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This study deals with an extension of the resource-constrained project scheduling problem (RCPSP) by 

constraints on material flows released during the execution of project activities. These constraints arise 

from limited processing capacities for materials and maximum inventories of intermediate storage fa- 

cilities. Production scheduling problems with converging material flows have been studied extensively. 

However, this is the first project scheduling problem integrating diverging material flows typically ob- 

served in dismantling projects, e.g., building deconstruction, power plant decommissioning, or battery/car 

decommissioning. Diverging material flows do not directly impact the project planning but only impose 

delays in the case of congestion. We model material flows by using operations that represent the pro- 

cessing of materials, and cumulative resources that represent storage facilities. As a method for efficiently 

generating starting solutions, we propose a schedule generation scheme tailored to the particular prece- 

dence structure of such problems. Furthermore, we extensively study the schedule generation scheme’s 

performance on generated test instances and compare it to the constraint programming solver IBM ILOG 

CP Optimizer. It turns out that the solution quality strongly depends on the employed model and that 

neither of the two solution methods is generally superior. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Diverging material flows can impose delays on a project sched- 

le in the case of congestion. Existing scheduling models are un- 

ble to reflect these delays during the planning phase of a project. 

n this study, we introduce a new scheduling model that integrates 

iverging material flows into resource-constrained project schedul- 

ng. 

We consider the problem of scheduling a project with the ob- 

ective of minimizing the project makespan. The project is split 

nto several non-interruptible activities. Precedence constraints 

pecify certain activities that cannot start before other activities 

ave been completed. The critical path method ( Kelley, 1961 ) is a 

ell-known technique to solve these problems in polynomial time 

cf. Neumann, Schwindt, & Zimmermann, 2003 ) under the assump- 

ion of sufficiently available resources. This assumption is usually 
� This work was supported by the Federal Ministry of Education and Research of 

ermany (BMBF) in the NukPlaRStoR project (Grant number: 15S9414A). The sole 
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ot appropriate for many real-life applications. Therefore, exten- 

ive research has been devoted to the resource-constrained project 

cheduling problem (RCPSP) . This problem involves availability con- 

traints on renewable resources, which are required for the exe- 

ution of activities (cf. e.g., Brucker, Drexl, Möhring, Neumann, & 

esch, 1999 for a comprehensive review). These availability con- 

traints can impose a delay on the project makespan. Finding an 

ptimal schedule that is feasible both regarding precedence con- 

traints and availability constraints on renewable resources has 

een proven to be strongly NP-hard ( Blazewicz, Lenstra, & Kan, 

983 ). 

Analogously, we consider bottlenecks when processing material 

ows released by activities as another type of constraint impos- 

ng a delay on the project makespan. We refer to them as mate- 

ial flow constraints . This problem is motivated by ongoing research 

rojects about scheduling the dismantling of nuclear power plants 

nd wind turbines. Such projects are characterized by diverging 

aterial flows that are released when executing an activity and can 

ave a back coupling effect on the original project schedule. The 

ounterpart, converging material flows , which are typically observed 

n production planning, are not under study since these settings 

ave been addressed extensively in the literature (cf. Section 3 ). 

e refer to Neumann & Schwindt (1997) for a definition of a con- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ergent product structure which gives rise to converging material 

ows. The processing of diverging material flows is not considered 

n the objective function but can only indirectly curtail the solution 

pace. For example, in nuclear dismantling projects, the material 

rocessing is typically outsourced to so-called “material processing 

enters” which are responsible for, e.g., cutting, cleaning, handling, 

nd packaging the wastes ( EnBW Kernkraft GmbH, 2018 ). Due to 

estricted data access in this sensitive industry, we do not further 

onsider the problem from a nuclear dismantling perspective but 

rom a more theoretical perspective. 

After having been released by an activity, a diverging material 

ow traverses a network of processing steps (e.g., milling, seg- 

enting, transferring, decontaminating) and intermediate storage 

acilities until it reaches the sink (e.g., recycling facility, landfill). As 

ong as less material is released than can be processed, activities 

re scheduled at the earliest times where precedence constraints 

nd availability constraints on renewable resources are satisfied. 

owever, as soon as an overload of processing capacity occurs, 

torage facilities must start buffering the material. If this continues 

ntil the maximum inventory of storage facilities is exceeded, the 

chedule gets affected and activities must be delayed, which can 

ventually result in prolonging the project’s makespan. Hence, 

he entirety of processing steps and storage facilities with their 

imitations form the material flow constraints. 

To make our problem setting compatible with existing con- 

epts from scheduling literature, we systematically integrate ma- 

erial flows into the well-known structure of the RCPSP. Therefore, 

e introduce operations as separately scheduled entities and har- 

ess the cumulative resource type (cf. e.g., Schwindt, 1999; Neu- 

ann & Schwindt, 2002 ) for modeling storage facilities with maxi- 

um inventories. In contrast to renewable resources, the availabil- 

ty of cumulative resources depends on all previous requirements. 

hus, they are particularly suitable for modeling storages. Com- 

ared to solution methods for related problems, such as branch- 

nd-bound techniques (cf. Neumann & Schwindt, 2002 ), our ap- 

roach exploits special characteristics of diverging material flows. 

Thus, our main contributions are: 

• We introduce a novel project scheduling problem taking into 

account diverging material flows that have a back coupling 

effect on the project planning. First, we conceptually formu- 

late the problem, and second, we formulate the problem us- 

ing the structure of the RCPSP. 
• We present a schedule generation scheme (SGS) that serves 

the following purposes: It helps to understand the problem’s 

structural properties. It provides insight into the feasibility 

of a problem instance. It can be integrated into metaheuris- 

tics and used to obtain good starting solutions. And, it facili- 

tates the performance assessment of other solution methods 

by providing a benchmark. 
• We extensively study the tractability of the problem using 

generated test instances with different characteristics. There- 

fore, we compare several modeling variants and apply the 

SGS and the constraint programming solver IBM ILOG CP 

Optimizer as solution methods. Regarding the latter, we pro- 

vide the first known performance assessment for the RCPSP 

with cumulative resources. 

The paper’s remainder is organized as follows: In Section 2 , 

e introduce the developed material flow model and illustrate 

he setting using an exemplary material flow. Section 3 presents 

 literature review to relate to existing studies and to outline 

he main research gaps. Our novel project scheduling problem 

s termed resource-and-material-flow-constrained project scheduling 

roblem (RMCPSP) and stated formally in Section 4 . Section 5 out- 

ines a transformation scheme that allows for remodeling the RM- 

PSP as a RCPSP with cumulative resources. The SGS is presented 
1072 
n Section 6 , combining existing concepts from scheduling litera- 

ure and taking into account the problem’s structural properties. 

ection 7 deals with modeling variants. Section 8 is devoted to 

omputational experiments and their discussion. Section 9 pro- 

ides a summary and conclusions. 

. Material flow model 

Since the RCPSP is a classical discrete optimization problem, 

e also assume the diverging material flows to be discrete. For- 

ally, we investigate material units (e.g., containers or tons). Mate- 

ial units are considered as homogeneous in terms of storage vol- 

me. Typically, a material unit should be chosen as the greatest 

ommon divisor of all material flow values observed during the 

roject. 

We use two types of parameters to describe material flows: 

irst, a set of material flow paths and second, the number of mate- 

ial units released by each activity, traversing each material flow path 

see Section 4 for a formal definition). Material flow paths are se- 

uences of processing steps and storage facilities, each terminating 

ith the sink. Since the inventory of sinks is unconstrained, it is 

ufficient to use a single sink for all material flows. The same pro- 

essing steps and storage facilities may repeatedly occur in a ma- 

erial flow path. Without loss of generality, in each material flow 

ath processing steps and storage facilities are arranged in alter- 

ation. And, each material flow path starts with a storage facility, 

n which the activity releases the material units. If there exists a 

rocessing step with a zero-wait condition, we set the capacity of 

he preceding storage facility to zero. 

Consider the following illustrative example. A material flow re- 

eased by activity 1 consists of five material units. The material 

ow is described as follows, where P x are processing steps, S x are

torage facilities, and s is the sink: 

• Material flow path 1 = ( S1 , P1 , S1 , P2 , S3 , P3 , S5 , P7 , s ) ; tra-

versed by one material unit. 
• Material flow path 2 = ( S4 , P4 , S5 , P5 , S5 , P8 , s ) ; traversed by

two material units. 
• Material flow path 3 = ( S4 , P4 , S5 , P8 , s ) ; traversed by one

material unit. 
• Material flow path 4 = ( S2 , P6 , s ) ; traversed by one material

unit. 

Fig. 1 depicts the material flow described by these paths as a 

ow network. When being released by activity 1, one material unit 

s replenished into storage facility S1 , three material units into S4 , 

nd one unit into S2 . Then, the material units are eligible for the 

rst processing steps P1 , P4 , or P6 as described in the material flow 

aths. This means they are depleted from the upstream storage fa- 

ilities S1 , S4 , or S2 at the start of processing and processed for a 

iven duration. After processing, one unit reaches the sink and the 

ther four units are replenished into the downstream storage fa- 

ilities S1 and S5 , respectively. The processing continues and thus, 

ll material units are incrementally moved towards the sink while 

reating new space for material units from other activities. 

The flow network in Fig. 1 has divergent, convergent, and cycli- 

al parts. In general, materials can flow arbitrarily between dif- 

erent storage facilities. When we schedule the processing of the 

escribed material flow, however, we observe a diverging struc- 

ure as the materials are no longer merged and processed as one 

nit throughout the planning horizon. This significantly reduces 

he complexity of the problem, as we will show in the following 

laboration. This model is particularly suitable for practical appli- 

ations with material flows that have a back coupling effect on the 

lanning due to processing and storage bottlenecks, e.g., disman- 

ling projects. 
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Fig. 1. Exemplary flow network. 
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Without loss of generality, we decide for the following model- 

ng concepts: 

(1) The limited processing capacity is modeled through re- 

newable resources. More precisely, we define that apply- 

ing a processing step to a material unit requires specific 

amounts of renewable resources. The pool of renewable re- 

sources is the same for both activities and processing steps. 

Thus, project activities and the material flows may compete 

against the same renewable resources such as workers or 

tools. 

(2) The processing of material units released by an activity is 

interruptible down to the level of a single material unit and 

a discrete time period. We can treat the non-interruptible 

case with the same concepts and refer to it as the aggre- 

gated modeling variant in Section 7 . 

(3) All material units, which are released by a certain activity 

i and which feature the same material flow path emerge 

uniformly distributed over the execution time of i (cf. e.g., 

Neumann, Schwindt, & Trautmann, 2005; Sourd & Rogerie, 

2005 ). This is derived from the assumption that the work 

progress of activities is linear in time and thus material 

emerges at equal time intervals (see Section 4 for a for- 

mal definition). If necessary, our proposed SGS can also solve 

problems with other temporal distributions of the emerging 

times of material units. 

Furthermore, we derive two assumptions from the practical 

roblem setting: 

(1) The minimum inventory of each storage facility is zero. This 

is inherent to the studied setting since all material flows are 

intended to end up in a sink. 

(2) There are no maximum storage times (also called “shelf-life 

times” by Schwindt & Trautmann (20 0 0) ) since we do not 
deal with perishable products. 

1073 
. Literature review 

Most papers in scheduling literature incorporating material 

ows address problems arising in production planning, e.g., Blömer 

 Günther (1998) , Blömer & Günther (20 0 0) , Kallrath (20 02) ,

urkard & Hatzl (2005) , Burkard & Hatzl (2006) , Belaid, T’kindt, & 

sswein (2012) , Boysen, Bock, & Fliedner (2013) , Baumann & Traut- 

ann (2014) , Briskorn & Zeise (2019) . A network representation 

f chemical processes called State-Task-Network (STN) , which has 

everal similarities to our representation in Fig. 1 , is proposed by 

ondili, Pantelides, & Sargent (1993) . Storage facilities are regarded 

s states, whereas processing steps correspond to tasks. However, 

he STN representation requires that all material flows entering the 

ame state (i.e., the same storage facility) are of the same quality 

ince states usually refer to tanks in practice. This is not a suitable 

ssumption for our problem setting with diverging material flows, 

here we keep track of every single material unit. 

In the area of project scheduling, there is only a limited num- 

er of papers taking into account material flows. Schwindt & Traut- 

ann (20 0 0) present an integration of inventory constraints into 

he framework of the RCPSP for production settings, where ma- 

erial flows are processed as predetermined and discrete quanti- 

ies called batches . Schwindt, Fink, & Trautmann (2007) tackle the 

ame problem using a priority rule method for generating feasi- 

le schedules. In our interruptible setting, we would identify the 

rocessing of each single material unit as a batch. Neumann et al. 

2005) propose an extended model including the case of contin- 

ous material flows processed at finite rates over the duration of 

n activity. Voß & Witt (2007) model a steel manufacturing prob- 

em utilizing a multi-mode RCPSP and apply priority rules for solv- 

ng real-world instances. They do not take storage restrictions into 

ccount. Besides, their definition of the term “batch” differs from 

he definition by Schwindt & Trautmann (20 0 0) since they regard 
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A  
 batch as a series of processing steps that is executed on a ma- 

hine without changing its setup. 

In all application-oriented publications cited so far, material 

ows are an integral part of the project, and delaying critical pro- 

essing steps would directly prolong the project makespan. For ex- 

mple, Schwindt & Trautmann (20 0 0) define a demand vector indi- 

ating the requirements for final products to be produced with dif- 

erent input materials to minimize the total production makespan. 

oysen et al. (2013) are concerned with the problem of schedul- 

ng a single machine so that external demand events occurring at 

xed times over the planning horizon are satisfied. In our problem 

etting, the processing of material flows is not an integral part of 

he project, but a secondary planning level. More precisely, mate- 

ial processing cannot lie on the critical path, but only indirectly 

mpacts the project’s makespan in the case of storage overload. To 

he best of our knowledge, this case has not been addressed in the 

iterature so far. 

In the following, we provide a brief overview of solution meth- 

ds for scheduling problems with storage constraints. Schwindt 

1999) and Neumann & Schwindt (2002) introduced the cumu- 

ative resource type as a generalization of renewable and non- 

enewable resources. Both Schwindt & Trautmann (20 0 0) and 

eumann et al. (2005) model storage facilities in processing in- 

ustries as cumulative resources. To generate feasible solutions for 

he RCPSP with cumulative resources, they relax minimum and 

aximum inventory constraints and iteratively add temporal con- 

traints between activities to resolve remaining inventory short- 

ges or excesses. By integrating this generation scheme into an 

xact (truncated) branch-and-bound procedure, they compute op- 

imal (heuristic) solutions for different test instances. It is well- 

nown that branch-and-bound techniques perform poorly for large 

nstances (cf. Franck, Neumann, & Schwindt, 2001 ). Neumann et al. 

2005) show that their algorithm can handle instances compris- 

ng 750 operations with batch material flows and up to 90 op- 

rations with continuous material flows. Laborie (2003) presents 

n alternative approach to solving these problems using constraint 

rogramming techniques. It is extended to the case of continuous 

aterial flows by Sourd & Rogerie (2005) . Carlier, Moukrim, & Xu 

2009) examine a list scheduling algorithm for tackling a partic- 

lar variant of the problem considered by Neumann & Schwindt 

2002) and Laborie (2003) with a single storage facility. Carlier, 

oukrim, & Sahli (2018) provide lower bounds to the latter prob- 

em. Koné, Artigues, Lopez, & Mongeau (2013) integrate cumulative 

esources into mixed-integer linear programming (MILP) models. 

ILP formulations are flexible for extensions, while the solution 

ethod remains unchanged. However, the performance is weak for 

arge instances compared to specialized algorithms. 

Briskorn, Choi, Lee, Leung, & Pinedo (2010) introduce a single 

achine scheduling problem subject to inventory constraints. Jobs 

eplenish or deplete a central storage facility with unlimited capac- 

ty. As long as sufficient items have not been replenished into the 

torage, no depleting job is eligible for its execution. The problem 

s motivated by the scheduling of trucks that deliver and collect 

tems at a transshipment terminal. Solution procedures and bounds 

or this problem, but with varying objective functions, are studied 

n Briskorn, Jaehn, & Pesch (2013) , Briskorn & Leung (2013) and 

orsy & Pesch (2015) . Briskorn & Pesch (2013) consider the case 

f limited storage capacity and propose a heuristic solution proce- 

ure based on the variable neighborhood algorithm. Davari, Ran- 

bar, de Causmaecker, & Leus (2020) include release date con- 

traints into the problem formulation by Briskorn et al. (2010) . 

. Problem statement 

The RMCPSP proposed in this paper deals with scheduling a 

roject that has been broken down into a set of non-interruptible 
1074 
ctivities i = 0 , . . . , I + 1 to minimize the project makespan z. A

ector of start times S := (S i ) i =0 , ... ,I+1 is called a schedule . Fictitious 

ctivities 0 and I + 1 represent the start and the end of the project,

.e., S 0 := 0 and z := S I+1 . Parameter d i ∈ Z ≥0 indicates the duration

in periods) of each activity i , where d 0 = d I+1 := 0 holds. 

A set of precedence relations E ⊂ { 0 , . . . , I + 1 } 2 is defined on

airs of activities, where each precedence relation (i, i ′ ) ∈ E implies 

 temporal constraint of the finish-to-start type termed precedence 

onstraint ; i.e., activity i ′ must not start before the completion of 

ctivity i . Let I RMCPSP denote an instance of the RMCPSP. A sched- 

le S to I RMCPSP is time-feasible if and only if it satisfies precedence 

onstraints 

 i ′ ≥ S i + d i (∀ (i, i ′ ) ∈ E) . (1) 

e assume that precedence relations are appropriately contained 

n E in order to make sure that fictitious activities 0 and I + 1

niquely represent the start and the end of the project. 

The set of renewable resources available in our project is de- 

oted by R 

α . The maximum availability of each renewable re- 

ource k ∈ R 

α is given by R α
k 

∈ Z ≥0 . An activity i requires r α
ik 

∈
 ≥0 units of renewable resource k ∈ R 

α during its execution. Af- 

er completion, these units can be used by other activities. Given a 

chedule S, the so-called active set 

 

α(S, t) := { i ∈ { 0 , . . . , I + 1 } | S i ≤ t < S i + d i } (2)

omprises all activities executed at a time t ≥ 0 (cf. Neumann, Nü- 

el, & Schwindt, 20 0 0 ). Then, the overall amount of renewable re- 

ource k required by project activities at a time t ≥ 0 is 

 

α
k (S, t) := 

∑ 

i ∈A α (S,t) 

r αik . (3) 

With regard to material flows, the set of storage facilities is 

enoted by R 

γ , the set of processing steps by P , and the sink 

y s . The maximum inventory of each storage facility k ∈ R 

γ is

rescribed by parameter R 
γ
k 

∈ Z ≥0 . Analogous to project activities, 

ach processing step p ∈ P requires r α
pk 

∈ Z ≥0 units of renewable 

esource k ∈ R 

α during every execution period. The overall amount 

f a renewable resource k ∈ R 

α required by all processing steps at 

 time t ≥ 0 is denoted by function �α
k 
(t) . A schedule S to I RMCPSP 

s renewable-resource-feasible if and only if it satisfies availability 

onstraints on renewable resources 

 

α
k (S, t) + �α

k (t) ≤ R 

α
k (∀ k ∈ R 

α, t ≥ 0) . (4)

ote that function �α
k 
(t) represents the results from the secondary 

lanning level for material flow processing. We do not provide a 

echanism for evaluating it in this conceptual problem statement, 

ut refer to Section 5 where material flows are integrated into the 

roject planning. 

The set of all pairwise distinct material flow paths observed 

uring the project is denoted by W . The first storage facility in 

 path w ∈ W is referred to as k 1 (w ) , the first processing step as

p 1 (w ) , and so on. Now, let us assume that each activity i releases

f iw 

∈ Z ≥0 material units traversing the material flow path w ∈ W ,

here f 0 w 

= f I+1 w 

:= 0 holds for each w ∈ W . As mentioned in

ection 2 , all f iw 

material units emerge uniformly distributed over 

he execution time of i . Following the approach by Neumann et al. 

2005) for continuous material flows, we therefore introduce func- 

ion 

 i (S, t) := 

{ 

0 if t < S i , 
1 if t ≥ S i + d i , 
(t − S i ) /d i otherwise , 

(5) 

or denoting the portion of activity i that has been completed at a 

ime t ≥ 0 , given a schedule S. The active set 

 

γ (S, t) := { i ∈ { 0 , . . . , I + 1 } | 0 ≤ S ≤ t} (6)
i 
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Table 1 

Parameters introduced for I RMCPSP . 

Notation Denotation 

i = 0 , . . . , I + 1 (project) activities; I denotes the number of non-fictitious activities 

d i ∈ Z ≥0 duration of activity i 

(i, i ′ ) ∈ E precedence relation 

k ∈ R 

α renewable resource 

r α
ik 

∈ Z ≥0 number of units of renewable resource k ∈ R 

α required by activity i 

R α
k 

∈ Z ≥0 maximum availability of renewable resource k ∈ R 

α

p ∈ P processing step 

r α
pk 

∈ Z ≥0 number of units of renewable resource k ∈ R 

α required by processing step p ∈ P
k ∈ R 

γ storage facility 

R 
γ
k 

∈ Z ≥0 maximum inventory of storage facility k ∈ R 

γ

w ∈ W material flow path of a material unit released during project execution 

f iw ∈ Z ≥0 number of material units, whose flow is described by material flow path w ∈ W , released by activity i 

c
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Algorithm 1: Transformation . 

Data : Instance I RMCPSP 

1 create a new fictitious operation o J+1 ; 

2 create a new cumulative resource k ∈ R 

γ for each storage 

facility k ∈ R 

γ ; 

3 for activity i := 0 to I + 1 do 

4 foreach material flow path w ∈ W do 

5 for material unit u := 1 to f iw 

do 

6 derive a new operation j from processing step 

p 1 (w ) ; 

7 create a new release relation (i, j) ∈ E rel and set 

d min 
i j 

:= � u · d i / f iw 

� ; 
8 set r α

jk 
:= r α

p 1 (w ) k 
for each k ∈ R 

α; 

9 set r 
γ
jk 1 (w ) 

:= −1 ; 

10 initialize step := 2 ; 

11 while sink s not reached do 

12 derive a new operation j ′ from processing step 

p step (w ) ; 

13 create a new flow-induced precedence relation 

( j, j ′ ) ∈ E f low ; 

14 set r α
j ′ k := r α

p step (w ) k 
for each k ∈ R 

α; 

15 set r 
γ
j ′ k step (w ) 

:= −1 and r 
γ
jk step (w ) 

:= r 
γ
jk step (w ) 

+ 1 ; 

16 set j := j ′ ; 
17 set step := step + 1 ; 

18 end 

19 create a new flow-induced precedence relation 

( j, o J+1 ) ∈ E f low ; 

20 end 

21 end 

22 end 

Result : Instance I RCPSP/c 

I
t

s

t

a

o

p

t

t

o  

r

L

d

omprises all activities that have released material units from the 

roject start until a time t ≥ 0 , given a schedule S. Then, the overall

mount of material units released into a storage facility k ∈ R 

γ at 

 time t ≥ 0 is 

f 
γ
k 
(S, t) := 

∑ 

i ∈A γ (S,t) 

∑ 

w ∈ W | k 1 (w )= k 
	 f iw 

x i (S, t) 
 . (7) 

n the second sum, we only consider material flow paths w ∈ W 

hat start with storage facility k . The term 	 f iw 

x i (S, t) 
 corresponds

o the number of material units described by material flow path w 

nd released by activity i at time t . The floor function ensures that 

 material unit is only considered as released when it is completely 

vailable at time t . Here, we differ from continuous material flows. 

he value of f 
γ
k 

(S, t) is constrained by the availability of storage 

acility k ∈ R 

γ at time t . This is denoted by function �
γ
k 
(t) , which

epends first on k ’s maximum inventory R 
γ
k 

and second on how 

ast material units previously released are processed and moved 

owards the sink (a mechanism for evaluating �
γ
k 
(t) is provided in 

ection 5 ). A schedule S to I RMCPSP is material-flow-feasible if and 

nly if it satisfies material flow constraints 

f 
γ
k 
(S, t) ≤ �

γ
k 
(t) (∀ k ∈ R 

γ , t ≥ 0) . (8) 

Summing up, the RMCPSP is conceptually formulated as fol- 

ows: 

in 

S 
z := S I+1 (9a) 

ubject to S i ′ ≥ S i + d i (∀ (i, i ′ ) ∈ E) ; (9b) 

 

α
k (S, t) + �α

k (t) ≤ R 

α
k ( ∀ k ∈ R 

α, t ≥ 0 ) ; (9c) 

f 
γ
k 
(S, t) ≤ �

γ
k 
(t) ( ∀ k ∈ R 

γ , t ≥ 0 ) ; (9d) 

 0 = 0 ; (9e) 

 i ≥ 0 ( i = 1 , . . . , I + 1 ) . (9f) 

A schedule S to I RMCPSP is feasible if and only if it satisfies (9b) –

9f) . Table 1 summarizes all parameters introduced for I RMCPSP . 

Although R α
k 

and R 
γ
k 

are constant over time, non-constant max- 

mum availabilities and inventories can be modeled by introducing 

ummy activities fixed to appropriate start times as proposed by 

artusch, Möhring, & Radermacher (1988) . 

. Transformation scheme 

In this section, we remodel the RMCPSP using concepts from 

cheduling literature, in particular, from Schwindt & Trautmann 

20 0 0) and Neumann et al. (2005) . The remodeled problem is 

alled resource-constrained project scheduling problem with cumu- 

ative resources (RCPSP/c) . The procedure for turning an instance 
1075 
 RMCPSP into an instance I RCPSP/c is referred to as transforma- 

ion scheme . Algorithm 1 formally summarizes the transformation 

cheme. The combination of both the transformation scheme and 

he SGS (presented in Section 6 ) can be considered as one possible 

pproach to solve the RMCPSP. 

The basic idea of remodeling the RMCPSP within the framework 

f the RCPSP/c is to integrate the material flow planning into the 

roject planning. To this end, the application of processing steps 

o material units is modeled with separately scheduled entities, 

ermed operations . More precisely, for each activity i , we derive one 

peration j for each processing step p 1 (w ) , p 2 (w ) , . . . in the mate-

ial flow path w traversed by each material unit released by i (cf. 

ines 6 and 12 of Algorithm 1 ). In contrast to processing steps that 

escribe technical processing routes, each operation is a concrete 
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Fig. 2. Exemplary precedence network. 
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nstance of a processing step applied to one material unit. Param- 

ter d j ∈ Z ≥0 indicates the duration (in periods) of an operation j

nd must be specified a priori. 

Given all operations j = o 1 , . . . , o J+1 , a schedule to the RCPSP/c

s a couple (S, S o ) of a vector of start times for project activi-

ies S := (S i ) i =0 , ... ,I+1 and a vector of start times for operations 

 

o := (S o 
j 
) j= o 1 , ... ,o J+1 

. Fictitious operation o J+1 with d o J+1 
= 0 repre- 

ents the end of material processing. Since each operation can flex- 

bly start after its material unit is available, the processing of ma- 

erial is interruptible as stated in Section 2 . 

Many scheduling approaches dealing with problems arising 

n process industries, such as Schwindt & Trautmann (20 0 0) or 

lömer & Günther (1998) , do not link operations explicitly to 

ach other. Instead, they maintain the precedences implied by the 

roduction structure just by satisfying minimum inventory con- 

traints. However, we need an explicit link in our setting in order 

o ensure that processing of material units follows the prescribed 

nd highly individual order (cf. e.g., Neumann & Schwindt, 1997 ). 

ere, such a link is modeled by a set of flow-induced precedence re- 

ations E f low ⊂ { o 1 , . . . , o J+1 } 2 , where each flow-induced precedence 

elation ( j, j ′ ) ∈ E f low implies a temporal constraint of the finish- 

o-start type termed flow-induced precedence constraint , i.e., oper- 

tion j ′ must not start before the completion of operation j. For 

ach pair of immediately successive operations j, j ′ ∈ { o 1 , . . . , o J+1 }
n each material unit, we introduce one single flow-induced prece- 

ence relation ( j, j ′ ) (cf. Line 13 of Algorithm 1 ). Thus, the set of

ow-induced precedence relations between all operations on a ma- 

erial unit forms a chain. We additionally introduce flow-induced 

recedence relations so that fictitious operation o J+1 uniquely rep- 

esents the end of all operations (cf. Line 19 of Algorithm 1 ). 

Moreover, we must establish a link between the project activ- 

ties and the first operation executed on each material unit af- 

er having been released by the respective activity. Such a link 

s modeled with a set of release relations E rel ⊂ { 0 , . . . , I + 1 } ×
 o 1 , . . . , o J+1 } . Since material units can be released while project

ctivities are still in progress (cf. Formula (7) ), each release rela- 

ion (i, j) ∈ E rel implies a temporal constraint of the start-to-start 

ype with a minimum time lag d min 
i j 

∈ Z ≥0 , i.e., operation j must 
1076 
ot start before time S i + d min 
i j 

. For each pair of a releasing activity

 ∈ { 0 , . . . , I + 1 } and the first operation j ∈ { o 1 , . . . , o J+1 } on each

aterial unit, we introduce one single release relation (i, j) . Our 

lgorithm selects minimum time lags in a way that reflects the 

niform emergence of material units over the activity’s duration 

cf. Line 7 of Algorithm 1 ). 

A schedule (S, S o ) to I RCPSP/c is time-feasible if and only if it sat- 

sfies precedence constraints (equal to (9b) in the RMCPSP) 

 i ′ ≥ S i + d i (∀ (i, i ′ ) ∈ E) , (10) 

ow-induced precedence constraints 

 

o 
j ′ ≥ S o j + d j (∀ ( j, j ′ ) ∈ E f low ) (11) 

nd release constraints 

 

o 
j ≥ S i + d min 

i j (∀ (i, j) ∈ E rel ) . (12) 

Let us consider the problem instance as a network with node 

et { 0 , . . . , I + 1 } ∪ { o 1 , . . . , o J+1 } and arc set E ∪ E f low ∪ E rel . Arcs

i, i ′ ) ∈ E are weighted with durations d i , arcs ( j, j ′ ) ∈ E f low with

urations d j and arcs (i, j) ∈ E rel with minimum time lags d min 
i j 

. As

entioned above, fictitious activity I + 1 represents the end of the 

roject and thus accounts for the objective value of the schedul- 

ng problem. However, the node identified with I + 1 is not the 

erminal node of the network since we treat diverging material 

ows on a secondary planning level: None of the project activities 

 = 0 , . . . , I + 1 is allowed as a (direct or transitive) successor of an

peration j = o 1 , . . . , o J+1 . Particularly, fictitious activity I + 1 is not

 successor of operations. Thus, operations are not directly critical 

ith respect to the objective function of the scheduling problem, 

ince they cannot lie on the longest path from activity 0 to I + 1 .

hey only impact the objective value as soon as storage overloads 

re fed back to the activities’ level. For illustration, Fig. 2 depicts an 

xemplary precedence network with I = 3 non-fictitious activities. 

ctivities 1 and 3 release material units during their execution. All 

perations j = o 1 , . . . , o 13 are assumed to take d j = 1 period. Activ-

ty 4 represents the end of the project and operation o J+1 repre- 

ents the end of material processing. Activity 1 is identical to the 

ctivity exemplarily mentioned in Section 2 and Fig. 1 . In contrast 
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o the flow network in Fig. 1 , the precedence network in Fig. 2 re-

eals the diverging structure of the material flow. 

With regard to renewable resources, let O p ⊆ { o 1 , . . . , o J } de-

ote the set of operations derived from a processing step p ∈ P . 

hen, each operation j ∈ O p requires r α
jk 

:= r α
pk 

units of renewable

esource k ∈ R 

α , i.e., the resource requirements of processing steps 

re handed down to the derived operations (cf. Lines 8 and 14 of 

lgorithm 1 ). Given S o , the active set 

 

α(S o , t) := { j ∈ { o 1 , . . . , o J+1 } | S o j ≤ t < S o j + d j } (13)

omprises all operations executed at a time t ≥ 0 . Then, we can 

ubstitute function �α
k 
(t) in Formula (4) with 

 

α
k (S o , t) := 

∑ 

j∈A α (S o ,t) 

r αjk , (14) 

hich yields the overall amount of a renewable resource k ∈ R 

α

equired by operations at a time t ≥ 0 . A schedule (S, S o ) to I RCPSP/c 

s renewable-resource-feasible if and only if it satisfies availability 

onstraints on renewable resources 

 

α
k (S, t) + r αk (S o , t) ≤ R 

α
k (∀ k ∈ R 

α, t ≥ 0) . (15)

For modeling storage facilities within the framework of the 

CPSP/c, we consider each storage facility k ∈ R 

γ as a cumula- 

ive resource . The availability of each cumulative resource k ∈ R 

γ

s constrained by the maximum inventory R 
γ
k 

∈ Z ≥0 . Each opera- 

ion j moves one material unit from an upstream storage facility 

o a downstream storage facility or to the sink. To model these 

oves, we introduce parameters r 
γ
jk 

∈ {−1 , 0 , 1 } specifying the re-

uirement for a cumulative resource k ∈ R 

γ by operation j (cf. 

ines 9 and 15 of Algorithm 1 ). If r 
γ
jk 

= 1 , operation j replenishes

ne material unit into k at its completion time (S o 
j 
+ d j ) and is

alled k -replenishing operation . If r 
γ
jk 

= −1 , operation j depletes one 

aterial unit from k at its start time S o 
j 

and is called k -depleting 

peration . If r 
γ
jk 

= 0 , operation j either does not require cumulative 

esource k or operation j both replenishes and depletes into/from 

he same cumulative resource k . The latter case will be discussed 

t the end of this section. 

Given S o , the active set 

 

γ + 
k 

(S o , t) := { j ∈ { o 1 , . . . , o J+1 } | r γjk = 1 ∧ 0 ≤ S o j + d j ≤ t} (16)

omprises all operations that have replenished material units into 

umulative resource k ∈ R 

γ and the active set 

 

γ −
k 

(S o , t) := { j ∈ { o 1 , . . . , o J+1 } | r γjk = −1 ∧ 0 ≤ S o j ≤ t} (17)

omprises all operations that have depleted material units from 

umulative resource k ∈ R 

γ until a time t ≥ 0 . Then, the overall

mount of material units replenished and depleted into/from a cu- 

ulative resource k ∈ R 

γ by operations at a time t ≥ 0 is 

 

γ
k 
(S o , t) := 

∑ 

j∈A γ + 
k 

(S o ,t) 

r 
γ
jk 

+ 

∑ 

j∈A γ −
k 

(S o ,t) 

r 
γ
jk 
. (18) 

 schedule (S, S o ) to I RCPSP/c is cumulative-resource-feasible if and 

nly if it satisfies the maximum inventory constraints 

f 
γ
k 
(S, t) + r 

γ
k 
(S o , t) ≤ R 

γ
k 

(∀ k ∈ R 

γ , t ≥ 0) . (19)

s introduced in Section 4 , f 
γ
k 

(S, t) is the overall amount of ma-

erial units released into cumulative resource k at time t . We can 

ow substitute material flow constraints (9d) in the RMCPSP with 

aximum inventory constraints (19) . 

Summing up, the RCPSP/c is formulated as follows: 

in 

S,S o ) 
z := S I+1 (20a) 

ubject to S i ′ ≥ S i + d i (∀ (i, i ′ ) ∈ E) ; (20b) 
S

1077 
 

o 
j ′ ≥ S o j + d j (∀ ( j, j ′ ) ∈ E f low ) ; (20c) 

 

o 
j ≥ S i + d min 

i j (∀ (i, j) ∈ E rel ) ; (20d) 

 

α
k (S, t) + r αk (S o , t) ≤ R 

α
k (∀ k ∈ R 

α, t ≥ 0) ; (20e) 

f 
γ
k 
(S, t) + r 

γ
k 
(S o , t) ≤ R 

γ
k 

(∀ k ∈ R 

γ , t ≥ 0) ; (20f) 

 0 = 0 ; (20g) 

 i ≥ 0 (i = 1 , . . . , I + 1) ; (20h) 

 

o 
j ≥ 0 ( j = o 1 , . . . , o J+1 ) . (20i) 

A schedule (S, S o ) to I RCPSP/c is feasible if and only if it satisfies 

20b) – (20i) . A time-feasible schedule implicitly satisfies minimum 

nventory constraints f 
γ
k 

(S, t) + r 
γ
k 
(S o , t) ≥ 0 (∀ k ∈ R 

γ , t ≥ 0) , since

ow-induced precedence constraints (20c) and release constraints 

20d) impose that an operation cannot start before a material unit 

s available. Table 2 summarizes parameters introduced for I RCPSP/c 

n addition to parameters provided in Table 1 . 

Note that there may be operations j ∈ { o 1 , . . . , o J+1 } that de-

lete and replenish from/into the same storage facility, termed 

eutral operations (e.g., operations derived from processing step P1 

r P5 in Fig. 1 ). For each neutral operation j, r 
γ
jk 

= 0 holds for each

 ∈ R 

γ . In Algorithm 1 , this is implemented in Line 15, where a

+1) is added to r 
γ
jk step (w ) 

which can offset a (−1) . Although, in re- 

lity, each neutral operation reduces the inventory by one material 

nit during its execution, our model does not consider them when 

alculating inventories for simplification. 

. Schedule generation scheme 

When planning projects with highly granular material flows, 

e must consider thousands of material units. Given an instance 

 RMCPSP of the problem under study, this section focuses on a 

rocedure for efficiently generating good feasible schedules (S, S o ) 

o the instance I RCPSP/c := Transformation (I RMCPSP ) . Each schedule 

S, S o ) to I RCPSP/c comprises a schedule S to I RMCPSP . 

.1. Basic concepts 

Two well-known techniques for constructing feasible sched- 

les to instances of the classical RCPSP are the serial and parallel 

GS. These schemes schedule activities successively at their earli- 

st time- and renewable-resource-feasible start times (cf. Kolisch, 

996b ). Priority rule methods are heuristics that combine such a 

cheme with a priority rule prescribing the order for traversing 

he activities (cf. Kolisch, 1996a ). If maximum time lags between 

ctivities exist, the SGS must also allow for unscheduling steps 

cf. Franck et al., 2001 ). Since the availability of cumulative re- 

ources depends on all previous resource requirements, both the 

erial and the parallel SGS do not apply to problems involving such 

esources straightforwardly. Therefore, exact or heuristic branch- 

nd-bound procedures are frequently employed when cumulative 

esources are present (cf. e.g., Schwindt & Trautmann, 20 0 0; Neu- 

ann et al., 2005 ). Usually, these procedures start with generat- 

ng a time-feasible schedule. For each conflict on cumulative re- 

ources, i.e., for each violated maximum inventory constraint, ad- 

itional precedence relations are introduced between activities to 

esolve the conflict. For each possible set of additional precedence 

elations that resolves the conflict, a new enumeration node is cre- 

ted, and the steps are repeated until the schedule is cumulative- 

esource-feasible. 

Schwindt et al. (2007) propose a priority rule method using an 

GS that can cope with instances of an RCPSP with cumulative 
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Table 2 

Parameters introduced for I RCPSP/c in addition to parameters provided in Table 1 . 

Notation Denotation 

j = o 1 , . . . , o J+1 operations; J denotes the number of non-fictitious operations (equals the total number of processing steps applied to material units) 

d j ∈ Z ≥0 duration of operation j

r α
jk 

∈ Z ≥0 number of units of renewable resource k ∈ R 

α required by operation j

( j, j ′ ) ∈ E f low flow-induced precedence relation 

(i, j) ∈ E rel release relation 

d min 
i j 

∈ Z ≥0 minimum time lag between start of activity i and start of operation j

k ∈ R 

γ cumulative resource 

r 
γ
jk 

∈ {−1 , 0 , 1 } number of units of cumulative resource k ∈ R 

γ required by operation j

R 
γ
k 

∈ Z ≥0 maximum inventory of cumulative resource k ∈ R 

γ
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esources. If maximum inventory constraints for a cumulative re- 

ource k are violated in an iteration of the SGS, the latest start 

imes of activities depleting k are reduced sufficiently to resolve 

he conflict. If this causes infeasibility, activities replenishing k are 

nscheduled and postponed sufficiently to resolve the conflict. The 

asic idea behind these shifts is very similar to the introduction of 

dditional precedence relations in branch-and-bound procedures. 

he schedule generated in each pass corresponds to one single 

ath in the enumeration tree of a branch-and-bound procedure. 

chwindt et al. (2007) show that their priority rule method outper- 

orms branch-and-bound procedures for large instances. Therefore, 

e also opt for a priority rule method to solve the RCPSP/c formu- 

ated in Section 5 . In contrast to the SGS by Schwindt et al. (2007) ,

ur SGS is tailored to the special precedence structure stemming 

rom diverging material flows. We explicitly define how to select 

perations for scheduling steps. Thereby, we facilitate the search 

or a feasible solution and accelerate the procedure, as we show in 

he following. 

Let Succ (i ) ⊆ { o 1 , . . . , o J } denote the set of all non-fictitious op-

rations that are immediate or transitive successors of an activ- 

ty i ∈ { 0 , . . . , I + 1 } . Then, set M i := { i } ∪ Succ (i ) is called a mate-

ial flow structure . If we consider the project as a network, the 

raph of a material flow structure M i is a directed outtree that only 

ranches at the root (cf. e.g., M 1 := { 1 , o 1 , . . . , o 13 } in Fig. 2 ). This

tructural property is inherent in diverging material flows, where 

aterial units are no longer merged throughout their processing 

cf. Section 2 ). Note that all sets Succ (i ) are disjoint, i.e., Succ (i ) ∩
ucc (i ′ ) = ∅ for all i, i ′ ∈ { 0 , . . . , I + 1 } with i � = i ′ . The operations

n Succ (i ) move all material units released by i towards the sink. 

hus, in any feasible schedule (S i , (S o 
j 
) 

j∈ Succ (i ) ) to an RCPSP/c where

aterial flow structure M i is scheduled isolated from all other 

ctivities i ′ � = i and operations j �∈ Succ (i ) , the inventories of all

umulative resources are zero at time t = max 
j∈ Succ (i ) S 

o 
j 

(i.e., the 

ime when the last material unit is depleted from a cumulative 

esource). Schedule (S i , (S o 
j 
) 

j∈ Succ (i ) ) can be generated straightfor- 

ardly: Each branch of the outtree M i prescribes a linear order 

n the operations for processing one material unit. If we sched- 

le operations in this order, we get the schedule with the lowest 

ossible load of storage facilities because we always prioritize the 

ubsequent processing of each material unit. That is, if the linear 

rder prescribed by the branch of the outtree does not yield a fea- 

ible schedule, the problem is cumulative-resource-infeasible. Ap- 

ending these linear orders for all branches of the outtree provides 

 complete linear order on the operations for processing material 

nits released by i . We can efficiently compute an earliest sched- 

le for M i from a complete linear order as is shown by Carlier et al.

2009) . A disjunctive temporal concatenation of feasible schedules 

S i , (S o 
j 
) 

j∈ Succ (i ) ) for all activities i = 0 , . . . , I + 1 yields a feasible

chedule (S, S o ) to I RCPSP/c . Thus, while a feasible schedule can be

ound in polynomial time in the case of diverging material flows, 

his is an NP-complete problem in the general case including con- 

erging material flows ( Neumann et al., 2003 , p. 130). Moreover, 
u

1078 
n the case of diverging material flows, we already achieve a good 

easible schedule (S i , (S o 
j 
) 

j∈ Succ (i ) ) with the described concept due 

o the low load of storage facilities. 

.2. Decomposition approach 

We assume that an instance I RCPSP/c typically involves a large 

umber of operations and a smaller number of activities, which 

s why we decompose the schedule generation by exploiting the 

pecial precedence structure of the problem. A feasible sched- 

le (S, S o ) is iteratively constructed in one pass of a serial SGS 

alled SuperSchedule , which traverses activities i = 0 , . . . , I + 1 

ccording to a given priority rule. For each activity i , a sepa- 

ate procedure SubSchedule is called, that computes a feasi- 

le subschedule S M := (S i , (S o 
j 
) 

j∈ Succ (i ) ) for the respective material 

ow structure M i , taking into account the current partial sched- 

le (S, S o ) constructed in SuperSchedule . However, we sched- 

le M i without changing other start times (S i ′ ) i ′ � = i or (S o 
j 
) 

j �∈ Succ (i ) . 

n SuperSchedule , we do not require unscheduling steps since 

he inventories of all cumulative resources are zero at time t = 

ax i =0 , ... ,I+1 max 
j∈ Succ (i ) S 

o 
j 

(i.e., the time when the last material 

nit is depleted from a cumulative resource) after each iteration. 

hus, SubSchedule can always compute the feasible subsched- 

le S M in which activity i starts at the latest completion time in 

he partial schedule. At this time, no other activity or operation is 

xecuted anymore and thus, M i is isolated (i.e., S M is feasible, cf. 

ection 6.1 ). 

Algorithm 2: SuperSchedule . 

Data : Instance I RCPSP/c ; priority rule π

1 initialize partial schedule (S, S o ) with S i := −∞ for 

i = 0 , . . . , I + 1 and S o 
j 

:= −∞ for j = o 1 , . . . , o J+1 ; 

2 set S 0 := 0 ; 

3 while activities i with S i = −∞ remain do 

4 determine E := { i ∈ { 0 , . . . , I + 1 } | S i = −∞ ∧ S i ′ ≥
0 for each i ′ ∈ P red(i ) } ; 

5 select i ∗ := min { i ∈ E | π(i ) = max i ′ ∈E π(i ′ ) } ; 
6 compute S M := SubSchedule (M i ∗ , (S, S o ) , I RCPSP/c ) ; 

7 copy values of S M into partial schedule (S, S o ) ; 

8 end 

9 set S o o J+1 
:= max j= o 1 , ... ,o J (S o 

j 
+ d j ) ; 

Result : Feasible schedule (S, S o ) to I RCPSP/c 

Algorithm 2 formally describes SuperSchedule . It takes pri- 

rity rule π as input data, where activity i with highest priority 

as the largest priority value π(i ) . Initially, we set the start times 

f all activities and operations to −∞ , which means that they have 

ot been scheduled yet. As long as unscheduled activities remain, 

e determine the eligible set E ⊂ { 0 , . . . , I + 1 } that comprises all

nscheduled activities i whose immediate predecessors P red(i ) ⊂
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Fig. 3. Flowchart for SubSchedule (cf. Algorithm 3 ). 
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 0 , . . . , I} have been scheduled. We call SubSchedule for activity 

 

∗ with the highest priority and copy the returned values S M into 

he partial schedule (S, S o ) . After terminating the while-loop, we 

chedule fictitious operation o J+1 . 

Algorithm 3: SubSchedule . 

Data : Material flow structure M i ; partial schedule (S, S o ) ; 

instance I RCPSP/c 

1 sort Succ (i ) using a depth-first search; 

2 repeat 

3 set S i to the earliest time- and 

renewable-resource-feasible start time t ≥ S i ; 

4 set S o 
j 

to the earliest time- and 

renewable-resource-feasible start time t ≥ S o 
j 

for each 

j ∈ Succ (i ) ; 

5 if a conflict on a cumulative resource k ∈ R 

γ exists then 

6 foreach t c with f 
γ
k 

(S, t c ) + r 
γ
k 
(S o , t c ) > R 

γ
k 

do 

7 construct sets A and B ; 

8 set S o 
j 

:= S o 
j ′ − d j for each ( j, j ′ ) ∈ (A → B ) ; 

9 end 

10 if conflict on cumulative resource k could not be resolved 

then 

11 increase S i until condition (22) holds; 

12 reset S o 
j 

:= −∞ for each j ∈ Succ (i ) ; 

13 end 

14 end 

15 until partial schedule (S, S o ) is feasible ; 

Result : Feasible subschedule S M := (S i , (S o 
j 
) 

j∈ Succ (i ) ) to I RCPSP/c 

Algorithm 3 and the flowchart in Fig. 3 formally describe 

ubSchedule . It resolves conflicts on cumulative resources, i.e. 

iolated maximum inventory constraints, preferably by postponing 

perations. Postponing operations does not directly increase the 

bjective value since operations cannot lie on the critical path. In 

etail, it works as follows: The material flow structure M i to be 

cheduled, the partial schedule (S, S o ) , and the instance I RCPSP/c are 
1079 
aken as input data. Initially, the set Succ (i ) is considered as a list, 

here μ( j) is the index of an operation j in the list. We order 

ucc (i ) so that 

(1) μ( j ′ ) = μ( j) + 1 holds for each of the two operations j, j ′ ∈
Succ (i ) if there exists a flow-induced precedence relation 

( j, j ′ ) ∈ E f low , and 

(2) μ( j) < μ( j ′ ) holds for each of the two operations j, j ′ ∈
Succ (i ) , if there exist release relations (i, j) , (i, j ′ ) ∈ E rel and

d min 
i j 

< d min 
i j ′ . 

This yields the complete linear order described in Section 6.1 . A 

epth-first search in the outtree M i can compute the order easily. 

hen, the earliest time- and renewable-resource-feasible start time 

 ≥ S i for activity i is chosen as S i . The same is done with opera- 

ions in Succ (i ) that are traversed in the complete linear order. 

If the partial schedule (S, S o ) is feasible now, the procedure ter- 

inates and returns S M . Else, we choose one of the cumulative re- 

ources k ∈ R 

γ where a conflict exists. In order to keep the project 

akespan low, we first try to resolve the conflict by postponing 

 -replenishing operations. If such operations exist in M i , material 

nits can be buffered in other upstream storage facilities and thus 

educe the inventory of k . Otherwise, we must postpone activ- 

ty i (see below). The set of k -replenishing operations to be post- 

oned is denoted by A . For each time t c where a conflict exists 

i.e., f 
γ
k 

(S, t c ) + r 
γ
k 
(S o , t c ) > R 

γ
k 

), we construct A as an inclusion-

aximal subset of A 

γ + 
k 

(S o , t c ) ∩ Succ (i ) with 

f 
γ
k 
(S, t c ) + 

∑ 

j∈A γ + 
k 

(S o ,t c ) \ A 
r 
γ
jk 

+ 

∑ 

j∈A γ −
k 

(S o ,t c ) 

r 
γ
jk 

≥ R 

γ
k 
. (21) 

he active set A 

γ + 
k 

(S o , t c ) comprises all scheduled k -replenishing

perations that are completed before or at t c . By using the in- 

ersection A 

γ + 
k 

(S o , t c ) ∩ Succ (i ) , we prevent unscheduling steps for

perations that are not part of material flow structure M i . Condi- 

ion (21) ensures that we only postpone as many k -replenishing 

perations as necessary in order to satisfy the maximum inventory 

onstraint for k at time t c . The left-hand side yields the inventory 

f k at time t c after sufficiently postponing all operations j ∈ A . If

here are different possibilities for constructing A , we choose k - 

eplenishing operations j ∈ A 

γ + 
k 

(S o , t c ) ∩ Succ (i ) with larger com-

letion times (S o 
j 
+ d j ) . 

For each operation j ∈ A , we look for a k -depleting oper- 

tion j ′ to which j can be assigned. This set of k -depleting 

perations is denoted by B . We construct B as a subset 

f A 

γ −
k 

(S o , ∞ ) \ A 

γ −
k 

(S o , t c ) ≡ { j ′ ∈ { o 1 , . . . , o J+1 } | r γj ′ k = −1 ∧ S o 
j ′ >

 

c } with | B | = | A | . The set A 

γ −
k 

(S o , ∞ ) \ A 

γ −
k 

(S o , t c ) comprises all

cheduled k -depleting operations that start after t c . Since each 

peration represents the processing of one material unit, con- 

ition | B | = | A | ensures a complete assignment of operations in

 to operations in B . To improve the performance, we can fur- 

her exclude those k -depleting operations j ′ from A 

γ −
k 

(S o , ∞ ) \ 
 

γ −
k 

(S o , t c ) whose start time already coincides with a completion 

ime of a corresponding k -replenishing operation j so that the in- 

entory is not reduced (see Appendix A1 in the Supplementary 

aterial for an example). If there are different possibilities for 

onstructing B , we choose k -depleting operations j ′ ∈ A 

γ −
k 

(S o , ∞ ) \
 

γ −
k 

(S o , t c ) with smaller start times S o 
j ′ . 

Given A and B , we create a bijective relation A → B assigning

ach operation j ∈ A to an operation j ′ ∈ B . For each ( j, j ′ ) ∈ (A →
 ) , we set S o 

j 
+ d j := S o 

j ′ ⇔ S o 
j 

:= S o 
j ′ − d j . In other words, we post-

one the completion of k -replenishing operations to times when 

 -depleting operations start and thus try to reduce the inventory 

f k at time t c to the maximum inventory R 
γ
k 

. 

The conflict on k is only resolved, if condition (21) is satisfied 

ith equality for each t c . Then, we repeat with calculating earliest 
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s

o

p

ime- and renewable-resource-feasible start times for activity i and 

perations j ∈ Succ (i ) until partial schedule (S, S o ) is feasible. How-

ver, if condition (21) is not satisfied with equality for each t c , the

et A 

γ + 
k 

(S o , t c ) ∩ Succ (i ) does not comprise enough k -replenishing

perations that could be postponed and therefore we must post- 

one activity i . We increase S i until 

f 
γ
k 
(S, t) + r 

γ
k 
(S o , t) ≤ R 

γ
k 

(
S i ≤ t < max j∈ Succ (i ) S 

o 
j 

)
(22) 

olds. That is, we determine the start time S i , at which all material

nits released by activity i fit into k assuming that start times of 

perations do not change. But because start times of operations 

an become time- and/or renewable-resource-infeasible due to 

ostponing i , it is not guaranteed that the conflict on k is resolved

n one iteration. We must reset S o 
j 

:= −∞ for all j ∈ Succ (i ) in the

artial schedule which corresponds to an unscheduling. Finally, 

e repeat by calculating earliest time- and renewable-resource- 

easible start times for activity i and operations j ∈ Succ (i ) . If there

re still conflicts on cumulative resources, we further postpone op- 

rations or activity i and thus, the procedure will converge towards 

 feasible subschedule. 

We remark that activity i may have to be postponed several 

imes until the partial schedule (S, S o ) is feasible. Besides, the solu- 

ion space does not necessarily contain the optimal solution since 

he procedure is not enumerative. We defined, that if there are 

ifferent possibilities for constructing A , we choose k -replenishing 

perations j ∈ A 

γ + 
k 

(S o , t c ) ∩ Succ (i ) with larger completion times

S o 
j 
+ d j ) . However, it could be better to consider any operation

j ∈ A 

γ + 
k 

(S o , t c ) as a possible candidate for A . But such an algorith-

ic design would result in higher computational effort. 

. Modeling variants 

There exist alternative ways for modeling the problem setting 

escribed by the RMCPSP and the RCPSP/c. This section introduces 

hese modeling variants . 

In Section 2 , we stated that the work progress of activities is 

inear in time and thus material emerges uniformly distributed 

ver the execution time of activities. Instead, we can assume that 

ork progresses in a stepwise fashion and thus, the complete ma- 

erial flow emerges at one point in time for each activity. Assign- 

ng the material flow to the start of activities blocks the required 

torage space in advance and ensures feasibility for any other tem- 

oral distribution of emerging material units. In contrast, assigning 

he material flow to another point in time after the start of ac- 

ivities could lead to infeasible solutions concerning the RMCPSP. 

herefore, in a stepwise modeling variant, activities release mate- 

ial flows at their start times. 

According to the modeling concepts presented in Section 2 , 

he processing of materials is interruptible down to the level of 

 single material unit and a discrete time period. This allows the 

reatest possible planning flexibility. In practical terms, the in- 

erruptibility is motivated by the fact that material processing is 

ore similar to mass production than to a project with individ- 

al activities. Therefore, we designed the transformation scheme in 

ection 5 so that a single operation is created for each processing 

tep applied to each material unit. We refer to these single oper- 

tions as granular operations. A large number of granular opera- 

ions accounts for a huge problem size. We can reduce the prob- 

em size by aggregating operations, i.e., by replacing several gran- 

lar operations with one aggregated operation that spans the to- 

al duration and the total material flow of the aggregated granular 

perations. An aggregation of operations is reasonable as long as 

he processed material units stem from the same activity and fol- 

ow the same upstream material flow path. Further aggregations 

ould cause an excessive loss of planning flexibility. Aggregated 
1080 
perations can overlap with activities or with each other. The mini- 

um time lags are set to the smallest possible values so that time- 

easible start times for aggregated operations are also time-feasible 

or the corresponding granular operations. Fig. 4 depicts the aggre- 

ated variant of the precedence network shown in Fig. 2 . For ex- 

mple, operation o ′ 
7 

aggregates operations o 7 and o 10 (both derived 

rom processing step P8 ). However, it does not aggregate operation 

 12 whose upstream material flow path differs from the others. 

To model the original problem as close as possible, we assume 

hat the work progress of aggregated operations and thus, the re- 

lenishments and depletions, are linear in time (similar to the con- 

inuous flows in Neumann et al. (2005) , but with discrete units). 

owever, we can also combine the aggregated and the stepwise 

odeling variants. That is, replenishments are assigned to the start 

f operations and depletions to the end of operations. This blocks 

he required storage space in both the upstream and downstream 

torage facility. 

Computational experiments in Section 8 demonstrate how ag- 

regation affects the solution quality and the performance of so- 

ution methods. From a theoretical point of view, the aggregated 

odeling variant can significantly worsen solutions, as we show 

ith the following example: A project consists of I = 10 real activi- 

ies, where each activity takes ten periods. No renewable resources 

nd precedence relations exist. Each activity releases five material 

nits that traverse material flow path 4 = ( S2 , P6 , s ) (cf. Section 2 ).

he inventory of storage facility S2 is limited to three material 

nits. Processing one material unit in processing step P6 takes one 

eriod. In the case of linear work progress, each activity releases 

ne material unit every two periods. The project makespan of an 

ptimal solution of the RMCPSP is ten periods since granular oper- 

tions can process the material units immediately after each re- 

ease. Consequently, the inventory of storage facility S2 remains 

ero and all activities can be started in parallel at time t = 0 . In

ontrast, the project takes 55 periods in an optimal solution using 

he aggregated modeling variant. The aggregated operations, each 

f which takes five periods, may only start when sufficient mate- 

ial is available so that they can be executed without interruption. 

ince the last material unit is released at the end of an activity, we 

ust introduce a minimum time lag of six periods between the 

tart of each activity and its subsequent operation. The material 

nits are buffered in S2 until the operations start. Due to the max- 

mum inventory, activities must start offset from each other by five 

eriods, which balances replenishments and depletions. The result- 

ng makespan is 5 · 9 + 10 (duration of the last activity) = 55 . 

Fig. 5 graphically summarizes the modeling variants. For the 

riginal model and each variant, the inventory of storage facility 

2 resulting from one activity and its subsequent operation(s) is 

epicted along with a Gantt chart. The settings described in the 

bove example are illustrated in the left column. The inventory of 

he storage facility is never lower and/or the material processing 

ever starts earlier than in the original model. Therefore, solutions 

omputed with the modeling variants are also feasible concerning 

he original RMCPSP. However, this does not apply vice versa. In 

he case of low maximum inventories, the problem might be infea- 

ible using the modeling variants while the original model would 

ead to feasible solutions. 

. Computational experiments 

In Section 8.1 , we sketch a procedure for generating test in- 

tances I RMCPSP with different characteristics. Section 8.2 explains 

ur experimental design. The results of the experiments are re- 

orted in Section 8.3 . On this basis, we discuss in Section 8.4 , 

(1) how the SGS performs in comparison to the constraint pro- 

gramming (CP) solver IBM ILOG CP Optimizer. 
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Fig. 4. Exemplary precedence network with aggregated operations (cf. Fig. 2 ). 

Fig. 5. Inventory diagrams using the original model (linear/granular) and modeling variants. 
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(2) how the modeling variants impact the solution quality and 

the performance of the solution methods. 

(3) how different characteristics of problem instances impact 

the performance of the solution methods. 

(4) how the problem-specific objective function (9a) impacts the 

performance of the solution methods. 

.1. Instance generation 

To characterize test instances I RMCPSP , we employ two param- 

ter groups. The first parameter group comprises project parame- 

ers describing characteristics of project activities and renewable 

esources as follows: 

• I ∈ Z > 0 : The number of non-fictitious project activities. 
• NC > 0 : The network complexity, i.e., the average number of 

non-redundant precedence relations per activity, including 

the fictitious activities ( Kolisch, Sprecher, & Drexl, 1995 ). 
• RS ∈ [0 , 1] : The renewable resource strength, which is a 

measure for the scarceness of renewable resources. The 
1081 
availability of each renewable resource k ∈ R 

α is given by 

R α
k 

:= r α, min 
k 

+ RS (r α, max 
k 

+ r α, min 
k 

) , where r α, min 
k 

( r α, max 
k 

) is

the minimal (maximal) requirement of renewable resource 

k per period ( Kolisch et al., 1995 ). 
• RF A ∈ [0 , 1] : The renewable resource factor for activities, i.e., 

the average portion of renewable resources required per ac- 

tivity ( Kolisch et al., 1995 ). 

The second parameter group comprises material flow parameters 

hat describe characteristics of processing steps, storage facilities, 

nd released material units: 

• INV ∈ Z ≥0 : The maximum inventory of each storage facility. 
• NREL ∈ Z ≥0 : The number of released material units by non- 

fictitious activities. 
• P REL ∈ [0 , 1] : The portion of non-fictitious activities re- 

leasing material units. More precisely, 	 P REL · I
 = |{ i ∈ 

{ 1 , . . . , I}| ∑ 

w ∈ W 

f iw 

> 0 }| . 
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• RF P ∈ [0 , 1] : The renewable resource factor for processing 

steps, i.e., the average portion of renewable resources re- 

quired per processing step. 

• DUR ∈ R 

|P| 
≥0 

: The duration vector for material processing. 

Each vector component DUR p specifies the duration for ap- 

plying processing step p ∈ P to one material unit. When 

transforming I RMCPSP into I RCPSP/c , we set d j := DUR p for all 

operations j ∈ O p . 

To reduce the variability of test instances and to facili- 

ate the comparison between parameter levels, we define that 

on-fictitious activities either release an equal and deterministic 

mount of NREL or zero material units, i.e., 
∑ 

w ∈ W 

f iw 

∈ { NREL , 0 } 
or each i = 1 , . . . , I. Whether the material is released more uni-

ormly or more punctiformly can be controlled via P REL . For the 

ame reason, we define that the maximum inventories of all stor- 

ge facilities are equal and deterministic, i.e., R 
γ
k 

:= INV for each 

 ∈ R 

γ . Thus, the availability to store material flows as a whole is

ontrolled via INV . The availability to store material flows at indi- 

idual storage facilities is controlled via DUR since the durations of 

rocessing steps determine the depletion rates of storage facilities 

nd the depletion rate of a storage facility determines its availabil- 

ty to store material flows. 

Instead of generating new instances from scratch, we use ex- 

sting benchmark instances of the classical RCPSP (single mode 

nd without cumulative resources) from the online library PSPLIB 

 Kolisch & Sprecher, 1996; 2021 ) as a starting point. This allows us

o directly reuse the best solution found for each PSPLIB instance 

s a lower bound LB PSPLIB to the objective value of test instances 

 RMCPSP . The level of parameter I indicates the set from which we 

ick the instances. For example, if I = 30 , we pick instances from

he J30-set. In addition to the project parameters listed above, sev- 

ral other parameters describe deterministic or stochastic charac- 

eristics of the PSPLIB instances. The majority of them, e.g., the 

inimum and maximum durations of activities, are fixed and thus, 

ot relevant to our experimental design. For details, we refer to 

olisch & Sprecher (1996) . 

Each PSPLIB instance comprises a set of four renewable re- 

ources R 

α = { R1 , . . . , R4 } . The requirements r α
ik 

for i = 0 , . . . , I + 1

nd k ∈ R 

α lie within the interval [0 , 10] . With regard to mate-

ial flows, we define P = { P1 , . . . , P8 } as the set of processing steps

nd R 

γ
k 

= { S1 , . . . , S5 } as the set of storage facilities (cf. Fig. 1 ). Ini-

ially, processing steps do not require resources k ∈ { R1 , . . . , R4 } . For

odeling the constrained processing capacity, we introduce addi- 

ional renewable resources, called machines (to distinguish them 

rom PSPLIB resources). We define that both processing steps P3 

nd P4 require one unit of a shared machine MA1 and both pro- 

essing steps P6 and P7 require one unit of MA2 . Processing step 

1 requires one unit of an individual machine MA3 , P2 one unit 

f MA4 , P5 one unit of MA5 , and P8 one unit of MA6 . We set the

aximum availability R α
k 

:= 1 for k ∈ { MA1 , . . . , MA6 } and the set of

enewable resources R 

α := { R1 , . . . , R4 } ∪ { MA1 , . . . , MA6 } . Project ac-

ivities do not require machines. Thus, machines represent a fixed, 

onstrained processing capacity, so that bottlenecks for material 

ows are only controlled via INV and DUR . We randomly choose 

 RF P · |P| · 4 
 tuples (p, k ) out of all combinations of processing

teps P and resources { R1 , . . . , R4 } . For each chosen tuple (p, k ) ,

e draw the resource requirement r α
pk 

randomly out of [1,3]. Thus, 

arameter RF P determines the extent to which activities and pro- 

essing steps compete against renewable resources R1 , . . . , R4 . By 

sing the interval [1,3] for r α
pk 

, we make sure that the processing 

f possibly thousands of material units does not dominate the re- 

uirements of the four renewable resources. 

In the last step, we randomly select 	 P REL · I
 activities. For 

ach selected activity i , we simulate NREL random material flow 

aths through the network depicted in Fig. 1 . The number of re- 
1082 
eased material units f iw 

is set to the amount a path w ∈ W has

een simulated for each activity i . 

.2. Experimental design 

Since we mainly focus on the impact of material flow con- 

traints, we fix the project parameters NC to 2.1, RS to 0.5, and RF A 

o 0.5. Results from experiments with variable project parameters 

C , RS , and RF A are presented in Appendix A2. 

The first two columns of Table 3 show the different pa- 

ameter levels we used in a full factorial experimental de- 

ign. Consequently, we get a total of 2 5 · 3 = 96 test in- 

tances. The number of operations per instance varies be- 

ween 1,073 and 76,257. By aggregating operations, these 

umbers reduce considerably to 106 and 2,348. The lev- 

ls for DUR are the vectors dur 1 = (0 . 0 6 , 0 . 0 6 , . . . , 0 . 0 6) ,

ur 2 = (0 . 1 , 0 . 08 , 0 . 06 , 0 . 1 , 0 . 04 , 0 . 1 , 0 . 02 , 0 . 02) , and dur 3 =
0 . 02 , 0 . 04 , 0 . 06 , 0 . 02 , 0 . 08 , 0 . 04 , 0 . 1 , 0 . 08) . These values were

hosen so that the expected durations for completely processing 

ne material unit are approximately equal ( ≈ 0 . 2 ). With dur 1 , all

rocessing steps require the same time. Vector dur 2 describes 

 situation where the bottleneck is in the upstream part of 

he material flows. With dur 3 , it is in the downstream part, 

espectively. 

We transformed I RMCPSP into I RCPSP/c and employed both the 

GS and CP techniques alternatively. As their performance has im- 

roved in the past years, CP solvers increasingly become a relevant 

ool to solve scheduling problems (e.g., Gerhards, 2020 ). We chose 

BM ILOG CP Optimizer in IBM ILOG CPLEX Optimization Studio 

2.9.0 for our study, since it is robust and quickly accessible via 

he IBM ILOG Concert Technology library ( Laborie, 2009; Laborie, 

ogerie, Shaw, & Vilím, 2018 ). Although the library is extensive, 

t possesses some limitations that constrain the modeling scope. 

unction stepAtStart ( stepAtEnd ) models a requirement of a 

umulative resource at the start (at the end) of an activity or op- 

ration. However, modeling material flows that emerge uniformly 

istributed over the execution time of an activity (cf. Formula (7) ) 

s not possible. Therefore, when using CP Optimizer, we must re- 

trict ourselves to the stepwise modeling variant. Apart from that, 

he Concert Technology library offers all functions for equivalently 

xpressing the RCPSP/c constraints (20b) –(20e) and (20g) –(20i) as 

ell as the objective as a CP formulation (see Appendix A3). 

We tested all possible combinations of solution methods (CP 

nd SGS) and models (original model and modeling variants). 

or the SGS, we distinguish between the results from a single- 

ass configuration using priority rule “latest start time (LST)” (cf. 

olisch, 1996b ) and a multi-pass configuration. In our multi-pass 

onfiguration, the SGS schedules activities in the order specified by 

 precedence feasible activity list. After each SGS pass, a portion ρ
s drawn randomly out of [0 , 0 . 4) . The activity list that led to the

est solution so far is duplicated and ρ · I random activities are 

hifted to random precedence-feasible positions. This is repeated 

ntil a time limit is reached. For CP Optimizer, we began with the 

efault cold start (CS) configuration, i.e., without providing any in- 

ormation about known solutions. Since we can quickly generate 

 feasible solution with the SGS, we also tried a warm start (WS) 

onfiguration setting the LST solution as the starting point for CP 

ptimizer. A combination of solution method, model, and config- 

ration (e.g., SGS/linear/granular/multi) is referred to as solution 

trategy . 

Unless otherwise stated, a time limit of ten minutes per in- 

tance was used for CP Optimizer and the multi-pass SGS. We con- 

ider this a practicable runtime for comparing the different solu- 

ion strategies. To assess further potential for optimization, we ad- 

itionally tested the warm configurations of CP Optimizer with a 

ime limit of 60 minutes. 
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Table 3 

Relative deviation from the tightest lower bound [%]. 

Parameters Levels SGS CP 

linear stepwise stepwise 

granular aggregated granular aggregated granular aggregated 

LST multi LST multi LST multi LST multi CS WS CS WS 

Overall 14.02 9.11 14.46 8.98 14.72 9.83 17.94 11.34 2.91 a 7.37 a 5.28 5.30 

I 30 20.39 12.83 21.11 12.25 21.34 13.71 25.57 15.54 3.07 a 8.33 4.58 4.65 

120 7.65 5.39 7.81 5.70 8.10 5.94 10.30 7.15 2.65 a 6.32 a 5.98 5.94 

INV 1000 12.91 7.31 13.58 7.15 13.46 7.98 15.64 8.38 1.88 a 3.77 a 2.40 2.35 

200 15.13 10.91 15.34 10.80 15.98 11.68 20.24 14.30 5.10 a 10.97 a 8.16 8.24 

NREL 50 12.87 7.49 13.14 6.92 13.10 7.73 13.89 7.61 2.22 a 4.36 2.29 2.30 

200 15.17 10.73 15.77 11.04 16.35 11.93 21.98 15.07 4.65 a 10.65 a 8.27 8.29 

PREL 0.25 13.42 7.51 13.81 7.50 14.10 8.26 17.34 10.11 1.58 a 5.58 4.54 4.54 

1 14.62 10.71 15.11 10.45 15.34 11.39 18.53 12.57 5.50 a 9.32 a 6.03 6.05 

RF P 0 5.64 3.97 6.13 4.36 6.45 4.83 9.63 6.88 1.24 a 5.32 5.26 5.29 

0.5 22.40 14.25 22.79 13.59 22.99 14.83 26.24 15.80 4.52 a 9.61 a 5.30 5.30 

DUR dur 1 10.74 6.37 10.81 5.94 11.38 7.30 15.09 8.73 4.42 a 4.11 2.63 2.68 

dur 2 16.6 10.45 16.30 10.26 17.39 11.12 19.22 12.31 3.08 a 8.30 a 6.98 7.00 

dur 3 14.72 10.51 16.27 10.73 15.39 11.06 19.49 12.98 0.00 a 9.91 a 6.24 6.20 

a CP Optimizer did not find a feasible solution for all instances. 

Table 4 

Proportion of instances for which the best known solution was found [%]. 

Parameters Levels SGS CP 

linear stepwise stepwise 

granular aggregated granular aggregated granular aggregated 

LST multi LST multi LST multi LST multi CS WS CS WS 

Overall 7.29 61.46 6.25 31.25 7.29 25.00 6.25 27.08 38.54 41.67 47.92 51.04 

I 30 0.00 56.25 0.00 33.33 0.00 29.17 0.00 27.08 52.08 56.25 64.58 62.50 

120 14.58 66.67 12.50 29.17 14.58 20.83 12.50 27.08 25.00 27.08 31.25 39.58 

INV 1000 8.33 62.50 6.25 35.42 8.33 31.25 6.25 33.33 50.00 52.08 56.25 62.50 

200 6.25 60.42 6.25 27.08 6.25 18.75 6.25 20.83 27.08 31.25 39.58 39.58 

NREL 50 14.58 62.50 12.50 50.00 14.58 41.67 12.50 47.92 64.58 68.75 75.00 66.67 

200 0.00 60.42 0.00 12.50 0.00 8.33 0.00 6.25 12.50 14.58 20.83 35.42 

PREL 0.25 12.50 60.42 12.50 47.92 12.50 35.42 12.50 41.67 62.50 64.58 66.67 70.83 

1 2.08 62.50 0.00 14.58 2.08 14.58 0.00 12.50 14.58 18.75 29.17 31.25 

RF P 0 14.58 85.42 12.50 47.92 14.58 43.75 12.50 41.67 39.58 45.83 43.75 50.00 

0.5 0.00 37.50 0.00 14.58 0.00 6.25 0.00 12.50 37.50 37.50 52.08 52.08 

DUR dur 1 6.25 59.38 6.25 31.25 6.25 25.00 6.25 21.88 40.63 43.75 40.63 46.88 

dur 2 6.25 53.13 6.25 28.13 6.25 21.88 6.25 25.00 37.50 37.50 53.13 56.25 

dur 3 9.38 71.88 6.25 34.38 9.38 28.13 6.25 34.38 37.50 43.75 50.00 50.00 
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We carried out all experiments on an AMD Ryzen 9 (4.0 giga- 

ertz, 12 cores) with 128 gigabyte RAM. Both the transformation 

cheme and the SGS were coded in Java and compiled with Eclipse 

019–12. For CP Optimizer, we used the automatic search and the 

efault parameter levels of CP Optimizer since IBM advertises a 

model-and-run development process” ( Laborie (2009) ). 

.3. Results 

We present the results of the experiments in Tables 3–5 , using a 

pecific measure for each table. In the tables’ rows, we distinguish 

etween the different parameter levels and average the observed 

alues over all levels except for the one under consideration. The 

alues of the best-performing solution strategy are set in bold. 

Table 3 shows the relative deviations from the tightest of two 

ower bounds, namely: 

(1) The best solution found for the respective PSPLIB instance, 

denoted by LB PSPLIB (provided in Kolisch & Sprecher, 2021 ). 

(2) A material flow-based lower bound, denoted by LB f low 

. It is 

the minimum time required for released material units pass- 

ing through the material flow network’s tightest bottleneck. 
We provide more details in Appendix A4. 

1083 
The results of columns CP/granular must be interpreted care- 

ully since these solution strategies could not find a feasible so- 

ution for all instances: Using a cold start (warm start), 53 (92) 

ut of 96 test instances were solved to feasibility. Table 3 only de- 

icts the deviations averaged over these solved instances. We ob- 

erved more extreme deviations with the SGS than with CP Op- 

imizer. For example, the deviation is larger than 30% for 11 in- 

tances using SGS/linear/granular/multi compared to one instance 

sing CP/aggregated/CS. It is well known that a mean is influenced 

y such outliers. Therefore, Table 4 provides the proportion of in- 

tances, for which a solution strategy found the best known objec- 

ive value. This measure also includes unsolved instances. 

Table 5 provides insight into the computation times until the 

rst feasible solution was found. The multi-pass configurations of 

he SGS are excluded since their first pass was always an LST pass. 

Apart from the results depicted in the tables, we made the fol- 

owing observations: 

• Within ten minutes, the multi-pass configurations were able 

to perform an average of 29,034 SGS passes per instance 

for SGS/linear/granular, 32,313 for SGS/stepwise/granular, 

1,245,726 for SGS/linear/aggregated and 1,423,251 for 

SGS/stepwise/aggregated. 
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Table 5 

Computation times until a feasible solution was found [s]. 

Parameters Levels SGS b CP 

linear stepwise stepwise 

granular aggregated granular aggregated granular aggregated 

LST LST LST LST CS WS CS WS 

Overall 3.28 0.13 3.86 0.09 44.40 a 54.25 a 1.51 0.24 

I 30 0.17 0.01 0.13 0.01 32.62 a 6.92 0.27 0.12 

120 6.39 0.25 7.60 0.18 63.83 a 105.88 a 2.75 0.35 

INV 1000 1.42 0.14 1.13 0.09 63.78 a 54.17 a 1.44 0.22 

200 5.14 0.12 6.59 0.09 3.35 a 54.33 a 1.58 0.25 

NREL 50 0.32 0.03 0.25 0.02 18.04 a 8.01 0.97 0.22 

200 6.24 0.23 7.48 0.16 111.16 a 104.70 a 2.05 0.25 

PREL 0.25 0.26 0.01 0.20 0.01 20.72 a 8.77 0.23 0.12 

1 6.30 0.25 7.52 0.17 90.43 a 103.87 a 2.79 0.35 

RF P 0 3.38 0.15 3.45 0.11 41.25 a 70.88 1.38 0.21 

0.5 3.17 0.11 4.27 0.07 47.43 a 36.11 a 1.64 0.26 

DUR dur 1 3.43 0.04 3.12 0.02 52.69 a 66.00 1.17 0.24 

dur 2 4.34 0.04 4.24 0.02 60.72 a 50.24 a 1.21 0.24 

dur 3 2.07 0.31 4.23 0.24 2.67 a 45.74 a 2.15 0.23 

a CP Optimizer did not find a feasible solution for all instances. 
b Computation times averaged over ten repetitions per instance. 
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• CP/granular could prove optimality for 31 (34) instances us- 

ing the cold start (warm start) configuration. CP/aggregated 

could prove optimality for 38 instances using both the cold 

start or the warm start configuration. These are all instances, 

for which the computed objective value equals LB PSPLIB . 
• The 43 instances for which CP/granular/CS could not find a 

feasible solution are almost all instances with ( INV , NREL ) = 

(20 0 , 20 0) , i.e., low maximum inventories in relation to the

total number of released material units. But also others, e.g., 

two instances with ( INV , NREL ) = (10 0 0 , 50) , are unsolved. 
• The four instances for which CP/granular/WS could not find 

a feasible solution comprise more than 75,0 0 0 operations 

each, i.e., they belong to the largest instances investigated. 
• By increasing the time limit to 60 minutes per instance, 

CP/granular/WS (CP/aggregated/WS) was able to improve the 

solution of 30 (26) instances compared to the solutions 

found after ten minutes. The achieved reductions of the ob- 

jective values range from 0.01 (0.01) to 18.96% (1.32%). The 

overall mean deviation from the tightest lower bound is now 

6.44% (5.00%) in contrast to 7.37% (5.30%) after ten minutes. 

For the six instances with more than 75,0 0 0 operations and 

( INV , NREL ) = (20 0 , 20 0) , CP/granular/WS crashed due to a

lack of memory. 

We repeated all computational experiments for the problem 

ith objective function z ′ := max { S I+1 , S 
o 
o J+1 

} instead of z := S I+1 .

hat is, minimizing the makespan of the project and the mate- 

ial processing instead of only minimizing the project’s makespan. 

his does not treat material flows on a secondary level anymore 

nd corresponds to the makespan-minimization objective typically 

tudied in project scheduling problems. The results can be found 

n Appendix A5. 

Additionally, we employed the multi-start configuration in com- 

ination with the SGS proposed by Schwindt et al. (2007) (cf. 

ection 6.1 ). This SGS is referred to as generic SGS since it does 

ot distinguish between activities and operations, but constructs 

 schedule regardless of the material flow structure. Thus, un- 

cheduling steps are required to resolve conflicts on cumulative 

esources. In the case of granular (aggregated) operations, the 

eneric SGS found a feasible solution for 37 (66) out of the 96 test 

nstances within the ten-minute time limit. For the remaining in- 

tances, all SGS passes failed due to infinite unscheduling loops. 

etailed results are presented in Appendix A6. 
1084 
.4. Discussion 

.4.1. Impact of the solution method 

The deviations from the tightest lower bound suggest that 

P/granular/CS computes the best solutions with an overall mean 

eviation of 2.91%. However, this mean only covers the 53 in- 

tances for which CP/granular/CS found a feasible solution. Using 

 warm start configuration helped to find feasible solutions for 92 

nstances. To our surprise, there are still four unsolved instances, 

lthough CP Optimizer got a feasible starting solution. We sus- 

ect that the engine does not manage to process the starting so- 

utions within the ten-minute time limit. The search log does not 

hed light on the reasons but only says “Using starting point so- 

ution” and “Search terminated by limit, no solution found”. Using 

he warm start, the overall mean deviation from the tightest lower 

ound is significantly higher (7.37%) compared to the cold start. 

his is because harder instances have also been solved and are in- 

luded here. Thus, the warm start results of CP/granular are more 

eaningful than the cold start results. But due to the remaining 

nsolved instances, they are still not fully comparable to other val- 

es in Table 3 . Allowing a runtime of 60 minutes, CP/granular/WS 

an considerably improve some solutions so that the mean devia- 

ion comes up to 6.44%. 

With an overall mean deviation of at most 5.30%, we iden- 

ify CP/aggregated as the best-performing solution strategy on av- 

rage. This remains true, if we permit a runtime of 60 minutes 

er instance, which results in a mean deviation of 5.00% using 

 warm start. Overall, the cold start and warm start configura- 

ion of CP/aggregated roughly perform equal in terms of deviations 

rom the tightest lower bound. Comparing instance by instance, we 

nd that for 16 instances, CP/aggregated/WS computed strictly bet- 

er solutions than CP/aggregated/CS. Vice versa, for 21 instances 

P/aggregated/CS did strictly better. This indicates that CP Opti- 

izer can get distracted by a starting solution. 

With regard to the SGS, the best overall deviation is 8.98% for 

GS/linear/aggregated/multi. As expected, the multi-pass configu- 

ation can significantly improve the initial LST solutions for all in- 

estigated models. 

In Table 3 , the lower bounds represent a common reference 

oint for measuring the solution quality numerically. Table 4 com- 

ares the solution strategies among each other and uses a binary 

easure of the type “best known solution or not best known solu- 

ion”. Here, we clearly observe that the multi-pass SGS in combi- 
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ation with the original model (i.e., SGS/linear/granular/multi) per- 

orms best. For 61.46% of the 96 test instances, it found the best 

nown solution. CP Optimizer could find the best known solu- 

ion for 51.04% of the instances using aggregated operations and 

 warm start. 

Table 5 shows that the computation times until a feasible so- 

ution was found differ between both solution methods (partic- 

larly in the case of granular operations). Again, the measures 

or CP/granular must be interpreted carefully due to unsolved in- 

tances. It becomes obvious that the SGS finds feasible solutions 

ery quickly since it can exploit the problem-specific precedence 

tructure. Providing a starting solution helps CP Optimizer to re- 

uce the effort for finding an initial solution as the values for 

P/aggregated prove. 

Since the results in Tables 3 and 4 are dichotomous, it is diffi- 

ult to judge one solution method as superior to the other. CP Op- 

imizer outperforms the SGS as long as we measure the solution 

uality numerically. However, if we use the binary measure, the 

verall result turns the other way round. For 40 instances, the SGS 

ound a strictly better solution than any of the CP strategies. And 

or 27 instances, both solution methods computed the same objec- 

ive value. For the remaining 29 instances, only CP Optimizer came 

p with the best known solution. Recall that the SGS can solve the 

riginal RMCPSP with linear work progress whereas CP Optimizer 

olved a variant of the problem, i.e., the comparison is somewhat 

istorted. Thus, if material flows emerge uniformly in a practical 

roblem setting, we recommend to apply both solution methods. 

Finally, we briefly compare our SGS with the generic SGS by 

chwindt et al. (2007) . Using the generic SGS, we found at most 

7.50% of the best known solutions (cf. Appendix A6). That is, the 

eneric SGS performs worse overall than the problem-specific SGS 

roposed in this paper. Instances with granular operations were 

olved by the generic SGS only if maximum inventory constraints 

o not bind. Also in the case of aggregated operations, low max- 

mum inventories combined with many released materials pose a 

ard challenge for the generic SGS. On the other hand, for 17 out 

f the 96 instances, the generic SGS found strictly better solutions 

han any solution strategy using our problem-specific SGS. In these 

ases, the decomposition approach seems to hinder the search of 

he solution space. 

.4.2. Impact of the model 

The aggregation has reduced the number of operations per test 

nstance by 93% on average. But aggregation is accompanied by 

 loss of modeling accuracy since we discard the interruptibil- 

ty of material flow processing and, thus, the full flexibility to 

eplenish and deplete storage facilities (cf. Section 7 ). According 

o Table 4 , the aggregation can considerably lower the solution 

uality obtained with the SGS. While SGS/linear/granular/multi 

ccounts for 61.46% of the best known solutions, it is only 

1.25% for the respective aggregated variant. Comparing the two 

olumns SGS/linear/granular/LST and SGS/linear/aggregated/LST in 

able 3 sheds light on the extent to which solutions are worsened 

y the aggregation. Using the same priority rule, the average de- 

iation from the tightest lower bound increases by 0.44% due to 

he aggregation. This is by far less significant than in the theoreti- 

al example described in Section 7 . While there was only one stor- 

ge facility in the theoretical example, the material flows distribute 

o five storage facilities in the test instances. Besides, the theoreti- 

al example does not comprise renewable resources that constrain 

he execution of material processing. In the test instances, how- 

ver, renewable resource constraints delay the material processing 

nyway such that materials must be buffered in storage facilities. 

he storage load enforced by minimum time lags between the ac- 

ivities and aggregated operations thus becomes less relevant than 

n the theoretical example. In general, it can be concluded that 
1085 
he impact of an aggregation strongly depends on the character- 

stics of an instance. The more similar the material flows are and 

he fewer renewable resource constraints exist, the higher the risk 

f not adequately representing a problem setting with aggregated 

perations. Contrarily, we observe that the aggregation may also 

ave a positive effect on the solution quality. If we measure the 

eviation from the tightest lower bound as done in Table 3 , we 

nd that, on average, SGS/linear/aggregated/multi performs better 

han SGS/linear/granular/multi. This observation can be explained 

y the fact that within ten minutes, the multi-pass procedure was 

ble to perform an average of 1,245,726 SGS passes per instance 

sing aggregated operations instead of only 29,034 SGS passes us- 

ng granular operations. Thus, a much larger part of the solution 

pace was searched. The computation times in Table 5 confirm this 

ffect. With regard to CP Optimizer, it is evident that smaller in- 

tance sizes accelerate its search considerably. All instances with 

ggregated operations could be solved to feasibility within 0.06 

o 10.15 seconds using the cold start configuration. CP/aggregated 

ould also find more best known solutions than CP/granular. 

Switching from linear work progress to stepwise work progress 

locks storage space and thus, goes along with a higher inventory 

n storage facilities (cf. Fig. 5 ). As expected, this affects the solution 

uality. If we compare the two columns SGS/linear/granular/LST 

nd SGS/stepwise/granular/LST in Table 3 , we find that the average 

elative deviation from the tightest lower bound increases by 0.70% 

sing the stepwise modeling variant. After running the multi- 

ass procedure, this deterioration is 0.72%, i.e., remains almost un- 

hanged. Similarly, the multi-pass configurations could find less 

est known solutions after switching to the stepwise variant. Due 

o this significant effect, it can be assumed that CP Optimizer 

ould perform even better if it could be applied to the linear mod- 

ling variant. Indeed, if we compare just the results of the stepwise 

odeling variant, CP Optimizer clearly outperforms the SGS. 

.4.3. Impact of the parameters 

The most obvious impact on the performance of both solution 

ethods is related to the parameters I and RF P . For I = 30 , CP Op-

imizer’s solutions deviate 4.58% from the tightest lower bound af- 

er running its best solution strategy CP/aggregated/CS (cf. Table 3 ). 

sing the SGS, the lowest averaged deviation is 12.25%. For I = 120 ,

hese measures change to 5.94% for CP Optimizer and 5.39% for 

he SGS, i.e., the SGS now performs better than CP Optimizer. We 

ecognize the same effect in Table 4 (64.58% vs. 56.25% for I = 30

nd 39.58% vs. 66.67% for I = 120 ). Hence, while the SGS benefits

rom additional activities in the instances, the performance of CP 

ptimizer suffers. We suspect the reason for this to be the higher 

umber of released material units, which is a consequence of the 

igher number of activities. For a deeper investigation, we cre- 

ted a scatter plot showing the deviations from the tightest lower 

ound against the number of released material units for the overall 

est solution strategy of each solution method (cf. Fig. 6 ). Result- 

ng from the possible combinations of parameter levels, the activ- 

ties release a total of 350, 1,400, 1,500, 6,000, or 24,000 material 

nits per instance. The scatter plots reveal that the SGS performs 

oorly for the instances with a low number of released material 

nits compared to CP Optimizer. However, it performs better for 

nstances with 6,0 0 0 units. This can be explained as follows: For a 

ow number of released material units, the availability constraints 

n renewable resources bind more tightly than maximum inven- 

ory constraints. For a large number of released material units, this 

elation swaps. And since the decomposition concept of the SGS is 

ailored to the maximum inventory constraints, it performs better 

n the latter case. In contrast, CP Optimizer handles renewable re- 

ource very well. This also explains the significant influence of the 

F P parameter. If RF P = 0 , activities and operations do not com- 

ete for renewable resources. Hence, the execution of operations is 
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Fig. 6. Scatter plots showing the deviation from the tightest lower bound (y-axis) against the number of released material units (x-axis) for each instance. 
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ess constrained by the availability of renewable resources and the 

GS performs better. For RF P = 0 . 5 , however, CP Optimizer clearly 

utperforms all SGS solution strategies. 

For instances with a total of 24,0 0 0 released material units, 

ig. 6 indicates that the SGS and CP Optimizer perform almost 

qually. Here, all activities release large amounts of material units, 

o that there is less space for improving a feasible solution by re- 

rranging the activities. Both solution methods could only slightly 

mprove their initial solutions (0.34% for the SGS and 4.15% for CP 

ptimizer on average). It can be assumed that any solution method 

ill come up with similar results. 

Regarding the influence of parameter DUR in Table 4 , we find 

hat CP Optimizer computes the best solutions for instances with 

ottlenecks in the upstream part of the material flows ( DUR = 

ur 2 ). Conversely, instances with bottlenecks in the downstream 

art ( DUR = dur 3 ) are better solved by the SGS. We suppose that

he latter pose a harder challenge for CP Optimizer since down- 

tream conflicts are only fed back to the activities’ level after sev- 

ral backsteps. 

Finally, it is not surprising that CP/granular/CS struggles with 

olving the ( INV , NREL ) = (20 0 , 20 0) instances. Since maximum

nventories are low in relation to the number of released material 

nits, maximum inventory constraints bind tightly. The SGS, how- 

ver, proves that all test instances are feasible. 

.4.4. Impact of the objective function 

The objective function (9a) of the RMCPSP was chosen since the 

roject planning and the material flow processing are organization- 

lly separated from each other in many real-world settings. In con- 

rast to the usual makespan minimization in the literature, we do 

ot minimize the makespan of the complete schedule, but only of 

he project activities. This is a key feature of diverging material 

ows studied in this paper. Nevertheless, all concepts introduced 

an be transferred to the case of minimizing the total makespan 

 

′ := max { S I+1 , S 
o 
o J+1 

} instead of z := S I+1 . For the SGS, we simply

hange the measure for evaluating the quality of a solution. For CP 

ptimizer, we exchange the objective in our problem formulation. 

According to the results presented in Appendix A5, 

GS/stepwise/granular/multi performs best with z ′ . Overall, it 

ven outperforms CP Optimizer in terms of average deviations 

rom the tightest lower bound and proportion of instances solved 

o the best known objective value. However, the ranking differs for 

he individual parameter levels so that we cannot identify a clear 

uperiority of any solution strategy. 

The most interesting difference between both objective func- 

ions is that CP/aggregated could prove optimality for 92 instances 

ith z ′ compared to 38 instances with the original objective z. It 

eems that our atypical objective z makes it more difficult to iden- 

ify a solution as being optimal. Using the information about op- 

imality, we made the following observation with z ′ : For 47 in- 

tances, the SGS computed a better solution than CP/aggregated 

lthough CP/aggregated proved optimality. Hence, one should be 
1086 
ware that the optimal solution the problem formulated with mod- 

ling variants is not necessarily the optimal solution concerning 

he original model. 

. Summary and conclusions 

This paper introduces and discusses a new project scheduling 

roblem termed the resource-and-material-flow-constrained project 

cheduling problem (RMCPSP) . The problem incorporates finish-to- 

tart precedence constraints between activities, maximum avail- 

bility constraints on renewable resources, and material flow con- 

traints. The latter arise from bottlenecks in processing and storing 

aterial units that are released by project activities. Material flows 

re dealt with on a secondary planning level and indirectly impact 

he project planning in the case of congestion in the material flow 

etwork. The RMCPSP is the first project scheduling problem suit- 

ble for planning projects dealing with diverging material flows, 

uch as dismantling projects. 

To tackle the problem, we transformed instances of the RMCPSP 

nto instances of a resource-constrained project scheduling prob- 

em with cumulative resources. The transformation allows solving 

he problem with well-known strategies from the literature, such 

s priority rule methods, which we have chosen for our approach. 

o this end, we presented a schedule generation scheme (SGS) ex- 

loiting outtree-like precedence structures in the problem. We de- 

omposed the SGS into individual scheduling passes for so-called 

aterial flow structures, each of which consists of a single activ- 

ty and all its released material flows. The SGS is particularly use- 

ul for understanding structural properties, judging the feasibility 

f problem instances, and computing starting solutions. Computa- 

ional experiments show that IBM ILOG CP Optimizer is another 

romising tool to solve the problem. 

Comparing the results of the experiments, we made several 

ndings that help to adequately model a real-world problem: 

hether materials are released and processed uniformly dis- 

ributed (similar to so-called continuous material flows, but with 

iscrete units) or in a stepwise fashion has a significant impact 

n the solution quality. Taking this into account, a decision-maker 

hould carefully choose the desired modeling concept. Studying 

his impact with CP Optimizer was not possible due to a lack of 

ppropriate programming interfaces. Whether material processing 

s modeled as interruptible or not affects the solution quality as 

ell. Enabling interruptibility means more flexibility to utilize the 

ull storage capacity which can be relevant in crowded disman- 

ling sites. However, a solver’s performance can suffer as the ex- 

eriments with CP Optimizer reveal. Giving up interruptibility to 

ome extent is found to be beneficial for the solution quality. This 

rade-off should be considered when determining the number of 

eparately scheduled entities. 

Beyond the contents of this paper, other typical concepts of 

roject scheduling could be integrated into the RMCPSP, such as 

ultiple execution modes, nonrenewable resources, general tem- 

oral relations, and shelf-life times. The integration of the SGS 
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nto more sophisticated metaheuristics such as simulated anneal- 

ng could be a promising way to improve the solution quality. 

hen using CP Optimizer, one could attempt to better imitate uni- 

ormly distributed material flows by splitting activities and linking 

hem via no-wait precedence relations. Finding the best relation 

etween the size of such instances and a model that is close to 

eality would require an extensive series of experiments. 
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