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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Digital twins offer great opportunities in various domains of the product engineering process. However, current approaches to the use of digital 
twins only focus on different separated disciplines. In contrast to that, it is expected that the holistic use of digital twin models in product 
development and production will dominate future product generations, because they allow to create high-performance products competitively. 
This paper explores important challenges and future potentials of digital twins and Industry 4.0 for the seamless integration  of product 
specification and production. In this regard, approaches of linking digital twins to other domains open up new possibilities in tolerance allocation 
and production integration. Thereby, the most efficient product specifications in technical and economic terms are achieved for the manufacturer. 
In addition, the connectivity of Industry 4.0 broadens the scope and enables the evaluation of alternative approaches in production planning and 
control. Approaches at the organizational level, product functions with specifications beyond the technological limits and production control 
strategies (e.g. order dispatching) ensure high performance operations. Simulations with a digital production twin with integrated digital product 
twin allow early estimations even before the actual ramp-up of the product. The future challenge addressed in this paper is to define a consistent 
framework for the holistic use of digital twins in the entire product development process, which requires the integration of product designers and 
production planner concepts. 
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1. Introduction 

Increasing product requirements and rapidly changing 
markets require highly precise product developments in ever 
shorter cycles. Dependencies and boundary conditions of the 
later production have to be considered already in the early 
phases of the product design to ensure the product function. 
This leads to increasing requirements in the product 
engineering process. Precise designs with increasing 
complexity and many variables must be derived. This results in 
increasingly complex product specifications with regard to the 
quality requirements. Also the production of new, highly 
precise products faces the challenge of producing high quality 
requirements and interacting features cost-effectively. Often, 
manufacturing processes are already reaching their 
technological limits. 

The current developments in information technologies open 
up great possibilities for support in the product engineering 
process through increased computing power, new simulation 
and analysis tools, as wells as connected data. Digital twins of 
the product or production are already being modelled in the 
individual domains in order to derive optimal solutions. The 
increased data availability and traceability of products also 
allows the modeling of data-driven models using artificial 
intelligence methods. 

2. Definition and Applications of the Digital Twin 

Driven by the ambition for shifting problem identification 
and solving to early stages of product and process 
development, known as “front-loading” [1], sophisticated and 
highly realistic virtual models gain increasing attention in 
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research and industry. This is because such models allow the 
time- and cost-efficient simulation of the effects of product and 
process design changes on the quality and function of technical 
products. However, the full benefit of such high-fidelity 
simulation models can only be exploited when feeding them 
with data from the physical world, leading to a digital twin of 
physical assets.  

2.1. Definitions of the Digital Twin 

In fact, a lot of different definitions for such a digital twin 
can be found in literature, mainly caused by various application 
areas. What most of them have in common is that a digital twin 
consists of three main parts: physical product, virtual product, 
and connected data that tie and indissolubly connect the 
physical and virtual product [2–6]. Probably the first definition 
of it was given by NASA in their integrated technology 
roadmap (Technology Area 11: Modeling, Simulation, 
Information Technology & Processing Roadmap; 2010), which 
has been slightly adapted in [5]: “A Digital Twin is an 
integrated multiphysics, multiscale, probabilistic simulation of 
an as-built vehicle or system that uses the best available 
physical models, sensor updates, fleet history, etc., to mirror 
the life of its corresponding flying twin” (see Figure 1). With 
some similarity to this, Grieves et al. define a Digital Twin as 
“a set of virtual information constructs that fully describes a 
potential or actual physical manufactured product from the 
micro atomic level to the macro geometrical level” [6].  

However, a digital twin is not just limited to products, it also 
can be a complex production system that is represented in a 
digital twin [7]. 

 

Figure 1: The vision of the Digital Twin throughout the product life-cycle in 
analogy to [6] 

Developments within the framework of "Industry 4.0", such 
as increased computing power, real-time information systems, 
the Internet of Things, cheaper and more precise sensors and 
individual component traceability open up new possibilities. 
An exact allocation of production data of an individual product 
to information from product usage, for example, becomes 

possible. New insights for product development can be derived 
from this. [8–10] 

More and more detailed digital twins can also be created for 
production by means of the increasing spread of inline 
measurements and operating data. In this way, it is possible to 
react quickly to deviations and malfunctions, or the systems 
themselves initiate countermeasures as cyber physical 
production systems [11, 12]. Through organizational 
approaches and order planning, increased robustness and more 
demanding quality requirements and product specifications 
become economically possible. This in turn gives product 
development new opportunities to design more efficient, more 
powerful products [13]. It is also possible that alternative 
working principles for the realization of functions will be made 
possible.  

The use of digital twins opens huge opportunities to increase 
productivity and effectiveness, which are briefly highlighted in 
the following section.  

2.2. Application Examples of Digital Twins 

Various existing concepts of digital twins do not only vary 
by the width of their scope, but also by the focused use of the 
digital twin during the product life-cycle. There are differences 
if the digital twin is already used for the conceptional design 
and detailed design phase of the product or just in terms of 
production. Today, data from many previous generation 
product realizations are merged into a common digital twin of 
the product to gain more product knowledge in the early stages 
of a new product generation. [14] 

In this regard, the application of digital twins in the product 
design stages allows for providing a quantitative design tool for 
efficient and optimal design decisions by using data from 
previous product generations. In this context, data from digital 
twins of previous product design can be analyzed and used for 
optimizing new designs [14]. 

Digital twins have also been making their way into 
production for some time now. Simulations of production 
systems can help to ensure a proper behavior and help to predict 
the outcome, optimize, correct and evaluate. The digital 
production twin combines this with an ongoing data collection. 
[7] 

By modelling manufacturing steps and entire machine tools, 
the effects of tool behavior and process parameters are 
determined and optimized. Optimum tool geometries and 
process parameters for surface conditioning, for example, can 
be determined by using digital twins of a cutting tool to achieve 
advanced products. [7] 

Also in additive manufacturing a digital twin is used in an 
approach to evaluate 3D printed metallic components. The 
goals are to reduce the number of trial and error tests in order 
to obtain the desired product attributes and shorten the time 
between design and production. [15] 

Moreover, complex productions systems (as interlinkage of 
manufacturing, quality control and logistics processes) consist 
of multiple stochastic and dynamic processes with mostly non-
linear dependencies. Analytical methods are not capable to 
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cover all processes and dependencies and hence simulation 
models are used. Digital twins of the production systems can 
be combined with existing optimization programs, for e.g. 
selective part assembly to achieve cutting edge products, 
scheduling to build robust production schedules or predict the 
effect of counter measurements in case of disturbances [16–
19]. In some cases, even human resources systems are 
considered in the digital twin [16]. 

Furthermore, human interaction is modelled in the digital 
twins as well. A developed digital twin of human robot 
collaboration helps to gain insights and makes it possible to test 
new operating policies before implementing them in the actual 
production setting. [20] 

Significant benefits in development time and costs can be 
achieved using virtual experiments and validation of 
production systems. Insights into complex productions systems 
can be gained and operating policies can be tested before 
implementing them in the real world, as well. [20] 

However, current approaches to the use of digital twins 
mainly focus on different separated disciplines. Consequently, 
product design and product specification takes place without 
possibly knowing more favorable possibilities in production, 
on the one hand. On the other, the production of highly precise 
products does not take into account previously acquired 
product knowledge and interactions of individual features. In 
contrast to that, it is expected that the holistic use of digital twin 
models in product development and production will open up 
new possibilities in the product engineering process with the 
use of domain-linking, holistic digital twins. 

3. Digital Twin Applications Linking Different Domains  

In this regard, approaches of linking digital twins to other 
domains open up new possibilities in tolerance allocation and 
production integration. The following section gives a selection 
of approaches linking digital twins to other domains, which 
open up new possibilities for product design and production 
planning. 

3.1. Digital Product Twins with Integrated Production 
Knowledge 

In order to allow the cost- and time-efficient manufacturing 
of physical artefacts, product designers are asked to 
comprehensively consider manufacturing knowledge already 
in early stages of product design. However, particularly for 
manufacturing processes with little available knowledge, this 
can be challenging. In order to tackle this challenge, 
approaches for the knowledge discovery in databases can be 
used to extract manufacturing knowledge from manufacturing 
process simulations or digital twins (see Figure 2). This 
production knowledge can then be used for optimizing part 
design with respect to manufacturability. [21] 

 

Figure 2: Visualization of a self-learning engineering workbench concept 
“SLASSY” for enhanced product design [21] 

Beside this, production knowledge from digital twins can be 
used for sophisticated tolerance simulations considering 
characteristic manufacturing signatures in the tolerance 
analysis. By doing so, the knowledge about typical part 
deviations from previous product data allows a more realistic 
prediction of the effects of these part deviations on the product 
performance [22]. The quantitative results from such tolerance 
simulations based on digital twins can then guide designers in 
the cost-efficient tolerance specification and thus support 
geometrical variations management [10]. 

 

Figure 3: Digital twin for geometrical variations management based on skin 
model shapes [2] 

Moreover, such tolerance simulations may also support 
computer-aided process planning and fixture design in deriving 
suitable process designs [10]. 

3.2. Digital Production Twins with Integrated Product 
Knowledge 

The concept of function-oriented production control 
presented in Wagner et al. [17] introduces a digital production 
twin with application of control cycles for quality improvement 
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at the organizational level. Using the example of high-pressure 
injection systems production, a digital twin of the value stream 
is modeled. In this example, the product consists of several 
high-precision subsystems, related to different disciplines. 
Specific product requirements are close to or even beyond the 
technological production limits for the economical 
manufacture of components. The digital twin models the 
uncertainty of manufacturing processes (P) and production-
integrated inline metrology (Q), as well as inventories (I) and 
assembly processes (A) (see Figure 2). 

 

Figure 4: Visualization of the digital production twin with integrated quality 
controller comprising control strategies, measurement data and functional 
product model [17] 

The approach aims at achieving critical quality requirements 
for products individually through control strategies of adaptive 
manufacturing and selective assembly, if the conventional 
assembly does not meet the quality requirements [23, 24]. The 
integration of a digital product twin of the interested product 
enables to quantify manufacturing deviations of product 
characteristics to the products function. With the integrated 
product twin, it is possible to apply new function-oriented 
strategies for quality control in production. Optimal sequential 
selections and adaptations can be evaluated in very complex 
production systems through production twin simulations and 
the integrated product twin. Thus, a technical and economic 
assessment of varying function-oriented control loops becomes 
possible. Subsequently, the integrated product twin in the 
production twin allows early estimations even before the actual 
ramp-up of new product generations. The use of linking the 
digital twins is the central enabler to consider new possibilities 
for the manufacture of high-precision products beyond 
technological limits for manufacturers, not only in the 
automotive sector but also in other business fields such as 
medical technology and drive technology. [17] 

For the implementation of effective production strategies 
using a digital twin, methods of artificial intelligence provide 
great potential. For industrial applications in the semiconductor 
industry, Stricker et al. [25] and Waschneck et al. [26], for 
instance, facilitate digital twins in complex front-end wafer 
production systems. The job-shop system contains complex 
order flow due to limited, capital intensive machinery and 
multiple, recurrent process steps "building" the wafer layer-by-

layer [27]. The complexity on the production system level is 
the consequence of high-tech performance characteristics of 
the product. The functional semiconductor-structures, e.g. 
architectures in the range of nanometers, are close to 
technological and physical limits. So, semiconductor 
manufacturers focus mainly on the optimization of yield 
management and clustering final products in multiple quality 
classes [27]. The aim of the production simulations is to take 
the product properties into consideration in order to achieve a 
high quality level. For example, product-individual order and 
history of production steps is included within the production 
schedule planning. In particular, waiting time in between two 
consecutive processes meaning time exposed to contamination 
despite the clean room environment causes degeneration of the 
product. With the digital twin, suitable production schedules 
are learnt by means of a reinforcement learning algorithm 
based on Q-learning [25].  

3.3. Digital Twins of Product Use with Integrated Production 
Knowledge 

For the industrial application of high-precision micro-gears  
Haefner et al. [28] develope a digital twin of the micro-gear 
function for lifetime prognosis dependent on their measured 
shape deviations. For the implementation of the digital twin, a 
mathematical model based on Bayes Weibull regression is 
created representing the relationship between the measured 
shape deviations and the lifetime of a pair of micro-gears (see 
Figure 5). 

 

Figure 5: Method for digital twin of micro-gears enabling lifetime prognosis 
dependant on areal measurements [28] 

Both existing prior knowledge and highly precise 
experimental data from lifetime experiments as well as areal 
geometrical measurements of the respective gear type are 
considered as inputs of the digital twin. Lifetime experiments 
are conducted on a specifically developed test rig for micro-
gears. The geometry of the gears to be analysed is measured 
over the entire gear surface with a very high density of the data 
points. From these measurements, geometrical representations 
of the real gear topographies are created by means of B-Spline 
interpolation. Based on these, the tooth root stresses of the 
individual tooth geometries are calculated using finite element 
analysis. Additionally, prior knowledge about the lifetime of 
the gear type is integrated in the Bayes Weibull regression 
model, which can be parametrized by means of the Markov 
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production twin allows early estimations even before the actual 
ramp-up of new product generations. The use of linking the 
digital twins is the central enabler to consider new possibilities 
for the manufacture of high-precision products beyond 
technological limits for manufacturers, not only in the 
automotive sector but also in other business fields such as 
medical technology and drive technology. [17] 

For the implementation of effective production strategies 
using a digital twin, methods of artificial intelligence provide 
great potential. For industrial applications in the semiconductor 
industry, Stricker et al. [25] and Waschneck et al. [26], for 
instance, facilitate digital twins in complex front-end wafer 
production systems. The job-shop system contains complex 
order flow due to limited, capital intensive machinery and 
multiple, recurrent process steps "building" the wafer layer-by-

layer [27]. The complexity on the production system level is 
the consequence of high-tech performance characteristics of 
the product. The functional semiconductor-structures, e.g. 
architectures in the range of nanometers, are close to 
technological and physical limits. So, semiconductor 
manufacturers focus mainly on the optimization of yield 
management and clustering final products in multiple quality 
classes [27]. The aim of the production simulations is to take 
the product properties into consideration in order to achieve a 
high quality level. For example, product-individual order and 
history of production steps is included within the production 
schedule planning. In particular, waiting time in between two 
consecutive processes meaning time exposed to contamination 
despite the clean room environment causes degeneration of the 
product. With the digital twin, suitable production schedules 
are learnt by means of a reinforcement learning algorithm 
based on Q-learning [25].  

3.3. Digital Twins of Product Use with Integrated Production 
Knowledge 

For the industrial application of high-precision micro-gears  
Haefner et al. [28] develope a digital twin of the micro-gear 
function for lifetime prognosis dependent on their measured 
shape deviations. For the implementation of the digital twin, a 
mathematical model based on Bayes Weibull regression is 
created representing the relationship between the measured 
shape deviations and the lifetime of a pair of micro-gears (see 
Figure 5). 

 

Figure 5: Method for digital twin of micro-gears enabling lifetime prognosis 
dependant on areal measurements [28] 

Both existing prior knowledge and highly precise 
experimental data from lifetime experiments as well as areal 
geometrical measurements of the respective gear type are 
considered as inputs of the digital twin. Lifetime experiments 
are conducted on a specifically developed test rig for micro-
gears. The geometry of the gears to be analysed is measured 
over the entire gear surface with a very high density of the data 
points. From these measurements, geometrical representations 
of the real gear topographies are created by means of B-Spline 
interpolation. Based on these, the tooth root stresses of the 
individual tooth geometries are calculated using finite element 
analysis. Additionally, prior knowledge about the lifetime of 
the gear type is integrated in the Bayes Weibull regression 
model, which can be parametrized by means of the Markov 
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Chain Monte Carlo method. Moreover, the uncertainty of the 
lifetime model implemented in the digital twin is evaluated 
according to the Guide to the Expression of Uncertainty in 
Measurement GUM). Altogether, all available data are 
integrated within the developed digital twin. [28] Finally, it can 
be used to predict the lifetime of individual micro gears on the 
basis of their measured shape deviations. To enable a real time 
application during production from the time-consuming finite 
elements analysis a meta-model based on an artificial neural 
network was derived (see Figure 6). [29] 

 

Figure 6: Artificial neural network as meta-model for real-time application of 
the digital twin of micro-gears in production [29] 

The presented examples show first approaches for the 
integration of production knowledge or product twins into the 
respective other domain. Already in these first approaches, the 
potentials for both product engineering and production of 
products with high-tech specifications nearby or even beyond 
technological borders become visible. [17, 21, 22, 25, 28] 
Therefore, the linkage of product and production twins into 
digital production twins is key to achieve further improvement 
of the operational excellence and maintaining the 
competitiveness within the industry of precision products. The 
relevance of the approaches also applies to other areas such as 
for instance medical equipment and machinery as well as the 
biological or chemical process industry. However, the 
approaches shown are to be seen as industrial demonstrators, 
since there are still further challenges to be explored for the 
holistic linking of digital twins through the entire product 
engineering process. The future research challenges will be 
explained in the next chapter. 

4. Future Research Challenges 

As shown in the previous sections, the provision of 
information and digital twins throughout the entire product 
engineering process is advantageous. It is expected that the 
holistic use of digital twin models in product development and 
production will dominate future product generations, because 
they allow to create high-performance products competitively. 
For example, changes in product design (product co-design) or 
operational approaches of production control (e.g. adaptive 
manufacturing and selective assembly) can be developed and 
selected by simulating product and production twins (see 
Figure 7). 

 

Figure 7: Schematic representation of digital twins for robust and cost-
efficient product design and production control [17] 

For the consequent linking of digital twins in the industrial 
environment, however, further challenges still need to be 
researched and standardized. A consistent framework for the 
holistic use of digital twins in the entire product development 
has to be defined which covers the topics of mutual 
understanding, interfaces and standardization, as well efficient 
information flow, to bring the approaches to a broad industrial 
application. 

4.1. Mutual Understanding and Integration of Different 
Domains in the Product Engineering Process in Digital Twin 

The basic prerequisite for successful use and providing 
information in digital twins is the integration of product 
designers, production planner and application engineers 
concepts. They need to have a common understanding of the 
respective requirements and goals of the other domains. In each 
phase of the product engineering process, there are different 
boundary conditions and concepts for optimization, without 
possibly being able to estimate the interaction and impact on 
previous or subsequent activities. The abilities and scope of 
action must also be clarified in order to come closer a common 
optimum. 

4.2. Interfaces for Standardized Information Exchange 

Once a common understanding has been reached and the 
requirements of the other domain have been identified, the 
common interfaces for the exchange of information must be 
defined. The uniform exchange of information over the entire 
product engineering process is enabled. During the 
development of a digital product twin, for example, the 
requirements for later use in production or application can be 
planned and implemented directly. This ensures compatibility 
of the digital twin models via the product development process 
and its subsequent integration. Industrial formats for structured 
data exchange already exist, for example in drive technology 
or in the semiconductor industry. The introduced gear data 
exchange format [30], for example, has been successfully 
introduced into the development, design, production, 
measurement and functional testing of gear wheels of various 
types. Closed loops for the feedback of measurement result in 
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manufacturing processes and the simulation of digital twins are 
defined in a standardized manner and thus implemented and 
updated more quickly. 

4.3. Efficient Design of Information Flow 

The linking of different domains offers the risk of causing a 
flood of information. Therefore, information flows have to be 
designed efficiently and the amount of information has to be 
tailored to the domains. This ensures that the necessary 
information is accessible in a detailed manner and ability for 
changes, but that no misuse is possible. Cross working teams 
may be required to interpret significant simulation results and 
secure change decisions. 

5. Conclusion 

Digital twins offer great opportunities in various domains of 
the product engineering process. Presented examples, linking 
product and production twins into digital production twins, 
show first approaches for the integration of production 
knowledge or product twins into the respective other domain. 
The continuous linking of digital twins is the key to achieve 
further improvement of the operational excellence and 
maintaining the competitiveness within the industry of 
precision products. The main future challenge is to define a 
consistent framework for the holistic use of digital twins in the 
entire product engineering process, which covers the topics of 
common understanding interfaces and standardization, as well 
as efficient information flow. This particularly requires the 
integration of product designers and production planner 
concepts in future research. 

6. Acknowledgment 

The authors acknowledge the financial 
support by the Federal Ministry of 
Education and Research of Germany in 
the Photonics Research Germany (project 
number FKZ 13N14647).  

References 

[1] Thomke, S., Fujimoto, T., 2000. The Effect of "Front-Loading" 
Problem-Solving on Product Development Performance. Journal of 
Product Innovation Management 17, p. 128. 

[2] Schleich, B., Anwer, N., Mathieu, L., Wartzack, S., 2017. Shaping the 
digital twin for design and production engineering. CIRP Annals 66, 
p. 141. 

[3] Boschert, S., Rosen, R., 2016. Digital Twin—The Simulation Aspect, 
in Mechatronic Futures: Challenges and Solutions for Mechatronic 
Systems and their Designers, Springer International Publishing, Cham, 
s.l., p. 59. 

[4] Rosen, R., Wichert, G. von, Lo, G., Bettenhausen, K.D., 2015. About 
The Importance of Autonomy and Digital Twins for the Future of 
Manufacturing. IFAC-PapersOnLine 48, p. 567. 

[5] Glaessgen, E., Stargel, D., 2012. The Digital Twin Paradigm for 
Future NASA and U.S. Air Force Vehicles, in Structures, Structural 
Dynamics, and Materials and Co-located Conferences, 22267B. 

[6] Grieves, M., Vickers, J., 2017. Digital Twin: Mitigating 
Unpredictable, Undesirable Emergent Behavior in Complex Systems, 

in Transdisciplinary Perspectives on Complex Systems: New Findings 
and Approaches, Springer International Publishing, Cham, s.l., p. 85. 

[7] Botkina, D., Hedlind, M., Olsson, B., Henser, J. et al., 2018. Digital 
Twin of a Cutting Tool. Procedia CIRP 72, p. 215. 

[8] Schleich, B., Wärmefjord, K., Söderberg, R., Wartzack, S., 2018. 
Geometrical Variations Management 4.0: towards next Generation 
Geometry Assurance. Procedia CIRP 75, p. 3. 

[9] Söderberg, R., Wärmefjord, K., Carlson, J.S., Lindkvist, L., 2017. 
Toward a Digital Twin for real-time geometry assurance in 
individualized production. CIRP Annals 66, p. 137. 

[10] Söderberg, R., Wärmefjord, K., Madrid, J., Lorin, S. et al., 2018. An 
information and simulation framework for increased quality in welded 
components. CIRP Annals 67, p. 165. 

[11] Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S. et al., 2016. 
Cyber-physical systems in manufacturing. CIRP Annals 65, p. 621. 

[12] Lanza, G., 2019. In-line Measurement Technology and Quality 
Control, in Metrology, Springer. 

[13] Wartzack, S., Schleich, B., Aschenbrenner, A., Heling, B., 2017. 
Toleranzmanagement im Kontext von Industrie 4.0. ZWF Zeitschrift 
für wirtschaftlichen Fabrikbetrieb 112, p. 170. 

[14] Tao, F., Cheng, J., Qi, Q., Zhang, M. et al., 2018. Digital twin-driven 
product design, manufacturing and service with big data. The 
International Journal of Advanced Manufacturing Technology 94, 
p. 3563. 

[15] Mukherjee, T., DebRoy, T., 2019. A digital twin for rapid 
qualification of 3D printed metallic components. Applied Materials 
Today 14, p. 59. 

[16] Kunath, M., Winkler, H., 2018. Integrating the Digital Twin of the 
manufacturing system into a decision support system for improving 
the order management process. Procedia CIRP 72, p. 225. 

[17] Wagner, R., Haefner, B., Lanza, G., 2018. Function-Oriented Quality 
Control Strategies for High Precision Products. Procedia CIRP 75, 
p. 57. 

[18] Stark, R., Kind, S., Neumeyer, S., 2017. Innovations in digital 
modelling for next generation manufacturing system design. CIRP 
Annals 66, p. 169. 

[19] Echsler, F., Lanza, G., 2018. Coupling of centralized and decentralized 
scheduling for robust production in agile production systems. Procedia 
CIRP. 

[20] Malik, A.A., Bilberg, A., 2018. Digital twins of human robot 
collaboration in a production setting. Procedia Manufacturing 17, 
p. 278. 

[21] Sauer, C., Schleich, B., Wartzack, S. Deep Learning in Sheet-Bulk 
Metal Forming Part Design, in DESIGN 2018, p. 2999. 

[22] Schleich, B., Anwer, N., Mathieu, L., Wartzack, S., 2016. Status and 
Prospects of Skin Model Shapes for Geometric Variations 
Management. Procedia CIRP 43, p. 154. 

[23] Lanza, G., Haefner, B., Kraemer, A., 2015. Optimization of selective 
assembly and adaptive manufacturing by means of cyber-physical 
system based matching. CIRP Annals 64, p. 399. 

[24] Wagner, R., Haefner, B., Lanza, G., 2016. Pairing Strategies for high-
precision products: Industrie 4.0 provides opportunities to produce at 
low cost while meeting groqing demands for product precision. wt 
Werkstatttechnik online 106, p. 804. 

[25] Stricker, N., Kuhnle, A., Sturm, R., Friess, S., 2018. Reinforcement 
learning for adaptive order dispatching in the semiconductor industry. 
CIRP Annals 67, p. 511. 

[26] Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T. et al., 
2018. Optimization of global production scheduling with deep 
reinforcement learning. Procedia CIRP 72, p. 1264. 

[27] Ertl, G., Gomer, R., Lüth, H., Mills, D.L., Mönch, W., 2001. 
Semiconductor Surfaces and Interfaces. Springer Berlin Heidelberg, 
Berlin, Heidelberg. 

[28] Haefner, B., Lanza, G., 2017. Function-oriented measurements and 
uncertainty evaluation of micro-gears for lifetime prognosis. CIRP 
Annals 66, p. 475. 

[29] Haefner, B., Biehler, M., Wagner, R., Lanza, G., 2018. Meta-Model 
Based on Artificial Neural Networks for Tooth Root Stress Analysis of 
Micro-Gears. Procedia CIRP 75, p. 155. 

[30] VDI. Exchange format for gear data Gear Data Exchange Format 
(GDE Format), 1st edn., Berlin. Beuth 21.200, 35.240.50, 2015-01-00 
(VDI/VDE 2610:2015-01). 

 

 



	 Raphael Wagner  et al. / Procedia CIRP 84 (2019) 88–93� 93
6 Wagner, R. et al. / Procedia CIRP 00 (2019) 000-000 

 

manufacturing processes and the simulation of digital twins are 
defined in a standardized manner and thus implemented and 
updated more quickly. 

4.3. Efficient Design of Information Flow 

The linking of different domains offers the risk of causing a 
flood of information. Therefore, information flows have to be 
designed efficiently and the amount of information has to be 
tailored to the domains. This ensures that the necessary 
information is accessible in a detailed manner and ability for 
changes, but that no misuse is possible. Cross working teams 
may be required to interpret significant simulation results and 
secure change decisions. 

5. Conclusion 

Digital twins offer great opportunities in various domains of 
the product engineering process. Presented examples, linking 
product and production twins into digital production twins, 
show first approaches for the integration of production 
knowledge or product twins into the respective other domain. 
The continuous linking of digital twins is the key to achieve 
further improvement of the operational excellence and 
maintaining the competitiveness within the industry of 
precision products. The main future challenge is to define a 
consistent framework for the holistic use of digital twins in the 
entire product engineering process, which covers the topics of 
common understanding interfaces and standardization, as well 
as efficient information flow. This particularly requires the 
integration of product designers and production planner 
concepts in future research. 
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