids submitted for the time slice 12-16h for the risk-neutral strategy and for a risk-averse

strategy. The first observation to note is that the risk aversion leads to a diversification in terms of

price levels and aims at securing revenues, whereas the risk-neutral strategy places the reserve bids

on a high price level. This can be interpreted as betting on a high price scenario. Secondly, the vol-

ume offered in the risk-averse strategy exceeds the volume offered in the risk-neutral strategy, which

corresponds to accepting more operational constraints for the spot market decisions.In Annex A.5,

we provide additional results, such as the bid curves for all considered risk strategies in time slice

12-16h (Figure 10) and the bids submitted for all time slices of the tra2 day (Figure 20). To present

results for another typeday, we also provide the bids for the negative reserve for a summer weekend

day with high residual load (sum6, see (Figures 22 and 21). On this typeday, the diversification of

bids is particularly pronounced and underlines the presented findings.

Regarding to the problem size, solver parameters and computational performance, we found the

following configuration to be suitable. In its reduced form, the problem for a single type day and

risk strategy has 720,000 restrictions (inequality/equality), 560000 variables (230000 binary), and

2,000,000 coefficients. The problem was implemented in GAMS and solved with the CLPEX solver,

applying parallel mode with 36 threads and a MIP gap of 0.01. Using a computer equipped with an

Intel Xeon Gold 6248R (3.0GHz, 24 Cores, 48 Threads) and 64 GB RAM, the solution time with cold

20This holds for the case that spot prices are higher than the variable costs. For the case that spot prices are below
the variable costs, depending on operational restrictions such as minimum fuel consumption, the revenues for providing
negative reserve must compensate for the unprofitable spot market operation of the minimum run capacity and the
offered reserve volume. However, the revenues for providing of positive reserve must only compensate for the minimum
run capacity.
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Figure 10: Reserve market (aFRRneg) bids for the time slice 12-16h for the risk-neutral strategy and for a
risk-averse strategy (α = 95%, λ = 50%), medium weekday transition season (tra2).

start amounts to roughly three hours for a single bidding strategy. However, providing the solver with

the solution of a similar strategy (warm start), the solution time can be reduced to below 30 minutes

for a single bidding strategy. Further, for days with strictly dominant markets (i.e., the spot market

offers higher profit opportunities than the reserve markets), the solver determines within a matter of

minutes. Sensitivity runs with only five instead of ten reserve price scenarios reduced computational

more than proportionally. Considering the structure of the problem and the curse of dimensionality,

this finding is intuitive.

5.4 Discussion

The results presented for the case study and the analysis of underlying bidding rationales allows

to derive general conclusions with regard to decisions under uncertainty in the sequential electricity

market context. The first conclusion we draw is that trading more and thereby taking a position at an

earlier stage can reduce the risk significantly. Intuitively, placing reserve bids at low prices with high

acceptance probability and selling generation on the day-ahead market sacrifices profit opportunities

but secures revenues early on.

Measures to increase the expected profit and the associated risk exposure include (a) betting on high

reserve prices, (b) betting on intraday prices higher than the day-ahead prices (no/few reserve bids,

selling offers only at high price levels or even buying to go long on the day-ahead market), and (c)

betting on intraday prices lower than the day-ahead prices (no/few reserve bids, selling offers at low

price levels or even selling to go short on the day-ahead market). It can be concluded that the intraday

market offers the highest risk, but also the highest reward, and that the main task of a trader is to

balance these out by participating in all markets.

Therefore, a reasonable strategy appears to determine the operation decision based on the reserve and

the day-ahead market results, but to not sell all generation capacity and flexibility on the day-ahead.

In that way, one can profit from opportunities of higher or lower prices in the intraday market and the

portfolio risk is reasonably hedged. However, the discussion remains without one strictly dominant

strategy as this is no one-size-fits-it-all case. The faced uncertainties and the myriads of potential

decisions in the markets require a sound decision support.

At this point, we critically reflect that further efforts can improve the developed approach in the

future. On the one hand, the neglected reserve market segments as well as activation of reserve

energy could be included to the approach. On the other hand, the representation of the intraday

market as a single uniform pricing auction neglects arrival processes of prices in continuous trading
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and therefore potential re-positioning profits. Finally, trading strategies for larger portfolios with the

potential to change market prices should adequately account for the price effects of the submitted

bids in each market segment. However, for the purpose of modeling the inter-related uncertainties and

trading decisions in a complex setting as presented in this study, these simplifications are considered

necessary to remain able to identify the central implications and to keep the model mathematically

tractable.

6 Conclusions and Outlook

The developed methodology models the uncertainty related to the trading decisions of a trader on

the day-ahead towards real-time on three decision stages (balancing reserve market, day-ahead spot

market, intraday spot market) with the help of scenario trees and under conditional expectation. We

present a multi-stage stochastic optimization approach that allows to determine optimal bids for the

sequence of the reserve market, the day-ahead spot market, and the intraday spot market. Thereby,

we consider all market segments that might appear as opportunities to each other.

The approach provides valuable insights with regard to profit distributions under uncertainty and

allows for an extension of the target function to include risk. As the characterization of uncertainty

contains much more information than a risk-neutral optimization (maximizing the expected value) can

capture, we evaluate trading strategies with different risk preferences. An efficient frontier is derived

as the set of optimal and non-dominated tuples of expected profit and risk exposure of the consid-

ered trading strategies. We discuss trading implications for the individual market segments, but most

importantly for their interplay. Amongst others, the results lead to the conclusion that risk-hedging

trading strategies prefer securing revenues on earlier stages and thereby being independent of the

more volatile prices on the intraday stage. Risk can be effectively reduced by placing reserve bids on

lower price levels and selling generation mostly on the day-ahead spot market. However, in that way

potentially higher revenues in the reserve market and on the intraday stage are disregarded as they

inevitably increase the risk exposure of the revenues. We provide new insights to short-term market

decisions under uncertainty, that are interesting for several stakeholder groups, such as traders, policy

makers, and research.

Taking the developed approach, next steps could go in the following directions. Firstly, traders may

seek the commercial application to a real-world portfolio. This implies using portfolio-specific fore-

casting information distinct from the overall system renewable generation, and integrating fuel and

carbon prices as well as scenario trees on a daily basis instead of using typedays.

Secondly, policy makers may be interested in the individual behavior of participants in short-term

markets in extreme events, such as scarcity scenarios that push the system to the limits, or future

electricity systems based on renewable generation. Such scenarios are not covered by our data and

scope. However, coupling our approach with other electricity market models as well as insights from

recent scarcity events (e.g., in France or Texas) offer a solid basis to model these uncertainties and to

assess policy implications. Thirdly, electricity storage and sector-coupling with other energy carriers

such as hydrogen may be included in the approach, interesting for both traders and scholars. This

extension implies a temporal coupling and complicates the determination of optimal bids, particularly

if considering reserve energy activation for storages.

Finally, an extension of the presented approach towards investment appraisal based on uncertain

revenue streams from multiple markets appears to become more and more relevant. Especially consid-

ering the increasing necessity of flexibility and its optimal use for the energy system, all stakeholder

groups are interested in methods to assess investment options more sound than based on established

valuation approaches.
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Pandžić, H., Morales, J.M., Conejo, A.J., Kuzle, I., 2013. Offering model for a virtual power plant based on

stochastic programming. Applied Energy 105, 282–292. doi:10.1016/j.apenergy.2012.12.077.

Plazas, M.A., Conejo, A.J., Prieto, F.J., 2005. Multimarket Optimal Bidding for a Power Producer. IEEE

Transactions on Power Systems 20, 2041–2050. doi:10.1109/TPWRS.2005.856987.

regelleistung.net, 2021. Balancing reserve market data. URL: (providedjointlybytheGermanTSOs)https:

//www.regelleistung.net/ext/.

Russo, M., Bertsch, V., 2020. A looming revolution: Implications of self-generation for the risk exposure of

retailers. Energy Economics 92, 104970. doi:10.1016/j.eneco.2020.104970.

Russo, M., Kraft, E., Bertsch, V., Keles, D., 2021. Self-generation and the short-term risk management problem

of electricity retailers. URL: www.iip.kit.edu.

Thaler, R.H., 1988. Anomalies: The winner’s curse. Journal of Economic Perspectives 2, 191–202. doi:10.

1257/jep.2.1.191.

Uhlenbeck, G.E., Ornstein, L.S., 1930. On the Theory of the Brownian Motion. Physical Review 36, 823–841.

doi:10.1103/PhysRev.36.823.

Zheng, Q.P., Wang, J., Liu, A.L., 2015. Stochastic Optimization for Unit Commitment—A Review. IEEE

Transactions on Power Systems 30, 1913–1924. doi:10.1109/TPWRS.2014.2355204.

30

269



A Annex

31

270 Paper C – Stochastic optimization of trading strategies in . . .



Nomenclature
Sets and Indices

H hours of day

I scenarios for reserve market

J scenarios for day-ahead market

K scenarios for intraday RES generation and intraday
market

LDA levels of price bids for Day-ahead (DA) market

LID levels of price bids for Intraday (ID) market

LN levels of capacity price bids for negative reserve (aFR-
Rneg)

LP levels of capacity price bids for positive reserve (aFR-
Rpos)

QH quarter hours of day

QH(H) mapping of quarter hours to respective hours

QH(TS) mapping of quarter hours to respective 4 hour time
slices

RES RES units in plant portfolio

TS 4 hour time slices of day

U controllable units in plant portfolio

Parameters

α probability level for VaR and CVaR

βm binary acceptance parameter of bids in market m ∈
{aFRRpos, aFRRneg, DA, ID}

κvar variable costs

λ risk aversion weight parameter

νmin/max minimum/maximum daily generation of controllable

unit as share of baseload operation at PU

φDA/ID day-ahead/intraday renewable generation forecast

4PU/RES maximum load change of controllable/renewable unit

within reserve activation time as share of PU/RES

4t correction factor between quarter hours and hours

BIGM sufficiently large number, e.g. 100,000

Pmin minimum load of controllable unit

pm market price of market m ∈ {aFRRpos, aFRRneg,
DA, ID}

PU/RES nominal capacity of controllable/renewable unit

prω probability of scenario ω ∈ {i,j,k}

qshort/long maximum short/long position on Day-ahead or Intra-
day market as proportion of maximum selling volume
on spot market

Variables

η Value-at-Risk (VaR)

κ cost

π contribution margin

ρ revenue

xsm,trade trade volume in spot market sm ∈ {DA, ID}, nega-
tive value represents buy volume

ximb imbalance volume to be covered by TSO, BIGM for-
mulation to impose zero imbalance

Positive Variables

4xm,U,+/− upward/downward (+/-) load change of controllable
unit in market m′ ∈ {aFRRpos, aFRRneg, spot}

s auxiliary variable for CV aR modeling

xm,bid bid volume on price level in market m ∈ {aFRRpos,
aFRRneg, DA, ID}

xrm,U/RES volume of rm ∈ {aFRRpos, aFRRneg} provided by
controllable/renewable unit U/RES

xdispatch,U/RES dispatch volume of controllable/renewable unit

ximb,+/− absolute value of positive/negative (+/-) imbalance
volume

xsm,dispatch,U/RES dispatch volume of controllable/renewable unit
addressed to spot market sm ∈ {DA, ID}

xsm,gen,bid sell bid volume for dispatch generation on price level
in spot market sm ∈ {DA, ID}

xsm,gen,trade sell volume of dispatch generation in spot market
sm ∈ {DA, ID}

xsm,long,bid ask bid volume on price level in spot market sm ∈
{DA, ID} to get a long position

xsm,long,trade buy volume on market sm ∈ {DA, ID} to get a long
position

xsm,short,bid sell bid volume on price level in spot market sm ∈
{DA, ID} to get a short position

xsm,short,trade sell volume on market sm ∈ {DA, ID} to get a short
position

Binary Variables

δsm,ask/sell auxiliary variable to ensure for one price level in spot
market sm ∈ {DA, ID} only either an ask or a sell
bid

δimb auxiliary variable for absolute value of imbalance

δm,U auxiliary variable for (potential) load change in com-
mitment on market m′ ∈ {aFRRpos, aFRRneg, spot}

δrm,U auxiliary variable for minimum load requirement of
controllable unit provision of rm ∈ {aFRRpos, aFR-
Rneg}

θ auxiliary variable for V aR modelling
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A.1 Highlights

• Application of multi-stage stochastic programming to trading on electricity markets.

• Consideration of expected value and (conditional) value at risk in target function.

• Trading strategies for reserve and spot markets under different risk preferences.

• Risk hedging by trading on the day-ahead, higher expected value on the intraday.

• Discussion of rationales for reserve market participation in a multi-market setting.
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A.2 Modelling of Reserve Prices

For each season and reserve direction, a separate model is estimated from empirical data. As an example, Table

3 presents the coefficients, standard error and t-value of the robust estimation for the negative product in the

transition season. The standard errors and t-values of all coefficients suggest high significance. The residuals

of the estimation εt are considered as a stochastic process, which consists of three regimes: A base regime as

well as a downward and an upward jump regime, with jump regime observations defined as observations more

than two standard deviations away from the mean. Figure 11 presents the residuals of the conducted robust

estimation for the negative product in the transition season.

Table 4 presents the residual standard errors to compare the used model configuration to less parsimonious ones.

It can be observed that the overall model fits support the literature and the hypothesis that reserve prices are not

completely explainable by the use of fundamental drivers as the residual standard errors are considerable. Yet,

the model fit does not suffer significantly from only considering five explanatory variables (seasonal average, solar

generation, residual load, lag 6, and a dummy for the distinction of weekdays and weekends). This observation

remains valid for all seasons and both directions. Therefore, the stochastic residuals are estimated based on the

parsimonious model configuration presented in Section 4.7.

Besides the distributional also the auto-regressive characteristics need to be modelled for the process to yield

sound simulation results. Therefore, an Ornstein-Uhlenbeck process is estimated for the base and the jump

regimes. Further, regime switching probabilities are derived from the historical data and used in a simulation

of the stochastic residuals. Figure 12 presents the results of one simulation of the residuals.

In total, 1000 stochastic residual time series are simulated. These time series are used in the simulation of the

reserve price scenarios for the respective type days. In accordance with Russo et al. (2021), three PV generation

and coherent residual load levels are distinguished for each season and type of weekday, resulting in 18 type

days in total. The levels of the exogenous variables and the stochastic residuals for the respective type day

are fed into the additive model. Note, that the lag yt−6 enters the model as exogenous variable. To obtain

a steady process with the stochastic components respected for accordingly, therefore the last step consists in

simulating 15 days of each day type with the 1000 stochastic residual time series, respectively. Finally, the

1000 observations of the 15th day are clustered with k-means clustering (k = 10), to obtain the reserve price

scenarios used in the stochastic optimization.

Figures 13 and 14 present the empirically observed values for the transition months and the scenarios derived

from the stochastic modeling for the days with medium forecasts for PV generation and residual load. Note,

that on the one hand, with variation to low and high levels the reserve price levels become more pronounced. On

the other hand, especially days with steep ramps of wind generation are not modelled in the stochastic process

but are well contained in the empirical data. The main purpose of the scenario generation is to derive typical

days and consistent reserve price patterns. In a real-world application, one would use day-ahead forecasts for

the exogenous variables instead of seasonal averages and their variations in upward and downward direction.
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Table 3: Coefficients for robust estimation of negative reserve product in transition season. All coefficients are
significant.

Coeff. Value Std.Error t-value

cs 2.250 0.316 7.130
β1 0.469 0.085 5.550
β2 -0.066 0.020 -3.355
β3 -0.628 0.077 -8.195
β4 0.679 0.016 42.725
β5 4.508 0.478 9.436
β6 -0.428 0.146 -2.944
β7 0.076 0.037 2.056
β8 -1.169 0.117 -10.001

Table 4: Goodness-of-fit of the additive reserve price models with residual standard error of the robust estimation
as a measure for model fit for the used model, alternative 1 (carbon price as additional explanatory variable),
alternative 2 (coal price as additional explanatory variable), alternative 3 (clean dark spread as additional
explanatory variable), and alternative 4 (carbon price and coal price as additional explanatory variables). No
significant improvement of model fit by including additional explanatory variables is observed. Required data for
currency exchange rates, carbon and coal prices taken from EPEX Spot (EPEX Spot, 2021) and investing.com
(investing.com, 2021).

Season Direction Used model Alt. 1 Alt. 2 Alt. 3 Alt. 4

Winter negative 0.372 0.356 0.372 0.358 0.383
Transition negative 0.298 0.301 0.302 0.297 0.297
Summer negative 0.383 0.390 0.373 0.408 0.372
Winter positive 0.360 0.356 0.358 0.353 0.353

Transition positive 0.576 0.563 0.546 0.550 0.560
Summer positive 0.534 0.536 0.545 0.538 0.520
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Figure 11: Residuals of the additive model estima-
tion for the negative reserve product and transition
season. The center, the outliers in upward direction
and the outliers in downward direction are covered
by the base regime, the upward jump regime and the
downward jump regime, respectively.
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Figure 12: Residuals simulated with the stochastic
process for the negative reserve product and tran-
sition season. The modeling yields a good fit to
the distribution of the residuals in Figure 11. The
strict definition of the regimes leads to a slight under-
representation of values around two standard devia-
tions away from the mean.
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Figure 13: Boxplots of empirical reserve prices in the transition months of 2019, distinguished by reserve product
and type of weekday (n = 1092).

●
●

●
●

● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

● ● ● ● ●

Working day Weekend day

P
O

S
N

E
G

00_04 04_08 08_12 12_16 16_20 20_24 00_04 04_08 08_12 12_16 16_20 20_24

0

25

50

75

100

0

25

50

75

100

Time slice

C
ap

ac
ity

 P
ric

e 
[E

U
R

/M
W

h]

Probability

0.050

0.075

0.100

0.125

0.150

Cluster

1

2

3

4

5

6

7

8

9

10

Figure 14: Scenarios derived from the stochastic modelling for the transition season on medium levels of PV
generation and residual load, distinguished by reserve product and type of weekday. Reserve price scenarios for
typeday tra2 correspond to the left column.
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A.3 Definition and Modelling of Risk

The VaR η is defined as the (1-α)-quantile of the contribution margin distribution, leading to the following

definition for a discrete probability distribution:

V aR(α, x) = max
{
η : P (ω|f(x, ω) < η}

}
, ∀α ∈ (0, 1) (52)

with f the distribution of contribution margins, the deterministic parameters x and the stochastic parameters

ω in probability space Ω. Including the VaR into the developed approach requires an extension of the model

described in the previous sections. However, it is mainly a modification of the target function, two additional

sets of constraints and auxiliary variables added to consider for the calculation of the VaR. The target function

is augmented by the variable η, that corresponds to the VaR. The target of optimization is now the weighted

sum of expected value and the VaR, with λ ∈ (0, 1) as parameter for risk aversion (e.g. λ = 0.2).

max (1− λ) · E(i,j,k)∈Ω(πi,j,k) + λ · η (53)

All constraints from above remain unchanged. In addition, the following two constraints are included in the

model. Parameter α represents the probability level of the VaR measure (e.g. α = 0.95), θi,j,k is a binary

variable equal to 1 if the contribution margin πi,j,k in scenario (i, j, k) is lower than η and equal to 0 otherwise.

With the means of 54 and 55, we ensure that with a probability of 1 − α percent the contribution margin is

lower or equal η.
I∑

i=1

pri

J∑

j=1

prj

K∑

k=1

prk · θi,j,k ≤ 1− α (54)

η − πi,j,k ≤ BIGM · θi,j,k ∀(i, j, k) ∈ Ω (55)

The CVaR is defined as the expected value of the contribution margin in the (1 − α) worst cases of the

distribution, or the expected value if the contribution margins fall below η, leading to following definition for a

discrete probability distribution:

CV aR(α, x) = max
{
η − 1

1− α · Eω∈Ω

{
max{η − f(x, ω), 0}

}}
(56)

with the Value-at-Risk η at α-level (α ∈ (0, 1)), the deterministic parameters x and the stochastic parameters

ω in probability space Ω. The main advantage of using the CVaR instead of the VaR, besides the coherence,

consists in the consideration of so-called fat-tails in the distribution of contribution margins.
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A.4 Exemplary Scenario Tree
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Figure 15: PV generation scenarios derived from the stochastic modelling for the transition season on medium
level of PV generation (e.g., tra2). The scenario tree captures the daily pattern as well as forecast updates in
the intraday stage.
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Figure 16: Spot price scenarios derived from the stochastic modelling for the transition season on medium levels
of PV generation and residual load. The scenario tree is arbitrage-free and captures the daily pattern as well
as the intra-hourly patterns of the quarter-hourly intraday prices.

38

277



Table 5: Quantitative results for efficient frontier under different risk aversion levels (λ) and different intervals
considered for the risk metric CVaR (α). The columns 4E(Π) and 4CVaR present the differences of the
strategies with risk aversion in comparison to the according risk neutral optimization.

Risk metric α λ E(Π) 4E(Π) CVaR 4CVaR

Unit [%] [%] [EUR/day] [EUR/day] [EUR/day] [EUR/day]

risk neutral 85 0 31033 - -44220 -
CVaR 85 10 29805 -1228 -16457 27763
CVaR 85 25 25658 -5375 6781 51000
CVaR 85 50 24822 -6210 8897 53116

risk neutral 85 0 31033 - -48410 -
CVaR 90 10 29130 -1903 -13701 34709
CVaR 90 25 25374 -5659 7259 55668
CVaR 90 50 24821 -6212 8611 57021

risk neutral 85 0 31033 - -51295 -
CVaR 95 10 29274 -1758 -15965 35330
CVaR 95 25 25922 -5110 4708 56003
CVaR 95 50 24730 -6302 7936 59231

A.5 Additional Results
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Figure 17: Empirical Cumulative Distributions of Contribution Margins throughout scenarios for trading strate-
gies considering the α = 85 % level for the CVaR, medium weekday transition season (tra2).
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Figure 18: Empirical Cumulative Distributions of Contribution Margins in the 15 % of worst case scenarios
(CVaR range), medium weekday transition season (tra2).
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Figure 19: Reserve market (aFRRneg) bid curves for slice 12-16 for different levels of CVaR range (α) and risk
aversion (λ), working day with medium residual load, transition season (tra2).
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λ = 0%, risk neutral
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Figure 20: Reserve market (aFRRneg) bids for different levels of CVaR range (α) and risk aversion (λ), working
day with medium residual load, transition season (tra2).
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Figure 21: Reserve market (aFRRneg) bids for different levels of CVaR range (α) and risk aversion (λ), weekend
day with high residual load, summer season (sum6).
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Figure 22: Reserve market (aFRRneg) bid curves for slice 12-16 for different levels of CVaR range (α) and risk
aversion (λ), weekend day with high residual load, summer season (sum6).
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