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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

The ongoing digitalization enables new optimization 
potentials for manufacturing companies. With a growing 
number of sensors implemented in manufacturing systems a 
large amount of data is generated. This data is an important 
resource to maintain competitiveness in volatile global markets 
[1]. However, the existing data is often insufficiently used for 
information acquisition and process optimization in production 
management [2]. Among manufacturing companies only 5.5% 
of the available database is used for process optimization 
applying data-analytics [1]. Central reasons for this are 
historically grown data structures, which show a large 
heterogeneity and lack of transparency, limited data access and 
missing product tracing information [3, 4]. Furthermore, the 
data sets used for data-analytics are often not of sufficiently 
high quality and it is difficult for companies to assess their 
problem-specific adequacy [5, 1]. The demand-oriented 
enhancement of databases driven by a specific use case in order 
to achieve a higher quality level and amount of data is a great 

challenge. It is associated with financial expenditures [7] (e.g. 
for additional sensors and data preprocessing) and 
organizational barriers (e.g. series release of a manufacturing 
line might be lost, when additional sensors are implemented). 
Therefore, production engineers have to estimate which 
additionally gathered data could potentially contribute to the 
intended process optimization before changing the production 
equipment or resources.  

There are established process models on how to approach 
data-analytics projects, such as the CRISP-DM model [8, 9]. 
However, these models are neither backed by practical and 
production-related methods and tools, nor answer the question 
of the potential of additional data. Furthermore, the design of a 
problem-specific adequate database, which integrates not only 
sensor data but also the knowledge of manufacturing process 
experts, is not explicitly formulated [10]. The approach 
presented in this paper addresses these deficits. A methodology 
is developed, which can be applied as a guideline for data-
analytics projects within process optimization of 
manufacturing systems. Based on expert knowledge, a 
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selection of additional sensors is part of the approach. 
Furthermore, the evaluation and selection of process 
optimization measures are included. 

The paper is structured as follows: the next section deals 
with existing process models for implementing data-analytics 
projects, approaches for expert-based process modelling and 
Key Performance Indicators (KPIs) for the evaluation of 
optimization measures. In Section 3 the developed approach is 
presented. An exemplary application using the example of a 
real manufacturing line is given in Section 4. The last section 
provides a summary. 

2. State of the Art 

An overview of existing process models for data-analytics 
projects is presented subsequently. Furthermore, approaches 
for expert-based process modeling are discussed. In Section 2.3 
KPIs are considered as a basis for evaluating process 
improvement measures. 

2.1. Implementing Data-Analytics Projects for Process 
Optimization  

According to Russom [11] data-analytics is defined as 
advanced analytic techniques that operate on a large database. 
Data-analytics is therefore generally the statistical and 
mathematical analysis of data, also including data mining. Data 
Mining is used to extract knowledge out of data that is 
generally applicable, not trivial, new, useful and 
understandable. For this knowledge retrieval process, machine 
learning algorithms are nowadays broadly and successfully 
used. [12, 13] For the application of data-analytics, different 
holistic end-to-end process models exist. The KDD-Model is 
one process model for data mining [12]. It is an interactive and 
iterative process following nine steps. In addition to the actual 
data mining phase, the procedure also includes the steps of 
preparing the data and evaluating the results. The KDD model 
forms the basis for quite a few more recent process models like 
for instance the KDD-Roadmap [14], which additionally 
determines resources required for the project or marketing 
specific developments [15, 16]. The well-established CRISP-
DM procedure model for data-analytics projects by Shearer [8] 
was developed based on the KDD-Model [17]. It includes the 
iterative steps business understanding, data understanding, data 
preparation, modeling, evaluation and deployment [8]. 
Nevertheless, neither KDD nor CRISP-DM are backed by well-
defined methods and tools that facilitate a practical domain-
specific application in manufacturing. In particular, there is no 
description of how the results of the data-analytics model can 
be used to derive and evaluate technical optimization measures. 

The process model according to Marbán et al. [20] 
combines software engineering methods with CRISP-DM to 
extend it. In addition to the actual data-analytics process, 
aspects of project management and organizational processes 
are taken into account (e.g. training of employees and 
maintenance of the data-analytics model). However, in many 
cases in practice there is no perfect database available in the 
first place. So, Reinhart [18] motivates the necessity of an 
additional data acquisition step, but does not explain how it 

could be implemented. Bahrepour [19] adds a step called “data 
validation” between the phases of data preprocessing and 
modeling of the classical CRISP-DM approach, to avoid the 
input of faulty data into the data mining model. Nevertheless, 
the validation of the database is only based on an expert 
discussion and there is no description of how and which 
measures could be taken.  

Even though the need for evaluation and adjustment of an 
existing database is recognized, a design of a problem-specific 
adequate database and also considering manufacturing expert 
knowledge is not explicitly formulated in existing approaches.  

2.2. Approaches for Expert-Based Process Modelling  

Manufacturing processes are naturally characterized by 
complex cause-effect relationships and a not negligible 
underlying degree of uncertainty. The control and monitoring 
of these processes are therefore often highly dependent on 
extensive expert knowledge. Besides the process data, which is 
gathered by sensors, the human experience is of equal 
importance in order to improve manufacturing processes [9]. 
Hence, it is essential to take this knowledge into account, when 
applying data-analytics in manufacturing systems [18]. 

Tools like Ishikawa analysis, FMEA or DoE are supportive 
and powerful techniques when expert knowledge and 
influences on the manufacturing process need to be recorded 
systematically. In order to map processes and thus prepare and 
arrange existing process data, various classical approaches 
exist. For example, Value-Stream Mapping (VSM) focuses on 
the entire value chain from raw material to the customer and 
captures the material and information flows [21]. 
Enhancements of VSM include the following: mapping with 
IT-landscape [22], informational wastes regarding data 
processing [23] and labeling of self-regulating processes [24]. 
The details of the actual manufacturing processes, however, 
remain a black box. Marbán et al. [9] define a modelling 
language to formalize manufacturing process chains as a pre-
phase of CRISP-DM, however existing control loops and the 
information on sensors are not considered. Effect plans can be 
used to represent control loops within and between the 
individual machines and formalize knowledge regarding the 
manufacturing processes [25].  

All in all there is no holistic process representation of value 
streams, control loops and sensors in manufacturing. 

2.3. KPI Models for the Evaluation of Optimization Measures 

KPIs are used to measure the performance of a 
manufacturing system and to evaluate improvement measures 
[26]. KPI systems were initially used just from a financial 
perspective (e.g. the well-known Du-Pont System). Later, KPIs 
were applied to include also quality aspects and other non-
financial systems [27]. Kang et al. [28] proposed a hierarchical 
structure for KPIs and enables the identification of mutual 
relationships. For this purpose they separated basic and 
aggregated KPIs and analyze pairwise relationships among 
these KPIs. Today many other KPI systems can be found, 
generally focusing on either a special area of manufacturing or 
providing a general framework without domain-specific KPIs.  
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In order to obtain a comprehensive understanding of a 
discrete manufacturing system, a generic KPI model was 
developed by Stricker et al. [29]. This KPI model consists of 
142 KPIs and is hierarchically structured. All KPIs are 
interconnected by their mathematical interdependencies. Base 
KPIs make up the bottom of the hierarchy (level 0). They are 
fundamental KPIs that can directly be measured on the shop 
floor (e.g. process times, number of defect parts). Aggregated 
KPIs on higher levels are derived from these base KPIs [29]. 
Machine-specific process parameters (e.g. torque, speed) are 
not part of the network.  

An analytical extension of this KPI model by process 
parameters is complex and time-consuming, since all technical 
interdependencies must be explicitly, mathematically 
formulated. Alternatively, machine learning methods can be 
used to “learn” the connections between process parameters 
and KPIs based on historical data. Jinsong et al. [30] and Shin 
et al. [31] apply neural networks to predict the development of 
single KPIs based on process parameters. Ding et al. [32] use 
the partial least squares method in this context to identify 
correlations between process parameters and key figures.  

In summary, existing methods are often used to predict 
individual KPIs, e.g. in quality control. However, they are not 
used in a holistic network of KPIs, which helps to identify and 
evaluate measures to improve processes. 

3. Methodology 

By combining process parameters with a KPI model for the 
evaluation of optimization measures, a specific process model 
for data-analytics projects in manufacturing is introduced in 
this section. It addresses the shortcomings of existing 
approaches outlined in Section 2. The method is intended for 
the application in existing manufacturing systems. It consists 
of five iterative steps, wherein the following key questions are 
addressed: Which overall KPIs, from the manufacturing system 
point of view, are the target values of the data analytics project? 
How to evaluate and if needed extend an existing database? 
What additional data requirements can be met and 
implemented when involving expert knowledge? Which 
process improvement measures can be derived and evaluated 

based on the data analytics outcome? The approach is shown in 
Fig. 1 and explained in the following subsections. 

3.1. Process Landscape and Target Values 

In the first phase Process Landscape and Target Values a 
comprehensive current state analysis of the considered 
manufacturing system is performed. The aim is to gain a 
comprehensive understanding of the process. First, the system 
boundary needs to be defined. Based on an advanced VSM 
technique, value stream, data landscape, process control loops 
and sensor technologies are mapped in an integrated process 
map. This integrated process map consists of four linked layers, 
which are arranged hierarchically.  

The first and superordinate layer has the highest 
aggregation level. It is similar to the VSM and compromises 
the manufacturing processes and the material flows. The single 
process steps and machines are explicitly stated. 

In the second layer the process steps and machines with 
respect to the control loops are specified. All existing quality-
related control loops, including the associated machine 
parameters, are mapped. The identification of the quality-
critical control loops is carried out in a FMEA. The control 
loops can refer to just one single process step or across several 
steps. Each control loop has defined incoming data streams, 
which originate from sensors.  

The so-called landscape of sensors is described in the third 
layer. This layer includes the location of sensors. For each 
sensor characteristic attributes are recorded such as: 
measurement value, frequency of measurement and output data 
format. A sensor does not necessarily have to be a technical 
unit, but can also be represented by a person that manually 
records and transmits measured values (e.g. control panel).  

The fourth and last layer compromises the data landscape. 
All databases in which the sensor data is stored and processed 
are listed in this layer. Furthermore, the data connections are 
illustrated in order to be able to identify system breaks.  

Based on the integrated process map, critical process steps 
can easily be identified (e.g. high reject rates or long processing 
times). These are in the focus of the subsequent optimization 
phase. In addition, the target KPI (e.g. OEE of the entire 
manufacturing system) is defined based on the KPI model (see 
Section 2.3).  

In this first phase of the approach it is crucial that all 
participants, e.g. manufacturing process experts, production 
planner and data-analytics experts, are involved. In this way a 
comprehensive understanding of the considered manufacturing 
process is likely to be achieved and the objectives are selected. 

3.2. Data Requirements and Collection 

The aim of the second phase Data Requirements and 
Collection is the examination and selective extension of the 
existing database. First, the Ishikawa method is used to 
determine the most relevant influencing factors on the 
manufacturing process. Based on the Ishikawa analysis, the 
integrated process map is used to determine which influencing 
factors are already captured by sensors and which are also 
included in existing control loops. For this purpose, an 
evaluation of the proportion of recorded influencing factors for 
the respective classes of the Ishikawa method is performed.  

Fig. 1. Approach for data-based process optimization. 
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selection of additional sensors is part of the approach. 
Furthermore, the evaluation and selection of process 
optimization measures are included. 
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technique, value stream, data landscape, process control loops 
and sensor technologies are mapped in an integrated process 
map. This integrated process map consists of four linked layers, 
which are arranged hierarchically.  

The first and superordinate layer has the highest 
aggregation level. It is similar to the VSM and compromises 
the manufacturing processes and the material flows. The single 
process steps and machines are explicitly stated. 

In the second layer the process steps and machines with 
respect to the control loops are specified. All existing quality-
related control loops, including the associated machine 
parameters, are mapped. The identification of the quality-
critical control loops is carried out in a FMEA. The control 
loops can refer to just one single process step or across several 
steps. Each control loop has defined incoming data streams, 
which originate from sensors.  

The so-called landscape of sensors is described in the third 
layer. This layer includes the location of sensors. For each 
sensor characteristic attributes are recorded such as: 
measurement value, frequency of measurement and output data 
format. A sensor does not necessarily have to be a technical 
unit, but can also be represented by a person that manually 
records and transmits measured values (e.g. control panel).  

The fourth and last layer compromises the data landscape. 
All databases in which the sensor data is stored and processed 
are listed in this layer. Furthermore, the data connections are 
illustrated in order to be able to identify system breaks.  

Based on the integrated process map, critical process steps 
can easily be identified (e.g. high reject rates or long processing 
times). These are in the focus of the subsequent optimization 
phase. In addition, the target KPI (e.g. OEE of the entire 
manufacturing system) is defined based on the KPI model (see 
Section 2.3).  

In this first phase of the approach it is crucial that all 
participants, e.g. manufacturing process experts, production 
planner and data-analytics experts, are involved. In this way a 
comprehensive understanding of the considered manufacturing 
process is likely to be achieved and the objectives are selected. 

3.2. Data Requirements and Collection 

The aim of the second phase Data Requirements and 
Collection is the examination and selective extension of the 
existing database. First, the Ishikawa method is used to 
determine the most relevant influencing factors on the 
manufacturing process. Based on the Ishikawa analysis, the 
integrated process map is used to determine which influencing 
factors are already captured by sensors and which are also 
included in existing control loops. For this purpose, an 
evaluation of the proportion of recorded influencing factors for 
the respective classes of the Ishikawa method is performed.  

Fig. 1. Approach for data-based process optimization. 
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In a next step the quality and information content of the 
already collected data is examined. In addition to an explorative 
analysis and visualization of the data, the variance in the data 
is investigated. If the variance is low with regard to the 
optimization target defined in the first phase, which means the 
parameter do not vary or there is no statistical relationship, an 
increase of the variance can be achieved by a Design of 
Experiments (DoE). The result of a DoE is a well-defined 
dataset with high variance and eventually also additional 
process knowledge confirming the experiences of the experts. 
If this is not possible, additional data can alternatively be 
generated from existing process knowledge or with the help of 
a simulation model. 

The identified influencing factors, which are not recorded, 
serve as a starting point for the integration of additional 
sensors. The relevance of the influencing factors is evaluated 
by a utility analysis and the feasibility of the recording is 
evaluated based on a feasibility analysis. A distinction is made 
between target and ideal data requirements. Target data 
requirements are those that must be met. Ideal data 
requirements represent an option for the future. 

In the last step, suitable sensor systems are selected and 
implemented. The main questions in this phase are: Which 
measurands have to be recorded? Which installation space and 
interfaces are available? Which specifications should the 
measurement signal with respect to the data interpretation? The 
sensor capability is investigated by a prototypical 
implementation. Sensor capability means that the sensor 
directly measures the addressed measurand, i.e. the influencing 
factor, and that the measurement uncertainty is sufficient 
according to the requirements. If so, the sensors are 
implemented and the process map is adapted accordingly. 

3.3. Data Analysis 

In the third phase Data Analysis the resulting database is 
transformed, cleaned and a plausibility check of the measured 
values is carried out, e.g. physically impossible values or 
incorrect data formats are identified. Identified outliers are 
replaced and missing data points are integrated via estimation 
procedures. The available series of process data is then linked 
to the product-related quality data and the targeted KPIs. In 
doing so, a time series of process data values is assigned to each 
workpiece. For further investigations, a suitable aggregation, 
e.g. standard deviation, median, mean etc., of these time series 
is identified, which represents the influence on the quality data 
and targeted KPIs. A correlation matrix is used to identify those 
parameters that have the greatest influence on the KPIs. In this 
way, the characteristic features of the measured process 
parameters are identified. The influencing factors determined 
in the second phase can thus be confirmed in their importance 
and new correlations can be discovered. It is also possible that 
no significant correlation can be found. Then it is necessary to 
jump back to the phase Data Requirements and Collection and 
adapt according to additional influencing factors of the 
Ishikawa analysis. 

As a result, a set of process parameters is identified that 
provides a high potential for deriving improvement measures.  

3.4. Process-Specific Extension of the KPI Model 

In the fourth phase of the approach, the KPI model (see 
Section 2.3) is extended by the set of process parameters 
defined before. As shown in Fig. 2, the process parameters 
form an additional hierarchy level (level -1) below the base 
KPIs (level 0). While the KPIs of the KPI model are all 
analytically linked with their mathematical relations, the 
connections between process parameters and the base KPIs are 
computed by a learning method (e.g. neural network). For this 
purpose, the process parameters data is linked to the 
characteristics of the base KPIs via their time stamp over a 
period of time. The connections are first learned based on a 
training data set and then validated on a test data set. This 
extended KPI model forms the basis for the selection of 
measures in the next phase. 

3.5. Selection and Evaluation of Improvement Measures 

For the selection of improvement measures, a distinction is 
made between process-specific measures and measures that are 
generally valid for interlinked manufacturing lines. The latter 
are listed in a catalogue which is derived from general 
knowledge on manufacturing performance improvement 
measures such as integration of a buffer or employee training. 
The catalogue is categorized in four different categories: 
personal-, organizational-, material- and equipment-related 
measures. Each measure is described and the prerequisites as 
well as assumptions for implementation are recorded. While 
the generic catalogue can be used for all interlinked 
manufacturing systems, it is necessary to derive process-
specific measures with a direct effect on the identified process 
parameters in expert workshops. Process-specific measures 
are, for example, the design or adaptation of control loops or a 
new set of fixed manufacturing parameters. The selection is 
based on the integrated process map (see Section 3.1). Weak 
points are systematically analyzed in the map, by a similar 
approach as the seven types of waste in lean management, and 
suitable optimization measures are derived. Useful generic 
measures are also preselected in this way. The resulting list of 
measures is supplemented by a cost estimation and forms the 
basis for the following evaluation step.  

For each measure, the effect on the target KPIs is examined 
using the expanded KPI model (see Fig. 2). This is done 
qualitatively for the generic measures. This means that a 
statement is made if the measure contributes to improving the 
target value or not. For example, an additional training of 
employees (M3) leads to an improvement of the OEE. The 
effect of a process-specific measure (M4) can be quantitatively 
described by changing the process parameters value. Using the 
learning method and the mathematical connections in the KPI 
model, the effect on the target KPIs can be calculated (see Fig. 
2). As a result, the measures are ranked according to their cost-
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benefit ratio. The promising measures are recommended for 
implementation. The new data points serve as further train data 
for the learning method. The ongoing operation of the 
manufacturing system continuously adjusts the KPI model. 

4. Application to Industrial Use Case 

The introduced approach is applied exemplarily to a 
manufacturing line. On this line, a thermal, ablative process is 
applied to metallic parts. The line consists of five stations, is 
highly automated and rigidly interlinked.  

4.1. Process Landscape and Target Values 

The primary goal of the process improvement is the OEE 
improvement by reducing the number of rejects. The integrated 
process map includes all five stations. At the first station the 
key product features are defined. At the second and third station 
fine machining is performed and at the fourth station, multiple 
product quality tests are carried out. At the fifth and last station, 
a data matrix code is applied. A total of five quality-critical 
control loops can be identified, including the sensors from the 
second layer of the integrated process map. Most of the sensor 
data is stored in the internal machine control system. Access is 
possible via a process data acquisition system. Since the reject 
and rework rate at the first station is the highest, the focus of 
further analysis is on this process step. The high reject rate 
implies a large potential for improvement by optimizing the 
process parameters.  

4.2. Data Requirements and Collection 

A total number of 42 influencing factors can be identified 
within the Ishikawa analysis on the first station based on expert 
knowledge. However, just 13 of these influencing factors are 
currently recorded and only one quality critical control loop 
making use of them is implemented. The utility and feasibility 
analysis result in a desirable enhancement of the database by 
eight parameters (+19%). The ideal database represents 19 
additional parameters. It is recommended to record these 
influencing factors by means of additional sensors. In the 
following, the data requirement liquid pressure is focused as an 
example. The aim is to achieve a constant pressure within the 
process to ensure a higher robustness of the considered thermal, 
ablative manufacturing process. The liquid pressure can be 
recorded with a pressure sensor, which can easily be integrated 
in the manufacturing line. 

4.3. Data Analysis 

For analysis, an example data record is generated from the 
new and existing sensors. Since the new sensors are not yet 
integrated into the manufacturing system, two data sets are 
created over a period of four weeks. The time stamp is used to 
merge both data sets. To identify a suitable representation of 
the time series, a correlation analysis is performed. The 
correlation matrix for the liquid pressure is shown in Fig. 3. Q1 
represents the product quality data. The mean value has the 
highest correlation with the quality date Q1 (-0.35). The mean 
value is therefore a suitable indicator to evaluate the level of 
the pressure and thus forms the additional input variable for the 
KPI model. The correlation analysis furthermore confirms the 
relevance of all additional sensors, which were identified based 
on expert knowledge. 

4.4. Extension of the KPI Model and Derivation of 
Improvement Measures 

The extension of the KPI model and derivation of 
improvement measures results first in the extension of the KPI 
model. The additional process parameter liquid pressure is 
determined analytically as a learning method is not yet required 
for just one single parameter.  

The selection of optimization measures leads to the 
outcome that an additional control loop, which keeps the 

pressure of the liquid constant at a high level, should be 
installed. In addition to the already integrated sensors, the 
required control logic is built up with a separate 
microcontroller. Targeted employee training is another selected 
measure to improve the OEE, an influencing factor related to a 
human operation. A positive effect of these measures on the 
OEE can be shown with the help of the KPI model and has been 
confirmed in first prototypical implementations. In order to 
derive further measures, a neural network will be set up in a 
next step to identify complex and non-linear dependencies. 

5. Summary  

The objective of this paper is to present a methodology for 
data-driven process optimization in manufacturing. In particu-
lar, the question how to use and extend an existing database. 

Fig. 2. Extended KPI model for selection of optimization measures. 

Fig. 3. Correlation matrix of liquid pressure and quality data. 
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In a next step the quality and information content of the 
already collected data is examined. In addition to an explorative 
analysis and visualization of the data, the variance in the data 
is investigated. If the variance is low with regard to the 
optimization target defined in the first phase, which means the 
parameter do not vary or there is no statistical relationship, an 
increase of the variance can be achieved by a Design of 
Experiments (DoE). The result of a DoE is a well-defined 
dataset with high variance and eventually also additional 
process knowledge confirming the experiences of the experts. 
If this is not possible, additional data can alternatively be 
generated from existing process knowledge or with the help of 
a simulation model. 

The identified influencing factors, which are not recorded, 
serve as a starting point for the integration of additional 
sensors. The relevance of the influencing factors is evaluated 
by a utility analysis and the feasibility of the recording is 
evaluated based on a feasibility analysis. A distinction is made 
between target and ideal data requirements. Target data 
requirements are those that must be met. Ideal data 
requirements represent an option for the future. 

In the last step, suitable sensor systems are selected and 
implemented. The main questions in this phase are: Which 
measurands have to be recorded? Which installation space and 
interfaces are available? Which specifications should the 
measurement signal with respect to the data interpretation? The 
sensor capability is investigated by a prototypical 
implementation. Sensor capability means that the sensor 
directly measures the addressed measurand, i.e. the influencing 
factor, and that the measurement uncertainty is sufficient 
according to the requirements. If so, the sensors are 
implemented and the process map is adapted accordingly. 

3.3. Data Analysis 

In the third phase Data Analysis the resulting database is 
transformed, cleaned and a plausibility check of the measured 
values is carried out, e.g. physically impossible values or 
incorrect data formats are identified. Identified outliers are 
replaced and missing data points are integrated via estimation 
procedures. The available series of process data is then linked 
to the product-related quality data and the targeted KPIs. In 
doing so, a time series of process data values is assigned to each 
workpiece. For further investigations, a suitable aggregation, 
e.g. standard deviation, median, mean etc., of these time series 
is identified, which represents the influence on the quality data 
and targeted KPIs. A correlation matrix is used to identify those 
parameters that have the greatest influence on the KPIs. In this 
way, the characteristic features of the measured process 
parameters are identified. The influencing factors determined 
in the second phase can thus be confirmed in their importance 
and new correlations can be discovered. It is also possible that 
no significant correlation can be found. Then it is necessary to 
jump back to the phase Data Requirements and Collection and 
adapt according to additional influencing factors of the 
Ishikawa analysis. 

As a result, a set of process parameters is identified that 
provides a high potential for deriving improvement measures.  

3.4. Process-Specific Extension of the KPI Model 

In the fourth phase of the approach, the KPI model (see 
Section 2.3) is extended by the set of process parameters 
defined before. As shown in Fig. 2, the process parameters 
form an additional hierarchy level (level -1) below the base 
KPIs (level 0). While the KPIs of the KPI model are all 
analytically linked with their mathematical relations, the 
connections between process parameters and the base KPIs are 
computed by a learning method (e.g. neural network). For this 
purpose, the process parameters data is linked to the 
characteristics of the base KPIs via their time stamp over a 
period of time. The connections are first learned based on a 
training data set and then validated on a test data set. This 
extended KPI model forms the basis for the selection of 
measures in the next phase. 

3.5. Selection and Evaluation of Improvement Measures 

For the selection of improvement measures, a distinction is 
made between process-specific measures and measures that are 
generally valid for interlinked manufacturing lines. The latter 
are listed in a catalogue which is derived from general 
knowledge on manufacturing performance improvement 
measures such as integration of a buffer or employee training. 
The catalogue is categorized in four different categories: 
personal-, organizational-, material- and equipment-related 
measures. Each measure is described and the prerequisites as 
well as assumptions for implementation are recorded. While 
the generic catalogue can be used for all interlinked 
manufacturing systems, it is necessary to derive process-
specific measures with a direct effect on the identified process 
parameters in expert workshops. Process-specific measures 
are, for example, the design or adaptation of control loops or a 
new set of fixed manufacturing parameters. The selection is 
based on the integrated process map (see Section 3.1). Weak 
points are systematically analyzed in the map, by a similar 
approach as the seven types of waste in lean management, and 
suitable optimization measures are derived. Useful generic 
measures are also preselected in this way. The resulting list of 
measures is supplemented by a cost estimation and forms the 
basis for the following evaluation step.  

For each measure, the effect on the target KPIs is examined 
using the expanded KPI model (see Fig. 2). This is done 
qualitatively for the generic measures. This means that a 
statement is made if the measure contributes to improving the 
target value or not. For example, an additional training of 
employees (M3) leads to an improvement of the OEE. The 
effect of a process-specific measure (M4) can be quantitatively 
described by changing the process parameters value. Using the 
learning method and the mathematical connections in the KPI 
model, the effect on the target KPIs can be calculated (see Fig. 
2). As a result, the measures are ranked according to their cost-
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benefit ratio. The promising measures are recommended for 
implementation. The new data points serve as further train data 
for the learning method. The ongoing operation of the 
manufacturing system continuously adjusts the KPI model. 

4. Application to Industrial Use Case 

The introduced approach is applied exemplarily to a 
manufacturing line. On this line, a thermal, ablative process is 
applied to metallic parts. The line consists of five stations, is 
highly automated and rigidly interlinked.  

4.1. Process Landscape and Target Values 

The primary goal of the process improvement is the OEE 
improvement by reducing the number of rejects. The integrated 
process map includes all five stations. At the first station the 
key product features are defined. At the second and third station 
fine machining is performed and at the fourth station, multiple 
product quality tests are carried out. At the fifth and last station, 
a data matrix code is applied. A total of five quality-critical 
control loops can be identified, including the sensors from the 
second layer of the integrated process map. Most of the sensor 
data is stored in the internal machine control system. Access is 
possible via a process data acquisition system. Since the reject 
and rework rate at the first station is the highest, the focus of 
further analysis is on this process step. The high reject rate 
implies a large potential for improvement by optimizing the 
process parameters.  

4.2. Data Requirements and Collection 

A total number of 42 influencing factors can be identified 
within the Ishikawa analysis on the first station based on expert 
knowledge. However, just 13 of these influencing factors are 
currently recorded and only one quality critical control loop 
making use of them is implemented. The utility and feasibility 
analysis result in a desirable enhancement of the database by 
eight parameters (+19%). The ideal database represents 19 
additional parameters. It is recommended to record these 
influencing factors by means of additional sensors. In the 
following, the data requirement liquid pressure is focused as an 
example. The aim is to achieve a constant pressure within the 
process to ensure a higher robustness of the considered thermal, 
ablative manufacturing process. The liquid pressure can be 
recorded with a pressure sensor, which can easily be integrated 
in the manufacturing line. 

4.3. Data Analysis 

For analysis, an example data record is generated from the 
new and existing sensors. Since the new sensors are not yet 
integrated into the manufacturing system, two data sets are 
created over a period of four weeks. The time stamp is used to 
merge both data sets. To identify a suitable representation of 
the time series, a correlation analysis is performed. The 
correlation matrix for the liquid pressure is shown in Fig. 3. Q1 
represents the product quality data. The mean value has the 
highest correlation with the quality date Q1 (-0.35). The mean 
value is therefore a suitable indicator to evaluate the level of 
the pressure and thus forms the additional input variable for the 
KPI model. The correlation analysis furthermore confirms the 
relevance of all additional sensors, which were identified based 
on expert knowledge. 

4.4. Extension of the KPI Model and Derivation of 
Improvement Measures 

The extension of the KPI model and derivation of 
improvement measures results first in the extension of the KPI 
model. The additional process parameter liquid pressure is 
determined analytically as a learning method is not yet required 
for just one single parameter.  

The selection of optimization measures leads to the 
outcome that an additional control loop, which keeps the 

pressure of the liquid constant at a high level, should be 
installed. In addition to the already integrated sensors, the 
required control logic is built up with a separate 
microcontroller. Targeted employee training is another selected 
measure to improve the OEE, an influencing factor related to a 
human operation. A positive effect of these measures on the 
OEE can be shown with the help of the KPI model and has been 
confirmed in first prototypical implementations. In order to 
derive further measures, a neural network will be set up in a 
next step to identify complex and non-linear dependencies. 

5. Summary  

The objective of this paper is to present a methodology for 
data-driven process optimization in manufacturing. In particu-
lar, the question how to use and extend an existing database. 

Fig. 2. Extended KPI model for selection of optimization measures. 

Fig. 3. Correlation matrix of liquid pressure and quality data. 



374 Florian Ungermann  et al. / Procedia CIRP 81 (2019) 369–374
6 Florian Ungermann et al. / Procedia CIRP 00 (2019) 000–000 

The proposed methodology includes a five step procedure. First 
a comprehensive current state analysis is performed. Based on 
this analysis further data requirements are derived and suitable 
sensors are implemented. These additional data are used to 
identify improvement measures, which are evaluated by a 
process-specific KPI model. The approach is validated using 
the example of a manufacturing line. Measures to improve 
OEE were derived for a thermal, ablative process step. 
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