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1. Main results

In this paper we are concerned with the two-dimensional stationary inhomoge-
neous incompressible Navier–Stokes equations

(1.1)

{
div(ρu⊗ u)− div(µSu) +∇Π = f,

div u = 0, div(ρu) = 0.

The unknown density function ρ ≥ 0, the unknown velocity vector field u =
(u1, u2)

T ∈ R2 and the unknown pressure Π ∈ R depend on the spatial variable
x = (x1, x2) ∈ R2. The variable viscosity coefficient depends continuously on the
density function

(1.2) µ = b(ρ) ∈ [µ∗, µ
∗],

where the lower and upper bounds µ∗, µ
∗ are two positive constants and b ∈

C(R; [µ∗, µ
∗]) is a given function. The external force f : R2 7→ R2 is given.

In the above, ∇ =

(
∂x1

∂x2

)
, ∇u =

(
∂x1

u1 ∂x2
u1

∂x1
u2 ∂x2

u2

)
and the symmetric strain

tensor in (1.1) reads as

Su
def
=(∇+∇T )u =

(
2∂x1

u1 ∂x2
u1 + ∂x1

u2
∂x2u1 + ∂x1u2 2∂x2u2

)
.

We also denote div = ∇·, u⊗ u =

(
u1

2 u1u2
u1u2 u2

2

)
, and then

div (ρu⊗ u) =

(
∂x1

(ρu1
2) + ∂x2

(ρu1u2)
∂x1

(ρu1u2) + ∂x2
(ρu2

2)

)
,

div (µSu) =

(
∂x1(µ2∂x1u1) + ∂x2(µ(∂x2u1 + ∂x1u2))
∂x1(µ(∂x2u1 + ∂x1u2)) + ∂x2(µ2∂x2u2)

)
.

This section is organised as follows.
In Subsection 1.1 some related incompressible Navier–Stokes models and their

mathematical results will be presented.
In Subsection 1.2 we will show the existence and regularity results of (a class

of) weak solutions in a bounded domain to the stationary Navier–Stokes equations
(1.1) in Theorem 1.5. The proof of Theorem 1.5 will be placed in Section 2, and
for the reason of completeness both the exterior domain case and the whole plane
case will be studied in Appendix A.

In Subsection 1.3 we are interested in the symmetric solutions to the stationary
Navier–Stokes equations (1.1), and in particular we will formulate the solutions for
the parallel, concentric and radial flows respectively in Theorem 1.7. In the case
of piecewise-constant viscosity coefficients, we will give some irregularity results in
Corollary 1.9. Some explicit examples will be given in Appendix B.

In Subsection 1.4, we will show the Lp-type regularity of the velocity gradient
under some specific regularity assumptions on the viscosity coefficient (where the
piecewise-constant viscosity coefficient case is allowed) in Theorem 1.11.

We remark here that in the proofs of existence and regularity results, we are

going to consider the stream function Φ such that u = ∇⊥Φ =

(
∂x2Φ
−∂x1

Φ

)
, which

satisfies a fourth-order elliptic equation with the fourth-order elliptic operator given
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by
Lµ = (∂x2x2

− ∂x1x1
)µ(∂x2x2

− ∂x1x1
) + (2∂x1x2

)µ(2∂x1x2
).

On the other side, the irregularity of the viscosity coefficient may result in irreg-
ularity on the velocity vector field, e.g. the piecewise-constant viscosity coeffi-
cient may imply ∆u ̸∈ L1

loc(R
2) or div (µSu) ̸∈ L1

loc(R
2) (see Corollary 1.9), al-

though ∇u ∈ Lp(R2) and the divergence-free part of the viscous term Pdiv (µSu) =
∇⊥∆−1LµΦ ∈ Lp(R2) for all finite p (see Theorem 1.11).

1.1. Related works. There are a few works in the literature contributing to the
study of the evolutionary two-dimensional incompressible inhomogeneous Navier–
Stokes equations with variable viscosity coefficient

(1.3)


∂t(ρu) + div(ρu⊗ u)− div(2µSu) +∇Π = 0, (t, x) ∈ R+ × Ω,

div u = 0, ∂tρ+ div(ρu) = 0,

ρ
∣∣
t=0

= ρ0, (ρu)
∣∣
t=0

= m0.

Lions [Lio96] showed the global-in-time existence of weak solutions (ρ, u) ∈
(
L∞(R+×

Ω), (L2(R+;H1(Ω)))2
)
of the system (1.3) under the initial condition ρ0 ∈ L∞(Ω),

m0

ρ0
∈ (L2(Ω))2. The uniqueness and the regularity properties of such weak solu-

tions are still open, even in dimension two. There are some partial results toward
this issue, but to our best knowledge they are all limited to the case where the
viscosity coefficient µ(x) is close to some positive constant ν ∈ R+:

(1.4) ∥µ(x)− ν∥L∞(Ω) < ε,

where ε is some small enough positive constant. Desjardins [Des97] showed the
regularity property of the velocity vector field u ∈ L∞(R+; (H1(T2))2) for initial
data u|t=0 ∈ (H1(T2))2, if the smallness condition (1.4) holds. Abidi and Zhang
[AZ15] proved the existence and uniqueness of the solution under (1.4) and further
smoothness assumptions on the initial density function ρ0 − 1 ∈ L2(R2) ∩ L∞ ∩
Ẇ 1,r(R2), r > 2. Paicu and Zhang [PZ20] considered the so-called density-patch
problem with piecewise-constant density function ρ0 = η11Ω(x)+η21ΩC (x), η1, η2 ∈
R+, and showed that the H3(R2)-boundary regularity of the domain is propagated
by time evolution provided with (1.4). The case where µ(x) = ν is a positive
constant has been intensively studied in the past two decades, see e.g. [Dan13;
DM19; LS75] and the references therein. It is also worth mentioning the work
[VK97] for the study of the compressible Navier–Stokes equations with variable
viscosity coefficient.

If we consider the stationary homogeneous incompressible flow where the density
function ρ = 1 and the viscosity coefficient µ = ν is a positive constant, then the
system (1.1) becomes the following classical stationary Navier–Stokes equations

(1.5)

{
div(u⊗ u)− ν∆u+∇Π = f, x ∈ Ω,

div u = 0.

It has been studied extensively in the literature, whenever the underlying domain
is a connected bounded domain Ω , or a multi-connected domain ∪ni=1Ωi, or the
exterior of a multi-connected set U = (∪ni=1Ωi)

C , or the whole plane R2, see the
celebrated books [Gal11; Lad69]. If Ω has a boundary ∂Ω, we assume the boundary
value condition for the system (1.5)

(1.6) u|∂Ω = u0,
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and in compatible with divu = 0 we assume no flux through the boundary ∂Ω

(1.7)

ˆ
∂Ω

u0 · nds = 0.

In the above, n = (n1, n2) denotes the exterior normal vector to the boundary ∂Ω.
Leray [Ler33] showed the existence of weak solutions u ∈ (H1(Ω))2 on a simply

connected bounded domain Ω under the zero flux condition (1.7). This solvability
result can be generalized straightforward to a multi-connected domain case ∪ni=1Ωi,
if we assume furthermore no flux through the boundary of each connected compo-
nent

(1.8) Fi =
ˆ
∂Ωi

u0 · nds = 0, ∀1 ≤ i ≤ n.

If we assume only the smallness of the fluxes Fi or assume some further symmetric
properties, the solvability of the system (1.5) was also obtained, cf. [Gal91]. On a
multi-connected domain with only the zero total flux condition (1.7), the solvability
was shown by Korobkov, Pileckas, and Russo [KPR15]. Leray [Ler33] studied the
system (1.5) also on the exterior domain of a multi-connected set U = (∪ni=1Ωi)

C

under the boundary condition (1.8), and obtained the weak solutions u ∈ (Ḣ1(U))2

by constructing a sequence of weak solutions on the bounded domains which con-
verge to U . If the fluxes Fi are small, the solvability of (1.5) on U was estab-
lished by Finn [Fin59]. Concerning the whole plane R2 case, Guillod and Wittwer
[GW18] showed that for any given vector d ∈ R2 and a bounded positive measure

set D ⊂ R2, there exist solutions u ∈ (Ḣ1(R2))2 satisfying the prescribed mean
value on D: d = 1

meas(D)

´
D
u ∈ R2. However, the existence of decaying solutions,

as well as the uniqueness and the asymptotic behaviour of the solutions on the un-
bounded domains are still open, see e.g. [GW15; Gui17; Rus09] for further related
discussions. We also mention that Leray [Ler33] studied also (1.5) in dimension
three, as well as the evolutionary classical Navier-Stokes equations (i.e. (1.3) with
ρ = 1 and µ = ν, see also the celebrated books [CF88; Tem77]).

The stationary inhomogeneous incompressible flow with constant viscosity coef-
ficient is described by

(1.9)

{
div(ρu⊗ u)− ν∆u+∇Π = f, x ∈ Ω,

div u = 0, div(ρu) = 0.

On a simply connected domain in dimension two, by using the incompressibility
condition div u = 0 and the zero flux condition (1.7), the velocity vector field u can
be written as

u = ∇⊥Φ,

where Φ is the stream function of u. If

ρ = η(Φ),

for some well-chosen bounded function η ∈ L∞(R; [0,∞)), then the density equation
div(ρu) = 0 is automatically satisfied, at least in the distribution sense if u ∈ H1(Ω)
1. Frolov [Fro93] showed the existence and regularity results for the solutions of the

1Let {ηε} be the regularised function sequence of η which are uniformly bounded. Then

div (ηε(Φ)u) = (ηε)′(Φ)∇Φ · u = 0.

The equality div (ρu) = 0 follows as {ηε(Φ)u}ε (up to a subsequence) converges weakly to η(Φ)u
in L2(Ω).
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following form

(1.10) (ρ, u) = (η(Φ),∇⊥Φ),

where η is a Hölder continuous function. From now on, we call the form (1.10)
as Frolov’s form. Santos [San02] improved this existence result to only bounded
η-functions. Ammar-Khodja and Santos [AS05; AS06] considered the unbounded
Y-shape domain.

However, to the best of our knowledge, there are neither existence nor regularity
results of solutions to the two-dimensional stationary Navier-Stokes system (1.1)
with variable viscosity coefficient. We are going to give some existence and regu-
larity results for the solutions of Frolov’s form to the system (1.1) in Subsection
1.2, whose proof is postponed in Section 2. We will formulate the solutions with
certain symmetry properties in Subsection 1.3, where some irregularity results with
piecewise-constant viscosity coefficients will also be given. Finally we will discuss
further regularity issues in Subsection 1.4.

1.2. Existence and regularity results. We are going to study the boundary
value problem for the two dimensional stationary inhomogeneous incompressible
Navier-Stokes equation (1.1) on a simply connected bounded C1,1-domain Ω ⊂ R2:

(1.11)


div(ρu⊗ u)− div(µSu) +∇Π = f,

div u = 0, div(ρu) = 0,

u|∂Ω = u0,

where the boundary value u0 satisfies the zero flux condition (1.7):
´
∂Ω
u0 ·nds = 0.

Here the positive viscosity coefficient µ depends smoothly on the density function:

µ = b(ρ),

where b ∈ C(R; [µ∗, µ
∗]) with two positive constants µ∗, µ

∗ > 0 is a given function.
This section is organised as follows. We will introduce the boundary value prob-

lem for the stream function in Subsection 1.2.1. Then the density function as well
as its boundary condition will be discussed in Subsection 1.2.2. The definitions of
weak solutions and its existence and regularity properties will be given in Subsection
1.2.3 and Subsection 1.2.4 respectively. The proofs will be postponed in Section 2.
The exterior domain and the whole plane cases will be studied in Appendix A.

1.2.1. Stream function. We are going to look for the unknown stream function
Φ : Ω 7→ R such that the divergence-free velocity vector field is given by

(1.12) u = ∇⊥Φ
def
=

(
∂x2Φ
−∂x1Φ

)
.

Let n = (n1, n2) and τ = (n2,−n1) denote the unit normal and tangential vector
field on the boundary ∂Ω respectively. Then Φ should satisfy the boundary value
condition

∂Φ

∂n

∣∣
∂Ω

= u0 · τ,
∂Φ

∂τ

∣∣
∂Ω

= −u0 · n.
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If we parameterize the boundary ∂Ω by γ : [0, 2π) 7→ ∂Ω such that γ′(s) = τ(γ(s)),
then with a constant C0 ∈ R,

Φ|∂Ω(γ(s)) = Φ0(γ(s))
def
= −

ˆ s

0

u0 · ndθ + C0, s ∈ [0, 2π),

∂Φ

∂n

∣∣
∂Ω

(γ(s)) = Φ1(γ(s))
def
=(u0 · τ)(γ(s)), s ∈ [0, 2π).

(1.13)

We fix this constant C0 = 0 from now on.
We next derive the partial differential equation satisfied by the stream function.

We apply ∇⊥· =
(
∂x2

−∂x1

)
· to the first equation in (1.1) to arrive at

∇⊥ · div (µSu) = −∇⊥ · f +∇⊥ · div (ρu⊗ u).

By straightforward calculation, the left-hand side reads as a fourth-order elliptic
operator with positive variable coefficient µ ≥ µ∗ > 0 on Φ:

∇⊥ · div (µSu) = ∇⊥ · div
(
µ

(
2∂x1x2

Φ (∂x2x2
− ∂x1x1

)Φ
(∂x2x2

− ∂x1x1
)Φ −2∂x1x2

Φ

))
= (∂x2x2 − ∂x1x1)

(
µ(∂x2x2 − ∂x1x1)Φ

)
+ 2∂x1x2(µ2∂x1x2Φ).(1.14)

That is, the first equation in (1.1) becomes

LµΦ = −∇⊥ · f +∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ),(1.15)

where Lµ denotes the fourth-order elliptic operator

(1.16) Lµ = (∂x2x2 − ∂x1x1)µ(∂x2x2 − ∂x1x1) + (2∂x1x2)µ(2∂x1x2).

In particular, if µ(x) = ν is a positive constant, then Lν = ν∆2. We are going to
consider the boundary value problem for Φ:

(1.17)


LµΦ = −∇⊥ · f +∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ),

Φ|∂Ω = Φ0,
∂Φ

∂n

∣∣
∂Ω

= Φ1,

where Lµ,Φ0,Φ1 are given in (1.16) and (1.13) respectively.
We recall here the definition of elliptic operators in divergence form of order

2m, m ∈ N (see e.g. [ADN59; ADN64; DK11]) for readers’ convenience. Let
Lu =

∑
|α|,|β|≤mD

α(aαβD
βu) where α and β are multi-indices, u : Rd → Rn is a

vector-valued function and aαβ =
[
aijαβ(x)

]n
i,j=1

, |α|, |β| ≤ m, are n × n matrix-

valued functions. We say that L is an elliptic operator of 2mth-order if there exists
a constant δ ∈ (0, 1) such that

δ|ξ|2 ≤
∑

|α|=|β|=m

Re
(
aαβ(x)ξβ , ξα

)
≤ δ−1|ξ|2,

for any x ∈ Rd and ξ = (ξα)|α|=m , ξα ∈ Rn. Here we can rewrite Lµ as

Lµ =∂x1x1
µ∂x1x1

+ ∂x2x2
µ∂x2x2

− ∂x1x1
(µ− µ∗

2
)∂x2x2

− ∂x2x2
(µ− µ∗

2
)∂x1x1

+ 2∂x1x2
(µ− µ∗

2
)∂x1x2

+ 2∂x2x1
µ∂x2x1

def
=

∑
|α|=|β|=2

Dα(aµαβD
β),
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where µ∗, µ
∗ > 0 are the positive lower and upper bounds for the function µ. Then

for any ξ = (ξα)|α|=2 , ξα ∈ R2 the following inequality holds:

µ∗

2
|ξ|2 ≤

∑
|α|=|β|=2

aµαβ(x)ξβξα

=
µ∗

2
(ξ211 + ξ222) + (µ− µ∗

2
)(ξ11 − ξ22)

2 + 2(µ− µ∗

2
)ξ212 + 2µξ221 ≤ 2µ∗|ξ|2.

Hence, Lµ is a fourth-order elliptic operator as we can simply take δ = min{µ∗
2 ,

1
2µ∗ ,

1
2}.

1.2.2. Density function. Following Frolov’s idea in [Fro93], we can make an Ansatz

ρ = η(Φ),

where η ∈ L∞(R; [ρ∗, ρ∗]) with 0 ≤ ρ∗ ≤ ρ∗ is a nonnegative bounded fixed function,
such that the equation

div (ρu) = div (η(Φ)∇⊥Φ) = 0

holds in the distribution sense provided with e.g. Φ ∈ H2
loc(Ω).

The choice of the function η may depend on the prescribed boundary conditions

ρ|Σ = ρ0, u|∂Ω = u0,

where Σ ⊂ ∂Ω is a subset of the boundary ∂Ω. In the two-river-junction model in
[San02], Santos assumed the boundary condition of the density function as follows

(1.18) ρ|σj
= ρj ∈ L∞(σj), j = 1, 2,

where

σ1 = γ((0, s1)) and σ2 = γ((s2, s3)) ⊂ ∂Ω = γ([0, 2π)), 0 < s1 < s2 < s3 < 2π

are two disadjoint boundary sets, such that

(u0 · n)|σ1∪σ2
< 0 and (u0 · n)|γ([s1,s2]) = 0.

Then the boundary value Φ0 given in (1.13): Φ0(γ(s)) = −
´ s
0
u0 · ndθ is strictly

increasing on σ1 and σ2, while is constant on the interval γ([s1, s2]). We can then
choose η ∈ L∞(R; [0,∞)) such that

η = ρj ◦ Φ−1
0 ( i.e. η ◦ Φ0 = ρj) on σj , j = 1, 2.

If Σ = ∅, that is, we do not assume any boundary condition on the density
function, we can take any fixed bounded function η ∈ L∞(R; [0,∞)). We are going
to consider this case in this article, and we will search for the solutions for (1.11)
of Frolov’s form (1.10) below

(1.19) (ρ, u) =
(
η(Φ), ∇⊥Φ

)
.

Our results can be generalised straightforward to the above two-river-junction mod-
els, which we omit here for the simplicity of presentation.



8 Z. HE AND X. LIAO

1.2.3. Weak solutions. In this paragraph we give the definitions of weak solutions
to the boundary value problems (1.11) and (1.17) respectively. We first recall the
trace theorem and inverse trace theorem (see e.g. [HW08, Section 4.2]) below.

Theorem 1.1 (Trace theorem & Inverse trace theorem). (1) Let Ω be a C1-
domain. Then there exists a linear continuous trace operator

γ0 : H1(Ω) 7→ H
1
2 (∂Ω),

which is an extension of γ0u = u|∂Ω for u ∈ C0(Ω), and there exists a
linear continuous right inverse Γ0 to γ0 with

Γ0 : H
1
2 (∂Ω) 7→ H1(Ω) and γ0(Γ0(u0)) = u0, for all u0 ∈ H

1
2 (∂Ω).

(2) Let Ω be a C1,1 -domain. Then there exist two linear continuous trace
operators

γ0 : H2(Ω) 7→ H
3
2 (∂Ω), γ1 : H2(Ω) 7→ H

1
2 (∂Ω),

which are extensions of

γ0Φ = Φ|∂Ω for Φ ∈ C0(Ω), γ1Φ =
∂Φ

∂n

∣∣∣
∂Ω

for Φ ∈ C3(Ω).

Inversely, there exists a linear continuous right inverse Γ1 to (γ0, γ1) with

Γ1 : H
3
2 (∂Ω)×H

1
2 (∂Ω) 7→ H2(Ω) and γj(Γ1(Φ0,Φ1)) = Φj , j = 0, 1,

for all (Φ0,Φ1) ∈ H
3
2 (∂Ω)×H

1
2 (∂Ω).

Definition 1.2 (Weak solutions of the Navier–Stokes equations). Let Ω ⊂ R2 be a
bounded simply connected C1 domain. We say that a pair (ρ, u) ∈ L∞(Ω; [0,∞))×
H1(Ω;R2) is a weak solution of the boundary value problem (1.11) with the given

data u0 ∈ H
1
2 (∂Ω;R2), f ∈ H−1(Ω;R2), if divu = 0, div (ρu) = 0 hold in Ω in

the distribution sense, u0 = u|∂Ω is the trace of u on ∂Ω and the following integral
identity

(1.20)
1

2

ˆ
Ω

µSu : Sv dx =

ˆ
Ω

ρ(u⊗ u) : ∇v dx+ ⟨f, v⟩H−1(Ω),H1
0 (Ω),

holds for all v ∈ H1
0 (Ω;R

2) with div v = 0. Here A : B
def
=
∑2
i,j=1AijBij for the

matrices A = (Aij)1≤i,j≤2 and B = (Bij)1≤i,j≤2.

Definition 1.3 (Weak solutions of the elliptic equation). Let Ω ⊂ R2 be a bounded
simply connected C1,1 domain. Let η ∈ L∞(R; [0,∞)) and b ∈ C(R; [µ∗, µ

∗]) be two
given functions.

We say that Φ ∈ H2(Ω) is a weak solution of the boundary value problem (1.17)

with the given data Φ0 ∈ H
3
2 (∂Ω), Φ1 ∈ H

1
2 (∂Ω), f ∈ H−1(Ω;R2), if Φ0 = Φ|∂Ω

and Φ1 = ∂Φ
∂n

∣∣∣
∂Ω

in the trace sense and the following integral identity

ˆ
Ω

µ
(
(∂x2x2Φ− ∂x1x1Φ)(∂x2x2ψ − ∂x1x1ψ) + (2∂x1x2Φ)(2∂x1x2ψ)

)
dx

= ⟨f,∇⊥ψ⟩H−1(Ω),H1
0 (Ω) +

ˆ
Ω

ρ(∇⊥Φ⊗∇⊥Φ) : ∇∇⊥ψ dx,

(1.21)

holds for all ψ ∈ H2
0 (Ω), where ρ = η(Φ) and µ = b(ρ).
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Since for any v ∈ H1
0 (Ω;R

2) defined on a bounded connected C1,1 domain Ω
with div v = 0, there exists a corresponding stream function ψ ∈ H2

0 (Ω) such that
v = ∇⊥ψ, the equality (1.21) hence implies the equality (1.20) with u = ∇⊥Φ.
Therefore we have the following fact which passes the solvability of the elliptic
equation (1.17) to the solvability of the Navier-Stokes system (1.11).

Lemma 1.4. Let Ω ⊂ R2 be a bounded connected C1,1 domain. Let η ∈ L∞(R; [0,∞)),
b ∈ C(R; [µ∗, µ

∗]) with 0 < µ∗ ≤ µ∗ and f ∈ H−1(Ω;R2) be given. Let u0 ∈
H

1
2 (∂Ω;R2) satisfy zero-flux condition (1.7) and let Φ0 ∈ H

3
2 (∂Ω),Φ1 ∈ H

1
2 (∂Ω)

be given in (1.13) in terms of u0 and some fixed constant C0 ∈ R.
If Φ ∈ H2(Ω) is a weak solution of the boundary value problem (1.17), then

the pair of Frolov’s form (1.19): (ρ, u) =
(
η(Φ), ∇⊥Φ

)
is a weak solution of the

boundary value problem (1.11).

1.2.4. Existence and regularity results. Our main theorem concerning the existence
and the regularity properties of the weak solutions to the Navier-Stokes system
(1.1) as well as to the elliptic equation (1.15) reads as follows.

Theorem 1.5 (Existence and regularity results). Let η ∈ L∞(R; [0,∞)), b ∈
C(R; [µ∗, µ

∗]), 0 < µ∗ ≤ µ∗ be given. Let Ω ⊂ R2 be a bounded simply connected
C1,1 domain. Let f ∈ H−1(Ω;R2) be given.

(i) Then for any Φ0 ∈ H
3
2 (∂Ω),Φ1 ∈ H

1
2 (∂Ω), there exists at least one weak

solution Φ ∈ H2(Ω) of the boundary value problem (1.17).

(ii) Let C0 ∈ R and u0 ∈ H
1
2 (∂Ω;R2) with

´
∂Ω
u0 · n = 0. If Φ0 ∈ H

3
2 (∂Ω),Φ1 ∈

H
1
2 (∂Ω) are given by (1.13) and Φ ∈ H2(Ω) is a weak solution of (1.17), then

the pair of Frolov’s form

(1.22) (ρ, u) =
(
η(Φ), ∇⊥Φ

)
is a weak solution of the boundary value problem (1.11) with u ∈ H1(Ω;R2).

Furthermore, we have the following regularity results under additional smooth-
ness assumptions.

(1) If Ω is a connected C2,1 domain, the function η is taken to be continuous

and f ∈ L2(Ω;R2), then for any Φ0 ∈ H
5
2 (∂Ω),Φ1 ∈ H

3
2 (∂Ω) (resp. u0 ∈

H
3
2 (∂Ω;R2)) the weak solution Φ (resp. u) given in (i) (resp. (ii)) belongs to

W 2,p(Ω) (resp. W 1,p(Ω;R2)), for all p ∈ [1,∞).
(2) Let k ≥ 2 be an integer. If Ω is a connected Ck+1,1 domain, the functions

η, b ∈ Ckb (R) = {h ∈ Ck(R) | ∥h(j)∥L∞ <∞, ∀0 ≤ j ≤ k} and f ∈ Hk−1(Ω;R2),

then for any Φ0 ∈ Hk+ 3
2 (∂Ω),Φ1 ∈ Hk+ 1

2 (∂Ω) (resp. u0 ∈ Hk+ 1
2 (∂Ω)), the

weak solution Φ (resp. u) given in (i) (resp. (ii)) belongs to W k+1,p(Ω) (resp.
W k,p(Ω;R2)) for all 1 ≤ p <∞. In particular, if k = 2, then u ∈W 2,p(Ω;R2),
p > 2 is Lipschitz continuous.

Theorem 1.5 will be proved in Section 2, where we will follow J. Leray’s approach
in [Ler33] for the resolution of the classical stationary Navier-Stokes equation. By
virtue of the above Lemma 1.4, it remains to study the fourth-order nonlinear
elliptic equation (1.17) for the stream function Φ. Compared to the classical case,
we here have to pay more attention on the nonlinear dependence of the density ρ
and the viscosity coefficient µ on Φ.

For the completeness of the results, we will establish the existence and regularity
results in the exterior domain and the whole plane cases in Appendix A.
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Remark 1.6. We can also consider the system (1.11) in bounded domains of other
types, following the arguments for the classical Navier–Stokes equations (1.5). For
example, it is obvious that the existence and regularity results in Theorem 1.5 hold
true on a bounded multi-connected domain ∪ni=1Ωi, under zero flux assumption on
the boundary of each connected component (1.8).

The existence result in Theorem 1.5 can also be easily extended to the strip
domain R × [0, 1] by use of Poincaré inequality.

We can follow the idea in [GW16] by J. Guillod and P. Wittwer for (1.5) on the
half plane, to show the solvability of (1.11) on the half plane R× [0,∞) by assuming
small boundary value ∥u0∥L∞ on the unbounded boundary R × {0}.

1.3. Symmetric solutions. We turn to study the stationary Navier-Stokes equa-
tions (1.1) under some symmetry assumptions on the density function in this sub-
section.

We give first an observation when we write the velocity vector field u = ∇⊥Φ in
terms of the stream function Φ. Let U ⊂ R2 be an open set and we consider another
coordinate system (y1, y2) on it. We suppose that the Jacobian ∇xy = ( ∂yi∂xj

)1≤i,j≤2

is not degenerate and we consider the stationary Navier-Stokes system (1.1) on U .
If the density function depends only on y1

ρ = α(y1),

and α′ ̸= 0 does not vanish, then, by formal calculations, the equation

0 = div (ρu) = div (ρ∇⊥Φ) = α′(∇xy1 · ∇⊥
x y2)∂y2Φ = α′ det

(
∇xy

)
∂y2Φ

implies that Φ = β(y1) depends also only on y1 on U . Nevertheless it is not
necessary that there exists a function η such that ρ = η(Φ). Similarly, if Φ depends
only on y1

Φ = β(y1),

and β′ ̸= 0 does not vanish, then ρ = α(y1) depends also only on y1 and ρ = η(Φ)
with η = α ◦ β−1. In this case the pair (ρ, u) = (α(y1),∇⊥

x (β(y1))) is of Frolov’s
form (1.22).

We formulate the solutions (of Frolov’s form) to the stationary Navier-Stokes
system (1.1) when assuming certain symmetries on the density function in the
following theorem. In particular, the Couette flow between a parallel channel,
the concentric flow between concentric rotating circles, and the radial flow (also
called the Jeffery-Hamel flow) between two nonparallel converging/diverging lines
are described. Some explicit solutions of parallel, concentric and radial flows with
piecewise-constant viscosity coefficients will be given in Appendix B.

Theorem 1.7 (Formulation for the parallel, concentric and radial flows). If the
density function

ρ = ρ(x2) in R2, or ρ(r) in R2\{0}, or ρ(θ) in R2\{0}, with ρ′ ̸= 0,

where (r, θ) are polar coordinates in R2, then the velocity vector field u of the sta-
tionary Navier–Stokes equations (1.1) reads correspondingly as

(1.23) u = u1(x2) e1 in R2, or rg(r) eθ in R2\{0}, or
h(θ)

r
er in R2\{0},

where e1 =

(
1
0

)
, er =

(
x1

r
x2

r

)
, eθ =

(
x2

r
−x1

r

)
.
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Let the external force f = 0 in the system (1.1), then the scalar functions u1, g, h
above satisfy the following three ordinary differential equations of second order re-
spectively

∂x2(µ∂x2u1) = C,

∂r(µr
3∂rg) = −Cr,(1.24)

ρh2 + ∂θ(µ∂θh) + 4(µh) = C,

where C ∈ R can be arbitrarily chosen. Correspondingly the stream function

Φ = Φ(x2) or Φ(r) or Φ(θ)

satisfies the following elliptic equations of fourth order respectively

∂x2x2
(µ∂x2x2

Φ) = 0,

∂rr

(
µr3∂r(

1

r
∂rΦ)

)
= −C,(1.25)

∂θθ(µ∂θθΦ) + ∂θ
(
ρ(∂θΦ)

2 + 4µ∂θΦ
)
= 0.

Remark 1.8. In the case ρ = ρ(x2) or ρ = ρ(r), the velocity vector field u is related
only to the viscosity coefficient µ (while not ρ). Under some Dirichlet boundary
conditions the above ODEs (1.24) with given functions ρ, µ can be solved up to a
real constant, and hence there are uncountably many solutions to the corresponding
boundary value problems of the system (1.1).

Proof of Theorem 1.7. We are going to consider the cases ρ = ρ(x2), ρ = ρ(r) and
ρ = ρ(θ) separately. We notice that if we take the polar coordinate (r, θ) on the
plane R2, with

(x1, x2) = (r cos θ, r sin θ),

then

∇x = er∂r −
eθ
r
∂θ, ∇⊥

x =
er
r
∂θ + eθ∂r, with er =

(
x1

r
x2

r

)
, eθ =

(
x2

r
−x1

r

)
.

Case ρ = ρ(x2)
If ρ = ρ(x2) with ρ′ ̸= 0, then the equations div (ρu) = 0 and divu = 0 imply

that u2 = 0 and ∂x1
u1 = 0. Thus u1 = u1(x2). Hence

(1.26) ρ(u · ∇)u = 0 ∈ R2, div (µ(Su)) = ∂x2(µ∂x2u1) e1, ∆u = (∂x2x2u1) e1.

If f = 0, then the system (1.1) reads as(
−∂x2(µ∂x2u1) + ∂x1Π

∂x2
Π

)
=

(
0
0

)
.

The equation ∂x2Π = 0 implies Π = Π(x1). Thus there exists a constant C ∈ R
such that

∂x2
(µ∂x2

u1) = −∂x1
Π = C.

Case ρ = ρ(r)
If ρ = ρ(r) with ρ′ ̸= 0, then the equations div (ρu) = 0 and divu = 0 imply that

u·er = 0 and hence u = g1(r, θ)eθ for some scalar function g1. The incompressibility
divu = 0 then implies (∂rg1)er · eθ − (∂θg1)

eθ
r · eθ = 0, that is, ∂θg1 = 0. Thus

u = g1(r)eθ.
Let

g(r) =
g1(r)

r
, such that u = rg(r)eθ,
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then it is straightforward to calculate

∇u =

(
rg′ x1x2

r2 g + rg′
x2
2

r2

−g − rg′
x2
1

r2 −rg′ x1x2

r2

)
, Su = ∇u+∇Tu = rg′

(
2x1x2

r2
x2
2−x

2
1

r2
x2
2−x

2
1

r2 −2x1x2

r2

)
,

and

ρ(u · ∇)u = −rρg2er, div (µ(Su)) =
∂r(r

3µ∂rg)

r2
eθ,

∆u = (r∂rrg + 3∂rg)eθ.
(1.27)

If f = 0, then the system (1.1) reads as

(1.28)
(
−rρg2 + ∂rΠ

)
er +

(
−∂r(r

3µ∂rg)

r2
− 1

r
∂θΠ

)
eθ = 0.

Since µ = µ(r) and g = g(r), we derive from the above equation (1.28) in the
eθ-direction that ∂θΠ = α(r), where α is a function depending only on r. Then Π
has the form Π(r, θ) = α(r)θ + β(r), where β is a function depending only on r.
The above equation (1.28) in the er-direction implies that ∂rΠ depends only on r
and hence α(r) = C is a constant, such that

Π(r, θ) = Cθ + β(r).

We substitute ∂θΠ = C into the equation (1.28) to obtain (1.24)2.

Case ρ = ρ(θ)
If ρ = ρ(θ) with ρ′ ̸= 0, then the equations div (ρu) = 0 and divu = 0 imply that

u·eθ = 0 and hence u = h1(r, θ)er for some scalar function h1. The incompressibility
divu = 0 then implies

∂rh1 +
1

r
h1 = 0.

Thus h1(r, θ) =
h(θ)
r and u = h(θ)

r er. It is straightforward to calculate

∇u =
1

r4

(
−(x21 − x22)h− x1x2h

′ −2x1x2h+ x21h
′

−2x1x2h− x22h
′ (x21 − x22)h+ x1x2h

′

)
,

Su = ∇u+∇Tu =
1

r4

(
−2(x21 − x22)h− 2x1x2h

′ −4x1x2h+ (x21 − x22)h
′

−4x1x2h+ (x21 − x22)h
′ 2(x21 − x22)h+ 2x1x2h

′

)
,

and

ρ(u · ∇)u = −ρh
2

r3
er, div (µ(Su)) =

∂θ(µ∂θh)

r3
er − 2

∂θ(µh)

r3
eθ,

∆u =
∂θθh

r3
er − 2

∂θh

r3
eθ.

(1.29)

Thus the system (1.1) with f = 0 reads as

(1.30)
(
−ρh

2

r3
− ∂θ(µ∂θh)

r3
+ ∂rΠ

)
er +

(
2
∂θ(µh)

r3
− 1

r
∂θΠ

)
eθ = 0.

We derive from the above equation (1.30) in the eθ-direction that ∂θΠ = 2r−2∂θ(µh).
Since µ = µ(θ) and h = h(θ), Π has the form

Π(r, θ) = 2r−2(µh) + α(r),
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where α is a function depending only on r. We substitute ∂rΠ = − 4
r3 (µh) + α′(r)

into (1.30) to derive

ρh2 + ∂θ(µ∂θh) + 4(µh) = r3α′(r),

where the left-hand side depends only on θ and the right-hand side depends only
on r. Hence there exists C ∈ R such that (1.24)3 holds.

□

We have the following irregularity results, as a straightforward consequence from
Theorem 1.7.

Corollary 1.9 (Irregularity results with piecewise-constant viscosity coefficients).
For the parallel, concentric and radial flows formulated in Theorem 1.7 above, if we
assume that the viscosity coefficient

(1.31) µ = µ(x2), or µ(r), or µ(θ) is a step function jumping at a ∈ (0, 2π),

ρ, µ have positive lower and upper bounds, and that

∂x2
u1 ∈ L1

loc(R), or ∂rg ∈ L1
loc(R

+), or h and ∂θh ∈ L1
loc([0, 2π))(1.32)

do not vanish in a neighborhood Ua of a,

then

∆u = (∂x2x2u1) e1 ̸∈ L1
loc(R

2),

or (r∂rrg + 3∂rg)eθ ̸∈ L1
loc(R

2\{0}),

or
∂θθh

r3
er − 2

∂θh

r3
eθ ̸∈ L1

loc(R
2\{0}).

In the case of radial flow (ρ, u) = (ρ(θ), h(θ)r er), we also have

div (µSu) =
∂θ(µ∂θh)

r3
er − 2

∂θ(µh)

r3
eθ ̸∈ L1

loc(R
2\{0}).

Proof. If the viscosity coefficient µ = µ(x2) or µ(r) or µ(θ) is a step function with
the jump point at a, then µ′ is the delta distribution δa (up to a constant) which
does not belong to L1(Ua), with Ua a neighborhood of a. The expressions for ∆u,
div (µSu) in Corollary 1.9 can be found in (1.26), (1.27) and (1.29) above.

We assume by contradiction that

∆u = (∂x2x2
u1)e1 ∈ L1

loc(R
2),

or (r∂rrg + 3∂rg)eθ ∈ L1
loc(R

2\{0}),

or
∂θθh

r3
er − 2

∂θh

r3
eθ ∈ L1

loc(R
2\{0}),

then by the assumptions (1.32) we have

∂x2
u1 ∈W 1,1

loc (R) ⊂ L∞
loc(R),

or ∂rg ∈W 1,1
loc (R

+) ⊂ L∞
loc(R

+),

or h, ∂θh ∈W 1,1
loc ([0, 2π)) ⊂ L∞

loc([0, 2π)).
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Thus by the ODEs (1.24) and the assumption (1.32), in the neighborhood Ua,

∂x2
µ =

1

∂x2
u1

(C − µ∂x2x2
u1) ∈ L1

loc(Ua),

or ∂rµ =
1

r3∂rg

(
−Cr − µ∂r(r

3∂rg)
)
∈ L1

loc(Ua),

or ∂θµ =
1

∂θh

(
C − 4µh− ρh2 − µ∂θθh

)
∈ L1

loc(Ua).

This is a contradiction to (1.31).

Similarly, in the case of radial flow (ρ, u) = (ρ(θ), h(θ)r er), if we assume by
contradiction that

div (µSu) =
∂θ(µ∂θh)

r3
er − 2

∂θ(µh)

r3
eθ ∈ L1

loc(R
2\{0}),

then by the ODE (1.24)3 and the assumptions (1.32) we have

∂θ(µ∂θh) = C − 4µh− ρh2 ∈ L1
loc([0, 2π)), and hence ∂θ(µh) ∈ L1

loc([0, 2π)),

which implies the following which is a contradiction to (1.31):

∂θµ =
1

h
(∂θ(µh)− µ∂θh) ∈ L1

loc(Ua).

□

Remark 1.10. It is also straightforward to see that the (first-order) derivative of

µ∆Φ = µ(∂x2u1 − ∂x1u2),

or µ∂x2x2
Φ = µ∂x2

u1,

or µ∂x1x1
Φ = −µ∂x1

u2,

or µ(∂x2x2
Φ− ∂x1x1

Φ) = µ(∂x2
u1 + ∂x1

u2),

or µ(∂x1x2Φ) = µ(∂x1u1)

is not always locally integrable for piecewise-constant viscosity coefficients.

We calculate explicitly some solutions to the Navier-Stokes system (1.1) with
piecewise-constant viscosity coefficients in Appendix B, and we will see that they
are indeed of Frolov’s form.

1.4. Further regularity results. In contrast to the irregularity results for the
solutions of the stationary Navier-Stokes system (1.1) with piecewise-constant vis-
cosity coefficients (see Corollary 1.9)

∆u ̸∈ L1
loc(R

2\{0}), div (µSu) ̸∈ L1
loc(R

2\{0}),
we should have some regularity results for the velocity gradient and the divergence-
free part of the viscous term div (µSu)

∇u, Pdiv (µSu),

where P is the Leray-Helmholtz projector. On the whole plane R2, by use of Fourier
transform, any vector-valued tempered distribution v ∈ S ′(R2;R2) can be decom-
posed into its div-free and curl-free parts separately

v = ∇⊥V1 +∇V2,

with ∇⊥V1 = ∇⊥∆−1∇⊥ · v = Pv, ∇V2 = ∇∆−1∇ · v = (1− P)v,
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and the Leray-Helmholtz projector P (as Calderón-Zygmund operator) maps Lp(R2;R2)
into itself, for any p ∈ (1,∞). We can also define P on Lp(Ω;R2), 1 < p <∞ where
Ω is a bounded C1 domain and we recall here briefly a possible definition (see
[FMM98] for more details). Let v ∈ Lp(Ω;R2) and let ΠΩ : E ′(Ω) 7→ D′(Ω) be
the Newtonian potential operator which acts component-wise on vector fields. We
define the Leray-Helmholtz projector as follows:

(1.33) Pv = v −∇divΠΩ(v)−∇V,
where V ∈W 1,p(Ω) solves the following Laplacian equation with Neumann bound-
ary condition {

∆V = 0 in Ω,
∂V
∂n =

(
v −∇divΠΩ(v)

)
· n on ∂Ω.

By the results in Section 11 in [FMM98], we have the following Helmholtz-decomposition

Lp(Ω;R2) = Lpdiv ,0(Ω)⊕ gradW 1,p(Ω),

where

Lpdiv ,0(Ω)
def
={v ∈ Lp(Ω;R2) |div v = 0, v · n|∂Ω = 0},

gradW 1,p(Ω)
def
={∇V |V ∈W 1,p(Ω)},

and the orthogonal Leray-Helmholtz projector P : Lp(Ω) 7→ Lpdiv ,0(Ω) is bounded
and onto.

In this subsection we always consider the stationary Navier-Stokes system (1.1)
on a bounded C1,1 domain Ω, with zero external force f = 0 (noticing div (ρu⊗u) =
ρu · ∇u by the density equation div (ρu) = 0)

(1.34)

{
ρu · ∇u− div(µSu) +∇Π = 0,

div u = 0, div(ρu) = 0.

We apply the Leray-Helmholtz projector P to the first equation of the stationary
Navier-Stokes system (1.34) to derive (whenever one side is well-defined)

(1.35) Pdiv (µSu) = P(ρu · ∇u).
We observe also the following (formal) one-to-one correspondence between LµΦ

and P div(µSu):

LµΦ = ∇⊥ · Pdiv(µSu), Pdiv(µSu) = ∇⊥∆−1LµΦ,

where Φ denotes the stream function and we calculated straightforward in (1.14)
that

LµΦ := (∂x2x2
− ∂x1x1

)
(
µ(∂x2x2

− ∂x1x1
)Φ
)
+ 2∂x1x2

(µ2∂x1x2
Φ) = ∇⊥ · div (µSu).

The equality LµΦ = ∇⊥ · (ρu · ∇u) will help to derive the regularity results below.

1.4.1. Regularity results. We have the following regularity results under some (par-
tial) regularity assumptions on the viscosity coefficients (e.g. in the case of pieceweise-
constant viscosity coefficients).

Theorem 1.11 (Lp-boundedness for ∇u and Pdiv (µSu)). Let Ω be a bounded
C1,1 domain. For any weak solution (ρ, u) ∈ L∞(Ω) ×H1(Ω;R2) to the boundary
value problem of the stationary Navier-Stokes system (1.11) with zero external force
f = 0 (e.g. the solutions given in Theorem 1.5), we have

(1.36) Pdiv (µSu) ∈ Lp(Ω;R2), ∀p ∈ (1, 2).
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If furthermore the boundary value u0 ∈ W 1,∞(∂Ω) and the viscosity coeffi-
cient µ ∈ [µ∗, µ

∗], µ∗, µ
∗ > 0 is a variably partially BMO coefficient (e.g. stri-

ated pieceweise-constant viscosity coefficients as in Theorem 1.7), i.e. there exist
R0 ∈ (0, 1] and γ = γ(p, µ∗, µ

∗) ∈ (0, 1/20) such that for any x ∈ Ω and any
r ∈ (0,min{R0,dist(x, ∂Ω)/2}) there exists a coordinate system (y1, y2) depending
on x and r such that

1

|Br(x)|

ˆ
Br(x)

∣∣∣∣µ(y1, y2)− 1

2r

ˆ y2+r

y2−r
µ(y1, s) ds

∣∣∣∣ dy ≤ γ,

then we have

(1.37) ∇u ∈ Lp(Ω;R4) and Pdiv (µSu) ∈ Lp(Ω;R2), ∀p ∈ [2,∞).

Proof. By Sobolev embedding and Hölder’s inequality, we have for the weak solu-
tions (ρ, u) ∈ L∞(Ω)×H1(Ω;R2) that

u ∈ Ls(Ω;R2) for any s ∈ [1,∞),

and hence ρu · ∇u ∈ Lp(Ω;R2) for any p ∈ [1, 2).

By the Lp-estimate for the Leray-Helmholtz projector P and the equality (1.35),
we have (1.36).

Recall the fourth-order elliptic equation (1.15) for the stream function Φ (we
assume f = 0)

(1.38) LµΦ = ∇⊥ · div (ρu⊗ u),

with Lµ = (∂x2x2 −∂x1x1)µ(∂x2x2 −∂x1x1)+(2∂x1x2)µ(2∂x1x2). By Sobolev embed-
ding and Hölder’s inequality again, for any solutions (ρ, u) ∈ L∞(Ω) × H1(Ω;R2)
we have

ρu⊗ u ∈ Lp(Ω;R4), ∀p ∈ [2,∞).

For any boundary value u0 ∈ W 1− 1
p ,p(∂Ω), p ∈ [2,∞), we may assume (with an

abuse of notations) Φ0 ∈W 2,p(Ω) to be the extension of the boundary value defined
in (1.13) with2

∥Φ0∥W 2,p(Ω) ≲ ∥u0∥
W

1− 1
p
,p
(∂Ω)

.

By the Lp-Estimate for the fourth-order elliptic equation with variably partially
BMO coefficient in Theorem 8.6 in [DK11], we have

∥Φ∥W 2,p(Ω) ≤ C(p, µ∗, µ
∗, R0, |Ω|)

(
∥ρu⊗ u∥Lp(Ω) + ∥Φ0∥W 2,p(Ω)

)
,

for all p ∈ [2,∞). Thus

Φ ∈W 2,p(Ω) and hence u ∈W 1,p(Ω) ⊂ L∞(Ω), ∀p ∈ [2,∞).

Thus (1.37) follows from the equation (1.35). □

Remark 1.12 (Symmetric flows in Theorem 1.7 revisited). Notice that in the
parallel flow case and in the concentric flow case, we have

P div(µSu) = div(µSu),

which is smooth by view of (1.24), (1.26) and (1.27).

2The trace & inverse trace Theorem 1.1 holds also for u ∈ W 1,p and Φ ∈ W 2,p with p ∈ (1,∞),
see for example [Gal11, Theorem 2.4.4].
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In the radial flow case ρ = ρ(θ), we assume that

div(µSu) = ∇⊥(
α(θ)

r2
) +∇(

β(θ)

r2
),

where α = α(θ), β = β(θ) are scalar functions depending only on θ. Then by (1.29)
and (1.24)3: ρh

2 + (µh′)′ + 4(µh) = C, α and β satisfy{
− 2β + α′ = (µh′)′

β′ + 2α = 2(µh)′,

that is, {
α′′ + 4α = 4(µh)′ + (µh′)′′ = −(ρh2)′,

β′′ + 4β = −2(µh′)′ + 2(µh)′′ = 2(ρh2 + 4µh− C) + 2(µh)′′.

We calculate straightforward (in the sense of distribution) that

α = − sin(2θ)

2

ˆ θ

0

cos(2s)(ρh2)′(s) ds+
cos(2θ)

2

ˆ θ

0

sin(2s)(ρh2)′(s) ds

+ C1 sin(2θ) + C2 cos(2θ),

∂θα = − cos(2θ)

ˆ θ

0

cos(2s)(ρh2)′(s) ds− sin(2θ)

ˆ θ

0

sin(2s)(ρh2)′(s) ds

+ 2C1 cos(2θ)− 2C2 sin(2θ),

for some real constants C1, C1 ∈ R. It is then easy to see that if ρh2 ∈ Lp([0, 2π))
then α, ∂θα ∈ Lp([0, 2π)) and hence

P div(µSu) = ∇⊥(
α

r2
) = −2α

r3
eθ +

∂θα

r3
er ∈ Lploc(R

2\{0}).

However, if µ has a jump at the point a, then β also has a jump at a, since (formally)
β′ = 2(µh)′ − 2α = 2µh′ + 2µ′h − 2α. Thus div (µSu) ̸∈ L1

loc(R
2\{0}), which has

been claimed in Corollary 1.9.

1.4.2. Further discussions on the fourth-order elliptic equation. We conclude this
section with some further discussions on the fourth-order elliptic equation (1.15).
If the right-hand of the equation (1.15) simply vanishes, that is,

(1.39) LµΦ = (∂x2x2
− ∂x1x1

)µ(∂x2x2
− ∂x1x1

)Φ + (2∂x1x2
)µ(2∂x1x2

)Φ = 0,

then with the function Ψ : R2 → R satisfying(
µ(∂22 − ∂11)Φ

µ2∂12Φ

)
=

(
−2∂12Ψ

(∂22 − ∂11)Ψ

)
,

the complex value function Λ = Φ+ iΨ solves the following second-order Beltrami-
type equation

∂2z̄Λ =
1− µ

1 + µ
∂2zΛ, z = x1 + ix2.

This description can be compared with the first-order Beltrami equation

∂z̄w̃ =
1− σ

1 + σ
∂zw̃.
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Here w̃ = ũ + iṽ is a complex value function, where the real part ũ satisfies a
second-order elliptic equation of divergence form

(1.40) div(σ(x)∇ũ) = 0,

and the imaginary part ṽ is related by σ(x)∇ũ = ∇⊥ṽ. According to [AFS08], on
a bounded domain Ω ⊂ R2, there exists a measurable function σ : Ω 7→ { 1

K ,K},
K > 1 such that the solutions ũ ∈ H1(Ω) to the equation (1.40) with the boundary
condition ũ|∂Ω = x1 satisfies

ˆ
B

|∇ũ|
2K

K−1 = ∞,

for any disk B ⊂ Ω. That is, ũ ̸∈W 1,p(Ω) for any p ≥ 2K
K−1 .

Following the convex integration method in [AFS08] (and after personal discus-
sions with Laszlo Szekelyhidi), one can show that there exists a measurable function
µ : Ω 7→ { 1

K ,K}, K > 1 such that the solutions Φ ∈ H2(Ω) of the equation (1.39)
satisfies ˆ

B

|∇2Φ|
2K

K−1 = ∞,

for any disk B ⊂ Ω. Although it is not clear whether this constructed solution
(ρ, u) = (b−1(µ),∇⊥Φ) solves the stationary Navier-Stokes equation (1.1), we ex-
pect in general that the solutions for (1.1) with only bounded viscosity coefficient
µ (without any smoothness assumption)

∇u ̸∈ Lp(Ω), for any p ≥ p∗,

where p∗ <∞ depends on the deviation |µ− 1|.

2. Proof of Theorem 1.5

In this section we are going to prove Theorem 1.5.
By virtue of Lemma 1.4 and the definitions in Subsection 1.2, in order to prove

(i) in Theorem 1.5, it suffices to show the existence of the weak solutions Φ ∈ H2(Ω)
of the boundary value problem (1.17)

(2.1)


LµΦ = ∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ)−∇⊥ · f,
ρ = η(Φ), µ = (b ◦ η)(Φ),

Φ|∂Ω = Φ0,
∂Φ

∂n

∣∣
∂Ω

= Φ1,

where Lµ denotes the following fourth-order elliptic operator

Lµ = (∂x2x2
− ∂x1x1

)µ(∂x2x2
− ∂x1x1

) + (2∂x1x2
)µ(2∂x1x2

).

Here the functions η ∈ L∞(R; [0, ρ∗]), 0 < ρ∗, b ∈ C(R; [µ∗, µ
∗]), 0 < µ∗ ≤ µ∗ and

the data Φ0 ∈ H
3
2 (∂Ω), Φ1 ∈ H

1
2 (∂Ω), f ∈ H−1(Ω;R2) are given.

We will first show the solvability of (2.1) on a bounded simply connected C1,1

domain in Subsection 2.1, and then the regularity results in Theorem 1.5 in Sub-
section 2.2.



2D STATIONARY INCOMPRESSIBLE INHOMOGENEOUS NAVIER–STOKES EQUATIONS 19

2.1. Solvability on the bounded domain. Let Ω be a bounded simply connected
C1,1 domain on R2.

We first treat the boundary condition Φ|∂Ω = Φ0 ∈ H
3
2 (∂Ω) and ∂Φ

∂n

∣∣
∂Ω

= Φ1 ∈
H

1
2 (∂Ω). By the inverse trace Theorem 1.1 and the Whitney’s extension Theorem,

we extend Φ0 on the whole plane R2 (still denoted by Φ0) such that ∂Φ0

∂n

∣∣
∂Ω

= Φ1

and Φ0 ∈ H2(R2). We then take a sequence of truncated functions ζ(x; δ) near the
boundary ∂Ω and define

(2.2) Φδ0(x) = Φ0(x)ζ(x; δ) ∈ H2(R2).

Here ζ(x; δ) ∈ C∞
0 (R2) is a smooth function, with ζ(x; δ) = 1 near ∂Ω and ζ(x; δ) =

0 if dist(x, ∂Ω) ≥ δ, such that

|ζ(x; δ)| ≤ C, |∇ζ(x; δ)| ≤ Cδ−1, ∀δ ∈ (0, δ1],

for some fixed constants C > 0 and δ1 > 0. Then

Φδ0|∂Ω = Φ0|∂Ω,
∂Φδ0
∂n

|∂Ω = Φ1.

Fix δ > 0. If Φ ∈ H2(Ω) is a weak solution of the elliptic problem (2.1), then

(2.3) φδ
def
= Φ− Φδ0 ∈ H2

0 (Ω)

satisfies ˆ
Ω

µ
(
(∂22φ

δ − ∂11φ
δ)(∂22ψ − ∂11ψ) + (2∂12φ

δ)(2∂12ψ)
)
dx

=

ˆ
Ω

ρ(∇⊥(Φδ0 + φδ)⊗∇⊥(Φδ0 + φδ)) : ∇∇⊥ψ dx+

ˆ
Ω

f · ∇⊥ψ dx

−
ˆ
Ω

µ
(
(∂22Φ

δ
0 − ∂11Φ

δ
0)(∂22ψ − ∂11ψ) + (2∂12Φ

δ
0)(2∂12ψ)

)
dx,

with ρ = η(Φδ0 + φδ) and µ = b(ρ), ∀ψ ∈ H2
0 (Ω),

(2.4)

and vice versa. We hence search for φδ ∈ H2
0 (Ω) satisfying (2.4).

Fix φ̃ ∈ H2
0 (Ω) and set

(2.5) ρ̃δ = η(Φδ0 + φ̃), µ̃δ = (b ◦ η)(Φδ0 + φ̃).

We take a sequence of mollifiers (σε)ε on R2, with σε = 1
ε2σ(

·
ε ), σ ∈ C∞

0 (R2),´
R2 σ = 1. We define

Φε0 = σε ∗ Φ0 and Φδ,ε0 = Φε0(x)ζ(x; δ) ∈ H3(R2),(2.6)

such that for any fixed δ < δ1,

Φδ,ε0 → Φδ0 in H2(R2),(2.7)

where Φδ0 is given in (2.2). We take a sequence of mollifiers (ϕε)ε on R, with
ϕε = 1

εϕ(
·
ε ), ϕ ∈ C∞

0 (R),
´

R ϕ = 1. We regularize ρ̃δ, µ̃δ, f (we simply extend f
trivially on the whole plane)

fε = σε ∗ f ∈ L2(Ω;R2),

ηε = ϕε ∗ η ∈ C2
b (R; [0, ρ

∗]), bε = ϕε ∗ b ∈ C2
b (R; [µ∗, µ

∗]),

ρ̃δ,ε = ηε(Φδ,ε0 + φ̃) ≤ ρ∗, µ̃δ,ε = bε
(
ρ̃δ,ε
)
∈ H2(Ω; [µ∗, µ

∗]),
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such that

fε → f in H−1(Ω;R2),

ρ̃δ,ε
∗
⇀ρ̃δ and µ̃δ,ε

∗
⇀µ̃δ in L∞(Ω) as ε→ 0.(2.8)

In the following we are going to find φδ ∈ H2
0 (Ω) satisfying (2.4) in three steps.

In Step 1 we will search for the unique φ ∈ H2
0 (Ω) satisfying

ˆ
Ω

µ̃δ,ε
(
(∂22φ− ∂11φ)(∂22ψ − ∂11ψ) + (2∂12φ)(2∂12ψ)

)
dx

=

ˆ
Ω

ρ̃δ,ε(∇⊥(Φδ,ε0 + φ̃)⊗∇⊥(Φδ,ε0 + φ)) : ∇∇⊥ψ dx+

ˆ
Ω

fε · ∇⊥ψ dx

−
ˆ
Ω

µ̃δ,ε
(
(∂22Φ

δ,ε
0 − ∂11Φ

δ,ε
0 )(∂22ψ − ∂11ψ) + (2∂12Φ

δ,ε
0 )(2∂12ψ)

)
dx,

∀ψ ∈ H2
0 (Ω).

(2.9)

This unique solution will be denoted by φδ,ε.
Similarly, let λ ∈ [0, 1] be a parameter. Then there exists a unique solution

φδ,ελ ∈ H2
0 (Ω) satisfying

ˆ
Ω

µ̃δ,ελ

(
(∂22φ

δ,ε
λ − ∂11φ

δ,ε
λ )(∂22ψ − ∂11ψ) + (2∂12φ

δ,ε
λ )(2∂12ψ)

)
dx

= λ

ˆ
Ω

ρ̃δ,ελ (∇⊥(λΦδ,ε0 + φ̃)⊗∇⊥(λΦδ,ε0 + φδ,ελ )) : ∇∇⊥ψ dx+ λ

ˆ
Ω

fε · ∇⊥ψ dx

− λ

ˆ
Ω

µ̃δ,ελ

(
(∂22Φ

δ,ε
0 − ∂11Φ

δ,ε
0 )(∂22ψ − ∂11ψ) + (2∂12Φ

δ,ε
0 )(2∂12ψ)

)
dx,

with ρ̃δ,ελ = ηε(λΦδ,ε0 + φ̃) and µ̃δ,ε = bε(ρ̃δ,ελ ), ∀ψ ∈ H2
0 (Ω).

(2.10)

Notice that (2.9) is (2.10) with λ = 1.
In Step 2 we will define the map

T δ,ε : [0, 1]×H2
0 (Ω) ∋ (λ, φ̃) 7→ φδ,ελ ∈ H2

0 (Ω).

Notice that, if φδ,ελ satisfies φδ,ελ = T δ,ε(λ, φδ,ελ ), then (2.10) can be seen as an

equality for Φελ := λΦδ,ε0 + φδ,ελ ,

ˆ
Ω

µελ

(
(∂x2x2

Φελ − ∂x1x1
Φελ)(∂x2x2

ψ − ∂x1x1
ψ) + (2∂x1x2

Φελ)(2∂x1x2
ψ)
)
dx

= λ

ˆ
Ω

ρελ(∇⊥Φελ ⊗∇⊥Φελ) : ∇∇⊥ψ dx+ λ

ˆ
Ω

f · ∇⊥ψ dx, ∀ψ ∈ H2
0 (Ω),

(2.11)

where ρελ = ηε(Φελ), µ
ε
λ = bε(ρελ). We observe that Φελ is independent of δ. This

fact is going to be used to show a uniform bound on the sequence (φδ,ελ ).
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We are going to show that the map T δ,ε has a fixed point with λ = 1 (denoted
by φδ,ε) satisfying (2.9) with φ̃ = φδ,ε:

ˆ
Ω

µδ,ε
(
(∂22φ

δ,ε − ∂11φ
δ,ε)(∂22ψ − ∂11ψ) + (2∂12φ

δ,ε)(2∂12ψ)
)
dx

=

ˆ
Ω

ρδ,ε(∇⊥(Φδ,ε0 + φδ,ε)⊗∇⊥(Φδ,ε0 + φδ,ε)) : ∇∇⊥ψ dx+

ˆ
Ω

fε · ∇⊥ψ dx

−
ˆ
Ω

µδ,ε
(
(∂22Φ

δ,ε
0 − ∂11Φ

δ,ε
0 )(∂22ψ − ∂11ψ) + (2∂12Φ

δ,ε
0 )(2∂12ψ)

)
dx,

with ρδ,ε = ηε(Φδ,ε0 + φδ,ε) and µδ,ε = bε(ρδ,ελ ), ∀ψ ∈ H2
0 (Ω).

(2.12)

To show the existence of the fixed point, we will apply the following Leray-Schauder’s
fixed point theorem, after checking the conditions (LS1), (LS2) and (LS3) one by
one.

Theorem 2.1 (Leray-Schauder’s fixed point theorem, [MPS00]). Let B be a Ba-
nach space. If

(LS1) T (0, u) = 0, for all u ∈ B,
(LS2) T is a compact map from B × [0, 1] to B,
(LS3) The solutions of u = T (λ, u) for all λ ∈ [0, 1] are uniformly bounded in B.

Then there exists u ∈ B such that u = T (1, u).

In Step 3 we will take ε → 0 in the sequence {φδ,ε} such that the limit φδ

satisfies (2.4), and hence Φ = Φδ0 + φδ solves the boundary value problem (2.1) on
the bounded domain Ω.

Step 1 Unique solvability of (2.9).
Let φ̃ ∈ H2

0 (Ω) be given. We are going to search for φ ∈ H2
0 (Ω) satisfying (2.9)

under the following assumptions on the given functions:
(2.13)

ρ̃δ,ε = ηε(Φδ,ε0 + φ̃) ≤ ρ∗, µ̃δ,ε ∈ [µ∗, µ
∗], Φδ,ε0 ∈ H2(R2), fε ∈ H−1(Ω;R2).

For notational simplicity we do not indicate the upper indices δ, ε explicitly in this
step.

We define the inner product ⟨·, ·⟩ on the Hilbert space H2
0 (Ω;R) as follows:

⟨φ,ψ⟩ def=
ˆ
Ω

µ̃
(
(∂22φ− ∂11φ)(∂22ψ − ∂11ψ) + (2∂12φ)(2∂12ψ)

)
dx.

Then the corresponding norm ⟨·, ·⟩ 1
2 is equivalent to the H2-norm on H2

0 (Ω). In-
deed,

µ∗a ≤ ⟨φ,φ⟩ =
ˆ
Ω

µ̃
(
(∂22φ− ∂11φ)

2 + (2∂12φ)
2
)
dx ≤ µ∗a,

where

a
def
=

ˆ
Ω

(
(∂22φ− ∂11φ)

2 + (2∂12φ)
2
)
dx ≥ 0.
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By integration by parts and approximation arguments, for φ ∈ H2
0 (Ω) there holds

a =

ˆ
Ω

(
(∂11φ)

2 + (∂22φ)
2 − 2∂11φ∂22φ+ (2∂12φ)

2
)
dx

=

ˆ
Ω

(
(∂11φ)

2 + (∂22φ)
2 + 2∂11φ∂22φ

)
dx =

ˆ
Ω

(∂11φ+ ∂22φ)
2 dx = ∥∆φ∥2L2(Ω).

Thus

√
µ∗∥∆φ∥L2(Ω) ≤ ⟨φ,φ⟩ 1

2 ≤
√
µ∗∥∆φ∥L2(Ω),(2.14)

and hence by virtue of the equivalence of the norms ∥∆ · ∥L2(Ω) ∼ ∥ · ∥H2(Ω) on

H2
0 (Ω), we have the equivalence of the norms

⟨·, ·⟩ 1
2 ∼ ∥ · ∥H2(Ω), on H2

0 (Ω).

Notice that the left-hand side of (2.9) reads as ⟨φ,ψ⟩. We are going to show that
the right-hand side of (2.9) is a linear functional on H2

0 (Ω)

l(ψ),

which by Lax-Milgram theorem defines a unique element (denoted by Aφ) in H2
0 (Ω)

such that

l(ψ) = ⟨Aφ,ψ⟩.

Then we will verify the conditions (LS1), (LS2) and (LS3) in Leray-Schauder’s fixed
point Theorem 2.1 for the map

αA : [0, 1]×H2
0 (Ω) 7→ H2

0 (Ω),

to show the existence of the unique solution for the equation

φ = Aφ

and hence (2.9).
Definition of the operator A. By virtue of (2.13), the right-hand side of (2.9)
depends linearly on ψ and can be bounded by(

ρ∗∥Φ0 + φ̃∥W 1,4∥Φ0 + φ∥W 1,4 + ∥f∥H−1 + 8µ∗∥Φ0∥H2

)
∥ψ∥H2

≤ C(ρ∗ + µ∗ + 1)(∥Φ0∥H2 + ∥φ̃∥H2 + ∥f∥H−1)
(
1 + ∥Φ0∥H2 + ∥φ∥H2

)
∥ψ∥H2 ,

for some constant C > 0. Here we used the Sobolev’s inequality

∥g∥L4(Ω) ≤ C∥g∥H1(Ω), ∀g ∈ H1(Ω).

Hence the right-hand side of (2.9) defines a linear functional l(ψ) on H2
0 (Ω), which

defines correspondingly by Lax-Milgram theorem an element (denoted by Aφ) such
that l(ψ) = ⟨Aφ,ψ⟩.
Verification of Condition (LS1). If α = 0, then the map αA = 0 trivially.

Verification of Condition (LS2). In order to show the compactness of the
operator αA, we take a weak convergent sequence (αn, φn) ⊂ [0, 1] × H2

0 (Ω). By
virtue of the compact embedding H2

0 (Ω) ↪→ W 1,4(Ω), there exists a subsequence
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(still denoted by (αn, φn)) converging strongly in [0, 1]×W 1,4(Ω), and hence

∥αnAφn − αmAφm∥H2 ≤ sup
∥ψ∥H2=1

(
|αn⟨Aφn −Aφm, ψ⟩|+ |(αn − αm)⟨Aφm, ψ⟩|

)
≤ sup

∥ψ∥H2=1

∣∣∣ˆ
Ω

ρ̃
(
∇⊥(Φ0 + φ̃)⊗∇⊥(φn − φm)

)
: ∇∇⊥ψ dx

∣∣∣
+ |αn − αm|∥Aφm∥H2

≤ C(∥φn − φm∥W 1,4 + |αm − αn|)
×
(
ρ∗∥Φ0 + φ̃∥W 1,4(1 + ∥φm∥W 1,4) + ∥f∥H−1 + µ∗∥Φ0∥H2

)
→ 0 as n,m→ ∞.

Verification of Condition (LS3). The solutions of φ = αAφ are uniformly
bounded in H2

0 (Ω). Indeed, if φ = αAφ ∈ H2
0 (Ω), then ⟨φ,ψ⟩ = α⟨Aφ,ψ⟩ = αl(ψ)

for any ψ ∈ H2
0 (Ω), and in particular when ψ = φ,

⟨φ,φ⟩ = α

ˆ
Ω

ρ̃(∇⊥(Φ0 + φ̃)⊗∇⊥(Φ0 + φ)) : ∇∇⊥φdx+ α

ˆ
Ω

f · ∇⊥φdx

− α

ˆ
Ω

µ̃
(
(∂22Φ0 − ∂11Φ0)(∂22φ− ∂11φ) + (2∂12Φ0)(2∂12φ)

)
dx.

Notice the equalityˆ
Ω

ρ̃(∇⊥(Φ0 + φ̃)⊗∇⊥φ) : ∇∇⊥φdx =

ˆ
Ω

ρ̃∇⊥(Φ0 + φ̃) · ∇∇⊥φ · ∇⊥φdx

= −1

2

ˆ
Ω

div
(
ρ̃∇⊥(Φ0 + φ̃)

)
|∇⊥φ|2 dx = 0,(2.15)

where we used ρ̃ = η(Φ0 + φ̃) in the last equality. We hence derive from ⟨φ,φ⟩ =
αl(φ) above and ∥g∥L4(Ω) ≤ C∥g∥H1(Ω) that

(2.16) ⟨φ,φ⟩ ≤ Cα(ρ∗ + 1+ µ∗)(∥Φ0∥H2 + ∥φ̃∥H2 + ∥f∥H−1)
(
1 + ∥Φ0∥H2

)
∥φ∥H2 .

Since the norm ⟨·, ·⟩ 1
2 ≥ √

µ∗∥∆ · ∥L2(Ω) is equivalent to ∥ · ∥H2(Ω) on H
2
0 (Ω), there

is a uniform bound for all φ ∈ H2
0 (Ω) such that φ = αAφ, α ∈ [0, 1]:

(2.17) ∥φ∥H2 ≤ Cµ−1
∗ (ρ∗ + 1 + µ∗)(∥Φ0∥H2 + ∥φ̃∥H2 + ∥f∥H−1)

(
1 + ∥Φ0∥H2

)
.

By Leray-Schauder’s Theorem 2.1, there exists a solution of φ = Aφ in H2
0 (Ω).

This solution solves (2.9): ⟨φ,ψ⟩ = ⟨Aφ,ψ⟩ = l(ψ) for all ψ ∈ H2
0 (Ω). This solution

is unique. Indeed, if there exist two solutions φ1, φ2 ∈ H2
0 (Ω) of (2.9), then their

difference φ̇ = φ1 − φ2 ∈ H2
0 (Ω) satisfies

⟨φ̇, ψ⟩ =
ˆ
Ω

ρ̃∇⊥(Φ0 + φ̃) · ∇∇⊥ψ · ∇φ̇, ∀ψ ∈ H2
0 (Ω).

Take ψ = φ̇, then by the calculation in (2.15) the right-hand side above vanishes
and hence φ̇ = 0, i.e., φ1 = φ2.

Step 2 Solvability of (2.12).
By the procedure in Step 1 above, we can solve (2.10) uniquely for any λ ∈ [0, 1],

and we denote this unique solution satisfying (2.10) by φδ,ελ .

We are going to check the conditions (LS1), (LS2) and (LS3) for the map T δ,ε :

(λ, φ̃) 7→ φδ,ελ , in order to show the existence of the fixed point of T δ,ε with λ = 1
by the Leray-Schauder fixed point Theorem 2.1.
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Verification of Condition (LS1). Let λ = 0 in (2.10) and let φδ,ε0 satisfy

φδ,ε0 = T δ,ε(0, φ̃). We take ψ = φδ,ε0 in (2.10), which implies

∥∆φδ,ε0 ∥L2 = 0.

Since φδ,ε0 ∈ H2
0 (Ω), φ

δ,ε
0 = 0.

Verification of Condition (LS2). The map

T δ,ε : [0, 1]×H2
0 (Ω) ∋ (λ, φ̃) 7→ φδ,ελ ∈ H2

0 (Ω)

is compact, where φδ,ελ is the solution of (2.10), under the following assumptions
on the regularized data:

Φδ,ε0 ∈ H3(R2), ρ̃δ,ελ = ηε(λΦδ,ε0 + φ̃) ≤ ρ∗, µ̃δ,ελ ∈ H2(Ω), fε ∈ L2(Ω;R2).

Indeed, let (λn, φ̃n) be a bounded sequence in [0, 1]×H2
0 (Ω). Then there exists

a subsequence (still denote by (λn, φ̃n)), such that

|λm − λn| → 0, ∥φ̃m − φ̃n∥W 1,4 → 0, as m,n→ ∞.

We denote φδ,εn = T δ,ε(λn, φ̃n), ρ̃
δ,ε
n = ηε(λnΦ

δ,ε
0 + φ̃n) and µ̃δ,εn = bε(ρ̃δ,εn ). We

take the difference between (2.10) with (λm, φ̃m) and (2.10) with (λn, φ̃n). Let
ψ = φ̇δ,ε = φδ,εm − φδ,εn , then (noticing (2.15) again and ∥ · ∥L∞(Ω) ≲ ∥ · ∥W 1,4(Ω))

∥∆(φδ,ε
m − φδ,ε

n )∥2L2

(2.18)

≤ C(µ∗)
(∣∣∣ˆ

Ω

(µ̃δ,ε
m − µ̃δ,ε

n )
(
(∂22φ

δ,ε
m − ∂11φ

δ,ε
m )(∂22φ̇

δ,ε − ∂11φ̇
δ,ε) + (2∂12φ

δ,ε
m )(2∂12φ̇

δ,ε)
)
dx

∣∣∣
+ |λm − λn|

∣∣∣ˆ
Ω

ρ̃δ,εm (∇⊥(λmΦδ,ε
0 + φ̃m)⊗∇⊥(λmΦδ,ε

0 + φδ,ε
m )) : ∇∇⊥φ̇δ,ε dx

∣∣∣
+

∣∣∣ˆ
Ω

λn(ρ̃
δ,ε
m − ρ̃δ,εn )(∇⊥(λmΦδ,ε

0 + φ̃m)⊗∇⊥(λmΦδ,ε
0 + φδ,ε

m )) : ∇∇⊥φ̇δ,ε dx
∣∣∣

+
∣∣∣ˆ

Ω

λnρ̃
δ,ε
n (∇⊥((λm − λn)Φ

δ,ε
0 )⊗∇⊥(λmΦδ,ε

0 + φδ,ε
m )) : ∇∇⊥φ̇δ,ε dx

∣∣∣
+

∣∣∣ˆ
Ω

λnρ̃
δ,ε
n (∇⊥(φ̃m − φ̃n)⊗∇⊥(λmΦδ,ε

0 + φδ,ε
m )) : ∇∇⊥φ̇δ,ε dx

∣∣∣
+

∣∣∣ˆ
Ω

λnρ̃
δ,ε
n (∇⊥(λnΦ

δ,ε
0 + φ̃n)⊗∇⊥((λm − λn)Φ

δ,ε
0 )) : ∇∇⊥φ̇δ,ε dx

∣∣∣
+

∣∣∣ˆ
Ω

(µ̃δ,ε
m − µ̃δ,ε

n )
(
(∂22Φ

δ,ε
0 − ∂11Φ

δ,ε
0 )(∂22φ̇

δ,ε − ∂11φ̇
δ,ε) + (2∂12Φ

δ,ε
0 )(2∂12φ̇

δ,ε)
)
dx

∣∣∣)
≤ C(ρ∗, µ∗, µ

∗)(|λm − λn|+ ∥φ̃m − φ̃n∥W1,4)(1 + ∥bε(ηε)∥W1,∞ + ∥ηε∥W1,∞)

× (1 + ∥∆φδ,ε
m ∥L2 + ∥∆Φδ,ε

0 ∥L2)(1 + ∥Φδ,ε
0 ∥W1,4 + ∥φ̃m∥W1,4 + ∥φ̃n∥W1,4)

× (1 + ∥Φδ,ε
0 ∥W1,4 + ∥φδ,ε

m ∥W1,4)∥∆φ̇δ,ε∥L2 ,

Notice that, since {φ̃n} is uniformly bounded inH2, the uniform bound of {∥∆φδ,εn ∥L2}
can be derived similarly to (2.17). Hence, the following strong convergence holds

∥∆(φδ,εm − φδ,εn )∥L2 ≤ C(∥φ̃m − φ̃n∥W 1,4 + |λm − λn|) → 0 as m, n→ ∞.

The map T δ,ε : (λ, φ̃) 7→ φδ,ελ is compact.

Verification of Condition (LS3). Let φδ,ελ denote the fixed point of φ =

T δ,ε(λ, φ) satisfying (2.10). We are going to derive a uniform bound on ∥φδ,ελ ∥H2 by
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a contradiction argument. Suppose by contradiction that there exists a subsequence

(φδ,ελn
) ⊂ (φδ,ελ ) such that

∥φδ,ελn
∥H2 → ∞.

Then we drive from (2.10) with ψ = φδ,ελn
that (noticing again the equality (2.15))

µ∗∥∆φδ,ελn
∥2L2 ≤ C(ρ∗, µ∗, µ

∗)
((

∥Φδ,ε0 ∥2H2 + ∥fε∥H−1 + ∥Φδ,ε0 ∥H2

)
∥φδ,ελn

∥H2

+

ˆ
Ω

ρδ,ελn
∇⊥φδ,ε · ∇∇⊥φδ,ε · ∇⊥Φδ,ε0 dx

)
,(2.19)

Let us denote gδ,ελn
=

φδ,ε
λn

∥φδ,ε
λn

∥H2
, then we drive from the above inequality that

1 ≤ C(ρ∗, µ∗, µ
∗, ∥Φ0∥H2 , ∥f∥H−1)

∥φδ,ελn
∥H2

+ C

ˆ
Ω

∣∣∣∇⊥gδ,ελn
· ∇∇⊥gδ,ελn

· ∇⊥Φδ,ε0

∣∣∣ dx.
Since ∥gδ,ελn

∥H2 = 1, there exist subsequences (still denoted by (gδ,ελn
)) such that

gδ,ελn
⇀ gε in H2

0 (Ω), gδ,ελn
→ gε in W 1,4(Ω).

Here the limit gε does not depend on δ. Indeed, notice that the δ-independent

function Φελ = λΦδ,ε0 + φδ,ελ = λΦδ
′,ε

0 + φδ
′,ε
λ satisfies (2.11). Then ∥φδ

′,ε
λn

∥H2 → ∞,
and

lim
n→∞

φδ
′,ε
λn

∥φδ′,ελn
∥H2

= lim
n→∞

φδ,ελn
+ λΦδ,ε0 − λΦδ

′,ε
0

∥φδ′,ελn
∥H2

= lim
n→∞

φδ,ελn

∥φδ′,ελn
∥H2

= lim
n→∞

φδ,ελn

∥φδ,ελn
∥H2

= gε.

Then taking n→ ∞ in the above inequality we arrive at

1 ≤ C

ˆ
Ω

∣∣∣∇⊥gε · ∇∇⊥gε · ∇⊥Φδ,ε0

∣∣∣ dx.
Recall the definition of Φδ,ε0 in (2.6) and the regularisation (2.7), such that

(2.20) |∇⊥Φδ,ε0 | ≤ |∇⊥(Φε0(x)ζ(x; δ))| ≤ C(δ−1|Φε0|+ |∇Φε0|).

Hence with Ωδ denoting the boundary strip of width δ, we derive from the above
inequality that

(2.21)

1 ≤ C

ˆ
Ωδ

∣∣∇⊥gε · ∇∇⊥gε
∣∣(δ−1|Φε0|+ |∇Φε0|) dx

≤ Cδ−1∥∇gε∥L2(Ωδ)∥∇2gε∥L2(Ωδ)∥Φε0∥L∞

+ C∥∇gε∥L4(Ωδ)∥∇2gε∥L2(Ωδ)∥∇Φε0∥L4(Ωδ).

Since by Poincaré’s inequality and gε ∈ H2
0 (Ω) we have

(2.22) ∥∇gε∥L2(Ωδ) ≤ Cδ∥∇2gε∥L2(Ωδ),

the above inequality yields

1 ≤ C∥∇2gε∥2L2(Ωδ)∥Φ0∥H2(Ωδ),
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where the right-hand side tends to 0 as δ → 0. This is a contradiction. Thus there
is a constant C independent on λ such that

∥φδ,ελ ∥H2(Ω) ≤ C.

By Leray-Schauder’s fixed point theorem, the map T δ,ε(1, ·) has a fixed point
φδ,ε satisfying (2.12).

Step 3 Passing to the limit ε→ 0.
Let (φδ,ε) ∈ H2

0 (Ω) be the solution of (2.12) given in Step 2. We can follow exactly
the contradiction argument in Step 2 to show the uniform bound

∥φδ,ε∥H2(Ω) ≤ C,

where C is independent of ε (by taking the subsequence φδ,εn whose norms tend to
infinity by contradiction).

Hence there exists a subsequence (still denoted by φδ,ε) such that

φδ,ε → φδ in W 1,4(Ω).

Thus up to a subsequence Φδ,ε0 + φδ,ε → Φδ0 + φδ in L∞(Ω) and

ρδ,ε = ηε(Φδ,ε0 + φδ,ε)
∗
⇀ρδ = η(Φδ0 + φδ),

µδ,ε = bε(ρδ,ε)
∗
⇀µδ = b(ρδ) in L∞(Ω), as ε→ 0.

Similar to (2.18), we take the difference between (2.12)
ε
and (2.12)

ε′
to derive

the inequality for φ̇δ,ε = φδ,ε − φδ,ε
′

∥∆φ̇δ,ε∥2L2

(2.23)

≤ C
(∣∣∣ˆ

Ω

(µδ,ε − µδ,ε′)
(
(∂22φ

δ,ε − ∂11φ
δ,ε)(∂22φ̇

δ,ε − ∂11φ̇
δ,ε) + (2∂12φ

δ,ε)(2∂12φ̇
δ,ε)

)
dx

∣∣∣
+

∣∣∣ˆ
Ω

(ρδ,ε − ρδ,ε
′
)(∇⊥(Φδ,ε

0 + φδ,ε)⊗∇⊥(Φδ,ε
0 + φδ,ε)) : ∇∇⊥φ̇δ,ε dx

∣∣∣
+

(
∥∇(Φδ,ε

0 + φδ,ε − Φδ,ε′

0 − φδ,ε′)∥L4∥∇(Φδ,ε
0 + φδ,ε)∥L4 + ∥fε − fε′∥H−1

)
∥φ̇δ,ε∥H2

+
∣∣∣ˆ

Ω

(µδ,ε − µδ,ε′)
(
(∂22Φ

δ,ε
0 − ∂11Φ

δ,ε
0 )(∂22φ̇

δ,ε − ∂11φ̇
δ,ε) + (2∂12Φ

δ,ε
0 )(2∂12φ̇

δ,ε)
)
dx

∣∣∣).
Therefore by view of the above convergence results

φδ,ε → φδ in H2(Ω).

Finally we take ε→ 0 in (2.12), then the limit φδ satisfies (2.4). Hence Φ = φδ+Φδ0
is a weak solution of (2.1).

2.2. More regularity results. In this subsection we prove the regularity results
in Theorem 1.5 in the cases when η is continuous and when η ∈ Ckb , k ≥ 2, respec-
tively.

Case when η is continuous
If Ω is a connected C2,1-domain, Φ0 ∈ H

5
2 (∂Ω) and Φ1 ∈ H

3
2 (∂Ω), then we can

extend the function Φ0 to the whole plane (still denoted by Φ0) such that Φ0 ∈
H3(R2) with compact support and ∂Φ0

∂n |∂Ω = Φ1. Since the weak solution obtained

in Subsection 2.1 satisfies Φ ∈ H2(Ω) ⊂ Cα(Ω), ∀α ∈ (0, 1), then

ρ = η(Φ) and µ = b(ρ) ∈ Cb(Ω),
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if η is continuous. Since f ∈ L2(Ω;R2) and H1(Ω) ↪→ Lp(Ω), ∀p ∈ [2,∞), we
can rewrite the elliptic equation (2.1) as the fourth-order elliptic equation for φ =
Φ− Φ0 ∈ H2

0 (Ω):

Lµφ = ∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ)−∇⊥ · f − Lµ(Φ0).

By the Lp estimate for the above fourth-order elliptic equation in Theorem 8.6 in
[DK11], we have φ ∈W 2,p

0 (Ω) and hence Φ = Φ0 + φ ∈W 2,p(Ω) for all finite p.

Case when η ∈ Ckb , k ≥ 2
If Ω is a connected Ck+1,1 domain and we assume the boundary condition Φ0 ∈
Hk+ 3

2 (∂Ω), Φ1 ∈ Hk+ 1
2 (∂Ω), then the above extended function Φ0 ∈ Hk+2(R2) ⊂

W k+1,p(R2), ∀p ≥ 2 with compact support and ∂Φ0

∂n |∂Ω = Φ1. We assume also

smoothness in the data η, b ∈ Ckb and f ∈ Hk−1(Ω) for k ≥ 2.
As Φ ∈ W 2,p(Ω) is proved in the case when η is continuous, we first prove that

Φ ∈ W 3,p(Ω) under the assumptions Φ0 ∈ H4(R2) ↪→ W 3,p(Ω), f ∈ H1(R2) ↪→
Lp(Ω) and η, b ∈ C2

b . We rewrite the elliptic equation (2.1) as follows:

∆2φ = µ−1
(
−
(
(∂22 − ∂11)µ

)(
(∂22 − ∂11)φ

)
−
(
(2∂12)µ

)(
(2∂12)φ

)
− 2(∂2µ)

(
(∂222 − ∂112)φ

)
+ 2(∂1µ)

(
(∂122 − ∂111)φ

)
− 2(∂1µ)(2∂122)φ− 2(∂2µ)(2∂112)φ− Lµ(Φ0)

−∇⊥ · f +∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ)
)
,

(2.24)

where φ = Φ − Φ0 ∈ H2
0 (Ω) ∩W 2,p(Ω). Notice that ρ = η(Φ) and µ = (b ◦ η)(Φ)

belong to W 2,p(Ω) for any p ∈ (2,∞). Then for any fixed ψ ∈ W 1,q
0 (Ω), 1 < q < 2

we have

∇2µψ ∈ Lq(Ω), ∇µψ ∈W 1,q
0 (Ω),

ρ∇2ψ ∈W−1,q(Ω), µ−1ψ ∈W 1,q
0 (Ω),

and hence the righthand side of (2.24) is in W−1,q′(Ω), the dual space of W 1,q
0 (Ω).

Therefore by (2.24), φ ∈ W 3,p(Ω) for all p ∈ (2,∞) and the same holds for Φ =
Φ0 + φ.

We assume inductively η, b ∈ Ckb and Φ ∈ W k,p(Ω), for k ≥ 3, ∀p ∈ (2,∞),
then ρ = η(Φ), µ = b(ρ) and φ belong to W k,p(Ω) for any p ∈ (2,∞). Thus the
righthand side of (2.24) belongs to W k−3,p(Ω), and hence φ ∈ W k+1,p(Ω), which
implies Φ = Φ0 + φ ∈W k+1,p(Ω).

Appendix A. The exterior domain and the whole plane cases

In this section we consider the Navier–Stokes system (1.11)

(A.1)

{
div(ρu⊗ u)− div(µSu) +∇Π = f,

div u = 0, div(ρu) = 0,

where µ = b(ρ), on an exterior domain or on the whole plane respectively. As in
the bounded domain case, we will search for solutions of Frolov’s form (ρ, u) =
(η(Φ),∇⊥Φ), and it reduces to the study of the elliptic equation (1.17)

(A.2) LµΦ = −∇⊥ · f +∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ),
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where

Lµ = (∂x2x2
− ∂x1x1

)µ(∂x2x2
− ∂x1x1

) + (2∂x1x2
)µ(2∂x1x2

).

Let Ω be an exterior domain or the whole plane. We first define the functional
spaces we are going to use

Dk(Ω) := Ḣk(Ω) ∩
(
∩n≥1H

k(Ω ∩Bn(0))
)
, k = 1, 2,

where Bn(0) denotes the disk centered at 0 with radius n and the homogeneous

Sobolev space Ḣk(Ω), k ∈ N is defined as

Ḣk(Ω) = {g ∈ L1
loc(Ω) : ∂

αg ∈ L2(Ω), |α| = k}.

We define the corresponding weak solutions as follows.

Definition A.1. (i) (Weak solutions of the Navier–Stokes equations on an ex-
terior domain). Let Ω ⊂ R2 be the exterior domain of a bounded simply
connected C1 set. We say that a pair (ρ, u) ∈ L∞(Ω; [0,∞)) × D1(Ω;R2) is
a weak solution of the boundary value problem (A.1) with the boundary value

u0 ∈ H
1
2 (∂Ω;R2) and f ∈ H−1(Ω;R2), if divu = 0, div (ρu) = 0 hold in Ω

in the distribution sense, u0 = u|∂Ω is the trace of u on ∂Ω and the integral
identity

(A.3)
1

2

ˆ
Ω

µSu : Sv dx =

ˆ
Ω

ρ(u⊗ u) : ∇v dx+

ˆ
Ω

f · v dx,

holds for all v ∈ C∞
c (Ω;R2) with div v = 0 and compact support.

(ii) (Weak solutions of the elliptic equation on an exterior domain). Let Ω ⊂
R2 be the exterior domain of a bounded simply connected C1,1 set. Let η ∈
L∞(R; [0,∞)) and b ∈ C(R; [µ∗, µ

∗]) be two given functions. We say that
Φ ∈ D2(Ω;R) is a weak solution of the boundary value problem (A.2) with

the boundary values Φ0 ∈ H
3
2 (∂Ω), Φ1 ∈ H

1
2 (∂Ω), and f ∈ H−1(Ω;R2), if

Φ0 = Φ|∂Ω and Φ1 = ∂Φ
∂n

∣∣∣
∂Ω

in the trace sense and the identity (1.21):

ˆ
Ω

µ
(
(∂x2x2

Φ− ∂x1x1
Φ)(∂x2x2

ψ − ∂x1x1
ψ) + (2∂x1x2

Φ)(2∂x1x2
ψ)
)
dx

=

ˆ
Ω

f · ∇⊥ψ dx+

ˆ
Ω

ρ(∇⊥Φ⊗∇⊥Φ) : ∇∇⊥ψ dx,

(A.4)

holds true for all ψ ∈ C∞
c (Ω;R) with compact support.

(iii) (Weak solutions on R2). We define the weak solutions of the equations (A.1)
(resp. (A.2)) on R2 as in (i) (resp. in (ii)) above without any boundary
condition.

We have the following existence results on the exterior domains or on the whole
plane, which will be proved in Subsection A.1 and Subsection A.2 below respectively.

Theorem A.2. Let η ∈ L∞(R; [0,∞)), b ∈ C(R; [µ∗, µ
∗])), µ∗, µ

∗ > 0 be given.

(i) (The exterior domain case). Let Ω ⊂ R2 be the exterior domain of a bounded
simply connected C1,1 set. Let f = divF with F ∈ L2(Ω;R2 × R2) be given.

Then for any Φ0 ∈ H
3
2 (∂Ω) and Φ1 ∈ H

1
2 (∂Ω), there exists at least one weak

solution Φ ∈ D2(Ω) of the boundary value problem (A.1).
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Let C0 ∈ R and u0 ∈ H
1
2 (∂Ω;R2) satisfy the zero flux condition

´
∂Ω
u0 ·

nds = 0. If Φ0 ∈ H
3
2 (∂Ω) and Φ1 ∈ H

1
2 (∂Ω) and Φ ∈ D2(Ω) is a weak

solution of (A.2) given above, then the pair of Frolov’s form (1.19)

(ρ, u) =
(
η(Φ), ∇⊥Φ

)
is a weak solution of the boundary value problem (A.1) with u ∈ D1(Ω;R2).

(ii) (The whole plane case). Let Ω = R2 and D ⊂ Ω be a bounded subset of positive
Lebesgue measure. Let f = divF , where F ∈ L2(R2;R2 × R2). Then for any
fixed vector d ∈ R2, there exists at least one weak solution Φ ∈ D2(R2) of the
elliptic equation (A.2) on R2, such that u = ∇⊥Φ ∈ D1(R2;R2) is a weak
solution of the equation (A.1) on R2 and 1

meas(D)

´
D
u = d.

Remark A.3 (Asymptotic behaviours on unbounded domains). If Ω is an un-
bounded domain, we denote the asymptotic behavior of the solutions u at infinity
by u∞

lim
|x|→∞

u(x) = u∞, u∞ ∈ R2.

The existence result in Theorem A.2 does not give the information of u∞. On the
other side, we don’t know the existence of decaying solutions of the Navier-Stokes
system (A.1) on the exterior domain or the whole plane.

These problems are still not clear even for the classical Navier–Stokes equations
(1.5)

(A.5)

{
div(u⊗ u)− ν∆u+∇Π = f,

div u = 0,

for the two-dimensional case. In the three-dimensional case, thanks to the Hardy
inequality

(A.6)

∥∥∥∥u− u∞
|x|

∥∥∥∥
L2(Ω)

≤ C∥∇u∥L2(Ω), Ω ⊂ R3,

one has u− u∞ ∈ L6(Ω) and one can show the existence of the weak solutions with
certain limit at large distance. However, the Hardy inequality (A.6) does not hold
for the two dimensional case, which brings more difficulties to study the asymptotic
behaviours (the limit of u at large distance is hard to be determined if u is only

in Ḣ1(R2)). There are some partial results in the two-dimensional case: The solv-
ability of (A.5) on the exterior domain with the restriction u∞ = 0 (under some
symmetric assumptions) was established in e.g. [HW13; Yam11]. There are also
some works considering the asymptotic behaviors of the (general) weak solutions:
Gilbarg and Weinberger [GW74; GW78] showed that the weak solutions of (A.5)

satisfy limr→∞
´ 2π

0
|u(r, θ)|2 dθ = ∞ or limr→∞

´ 2π

0
|u(r, θ) − ū|2 dθ = 0 for some

ū ∈ R2, and J. Amick discussed the relation between u∞ and ū in [Ami88].
Galdi [Gal11] showed the non uniqueness of the solutions to the classic Navier–

Stokes equation (A.5) with certain boundary condition u0 and u∞ = 0. Hence the
weak solutions of the system (A.1) are also not unique, at least in the case without
any smallness or symmetric assumptions.
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A.1. The exterior domain case. In this subsection we prove (i) in Theorem A.2.
We are going to show the existence of the weak solutions to the boundary value
problem of the elliptic system (A.2) on the exterior domain of a simply connected
C1,1-set Ω, by an approximation argument. Then the existence of the weak solutions
of Frolov’s form of the boundary value problem for the Navier–Stokes equations
(A.1) follows immediately.

LetN ∈ N such that Ωc ⊂ BN (0) = {x ∈ R2 | |x| < N}. Let Ωn = Ω∩BN+n(0) ⊂
R2, then {Ωn} is a monotonically increasing sequence which has the exterior domain
Ω as its limit. By the solvability result in Theorem 1.5 (i), for any given η ∈
L∞(R; [0,∞)), b ∈ C(R; [µ∗, µ

∗]), 0 < µ∗ ≤ µ∗, and f = divF ∈ H−1(Ω;R2), there
exists a weak solution Φn ∈ H2(Ωn) of the boundary value problem (A.2) on Ωn
with the boundary condition Φn|∂Ω = Φ0 ∈ H

3
2 (∂Ω), ∂Φn

∂n |∂Ω = Φ1 ∈ H
1
2 (∂Ω), and

Φn|∂BN+n(0) = ∂Φn

∂n |∂BN+n(0) = 0. According to the proof of Theorem 1.5 (i) in
Subsection 2.1, for any fixed small enough δ > 0, we can write

Φn = φδn +Φδ0, with φ
δ
n ∈ H2

0 (Ωn) satisfying (2.4),

and Φδ0(x) = Φ0(x)ζ(x; δ) is defined in (2.2). We extend φδn from Ωn to Ω by simply
taking φδn|Ω\Ωn

= 0 (still denoted by φδn).

We are going to show that ∥φδn∥Ḣ2(Ω) is uniformly bounded. We take ψ = φδn in

the equation (2.4) for φδn, to deriveˆ
Ω

µn

(
(∂22φ

δ
n − ∂11φ

δ
n)

2 + (2∂12φ
δ
n)

2
)
dx

=

ˆ
Ω

ρn(∇⊥(Φδ0 + φδn)⊗∇⊥(Φδ0 + φδn)) : ∇∇⊥φδn dx−
ˆ
Ω

F · ∇∇⊥φδn dx

−
ˆ
Ω

µn

(
(∂22Φ

δ
0 − ∂11Φ

δ
0)(∂22φ

δ
n − ∂11φ

δ
n) + (2∂12Φ

δ
0)(2∂12φ

δ
n)
)
dx,

where ρn = η(Φn) = η(φδn + Φδ0) and µn = b(ρn). Similarly as in the derivation of
(2.19), we have

(A.7)

∥∆φδn∥2L2(Ω) ≤ C(ρ∗, µ∗, µ
∗)
((

∥Φδ0∥2H2 + ∥F∥L2 + ∥Φδ0∥H2

)
∥∆φδn∥L2(Ω)

+

ˆ
Ω

ρn∇⊥φδn · ∇∇⊥φδn · ∇⊥Φδ0 dx
)
.

By the Riesz inequality (cf. [DD12]), we have ∥∆φδn∥L2(Ω) ∼ ∥φδn∥Ḣ2(Ω). We are

going to follow exactly the contradiction argument in Step 3 in Subsection 2.1 to
show the uniform boundedness of ∥φδn∥Ḣ2(Ω) and hence we will just sketch the proof

and emphasize the difference for the exterior domain case. Suppose by contradiction
that there exists a subsequence (φδkn) ⊂ (φδn) such that

∥∆φδkn∥L2(Ω) → ∞, as kn → ∞.

Denote gδkn =
φδ

kn

∥∆φδ
kn

∥L2(Ω)

, then ∥∆gδkn∥L2(Ω) = 1, tr(gδkn)|∂Ω = 0 and there exist a

subsequence (still denoted by (gδkn)) and g ∈ Ḣ2(Ω) with tr(g)|∂Ω = 0 such that

gδkn ⇀ g in Ḣ2(Ω), as kn → ∞.

Here the limit function g does not depend on δ. Recall that Ωδ is the boundary
strip of width δ. By Poincaré’s inequality we obtain gδkn |Ωδ ⇀ g|Ωδ in H2(Ωδ) and
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by Sobolev embedding gδkn |Ωδ → g|Ωδ in W 1,4(Ωδ). We take kn → ∞ in (A.7) to
derive that

1 ≤ C

ˆ
Ωδ

∣∣∣∇⊥g · ∇∇⊥g · ∇⊥Φδ0

∣∣∣ dx.
By using the same estimates (2.20)-(2.21)-(2.22) we arrive at

1 ≤ C∥∆g∥2L2(Ωδ)∥Φ0∥H2 ,

where the right-hand side tends to 0 as δ → 0. This is a contradiction. Hence there
exists a constant C independent of n such that

∥φδn∥Ḣ2(Ω) ≤ C.

Then there exists a subsequence (still denote by (φδn)) converging weakly to a limit

φδ in Ḣ2(Ω), with tr |∂Ω(φδ) = 0. Let

Φ = Φδ0 + φδ,

then Φn = Φδ0+φ
δ
n ⇀ Φ in Ḣ2(Ω). By Poincaré’s inequality and a Cantor diagonal

argument, there exists a subsequence (still denoted by (Φn)) such that

Φn → Φ a.e. in Ω and ρn
∗
⇀ρ = η(Φ), µn

∗
⇀b(ρ) = µ in L∞(Ω) as n→ ∞.

We are going to show that Φ is a weak solution of the equation (A.2) on the
exterior domain Ω. Fix a test function ψ ∈ C∞

c (Ω) with compact support. Then
there exists a ball containing ΩC∪Supp(ψ) and without loss of generality we suppose
it to be B1(0). Let V = B1(0)∩Ω, then, we are going to show, up to a subsequence,

φδn → φδ in H2(V ).

Indeed, we take a smooth cutoff function χ with χ = 1 on B1(0) and χ = 0 outside
B2(0). We take the difference between the equation (2.4) for φδn and the equation
(2.4) for φδm and then take ψ = χφδn,m, φδn,m = φδn −φδm in (2.4). We arrive at the
following inequality similar as (2.23)ˆ

B2(0)∩Ω

µn

(
(∂22 − ∂11)φ

δ
n,m(∂22 − ∂11)(χφ

δ
n,m) + 2∂12(φ

δ
n,m)2∂12(χφ

δ
n,m)

)
≤

∣∣∣ˆ
B2(0)∩Ω

(µn − µm)
(
(∂22 − ∂11)φ

δ
m(∂22 − ∂11)(χφ

δ
n,m) + 2∂12(φ

δ
m)2∂12(χφ

δ
n,m)

)
dx

∣∣∣
+

∣∣∣ˆ
B2(0)∩Ω

(
ρn∇⊥Φn ⊗∇⊥Φn − ρm∇⊥Φm ⊗∇⊥Φm

)
: ∇∇⊥(χφδ

n,m) dx

−
ˆ
B2(0)∩Ω

(µn − µm)
(
(∂22 − ∂11)Φ

δ
0(∂22 − ∂11)(χφ

δ
n,m) + (2∂12Φ

δ
0)2∂12(χφ

δ
n,m)

)
dx

∣∣∣.
The left-hand side above is bigger thanˆ
V

µn

((
(∂22 − ∂11)φ

δ
n,m

)2
+
(
2∂12(φ

δ
n,m)

)2)
−
∣∣∣ˆ
B2(0)\B1(0)

µn

(
(∂22 − ∂11)φ

δ
n,m

(
((∂22 − ∂11)χ)φ

δ
n,m + 2(∂2χ∂2φ

δ
n,m − ∂1χ∂1φ

δ
n,m)

)
+ 2∂12φ

δ
n,m(2(∂12χ)φ

δ
n,m + 2∂1χ∂2φ

δ
n,m + 2∂2χ∂1φ

δ
n,m

))∣∣∣.
As up to a subsequence we may assume

φδn,m → 0 in H1(B2(0) ∩ Ω), Φn − Φm → 0 in W 1,4(B2(0) ∩ Ω) as n,m→ ∞,
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we hence have φδn,m → 0 in H2(V ). Therefore Φn → Φ in H2(V ), and the limit Φ
(together with the limits ρ, µ) satisfies the integral equality (A.4). As ψ ∈ C∞

c (Ω)
has been chosen arbitrarily, Φ ∈ D2(Ω) is a weak solution of equation (A.2) on Ω

satisfying the boundary condition Φ|∂Ω = Φ0 ∈ H
3
2 (∂Ω), ∂Φ

∂n |∂Ω = Φ1 ∈ H
1
2 (∂Ω)

in the trace sense.

A.2. The whole plane case. In this subsection, we will follow the idea in [GW18]
to prove (ii) in Theorem A.2. We will denote

ffl
D

= 1
meas(D)

´
D
. We take a bounded

simply connected C1,1-domain U ⊃ D and we make an Ansatz

u = d+ w − w̄,

where w ∈ H1
0 (U ;R2), divw = 0 and w̄ =

ffl
D
w ∈ R2 is a constant vector. In other

words, if φ is the stream function of w, then

u = ∇⊥Φ,

where we take

Φ = φ+ (d− w̄) ·
(
x2
−x1

)
+ C, w̄ =

 
D

∇⊥φ ∈ R2

with any fixed constant C ∈ R. We can typically choose

C = Cφ := −
 
D

φdx−
 
D

(d− w) ·
(
x2
−x1

)
dx,

such that
ffl
D
Φ = 0.

We then search for φ ∈ H2
0 (U) satisfyingˆ

U

µ
(
(∂22φ− ∂11φ)(∂22ψ − ∂11ψ) + (2∂12φ)(2∂12ψ)

)
dx

=

ˆ
U

ρ(∇⊥Φ⊗∇⊥Φ) : ∇∇⊥ψ dx−
ˆ
U

F · ∇∇⊥ψ dx, ∀ψ ∈ H2
0 (U ;R),

where Φ = φ+ (d−
ffl
D
∇⊥φ) ·

(
x2
−x1

)
+Cφ, ρ = η(Φ) and µ = b(ρ). Following the

proof lines in Subsection 2.1, such φ exists, and hence there exists w ∈ H1
0 (U ;R2)

satisfying
(A.8)
1

2

ˆ
U

µSw : Sv dx =

ˆ
U

ρ
(
w + d−

 
D

w
)
⊗
(
w + d−

 
D

w
)
: ∇v dx−

ˆ
U

F · ∇v dx

for any v ∈ H1
0 (U ;R2) with div v = 0. By taking v = w in (A.8), the first integral

on the righthand side vanishes (since div (ρ(w + d−
ffl
D
w)) = 0), and we obtain

∥w∥Ḣ1(U) ≤ C(µ∗)∥F∥L2(R2).

Then we arrive at a distribution solution Φ = φ + (d −
ffl
D
∇⊥φ) ·

(
x2
−x1

)
+ Cφ,

with φ ∈ H2
0 (U) of the elliptic equation (A.2) on the bounded domain U , which

satisfies
ffl
D
Φ = 0. Hence (ρ, u) = (η(Φ),∇⊥Φ) = (η(Φ), w + d −

ffl
D
w) with

w = ∇⊥φ ∈ H1
0 (U) is a distribution solution of the system (A.1) on the bounded

domain U , which satisfies
ffl
D
u = d.
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As in Subsection A.1, we take the approximation argument to show the existence
of the weak solutions on the whole plane R2. Indeed, if we take U = Bn(0) ⊃ D in
the above, then we have arrived at a distribution solution

Φn = φn + (d− wn) ·
(
x2
−x1

)
+ Cφn

,

with φn ∈ H2
0 (Bn(0)) and wn =

ffl
D
∇⊥φn ∈ R2, of (A.2) in Bn(0) with

ffl
D
Φn = 0,

and hence a distribution solution

(ρn, un) = (η(Φn),∇⊥Φn) = (η(Φn), wn + d− wn),

with wn = ∇⊥φn ∈ H1
0 (Bn(0);R

2), of (A.1) in Bn(0) with
ffl
D
un = d. We extend

wn trivially to R2 (that is, we simply take wn = 0 outside Bn(0)) and take Φn =

(d− wn) ·
(
x2
−x1

)
+ Cφn

and un = d− wn outside Bn(0), respectively. Let

τn = wn − wn with

 
D

τn = 0,

then un = d+ τn, with

∥τn∥Ḣ1(R2) = ∥wn∥Ḣ1(R2) ≤ C(µ∗)∥F∥L2(R2).

Let v ∈ C∞
c (R2;R2) with div v = 0 be any test function, then there exists

N ∈ N such that Supp(v) ∪ D ⊂ BN (0). By the above uniform bound on (τn)
and Poincaré’s inequality, there exists a subsequence (still denoted by (τn)) such

that τn ⇀ τ in Ḣ1(R2) as n → ∞, and in H1(BN (0)). Thus {un} is uniformly
bounded in H1(BN (0)) and un ⇀ u = τ + d in H1(BN (0)). Since

ffl
D
Φn = 0, by

Poincaré inequality again, {Φn} is uniformly bounded in H2(BN (0)), and up to a
subsequence Φn ⇀ Φ inH2(BN (0)), with∇⊥Φ = u and

ffl
D
Φ = 0. Thus Φn → Φ in

W 1,4(BN (0)) ⊂ C1/2(BN (0)), and ρn = η(Φn)
∗
⇀ρ = η(Φ), µn = b(ρn)

∗
⇀µ = b(ρ)

in L∞(BN (0)). Exactly as the end of Subsection A.1, un → u in H1(BN (0)). Thus
the limits u, ρ, µ satisfy the integral equality (A.3) for the given test function v,
and hence u ∈ D1(R2;R2) with

ffl
D
u = d is a weak solution of the Navier-Stokes

equation (A.1) on R2. Correspondingly Φ ∈ D2(R2) is a weak solution of the elliptic
equation (A.4) on R2.

Appendix B. Explicit symmetric solutions with piecewise-constant
viscosity coefficients

In this section, we will give explicit examples of solutions with piecewise-constant
viscosity coefficients of the Navier–Stokes equations

(B.1)

{
div(ρu⊗ u)− div(µSu) +∇Π = 0,

div u = 0, div(ρu) = 0.

Those examples are the parallel, concentric and radial flows in Theorem 1.7, where
the density functions have the forms

ρ = ρ(x2) in R2, ρ(r) in R2\{0}, and ρ(θ) in R2\{0},

and the corresponding velocity fields have the forms

u = u1(x2) e1 in R2, rg(r) eθ in R2\{0}, and
h(θ)

r
er in R2\{0}.
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The functions u1, g, h solve the following ODEs

∂x2
(µ∂x2

u1) = C,

∂r(µr
3∂rg) = −Cr,(B.2)

ρh2 + ∂θ(µ∂θh) + 4(µh) = C,

where C ∈ R can be any real number. We assume that µ = b(ρ) depends strictly
monotone on ρ.

Examples of parallel flows
If (ρ, u) =

(
ρ(x2), u1(x2) e1

)
(not necessarily ρ′ ̸= 0) solves the system (B.1),

then u satisfies (B.2)1: ∂x2(µ∂x2u1) = C ∈ R. In particular, with the following
viscosity coefficient µ

µ = µ(x2) = 21{x2>0} + 1{x2≤0},

we have for some constant C1 ∈ R that

∂x2u = u1
′(x2) e1 =

((C
2
x2 +

C1

2

)
1{x2>0} +

(
Cx2 + C1

)
1{x2≤0}

)
e1,

and hence

u′′1(x2) =
C

2
1{x2>0} + C1{x2<0} −

C1

2
δ0(x2).

There exists a real constant C2 ∈ R such that u ∈ H1
loc(R

2) reads as

(B.3) u =
((C

4
x22 +

C1

2
x2 + C2

)
1{x2>0} +

(C
2
x22 + C1x2 + C2

)
1{x2≤0}

)
e1.

If we consider the Couette flow on the strip R×[−1, 1] with the boundary conditions

(B.4) u|R×{±1} = a± e1 ∈ R2,

then there hold only two equations for the three constants C,C1, C2

C = 4(a− − a+) + 6C1, C2 = 2a+ − a− − 2C1, C1 ∈ R.

Hence there are uncountably many solutions with the density function

(B.5) ρ(x2) = b−1(2)1{x2>0} + b−1(1)1{x2≤0},

and the velocity vector field (B.3) to the boundary value problem (B.1)-(B.4). 3

It is easy to see that if a+ < a− < 2a+ and 0 < C1 <
2a+−a−

2 , then C,C2 > 0
and u1(x2) > 0 for x2 ∈ [−1, 1]. Hence ∂x2Φ = u1 > 0 and there exists a constant
C3 ∈ R such that the stream function

Φ =
( C
12
x32 +

C1

4
x22 + C2x2 + C3

)
1{x2>0} +

(C
6
x32 +

C1

2
x22 + C2x2 + C3

)
1{x2≤0}

is a strictly increasing function from [−1, 1] to [Φ−,Φ+], where

Φ− = Φ(−1) =
3

2
C1 + C3 −

4

3
a+ +

1

3
a−, Φ+ = Φ(1) = −5

4
C1 + C3 +

5

3
a+ − 2

3
a−.

Then the pair (B.5)-(B.3) is a solution of the system (B.1) in the Frolov’s form
(ρ, u) = (η(Φ),∇⊥Φ) with

η(y) =

{
b−1(2) if y ∈ (C3,Φ+],
b−1(1) if y ∈ [Φ−, C3].

3For the homogeneous flow µ = 1, the velocity vector field in the form of u1(x2) e1 reads as

u =
(
C
2
x2
2 + C1x2 + C2

)
e1 with C1 =

a+−a−
2

, C
2
+ C2 =

a++a−
2

.
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Examples of concentric flows
If (ρ, u) = (ρ(r), rg(r)eθ) (not necessarily ρ′ ̸= 0) solves the system (B.1) with

f = 0, then u satisfies (B.2)2: ∂r(µr
3∂rg) = −Cr. In particular, with the following

viscosity coefficient µ

µ = µ(r) = 21{0<r<1} + 1{r≥1},

we have for some real constant C1 ∈ R that

∂rg =
−C

2 r
2 + C1

µr3
=
(
−C

4

1

r
+
C1

2

1

r3
)
1{0<r<1}+

(
−C

2

1

r
+C1

1

r3
)
1{r≥1}, C, C1 ∈ R.

There exists a constant C2 ∈ R such that (for u ∈ H1
loc(R

2\{0}))
(B.6)

g(r) =
(
−C

4
ln r− C1

4
(
1

r2
−1)+C2

)
1{0<r<1}+

(
−C

2
ln r− C1

2
(
1

r2
−1)+C2

)
1{r≥1}.

If we consider the concentric flow on the annulus {x ∈ R2 | 1
2 ≤ |x| ≤ 2} and suppose

the boundary conditions

(B.7) u|{x||x|= 1
2}

=
1

2
g−eθ|{x||x|= 1

2}
, u|{x||x|=2} = 2g+eθ|{x||x|=2},

then

C =

(
3 ln 2

4

)−1

(
9

8
C1 − g+ + g−), C2 =

1

3
(
9

8
C1 + g+ + 2g−), C1 ∈ R.

Hence the density function

ρ = ρ(r) = b−1(2)1{0<r<1} + b−1(1)1{r≥1}

and the velocity vector field u = rgeθ with g given in (B.6) is a solution of the
boundary value problem (B.1)-(B.7). We can follow the argument at the end of
Case ρ = ρ(x2) to find the function η such that ρ = η(Φ), provided with more
restrictions on g−, g+, C1. We leave this to interested readers.

Examples of radial flows

If (ρ, u) = (ρ(θ), h(θ)r er) (not necessarily ρ
′ ̸= 0) solves the system (B.1), then u

satisfies (B.2)3: ρh
2 + ∂θ(µ∂θh)+ 4(µh) = C ∈ R. Let the viscosity coefficient µ be

(B.8) µ = µ(θ) = 21[0,π4 ) + 1[π4 ,
π
2 ].

Then (ρ, u) = (ρ(θ), h(θ)r er) with h(θ) satisfying the following

∂θ(µ∂θh) = 0, ρh+ 4µ = 0

is a solution of (B.1), and in particular h, ρ can be taken as follows

∂θh =
−2

µ
= −1[0,π4 ) − 21[π4 ,

π
2 ], h = (−π

2
− θ)1[0,π4 ) + (−π

4
− 2θ)1[π4 ,

π
2 ],

ρ = −4µ

h
such that µ = b(ρ) holds.

This radial flow moves toward the origin and moves faster when closer to the origin.

There are obviously other solutions of form (ρ, u) = (ρ(θ), h(θ)r er) to the system
(B.1) with the viscosity coefficient (B.8), and we do not go to details here.
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