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Abstract

For s,t,n € N with s > ¢, an (s, t)-coloring of K, is an edge coloring of K, in which
each edge is assigned a set of ¢ colors from {1,...,s}. For k € N, a monochromatic Kj,
is a set of k vertices S such that for some color ¢ € [s], i € ¢(uv) for all distinct u,v € S.
As in the case of the classical Ramsey number, we are interested in the least positive
integer n = R, (k) such that for any (s,t)-coloring of K, there exists a monochromatic
Kj. We estimate upper and lower bounds for general cases and calculate close bounds
for some small cases of R; (k).
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1 Introduction

1 Introduction

Given a positive integer k, the Ramsey number R(k) is the least positive integer n
such that every 2-edge coloring of a complete graph K, contains a monochromatic Kj.
Since the first theorem by Frank Plumpton Ramsey in 1930 which proved the existence
of R(k), Ramsey theory has been widely and deeply studied. The overall results say
that, a sufficiently large object must contain a specific structure. There are various
kinds of Ramsey numbers and associated results. However, still very few exact values
of Ramsey numbers are known. In this thesis, we study (s,t)-colorings of K, where
each edge of K, is assigned a set of ¢ colors from {1,...,s}. By R,.(k) we denote the
least positive integer n such that any (s, t)-coloring of K, contains a monochromatic Kj.
We call Rg;(k) the Ramsey number for set-coloring, or the (s,t) Ramsey number. As
for the classical Ramsey number, we will prove that Ry (k) is well-defined and estimate
its bounds. In addition, we show that with the existence of some specific designs and
Hadamard matrices, we can gain information about lower bounds of some (s,t) Ramsey
numbers. In case of specific resolvable designs, we show that those lower bounds are
tight.

1.1 The basics

We assume that the readers are familiar with basic terms in graph theory and combi-
natorics. We introduce here some definitions that are used throughout this thesis. For
undefined terms we refer to books by Diestel |7] for graph theory and Stinson [24], Beth,
Jungnickel and Lenz [4] for combinatorics. We consider graphs up to isomorphism and
label the vertices explicitly as needed. If two graphs G and H are isomorphic, we write

G=H.

We only deal with finite graphs without loops or multiple edges. For a graph G, its
vertex set is V(G), its order |V (G)| is also denoted by |G|, its size is the number of
edges and is denoted by ||G|| := e(G) := |E(G)|.

For positive integers s,t, we denote by [s] the set {1,2,...,s}, and call any t-element
set a t-set. For any set S, the power set of S is the set containing all subsets of S and
is denoted by 2°.

For n € N. we denote by Z,, the set Z/nZ of integers modulo n.

For sets A and B, the symmetric difference of A and B is denoted by AAB, is the set
containing elements that are either in A or in B (but not in both A and B). That is
AAB = (A\B)U(B\ A).

For graphs Gy = (V4, E1) and Gy = (Va, Ey) with Vi NV, = ), we denote by Gy + Gs
the graph G'; U G5 together with all the edges connecting vertices of G; and G,. That
is G1+Go = (V,E) where V=V, UV, and E = E; UE,U{uv: ue Vi, v e Vo). If Gy
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consists of a single vertex z, we write G; + x for G; + {z}.

For n € N, a complete graph on n vertices is denoted by K,,, and K3 is called a triangle.
For sets A, B, C, we denote by K 4 p the complete bipartite graph with parts A and B,
and by K4 p ¢ the complete tripartite graphs with parts A, B, C.

For any graph H and any integer n > |H|, the extremal number ex(n, H) denotes the
maximum size of a graph on n vertices that does not contain H as a subgraph. Addi-
tionally, EX (n, H) is the set of H-free graphs on n vertices with size ex(n, H).

For integers 1 < r < n, the Turan graph 7,.(n) is the unique r-partite graph on n vertices
whose partition sets (often called just "parts") differ in size by at most 1. We denote
|| T-(n)|| by t.(n). If n =7 s for some s € N, we also write T,.(n) = K?.

Among all r-partite graphs of order n, the graph 7,(n) has the largest size. Turan’s
Theorem states that 7,.(n) is also has the largest size among all graphs of order n that
does not contain K, as a subgraph, i.e. EX(n, K,1)={T,(n)}.

For any positive integers s,n, an s-coloring of E(K,) or an s-edge-coloring of K, is a
function
c: BE(K,) —[s],

where each edge of K, is assigned a color from [s]. A set of edges E is called strong
monochromatic if all edges in E have the same color. The classical multicolor Ramsey
number Rs(k) is the least positive integer n such that any s-coloring of E(K,) contains a
strong monochromatic K. The classical Ramsey number is Ro(k) and we write R(k) :=
Ry (k). Ramsey’s Theorem proves that R(k) exists for any k£ € N. Moreover, it is known

that V2" < R(k) < 2273 for any k € N (see e.g. Diestel [7]). Known results of small
Ramsey numbers can be found in a dynamic survey by Radziszowski [20]. We also refer
to Graham, Rothschild and Spencer [11]| for an overview of Ramsey theory. For related
Ramsey theory, we refer to some other variants of Ramsey numbers such as the list
Ramsey numbers by Alon et al. 2], and the fractional Ramsey numbers by Jacobson,
Levin and Scheinerman [14], as well as by Scheinerman and Ullman [22].

1.2 Outline

In Section 2, we define formally the Ramsey number for set-coloring R, ;(k) as well as the
related objects in our study and state the main results of the thesis. We then estimate
general bounds for R,;(k) in Section 3 and compute bounds for some concrete small
cases in Section 4. In Sections 5 and 6, we study the connection between (s,?) Ramsey
numbers and specific block designs and Hadamard matrices. Section 7 investigates the
upper bounds of Rs;(3). In Section 8, we introduce the off-diagonal version of Ramsey
numbers for set-colorings and estimate its bounds. Section 9 summarizes the results of
the previous sections and poses some open problems for further study.
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2 Definitions and main results

We first define formally the Ramsey number for set-colorings and related terms.

2.1 Definitions

In the following, let s,%, n, k be positive integers such that s > ¢, n > k and let G be any
non-empty graph. We call ¢ an (s, t)-coloring of G if ¢ is an edge coloring of G where
each edge is colored with t distinct colors from [s]. More formally, ¢ is a function

c: B(G) — ([j]),

where (7) := {S C X : |S| = k}. We also call an (s, t)-coloring a set-coloring.
Let ¢ be an (s,t)-coloring of G. A set of edges E C E(G) is monochromatic if there is
some color i € [s] such that i € c(e) for all edges e € E. A set of vertices S C V(G)
is monochromatic if the set of edges {uv : u,v € S,u # v} is monochromatic. A graph
G is called monochromatic if V(G) is monochromatic. We denote by R;.(k) the least
n € N such that for any (s, t)-coloring of K, there exists a monochromatic K. We call
Rs (k) the Ramsey number for set-coloring, or for short the (s,?) Ramsey number. We
will prove in Proposition 3.2 that R, (k) is well-defined.

If ¢ is an (s,t)-coloring of K, that has no monochromatic Ky, we say that ¢ witnesses
a lower bound on Rg.(k) or ¢ is a witness coloring to the lower bound Rs.(k) > n. To
prove a lower bound n < R,:(k), it is sometimes useful to construct a coloring of K,
where each edge does not necessarily have exactly ¢ colors but at least ¢ of them. We
now define ¢ as an (s,t%)-coloring of G if ¢ is an edge coloring of G, where each edge
has at least ¢ colors from [s], i.e. ¢ is a function

c: BE(G)— (E),

where (,ji) ={5 C X :|S| > k}. Clearly if ¢ is an (s,t) coloring of K, then c is also
an (s,t")-coloring of K.

Let ¢ be an (s,t")-coloring of G. For any edge e € E(G), we call the set c(e) the color
set or color combination of e, and define ¢(G) := {c(e) : e € E(G)}. For i € [s] and any
vertex u € V(G), N;(u) denotes the set of neighbors of w which are connected to u by
an edge with color 1, i.e.

Ni(u) :={v € N(u) :i € c(uv)}.

Let ¢ be an (s,t")-coloring of G. For i € [s], let G; be a subgraph of G with vertex set
V(@) and edges with color i, that means for vertices u,v € V(G), wv € E(G;) if and
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only if i € c(uv). We call G; the color graph of ¢ (in color i). Observe that for all colors
i € [s], ¢ has a monochromatic K}, in color 7 if and only if G; contains K, as a subgraph.

In this thesis, we identify colors 1,2, 3,4 with red, blue, green and orange, respectively.

Remark 2.1. Ry;(k) is the classical Ramsey number and R;;(k) with s > 2 is the
classical multicolor Ramsey number.

Example 2.2. Figure 1 shows different ways to demonstrate a (4,2)-coloring of Kj.
Two distinct colors are chosen from {1,2,3,4} to color each edge. In this coloring
there is no monochromatic triangle. In particular, R,»(3) > 4. For vertex u;, the red
neighborhood is Ny (u1) = {ug, us}, the blue neighborhood is No(u;) = {us}, further the
green neighborhood is N3(u1) = {ug, us} and the orange neighborhood is Ny(u1) = {us}.

Uy
uj

Uy

us U — us

Figure 1: A (4,2)-coloring with no monochromatic K3

Figure 2 shows another (4, 2)-coloring of K, which contains a monochromatic Kj: 4 €
c(urug) N e(ujuz) N c(ugus). The color graph G4 has a triangle ujusus.
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C (U5}
/%
Uo - Us
G Go G Gy
Uy U u Uy

Uy Uy U4 s
. /\ - ] . L]
U Us U9 Us U9 us U Us

Figure 2: A (4, 2)-coloring with color graphs G1, G, G, Gj.

2.2 Main results
For all s,t,k € N with s > ¢,k > 3, we have bounds for R;(k):

’Vﬁ C5TF (;) 1621—‘ < Ri(k) <2— i +Csy - <§>Ska

e s—t

2s
where C,; = % (ﬁ) .

For all n € N, if there exists a Hadamard matrix of order 2n, then we have a better

lower bound for Ra, ,(3):
Rgn’n(?)) > 4n.

For all v, k, A € N such that v > k > 2, if there exists a resolvable (v, k, \) design, then
A(v—1)
k=1

for s =

Rs,sf)\ (% + 1> =v+ 1

For definitions of (resolvable) designs and Hadamard matrices, see Sections 5 and 6. The
existence of a resolvable design gives the exact values of some R, (k). However, as for
Hadamard matrices, this method is only applicable to some specific parameters s, t, k.
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3 General bounds

In this section we compute general bounds for R, (k).

3.1 Basic bounds

We first consider (s, 1)-colorings, or s-colorings. We remind the reader that R (k) =
R (k) is the classical multicolor Ramsey number and again refer to Graham, Rothschild
and Spencer [11] for further information.

Proposition 3.1. For all positive integers s, k such that s > 2,

R1(k) = Ry(k) < s

Proof. Let n := s°* and ¢ any s-coloring of K,. We show that there exists a monochro-
matic K} in c.

Let V := V(K,) and fix a v; € V. By the pigeonhole principle, there are (”T’q =

ssk—1

—1| = s**~1 edges at v with a common color, say i; € [s]. Let Vi € Ny, (v1), V4| =

s%k=1 Similarly, let v € V, then there is some color is € [s] and set Vo C V; with

Vs = @ = 5%=2 such that all edges between v, and V, have color i,. In the same
manner, we define a sequence of vertices v; and sets V;, i € [sk], i > 2, as follows:
v € Vi, Vi C Vg, |Vi| = 5°F=% such that all edges between v; and V; have the same
color. Then for any 4,j,1 € [sk] with j,[ > i we have that c¢(v;v;) = ¢(v;v;). By the
pigeonhole principle, there are at least k vertices from {v; : ¢ € [sk]} that send the same
color to the vertices in {v; : ¢ € [sk]} with higher index. By construction, these k vertices
form a monochromatic set in ¢, which completes the proof of the proposition. O

Proposition 3.2. The Ramsey number R.(k) is well defined, i.e. for any positive
integers s,t,k,s > t, there exists a positive integer n such that any (s,t)-coloring of K,
contains a monochromatic K.

Proof. In an (s,t)-coloring of any complete graph, there are (j) possible ways to color
each edge. We can consider each possible color combination as a single color and apply
Proposition 3.1. We have

which proves the existence of R, (k). O

Remark 3.3. For this upper bound n = (j)k(t) and an (s, t)-coloring of K,,, we not only
find a monochromatic K} in some color i € [s], but a clique of size k whose all edges
have the same color combination, i.e. a K} that is monochromatic in ¢ colors.
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It is clear that R, (k) < R,.(l) if £ < I. We now consider how the number R;;(k)
behaves if we change the parameters s and t.

Proposition 3.4. For all positive integers s,t, k,s > t, we have
(i) Rsi(k) < Roy1(k).
(i1) Ift > 2 then R (k) < Rs_1,-1(k).

(11i) Ift > 2 then Rs(k) < Rgi—1(k).

Proof. Let n be a lower bound of Rg;(k) for some n € N, and ¢ be an (s, t)-coloring of
K, without monochromatic Kj.

Since an (s, t)-coloring of K, is also an (s+ 1, t)-coloring of K, cis an (s+ 1, t)-coloring
of K,, avoiding monochromatic Kj. Thus Rs1+(k) > n, or n is also a lower bound on
R14(k), which proves Item (i).

For Item (ii), we define a new coloring ¢ of K,, from ¢ by removing one color on each edge
as follows. For any edge uwv € F(K,,) such that s € c(uv), let ¢/ (uv) = c(uv)\{s}. For any
other edge, i.e. for all uv € E(K,) such that s ¢ c(uv), let ¢/(uv) = c¢(uv)\{min{c(uv)}}.
Now the new coloring ¢ still has no monochromatic K} and is an (s — 1,¢ — 1)-coloring
of K,. Thus Rs_1;_1(k) > n, proving (ii).

Similarly, for Item (iii), we define a new coloring ¢ from ¢ as follows: for any edge
wv € E(K,),d(u) = c(uww) \ {min{c(uv)}}. Then ¢ still has no monochromatic K} and
is an (s,t — 1)-coloring of K,,. Hence we have R, (k) > n and R,;(k) < Rgs—1(k).

Alternatively we can prove Item (iii) by applying Items (i) and (ii). Item (i) implies that
Roy(k) < Rusrg(k), and by Ttem (i), Ropro(k) < R 1(k), hence Ryy(k) < Ruy (k).

O
Corollary 3.5. For all positive integers s, t,k,s > t,
Rgi(k) < Ry1(k) = Ry(k).
Proof. We apply Proposition 3.4 (iii) multiple times and obtain:
Rsi(k) < Rsp1(k) < Reya(k) < -+ < Ryya(k).
O

Another way to prove Corollary 3.5 is to replace the color set of each edge with only
one color, in order to create an (s, 1)-coloring. Let n € N and ¢ be an (s, t)-coloring of
K,, without monochromatic K. We define ¢ as an s-coloring of K,, as follows: For any
edge uwv € E(K,), let ¢(uv) = max{c(uv)}. Then ¢ also has no monochromatic Kj,
hence R1(k) > n and Rs1(k) > Rs.(k).
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Corollary 3.6. For all positive integers s,t, k with s > t,

R, (k) < s
Proof. By applying Corollary 3.5 and 3.1 we have R,;(k) < Ry1(k) = Ro(k) < s%%. O
Corollary 3.7. For all positive integers s,t, k with s > t,
Roi(k) < (s —t 4 1)kt

If s = 2t then
RQM(]C) < (t—l— 1>k(t+1).

We note that this upper bound on R, (k) is an improvement over the bounds in Propo-
sitions 3.2 and 3.6.

Proof. We apply Proposition 3.4 (ii) multiple times and obtain
Rog(K) < Bucrpr(k) < - < Ry ().

The statement now follows from Proposition 3.1. m

Starting from an (s, t)-coloring of K, without monochromatic K}, we can construct an
(ms, mt)-coloring of K, for a factor m € N, with the same property. The following
proposition shows that a lower bound for R, (k) is also a lower bound for R, (k).

Proposition 3.8. For all positive integers s,t, m with s > t,
Rs,t(k> S Rms,mt(k>‘

Proof. Suppose cis an (s, t)-coloring of K,, without monochromatic Kj, then R, (k) > n.
We construct from ¢ an (ms, mt)-coloring ¢ of K, without monochromatic K} in order
to prove R,s mi(k) > n, which then implies R (k) < Rosmt(k).

Let e € E(K,) be an arbitrary edge and write c(e) = {¢1, ¢, ..., ¢} where ¢; € [s] and
pairwise distinct for all ¢ € [t]. Now let /(e) be defined from c(e) as

de)={m(es —=1)+1,....om(c; —=1)+m, m(ca—1)+1,...,m(ca — 1) +m,
(ct—l)—l—l m(c; — 1) +m}
:{m(Cz—l)JrJ' [t],JG[ I}

We prove that ¢ is an (ms, mt)-coloring of K, that contains no monochromatic K.

First note that any color of ¢/(e) has the form m(c; — 1) 4 7 for some i € [t] and j € [m].
Since ¢; € [s] for all i € [t], we have

m(l—1)+1<m(g—-1)+j<m(s—1)+m
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hence 1 < m(¢; — 1) +j < ms. Therefore there are ms possible colors for ¢/. Next,
we show that any two colors of ¢(e) are distinct. Consider for ¢/(e) any two colors
m(c; — 1) + k and m(c; — 1) + [ where 4,5 € [t] are distinct and 1 < k,l < m. By the
definition of ¢, ¢; # ¢;. Without loss of generality, suppose that ¢; = ¢; + p for some
p € [s — 1]. Then

m(c; —1)+l=m(c; +p—1)+1
=m(c—1)+mp+1
>m(e; —1)+m+1
>m(c — 1) + k.

In particular, m(c; —1)+1 # m(c; — 1) + k, i.e any two colors of ¢/(e) are distinct. Thus
|'(e)| =t for any edge e € E(K,,) and ¢ is an (ms, mt)-coloring of K.

Note that for an edge e € E(K,), if r € ¢/(e) for some color r € [ms], then there exist
positive integers i € [s], j € [m] such that r = m(i — 1) + j and i € c(e).

Now assume for the sake of contradiction that ¢ has a monochromatic G = K, in
color r for some r € [ms], that is r € /(e) for all edges e € E(G). Then there
exist positive integers i € [s], j € [m] such that r = m(i — 1) + j and i € c(e) for
all edges e € E(G). It follows that ¢ has a monochromatic K} in color i, which is a
contradiction to the assumption of ¢. Therefore, ¢ has no monochromatic K}, which
proves Rp,sm:(k) > n. H

As a result we have the classical Ramsey number as a lower bound for Ry, (k) by
applying Proposition 3.8 with s = 2,¢ = 1.
Corollary 3.9. For all m,k € N,

R(/{:) = RQJ(kE) < Rgmm(/{?).

For classical Ramsey numbers we have the following comparison.
Corollary 3.10. For all k € N,
R39(k) < Ro1(k) = R(k) < Ryo(k).
Proof. Corollary 3.9 with m = 2 implies Ry1(k) < Ry2(k). The inequality Rsq(k) <
Ry 1(k) follows from Proposition 3.4 (ii). O

Sometimes it is easier to construct an (s,t")-coloring of K,, without monochromatic Kj
than an exact (s,t)-coloring. We show that such an (s, ¢")-coloring suffices to prove a
lower bound Rg:(k) > n.
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Proposition 3.11. For all positive integers s,t,n, k with s > t, suppose ¢ is an (s,t1)-
coloring of K,, without monochromatic Ky. Then Rs.(k) > n.

Proof. For any edge uv of K, that has more than ¢ colors, we delete colors on uv such
that uv has t colors left. Formally, for any e € FE(K,) with c(e) = {i1,... i} C [9]
for 1 <r <s—t let d(e):={iy,...,5}. For all edges e € E(K,,) with |c(e)| = ¢, let
d(e) := c(e). Then ¢ is an (s, t)-coloring of K, without monochromatic Kj. Therefore
R (k) > n. O

3.2 Lower bounds by probabilistic method

In 1947, Erdds [8] introduced the probabilistic method in proving a lower bound for
R(k):
R(k) > 2k,

Spencer [23] used Lovaz Local Theorem with the probabilistic method to attain a slightly
better lower bound:

R(k) > k- 252[(v/2/e) + o(1)).

For an overview of the probabilistic method, see Alon [1]. Now we use the probabilistic
method to determine a lower bound for R, (k).

k—1
Theorem 3.12. For all s,t,k,n € N such that s > t,k > 3 and n = F 5TE (f)TJ ,

R&t(k) >n,

i.e. there exists an (s,t)-coloring of K, without monochromatic Kj.

k-1

Note that Rs;(k) > n also means Rg;(k) > [f ST - (f)TW :

Proof. We modify the proof of Graham, Rothschild and Spencer in [11] for (s, )-colorings.
We color edges of K, uniformly and independently at random, each edge gets a t-set
from [s] with probability 1/(5). Consider a set U of k vertices. If U is monochromatic in
some color i € [s], then each edge in U has (¢t — 1) remaining colors that can be chosen
from [s] \ {i¢}. Therefore, for any edge e induced by U, we have
s—1
Bli e e(e)) = ut) _ T

() s

k
Thus the probability that U induces a clique whose each edge contains color i is (g) (2),

since U has (g) edges. Moreover, there are s possibilities to choose a color that all edges
in U have, and (Z) possible cliques of order k in K,, that can be monochromatic. Let A

10
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denote the event "There is some monochromatic K", then the probability of the event
Ais
P[A] = P[There is some monochromatic Kj|

=P U U is monochromatic]

UCV(Ky)
U|=k

Z P[U is monochromatic]

IN

k—1

By the assumption, n < g C5TE (f) 2 which implies

k—1

1 en [t 2

It follows that

On the other hand, (Z) << (ﬂ)k, thus
k(k—1)

i <o(2) (1) <o () (D) T <1

Therefore P[A®] > 0, and there must be some (s, t)-coloring of K, that has no monochro-
matic K. ]

IN

We apply Theorem 3.12 for s = mt.
Corollary 3.13. For all m,t, k € N,

k-1

R i (k) > E - (mt)~YE. sz .

For s = m,t = 1, we obtain the following well-known lower bound on R,,(k).
Corollary 3.14. For all m,k € N,
k

Rm’l(k> = Rm(k> > \‘g -m

==
3
ol
m‘\
—
| I

Remark 3.15. By Proposition 3.8, for all m,t, k € N, we have R,,,;+(k) > R,,,1(k) and

hence
k

k —1
Rmtﬂﬁ(k:) > \‘— . m_% . m2J .

e

This is an improvement over the bound in Corollary 3.13.

11



4 Concrete cases

4 Concrete cases

A general method to prove a lower bound n < R (k) is to construct an (s,t) or (s,t%)-
coloring of K, whose color graphs are the Tuén graphs T;_;(n). We will develop this
concept in the next sections. First we consider R, (k) for some small parameters s, ¢, k.

Let s,t,k € N, some trivial cases are: If s = t, then R;:(k) = k, and for k = 2,
R.:(2) = 2. For t = 1, we get the classical (multicolor) Ramsey numbers, so we only
consider cases where ¢t > 1 here. The next nontrivial case is then R3(3).

4.1 Bounds for R372(3) and R472(3)

In a (3, 2)-coloring of a triangle, there are three possibilities to color an edge, with {1, 2},
{1,3}, or {2,3}. We show that if any two edges in a triangle get the same color set,
then the triangle is monochromatic.

Proposition 4.1. The only (3,2)-coloring of K3 without monochromatic K3 has all 3
possible color combinations on 3 edges, ¢(K3) = {{1,2},{1,3},{2,3}} (see Figure 3).

o

Figure 3: (3, 2)-coloring avoiding monochromatic K3

Proof. Let i,j,k € {1,2,3} pairwise distinct. Let ¢ be a (3,2)-coloring of a triangle
uyusuz and suppose that two edges have the same color combination. Without loss
of generality, c(ujus) = c(uus) = {i,7}. If c(uous) € {{i,7},{i, k}}, then ujusug is
monochromatic in color i. If ¢(usuz) = {j, k}, then the triangle is monochromatic in
color j, which proves the proposition. ]

Proposition 4.2. We have that R34(3) = 5. Moreover, the witness coloring to the lower
bound R32(3) > 4 is unique up to permutation of colors and is given in Figure /.

We remark that in this unique (3, 2)-coloring (up to permutation of colors) of K4 without
monochromatic K3, any two non-adjacent edges have the same color set.

Proof. Figure 4 illustrates a (3, 2)-coloring of K avoiding monochromatic triangles, thus
shows the lower bound Rj32(3) > 4. In this coloring, any triangle in K4 has all three
possible color sets: {{1,2},{1,3},{2,3}}. By Proposition 4.1, this is the only (3,2)-
coloring of K, that has no monochromatic Kj.

12



4 Concrete cases

-

Figure 4: Witness coloring to the lower bound on Rj32(3) of K,

For the upper bound, fix some vertex u € V(Kj;). By Proposition 4.1, to avoid a
monochromatic K3, any two edges at u must have different color combinations. There
are 4 edges incident to u, but only 3 possible color combinations: {1,2},{1,3},{2,3}.
Thus, there must be one color set which appears at least twice. By Proposition 4.1,
there is a monochromatic Ks. O

Now we can use Proposition 4.2 to prove an upper bound for R,»(3). For the lower
bound, we construct a (4,27)-coloring without monochromatic K3 using Turan graphs.

Theorem 4.3. We have that 8 < R42(3) < 10.

Proof. To prove the upper bound, let ¢ be a (4, 2)-coloring of G = Kjy. We show that ¢
has a monochromatic triangle. Fix some vertex u € V(G). Then w is incident to 9 edges,
each is colored with 2 colors, so we have 18 colors in total. Without loss of generality,
we assume that at least {%W = 5 edges at u have color 1. Note that for this proof, we
just ignore the second color on those edges. Let V' := {vy, vy, v3,v4,v5} C V(G), such
that V' C Ny(u), i.e. for all v € V|1 € c(uv). Let H = G[V] be the induced subgraph
on V, note that H = K. If any edge in H has color 1, i.e. there exist i, € [5] such
that 1 € c(v;v;), then u, v;,v; will form a monochromatic triangle in color 1. Otherwise,
if color 1 is not used on any edge of H, then we have a (3,2)-coloring of H. By Propo-
sition 4.2, there is one monochromatic triangle in H, and so in G.

Gy G G Gy
Ly | Ry Ly | Ry Lz | R3 Ly | Ry
Uy | 1 Uy | U1 Uy | 1 Uup | "1
Uz | V2 Vg | U2 Vg | U2 Ug | V2
Uz | Us Vs | Ug Uz | Vs V3 | U3
Uyg | Vg Uy | Vg Vg | Ug Vg | Uy

Table 1: Construction of (4, 2)-coloring of Ky without monochromatic Kj

For the lower bound, we construct a (4, 2%)-coloring ¢ of Ky where each edge of Ky gets
at least 2 colors. Label the vertices of Kg as V(Kg) = {uy,v1,...,us,v4}. We first define

13



4 Concrete cases

Gr = K, r,, k € [4] as the complete bipartite graphs with bipartitions Ly, Ry. The
elements of Ly, R; are shown in Table 1.

Now let ¢ : E(Kg) — 24 be the coloring with color graphs G, k € [4]. That means, for
any edge e € E(Ky),
cle)={kel4]:ee€ E(Gy)}.

We will show that any edge in Kg has at least 2 colors, or any edge of Ky is edge in at
least two of the graphs Gy.

In the following let i, j € [4] be distinct. It is clear that any edge of the form w;v; is an
edge of all graphs Gy, k € [4]. Other edges have the form w;v;, u;u; or v;v;. We claim
that these edges are in exactly two of the graphs Gj. In order to prove that, we first
define a 4 x 4 matrix H = (h;;);,_, as follows: for any 4,k € [4], h;r = 1 if and only if
u; € Ly, and v; € Ry, otherwise h;, = —1 if and only if u;, v; are swapped in Gy, that is
if u; € Ry, and v; € L. Then the matrix H is determined as follows

1 1 1 1
1 -1 -1 1
H=11 41 1 4
1 1 -1 -1

We observe that u,;v; is an edge of Gy, if and only if u; and v; lie in different partitions
of Gy, or h;x = hjx. On the other hand, wu; € E(Gy) is equivalent to vv; € E(Gy),
both if and only if h;j - hjr = —1, i.e. u; and u; lie in different partitions of Gy,.

Let r;,i € [4] be the rows of H. Notice that the inner product of any two rows of H is
0, i.e for distinct 7, j € [4],

4 4
0= <T'i,7"j> = E 1—|— —1,
k=1 k=1
hi7k7hj’k hi,k:hj,k

which implies
’{k’ < [4] : h@k = hj,k}| = ’{k‘ < [4] : h@k . hj,k = —1}‘ = 2.

This means every edge of the form u;u;, v;vj, u;v; where 4,5 € [4] distinct, is contained
in exactly two of the graphs G, Gs, G5, Gy.

Since all color graphs ¢ are bipartite, ¢ contains no monochromatic K3. By Proposi-
tion 3.11, R, 2(3) > 8, which completes the proof of the theorem. O

The following improves Theorem 4.3.
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4 Concrete cases

Theorem 4.4. We have that Ry2(3) = 9.

Proof. The lower bound is given by Theorem 4.3. To prove that Rs2(3) <9, let ¢ be a
(4, 2)-coloring of Ko. We assume for the sake of contradiction that ¢ has no monochro-
matic K3. For the proof, we will use a result from Proposition 4.2 that in a (3, 2)-coloring
of K4 without monochromatic K3, any two non-adjacent edges have the same color set.

First we prove the following statements:
(1) |Ni(u)| =4 for all u € V(Ky) and i € [4].
(ii) |N;(uw) N Nj(u)| <2 for all u € V(Ky) and 4,5 € [4],7 # j.

Let u be a vertex in Kg. There are 8 edges at u which need 16 colors. By the pi-
geonhole principle, there is one color i € [4] that appears at least 4 times on those
edges, i.e. |N;(u)] > 4. On the other hand, since there is no monochromatic triangle
in color 7, K9[Ny (u)] has no edge in color i, thus we have a (3, 2)-coloring of Ko[/Ny(u)].
If |N;(u)| > 5, then Proposition 4.2 implies that Kg[/N;(u)] contains a monochromatic
triangle in some color j € [4]\{i}, a contradiction. Therefore, | N;(u)| < 4, which implies
|N;(u)| = 4. Now the remaining colors [4] \ {i} have to appear 12 times in total on the
edges from u to N(u). By the same argument, |N;(u)| = 4 for all j € [4], which proves
Item (i).

To prove (ii), assume that |N;(u) N N;(u)| > 3 for some ¢, j € [4],7 # j, i.e. there are 3
distinct vertices z,y, z € V(Ky), such that c¢(ux) = c(uy) = c(uz) = {i,7}. The edges
xy,yz, xz are not colored with i or j, otherwise there would be a monochromatic triangle
in color 7 or j. Hence, c(zy) = c(yz) = c(xz) = {k,l} with k,1 € [4] \ {¢,5}. The tri-
angle xyz is then monochromatic in color k and [, a contradiction, which proves Item (ii).

Now let u;,i € [9], be the vertices of Ky. We first consider u; and claim that without
loss of generality the following hold:

(i) Nq(u1) = {ug, us, ug, us} and Ny(ug) N Na(ug) = {ug, us}.
(iv) c(ugus) = c(uqus) = {3, 4}.
(v) c(ugug) = {1,3} and c(ujus) = {1,4}.

By Item (i), without loss of generality, suppose that 1 € c(uju;) for i € {2,3,4,5}. It fol-
lows that there is no edge in color 1 in Ko[{ua, u3, uy, us}]. The second color on each edge
{uyusg, uyus, uyug, uyus} is chosen from colors {2,3,4}. There is some color j € {2,3,4}
which appears at least twice on those edges. Without loss of generality, 7 = 2 and
c(uyug) = c(uug) = {1,7} = {1,2}. In addition, by Item (ii), |Ny(u1) N No(uq)| < 2.
Then |Ny(uy) N No(uq)| = 2 and Item (iii) follows.

Next, we prove Item (iv). Triangle ujusug is not monochromatic, hence c(ugus) = {3,4}.
Since we have a (3,2)-coloring in Kg[{us, us, us, us}] and by Proposition 4.2, edge uyus
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4 Concrete cases

has the same color set as ugug, thus c(usus) = {3, 4}, proving Item (iv).

Since |N;(u) N N;(u)| < 2 by Item (ii), and by Item (iii) we have Nj(u1) N No(uq) =
{ug,us}, it follows that 2 ¢ c(ujuy) U c(ujus). We consider triangle ujuqus, since uquy
and uju; are not colored with 2, c(ujuy), c(ugus) € {{1,3},{1,4}}. If c(uuy) = c(uyus),
then ujugqus is monochromatic in color 3 or 4, a contradiction. Hence c(ujuy) # c(ujus).
Without loss of generality, let ¢(ujuy) = {1,3} and c(ujus) = {1,4}, and Item (v) follows.

Next we consider Ny(u;) and prove the following:

(vi) Without loss of generality, Na(uy) = {ua, us, ug, ur}.
(vii) c(ugug) = c(ugur) = {3,4}

(viil) c(uiug) = {2, 3}, c(uuy) = {2,4}.

By Item (i), |No(u1)| = 4 and since 2 ¢ c(ujug) Uc(ugus), | Na(ug) N {ug, ur, us, ug}| = 2.
Without loss of generality, assume 2 € c(ujug) N c(uyur). In total we have No(uy) =
{ug, ug, ug, ur }, which is Item (vi).

Consider Ko[{us, us, ug, ur}|, by Item (vi) we must have a (3, 2)-coloring of K, without
color 2, Proposition 4.2 implies that c¢(ugur) = c(ugug) = {3,4}, showing Item (vii).

By Items (i) and (ii), we may write c(ujug) = {2,i} and c(uyuy) = {2,5} for some
i,7 € {3,4}. If i = j, then by Item (vii), vertices u, ug, u; would form a monochro-
matic triangle in color 4, thus ¢ # j or c(ujug) # c(ujuy). Without loss of generality,
c(uyug) = {2,3}, c(urur) = {2,4}, and Item (viii) follows. We now have the situation in
Figure 5.

Uz

Ug U2

us u3

N /

Ue Us

Figure 5: Assumption: (4,2)-coloring of K¢ without monochromatic K.
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Next we consider ug, ug and prove the following:
(ix) c(uyug) = c(ugug) = {3,4}.
(x) c(ugug) = c(ugug) = c(usuy) = {1,2}.

By Item (i), we have that |N3(ui)| = |N4(u1)| = 4. On the other hand, by Items (iii)
and (vi), Ni(uq1) U No(uq) = {ug,...,us}. It follows that edges ujus and ujug are not
colored with 1 and 2, proving Item (ix) that c(ujus) = c(uiug) = {3,4}.

For triangle ujugug it follows that c(ugug) = {1, 2}. Consider N3(u;) which is {uy, ue, us, ug }
by (v) and (viii), in Ko[{uy, ue, us, ug}], ¢ is a (3,2)-coloring with colors {1,2,4}. By
Proposition 4.2, c(ugug) = c(ugug) = {1,2}. Similarly, for Ny(u1) = {us, ur, us, ug}, c is
in Ko[{us,ur, us,ug}| a (3,2)-coloring with colors {1,2,3}, hence c(usu;) = c(ugug) =
{1,2}, which shows Item (x).

Finally, we consider the edges at u4 and prove that
(xi) c(uguy) ={1,3}.
We have that uj,us € Nj(ug), and by Item (i), |Ni(ug) N V(Ky) \ {u1,us}| = 2.

Since ¢ has no monochromatic triangle in color 1, wus,us,us ¢ Ni(us). Therefore,
Ni(uyg) N{ur, ug,ug} = 2. On the other side, we have c(ugug) = {1,2} by Item (x),
the edges uqug and usug cannot both have color 1, which implies that u; € Ny (uy).

Similarly, |N3(us) NV (Ky) \ {u1,us}| = 2. We have 3 ¢ c(uqug) U c(ugug) U c(ugug) to
avoid monochromatic triangle in color 3. Moreover, by Item (vii), c(uqus) = {2, 3}, thus
3 ¢ c(ugug) N c(uguz). Therefore, 3 € c(uqur). Altogether we have c(uquz) = {1,3},
which is Item (xi).

Now consider uz, we have | Ny(u7) NV (Kg) \ {u1,us}| = 2. Then 4 ¢ c(ur, us)Uc(uzus) U
c(urug) to avoid monochromatic triangle in color 4. The color set of edge u;uy is already
determined by Item (xi). In particular, 4 ¢ c(u7uy), hence 4 € c(urus) Ne(uzus). This is
a contradiction, since ususu; forms a monochromatic triangle in color 4. This completes
the proof of the theorem. O

Following personal communication with Dr. Torsten Ueckerdt [25], we have a shorter
proof of Theorem 4.4 using a result of Meringer [18|. Here, the author listed all 4-regular
graphs of order 9 (see Figure 6).

Alternative proof of Theorem 4./4. Let ¢ be a (4,2)-coloring of K¢ without monochro-
matic K3. By Item (i) above, |N;(u)| = 4 for all vertices u € V(Ky) and colors i € [4].
Therefore, each color graph G;, i € [4], is a 4-regular graphs that contain no trian-
gles. However, all 4-regular graphs on 9 vertices do contain a triangle. Hence, any
(4, 2)-coloring of K9 must contain a monochromatic triangle. ]
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Figure 6: [18] All 4-regular graphs on 9 vertices

At this point, we recall Corollary 3.10 for k£ = 3:

R32(3) =5 < R(3) = 6 < Rys(3) = 0.

4.2 Bounds for R;35(4) and R, 3(4)

We can find an upper bound for R;32(4) by using information about Rj32(3). Proposi-
tion 4.2 says that any (3, 2)-coloring of K5 contains a monochromatic triangle. The next
proposition shows that a (3,2)-coloring of Kj either contains a monochromatic Ky, or
two monochromatic K3, each of a distinct color.
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Proposition 4.5. Suppose c is a (3,2)-coloring of K5 that avoids monochromatic K.
Then there exist distinct i,j € [3] such that ¢ has a monochromatic K3 in color i and a
monochromatic K3 in color j.

Proof. We proceed with a proof by contradiction. Let wuq,...,us be vertices of K5. By
Proposition 4.2, without loss of generality, the triangle u;usus is monochromatic in color
1. By assumption, ¢ has no monochromatic triangle in color 2 or 3. In wjusus, the color
of each edge has the form {1,:} for i € {2,3}. Hence, color 2 or 3 must appear at least
twice in ujusuz. On the other hand, since ¢ has no monochromatic K3 of color 2 or 3,
color 2 or 3 can appear at most twice in ujusuz. Therefore, ujusus has exactly two edges
that are colored the same. Without loss of generality, c(ujus) = c(ujus) = {1,2} and
c(ugug) = {1,3}. Note that u; is then incident to 2 edges with color 2. In the following
we show that the other two edges at u; avoid color 2.

Claim A:  c(ujuy) = c(ugus) = {1, 3} and c(uqus) = {1,2}.

Uq

s
L
ug v(uy fus) Q 3

(a) Assumption for contradiction of (b) Claim A: cluqug) =
Claim A: 2 € ¢(uyv). c(u1u5) = {1,3}, c(ugus) =
{1,2}.

Figure 7: Claim A: Assumption and result

Let v € {uy4,us}. For the sake of contradiction, suppose that 2 € c(ujv) (see Fig-
ure 7 (a)). Since wjugv is not monochromatic in color 2, c(ugv) = {1,3}. Simi-
larly, since ujusv is not monochromatic in color 2, c(usv) = {1,3}. Now we have
c(ugug) = c(ugv) = c(ugv) = {1, 3}, a contradiction. Thus, c(ujus) = c(ujus) = {1, 3}.
Since ujugus is not monochromatic in color 3, we have c(uqus) = {1,2}, which proves
Claim A.

Now we have the situation in Figure 7 (b). Next we prove the following.

Claim B: c(uguy) = c(uguy) = {2, 3}.
By the symmetry of us, uz, without loss of generality, we prove c(usuy) = {2,3}. For the
sake of contradiction, suppose that 1 € c(uguy) (see Figure 8 (a)). Note that usuy is edge
of two Ky: {uy,us,us, us} and {uq, us, us, us}. Both of these K4 now have 5 edges with
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color 1. Since each of the induced subgraphs on {u;, ug, us, us} and {uy, ug, ug, us} is not
monochromatic in color 1, it must follow that c(usuy) = c(uzus) = {2,3} and we have
the situation in Figure 8 (b). On the other hand, the triangle usuguy is not monochro-
matic in color 3, thus c(usus) = {1,2}. Since usuqus is now monochromatic in color
2, we have a contradiction to the assumption on ¢, which completes the proof of Claim B.

(251 (251

Uo Uo Us
> B2
Uz P [ U3 PY Ug
(a) (b).

Figure 8: Assumption of Claim B

By Claims A and B, c(uqus) = {1, 3} and c(ugus) = c(usuy) = {2,3}. Then the triangle
ususuy has color 3 on all edges, which is a contradiction to our assumption on ¢. This
completes the proof of the proposition. O

Theorem 4.6. We have that 9 < R32(4) < 14.

Proof. For the upper bound, let u € V(K4), then u is incident to 13 edges. There are
3 possible ways to assign colors to each edge, {1,2},{1,3} or {2,3}. By the pigeonhole
principle, there is one color combination that appears at least [%W = 5 times. Without
loss of generality, let V' := {vy, v9, v3,v4,v5} and c(uv) = {1,2} for all v € V. If K14[V]
contains a monochromatic Ky, so does Ky4. If K14[V] has no monochromatic K, Propo-
sition 4.5 implies that there are one monochromatic triangle in color ¢ and one in color
J, with 4,j € {1,2,3} and ¢ # j. The triangle in color i or j forms together with u a
monochromatic /K, in color 1 or 2, proving the upper bound.

For the lower bound, we form a suitable (3,2%)-coloring ¢ of Ko by defining complete
tripartite graphs G, G, G3 as follows. Label the vertices of Kg as V(Ky) =V = {(,7) :
i,7 € Z3}. For all i € Z3, we define the partite sets of G, Ga, G3:

o A = {(Z,j) 1 € Zg} and G == KAD,ALAW
o B;:={(j,i):j € Z3} and Gy := Kp, p, B,
o Ci={(j,k):j+k=i (mod3)} and G5 := K¢, ¢, 0,0
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Explicitly, for i, j, k, [ € Z3 and distinct vertices (i, 7), (k,l) € V,
e {(1,7),(k,1)} € E(Gy) if and only if i # k,
e {(i,7), (k,1)} € E(G) if and only if j # [,
e {(i,7), (k, 1)} € E(G3) if and only if i + j # k + [ (mod 3).
The structure of the tripartite graphs and their partitions can be seen in Figure 9.

Go Gy
By By Cy
A oo 0y 02 Co

Ay

A

Figure 9: Tripartite graphs G1, Gy, G5 with their partitions A;, B;, C;

Let v := (4,7) and w := (k,l) be distinct elements of V', i,j,k, | € Z3. We claim that
{v,w} is an edge of at least two of the graphs Gi,Gs, G3. Note that for j,1 € Zs, if
j # 1, then j #Z 1 (mod 3). We consider 4 cases.

Case 1: Suppose i = k and j # [. By definition, vw ¢ E(G;) and vw € E(G).
Moreover, we have i + j # i + 1 = k + [, and since ¢, j, k,l € Z3, i + j #Z k + 1 (mod 3).
That means v and w lie in different partite sets of G5, hence vw € E(G3).

Case 2: Ifi# k and j =, then vw € E(G1) \ E(G2). Similarly to Case 1, we have
i+7j#k+1 (mod 3), thus vw € E(G3).

Case 3: Now suppose i # k,j #land i + j = k 4+ (mod 3). Then vw € E(G1) N
E(Gs) and vw ¢ E(G3).

Case 4: Finally, suppose i # k,j7 # l and i + j # k + [ (mod 3). By definition,
vw € E(Gy) N E(G2) N E(G3), which completes the proof of the claim.

We now define ¢ as the coloring with color graphs G, G, G3, i.e. for all edges vw €
E(K9)7

clow) ={i € [3] :vw € E(G,)}.
Then ¢ is a (3,27)-coloring and by construction of Gy, Gy, G, ¢ contains no monochro-
matic K. Proposition 3.11 implies that R32(4) > 9. O
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We can construct a (4, 3)-coloring of Ky without monochromatic Ky in a similar way
and attain a lower bound for Ry 3(4).

Theorem 4.7. We have that Ry3(4) > 9.

Proof. To build a (4, 3)-coloring of Ky without monochromatic K4, we first define the
color graphs Gy, Gs, G3, Gy as follows. Let V := {(7,7) : i,j € Z3} be the vertex set
of Ky and let G, Gy, G3, G4 be the complete tripartite graphs with parts A;, B;, C;, D;
respectively for i € Zs, where

o Ai:={(i,j) : J € Zs},
o Bi:={(j,i):j € Zs},
o C;:={(j,k):j,k € Zsgand j+ k=i (mod 3)},
o D;:={(j,k): 7,k €Zsand k —j =i (mod 3)}.
Explicitly, for 4, j, k,| € Zs and distinct vertices (7, j), (k,l) € V,
o {(i,7), (k,01)} € E(Gy) if and only if i # k,
o {(i,7),(k,1)} € E(G>) if and only if j # [,
e {(i,7),(k,1)} € E(G3) if and only if i + j Z k + [ (mod 3),
o {(i,7), (k,1)} € E(Gy) ifand only if j —i # [ — k (mod 3).
Figure 10 illustrates the graphs G1, G, G3, G4 with their partite sets.

B, B,

Figure 10: Tripartite graphs G, G5, G3, G4 with partitions
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Let i, j,k,l € Z3 and v := (i,7) and w := (k,[) be distinct elements of V. We claim that
{v,w} is edge of exactly three of the graphs G, G, G3, Gy.

Before analyzing different cases of i, j, k, [ as before, we consider vector d := (i—k, j—1).
First note that Zs is a Galois field and Z3 x Zs is a vector space. Then Z3 x Zs is an
affine plane of order 3, where each point (x,y) lies on 4 lines from 4 parallel classes for
x,y € Zs (see Beth et al. [4]). The vector d (as point in this affine plane) can be written
as d = mu, where m € Z3 and u € {(0,1),(1,0),(1,1),(1,2)}. Now we consider 4 cases
and write = for = (mod 3).

Case 1: Suppose i = k and j # . Then d = (i — k,j — [) must have the form
d=m-(0,1) = (0,m) for some m # 0, i.e. j =1+ m for m € {1,2}. By definition,
vw ¢ E(Gy) and vw € E(Gs2). Moreover, i +j = i+1+m # i+ 1 = k + [, thus
vw € E(G3). For Gy, j—i=1l+m—i#1—i=1—k, thus vw € E(Gy).

Case 2: Ifi# kand j =1, then d = m(1,0) = (m,0),m # 0, that is ¢ = k + m for
m € {1,2}. Theni+j=k+m+j #k+ j = k+ [, which implies that vw € E(G3),
and j—i=j— (k+m)=1—k—mZ1—k, thus vw € E(G,). Clearly, vw € E(G,)
and vw ¢ E(Gs).

Case 3: Suppose i # k,j #landi+j=k+1. Theni—k=101—j=—(j—1).
It follows that d = m(1,2) = (m,2m) for m # 0, since 2 = —1 in Zs. We have
i=k+mandj=1+2m, hence i+ j =k+ 1+ 3m = k + [, which means vw ¢ E(G3).
Since j —i =1+2m—k—m =1—k+m # | — k, we have vw € F(G,). Clearly
vw € E(Gy) N E(Gs).

Case 4: Finally, suppose i # k,j7 # [ and i + j # k + [. By definition, vw €
E(G1) N E(Gs). There is only one possibility left for vector d, namely d = m(1,1) for
m # 0. It means i = k+m and j = [ + m. It follows that i +j = [+ k + 2m €
{l+k+2,l4+Fk+1}. In particular, i + 7 #Z | + k, thus vw € E(G3). For G4, we have
j—i=(l+m)—(k+m) =1—k, thus vw ¢ E(G4). This completes the proof of the claim.

We now define coloring c as follows: For any edge vw of Ky, let
clvw) = {i € [4] - vw € G;}.

Then c is a (4, 3)-coloring with color graphs G, G2, G35, G4 and by construction, all color
graphs are tripartite and contain no K. Therefore, ¢ has no monochromatic K, which
proves Ry3(4) > 9. O

Remark 4.8. Theorems 4.6 and 4.7 were presented in the chronological order how we
approached the problems. Alternatively, we can prove the lower bound of Theorem 4.6
as a result of Theorem 4.7. By Proposition 3.4 (ii), R43(4) < R32(4), and Theorem 4.7
implies that Rs32(4) > 9.
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5 Design construction

Considering the proof of Theorem 4.7, we can label the vertices of Ky in a different way
such that

(0,0) (0,1) (0,2) 123

(L) (L) (1L2)| = (4 5 6],

2.0 1) 22) \7 s 9

then the partite sets of the tripartite graphs G, Gs, G3, G4 are listed in Table 2.

AO:{L273} 30:{17477} 00:{2a4a9} D0:{175a9}
Al = {47 576} Bl = {27578} C11 = {37 57 7} Dl = {3747 8}
Ay = {7,8,9) By = {3,6,9} Cy = {1,6,8) Dy = {2,6,7}

Table 2: Partitions of color graphs in a (4, 3)-coloring without monochromatic Ky

This is a resolution of a (9, 3,1) design that we will define below. We raise the question
whether Theorem 4.7 can be generalized, or whether a particular design could yield a
lower bound on some Ramsey numbers. We first introduce basic terms and well-known
results in design theory. For an overview of the history of design theory, we refer to
Wilson [27].

5.1 Basics of design theory

In this section let ¢, v, k, A be positive integers such that v > k > t.

At — (v,k,\) design is a pair (V,B) with point set V' and a multiset B of sets (called
blocks) of points with

o |[V|=u,
e |B| =k for any B € B, and
e cach set of t points is a subset of exactly A blocks.

We often refer to B as the design without mentioning V. A ¢t — (v, k, \) design is also
denoted by Sy (¢, k,v). If A\ = 1, we call S;(t, k,v) := S(t, k,v) a Steiner system of order v.

Two designs (Vi, B;) and (Vs, By) are isomorphic if there exists a bijection ¢ : V; — V;
such that
{{¢(z) : x € B} : B € B} = B.

The bijection ¢ is then called an isomorphism.

If Bisat— (v,k,\) design then the number of blocks in Bis b:= |B| = - (:)/(f) If
b = v, the design is called symmetric. Since the number of blocks plays an important
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role in our application, we also write for convenience (v, b, k, \) designs.

Let B :={B;:i € [b]} at— (v,b,k,\) design with point set V = {z,...,z,}. The
incidence matrix of B is a v x b matrix A = (a; ;) such that

o 1, ZfIZEBJ
“IT0, ifwd B

If I C [v] is aset of size 1 < i < ¢, then the number of blocks containing I is

t—1 t—1
If t = 2, then each point of V' is contained in

Av—1)
k—1

rTi=1r =
blocks.

In design theory, an important question is when a particular design exists. We see that if
at—(v,k, \) design exists, then b and r; must be positive integers. As a result, necessary
conditions for the existence of a t — (v, k, A) design are

( )‘)\( ?)foranog@'gt—L (1)
t—1 t—1

We call (1) the divisibility conditions. For t = 2, the necessary divisibility conditions (1)
reduce to:

Bk —1) | (v — 1),
{ (k—1)] Aw—1). 2)

An open problem in design theory for a long time was the Existence Conjecture: for any
fixed parameters ¢, k, A € N, there exists a t — (v, k, \) design for any v € N if v is suffi-
ciently large and satisfies the divisibility conditions. Wilson [26] proved the conjecture
for t = 2. Recently, Keevash [15] proved the conjecture by a method which he called
randomized algebraic constructions. An alternative proof was given by Glock et al. [10],
based on iterative absorption.

For our purpose, we consider furthermore a particular kind of designs - the resolvable
designs.

A parallel class of a t — (v, k, \) design (V, B) is a set of pairwise disjoint blocks forming

a partition of the point set V. A partition of B into parallel classes is called resolution.
If a design has a resolution, then it is called resolvable.
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A Steiner triple system is S(t,3,v). A resolvable Steiner triple system is called a Kirk-
man triple system.

Since each block has £ elements, each parallel class has 7 blocks. There are b blocks in
B, thus the number of parallel classes is %

In this section, we only consider designs with v > k > ¢t = 2. We call such a 2 — (v, k, \)
design a balanced incomplete block design (BIBD) and write (v, k, ) or (v, b, k, A) design.
Note that in this case (¢ = 2), the number of blocks is

b Av(v—1)
 k(k—1)
Example 5.1. A (7,3,1) design is unique up to isomorphism. This particular design

is referred to as the Fano plane. We have V' = [v] = [7],k = 3, A = 1, and B contains
triples B;,i € [7], as blocks.

By ={1,2,3} 1110000
By ={1,4,5} 1001100
By ={1,6,7} 1000011
By ={2,4,6} A=[0101010
Bs = {3,5,7} 0100101
Be = {3,4,7} 0011001
By ={2,5,6} 00101710

Each pair of points are contained in exactly 2 blocks. The Fano plane is symmetric,
since v = b = 7, but not resolvable, since 3 1 7. Its incidence matrix A is a 7 X 7 matrix.

Example 5.2. This example shows a resolvable (4,2, 1) design, which is unique up to
isomorphism. Here we have V = v = [4],k = 2, A = 1, then b = 6. The number of
parallel classes is s = bk/v = 3, each parallel class has v/k = 2 points. A resolution is
B - Bl UBQUBg,

Bl 82 83
B, = {17 2} By = {]-7 3} By = {174}
By = {374} By = {2a4} Bg = {2’3}

This is an affine plane of order 2 with 4 points and 6 lines. In general, an affine plane
of order ¢ is equivalent to a (¢?, ¢, 1) design, the lines in the affine plane correspond to
the blocks of the design. Such a design is always resolvable.

Theorem 5.3. (Stinson [24]) For any prime power q, there exists a resolvable (¢*,q,1)
design.

26



5 Design construction

The (9,3,1) design in Table 2 refers to the affine plane Z3 x Zs, as mentioned in the
proof of Theorem 4.7.

Let B a resolvable (v, b, k, \) design, then the number of parallel classes of B is

5'—%—E M(w—1)  Av—1)
v v k(k—1) k-1

=T

Clearly, k | v must be satisfied. Together with the condition (2), it implies that the
necessary condition for the existence of a resolvable (v, k, \) is

v=k (mod k(k—1)). (3)

Ray-Chaudhuri and Wilson [21] proved that (3) is also the sufficient condition for k& = 3
and A = 1.

Theorem 5.4. [21] A Kirkman triple system S(2,3,v) exists for v € N if and only if
v =3 (mod 6).
-1

In this case, b = % and s = 5=,

For a (v,k = 4,\ = 1) design, b = % and s = *z1. In 1971, Ray-Chaudhuri and
Wilson together with Hanani proved in [13] that the neccesary condition (3) is also
sufficient for the existence of a resolvable (v,4,1) design.

Theorem 5.5. [13] A resolvable (v,4,1) design exists if and only if v € N with v = 4
(mod 12).

Keevash [16] resolved the Existence Conjecture for general cases. For sufficiently large v,
the divisibility condition (1) is also sufficient for the existence of a (resolvable) t— (v, k, \)
design.

Theorem 5.6. [16] For all k,t, A\ € N with k >t there exists ng = no(k,t,\) € N such
that for all v > ng, if k | v and (l:::) ‘ )\(Z:Z) for all 0 < i <t —1, then there is a
resolvable t — (v, k, \) design.

With ¢ = 2 we have the following corollary.

Corollary 5.7. For all k,\ € N with k > 2 there exists ng = no(k, \) € N such that for
all v >ng, if k| v and (k—1) | AM(v — 1), then there is a resolvable (v, k,\) design.

Proof. The divisibility condition (1)

(k_2> ‘)v(v_?) forall0 <i:<t—1
t—1 t—i
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implies for ¢t = 2:

k(k—1)] Aw(v—1),
{(k—U|Mv—D. (2)

With k£ | v and (k — 1) | A(v — 1), the condition k(k — 1) | Av(v — 1) is always satisfied.
The corollary then follows from Theorem 5.6. [

We emphasize here that our aim is not to construct (resolvable) designs. Constructions
of designs are extensively described in the literature on designs, for example by Lindner
and Rodger [17] for Steiner or Kirkman systems, by Beth, Jungnickel, and Lenz [4] for
general designs. Our purpose is to build colorings and find bounds for certain Ramsey
numbers based on existing designs.

5.2 Design colorings

We assume again for the rest of this section that v,b, k, A are positive integers with
v > k > 2, unless otherwise stated. We can construct a coloring with desired properties
based on an existing resolvable design. Recall that for a resolution of a resolvable
(v,b, k, \) design, there are v/k blocks in each parallel class and the number of parallel
classes is

bk AMv—-1)
T T k-1

which implies

M= =Ak=1) A=)
STAT k—1 B

If a (v,b, k, \) design is resolvable, then clearly k | v and s, s — A are positive integers.

Definition 5.8 (Design coloring). Let (V,B) be a resolvable (v, b, k, A) design. Then
there exists a resolution B = ByU . .. UB, with parallel classes By, . . ., By, where s = bk /v.
For any i € [s], B; is a partition of [v] into v/k disjoint blocks: B; = {B;1,..., Bk},
where B, ; is a block of the design B for any j € [v/k], and U;ﬁle =V.

Let V(K,) =V and for i € [s], let G; be the complete (v/k)-partite graph, whose parts
are the blocks {B;; : j € [v/k]} of the parallel class B;.

An edge coloring ¢ of K, is called a (v, b, k, \) design coloring of K, if ¢ has color graphs
G, i.e. for all edges zy of K,

cley) :={ie[s]:ay € E(G;)}.

Lemma 5.9. Suppose that (V,B) is a resolvable (v,b, k,\) design and c is a (v,b, k, \)
design coloring of K,. Then c is an (s,s — X)-coloring of K,,, where s = bk /v.
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Proof. Note that s is the number of parallel classes in a resolution of B. Since c is a
(v,b, k, \) design coloring, there is a resolution B = B;U. .. UB, such that for any i € [s],
the color graph G; of ¢ is the complete (v/k)-partite graph whose parts are v/k blocks
of B;. Clearly, there are s color graphs, hence there are s possible colors for ¢. We just
need to show that each edge of K, has exactly (s — \) colors, or is edge of (s — \) of the
color graphs G;.

For a parallel class B;,i € [s], we can write B; = {B;1,..., B; i}, where B, ; are blocks
of B, j € [v/k]. Let z,y € V = V(K,) be distinct vertices. For i € [s], {z,y} is an
edge of G; if and only if x,y are not in the same partition, thus not in the same block
B, ; for all j € [v/k]. By the definition of B, x and y are both contained in A blocks.
In particular, there are exactly A\ parallel classes where x and y lie in the same block.
Accordingly, in the remaining (s — A) parallel classes, « and y are in different blocks. It
follows that {z,y} is an edge of (s — \) of the color graphs G;. This proves that ¢ is an
(s, s — A\)-coloring of K. O

Remark 5.10. If a resolvable (v, b, k, \) design exists, then a (v, b, k, \) design coloring
is an (s,s — A)-coloring of K, for s = bk/v, where all color graphs G; are the Turan
graphs T, .(v) = Kf/k.

We will prove that the opposite direction also holds, i.e. if all color graphs of an (s, s—\)-
coloring are the Turan graphs K ,l’f/k, then that coloring is a (v, b, k, A) design coloring.

Proposition 5.11. Let v,s,t be positive integers with s > t. Suppose ¢ is an (s,t)-
coloring of K, such that for all i € [s], color graphs G; of ¢ are the Turdn graphs T, (v)
for some n € N with n | v. Then there exists a resolvable (v,b, k,\) design such that c
is a (v,b,k, \) design coloring, where k = 2,b= 7, A =35 —1.

Proof. Let V := V(K,). For i € [s], since G; is the Turan graph 7,,(v), we can assume
that G; has partite sets B, j, j € [n]. We consider B; ; as blocks, then each block contains
v/n = k vertices. Let B ={B,, :i € [s],j € [n]}. We show that (V,B) is a resolvable
(v,b, k, \) design.

Since there are s color graphs, we have in total s-n = 52 = b blocks. Let z,y be distinct
vertices of K. Since ¢ is an (s, t)-coloring, {x,y} is an edge in ¢ color graphs. In other
words, {z,y} is not an edge in s —t = A color graphs, which implies that  and y lie in
the same partite set in A color graphs. That means x,y are contained in A of the blocks
B; ;. Therefore, B is a (v,b, k, \) design.

Further, for i € [s], let B, = {B;, : j € [n]}, i.e. B; contains all partite sets of color graph
G;. Then B; is a disjoint partition of V for all i € [s] and U;c(qB; = B is a resolution of
B into parallel classes B;. This proves that B is resolvable.

Moreover, for any i € [s], color graph G; of ¢ is the complete (v/k)-partite graphs

whose partite sets are the blocks in the parallel class B;. Thus ¢ is a (v, b, k, A) design
coloring. n
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We prove that a resolvable design coloring implies a lower bound for a Ramsey number.

Proposition 5.12. If there ezists a resolvable (v, b, k, \) design, then a (v,b, k, \) design
coloring has no monochromatic Keyi. In particular we have

Réj,ﬁ_A (% + ].) > .

Proof. Let ¢ be a (v,b,k, \) design coloring of K,. By Lemma 5.9, ¢ is a (%, % — /\)-
coloring of K. Let G; be the color graphs of ¢, i € [bk/v], i.e. G; is the Turan graph
Ty (v). Tt follows that G; does not contain Ke i as a subgraph for all i € [bk/v], thus

¢ contains no monochromatic K. This completes the proof of the proposition. O

It turns out that this lower bound is best possible. We now state our main result for a
resolvable (v, b, k, ) design.

Theorem 5.13. If there ezists a resolvable (v,b, k,\) design, then we have
v
R@,@_)\ (E + 1) =v+ 1.

We need some steps for the proof. The main idea is follows: given a (v, b, k, A) coloring
of K, without monochromatic K,, with n = 7 1+ 1, one cannot extend this coloring to a
larger clique than K, without creating a monochromatic K,. On the other hand, every
coloring of K, without monochromatic K, must have a design construction, which is
again not extendable. These two facts then prove the theorem. We now define a coloring
extension formally.

Definition 5.14. For positive integers s,t, k,ni,ny with s > ¢t and ny > ny + 1, let ¢;
be an (s, t)-coloring of K, and ¢y be an (s, t)-coloring of K,,. We say c; is an eztension
of ¢1 (to K,,) if K, has a subgraph H = K,,, such that cs(e) = ¢y(e) for all e € E(H).

If both ¢; and ¢y have no monochromatic Ky, then ¢, is called a Kj-free extension of c;.

If ¢; has a Kj-free extension, then ¢; is called Kj-free extendable, otherwise we say c; is
Ky-free mazimal.

Lemma 5.15. Let B be a resolvable (v, b, k, \) design and s := bk/v. Letc be a (v,b, k, \)
design coloring of K,. Then c is K»1-free mazimal.

Proof. First note that c is an (s, s — A)-coloring that has no monochromatic Ky by
Propositions 5.9 and 5.12. Let B = ByU...UB; be a resolution with parallel classes
Bi,...,B, and blocks B, j, i € [s], j € [£]. Let G; be the corresponding color graphs of
¢, i.e. G; are the Turan graph T, (v) for all i € [s].
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It suffices to show that any extension coloring of ¢ to K, has a monochromatic K vi.
For the sake of contradiction, let H := K, + x for a vertex z ¢ V(K,) and assume ¢
is an extension of ¢ to K, + x. Note that H = K,; and ¢ is an (s, s — A)-coloring of
K,+1. We consider ¢, there are v edges at x. By the pigeonhole principle, there exists a
color i € [s] that appears at least [m] times on these v edges, where m = @ With

5= )\5:—_11) and s — \ = ’\S,C“:lk), we have

v(s—=A) vANv—Fk) k-1

m =

s k=1 Av-1)
:v(v—k‘)

v—1
:(v—l)(v—k) v—k

v—1 v—1
:(v—k:)Jrz:lf.

Since 0 < =% < 1, [m] = v — k + 1, thus there are at least (v — k + 1) edges with
color ¢ at vertex x. Moreover, v — k+1 =k (% — 1) + 1. Since each partite set of G;
has k vertices, there is at least one edge with color i from z to all (v/k) partite sets
Bij, j € [{], of the complete (v/k)-partite graph G;. Together with a monochromatic
K, i in G;, these edges forms a monochromatic K.y of ¢ in color 4. This proves that

¢ is not K q-free extendable. O

Example 5.16. A (9,3, 1) design is unique up to isomorphism and resolvable. Table 2
shows a resolution of it with blocks A;, B;, C;, D; for i € Z3 and a corresponding design
coloring. There are 4 parallel classes, each of which contains 3 blocks. Each color graph
associates with a parallel class of the resolution. We have R, 3(4) > 9. Let G = Ky and
¢ be a (9,3,1) design coloring of Ky. See figure 11 for illustration.

Gl G2 G,j G4
Co Dy

AO BO
@@ @@ GsD=Go® G113

3
Ay Ay B, By & Cy D, D,

2

6 7

Figure 11: (9, 3,1) design coloring

Now add a vertex z to K and let ¢ be an extension of ¢ to G +x. Note that both ¢ and
¢ are (4, 3)-colorings. There are 9 edges at x, hence 27 colors are needed. There is some
color i € [4] that appears on at least [27/4] = 7 of these 9 edges at z, say color 1, i.e.
|Ni(x)| > 7. Then x is connected to all 3 partite sets Ay, A1, A2 of G;. This implies that
¢ has a monochromatic Ky in color 1 (see Figure 12). Thus c is not K,-free extendable.
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Gy
Ao

% AQ

A

X

Figure 12: Extension of a (9,3, 1) design coloring to Ko + «

Lemma 5.17. Suppose there exists a resolvable (v,b, k,\) design and
bk
3::—,n:zg+1.

) k

Then an (s,s— M) coloring of K, without monochromatic K,, must be a (v,b, k, \) design
coloring.

Proof. Let ¢ be an (s,s — A) coloring of K, without monochromatic K,. By Proposi-
tion 5.11, it suffices to show that all color graphs of ¢ are Turédn graphs T,/ (v) = Kf/k.

For ¢ € [s]|, we consider the size of color graph G; of ¢. Since ¢ has no monochromatic

K, G; has size at most
v v (k
0=()-50)

On the other hand, since each edge has (s — A) colors, the total number of edges of all
color graphs is

e(G;) <ex(v,K,) =t

e

0
(v bk(k—1) vv—1) . (v —1)
\o) "o T 2 Bmeb=TmTy)
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If there is a color graph G; with e(G;) < t,/k(v) for some i € [s], then there must be a
color graph G; with j € [s], j # i, such that E(G;) > t,/x(v), which is a contradiction to
the maximum size of G;. Therefore, all color graphs G; must have equal size and have
exactly t,/x(v) edges. It means all color graphs G; of ¢ are the Turan graph T, (v), thus
cis a (v,b,k, \) design coloring by Proposition 5.11. O

Now we can prove the main theorem.

Proof of Theorem 5.13. The lower bound is by Proposition 5.12. To prove the upper
bound, for the sake of contradiction, assume ¢ is an (s, s — A)-coloring of K, without
monochromatic Kz ;. Let  be a vertex of K,.1 and ¢ be the restriction of d on E(G)
with G := K41 — , i.e. ¢ = |g). Then cis an (s,s — A)-coloring of K, and has no
monochromatic K%H. In particular, ¢ is a K%H—free extension of ¢. By Lemma 5.17, ¢
is a (v,b, k, \) design coloring. Lemma 5.15 implies that ¢ is not K v11-free extendable,
which is a contradiction. This proves the upper bound R,y (% + 1) < v+ 1 and
completes the proof of the theorem. n

In the following we present some consequences of Theorem 5.13.

With the existence of a resolvable (9,3,1) design we have the exact value of R, 3(4),
which extends Theorem 4.7.

Corollary 5.18. We have that Ry 3(4) = 10.

This is a special case of affine planes (¢%,¢,1) with ¢ = 3. For general affine planes of
order ¢ we have the following result.

Corollary 5.19. For any prime power q, we have
Ryp14(g+1) = ¢ +1.
Proof. By Theorem 5.3 there exists a resolvable (v = ¢%, k = ¢, A = 1) design. With

AMov—=1) ¢*—1
fry == — ].
Sy s E

and s — A = ¢, the statement follows from Theorem 5.13. n

Example 5.20. Example 5.2 shows an affine plane of order ¢ = 2, or a resolvable (4,2, 1)
design. A (4,2,1) design coloring c is a (3, 2)-coloring of K, which has no monochromatic
Ks. Let V(Ky) = {u, ug, ug, us}, then

c(urug) = c(usuy) = 12,3},
c(uyug) = c(uguy) = {1, 3},
c(uruy) = c(ugusz) = {1, 2}.

and we have R35(3) = 5. Since the design is unique up to isomorphism, so is the coloring
c. We just proved Theorem 4.2 in an alternative way.
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Now we consider design colorings with Kirkman triple systems.

Corollary 5.21. For all n € N, we have
R3n+173n(2n + 2) =6n + 4

Proof. Let v = 6n + 3. By Theorem 5.4 there exists a Kirkman triple system of order

v, or a resolvable (v,k = 3,\ = 1) design. Then the number of parallel classes in a

resolution of the design is

o v—1
2

and s — A = s — 1 = 3n. The corollary follows by Theorem 5.13 with ¢ = 2n + 1. [

=3n+1,

Corollary 5.22. For any n € N, we have
R4n+174n(3n + 2) =12n + 5.

Proof. Let v = 12n + 4. By Theorem 5.5, there exists a resolvable (v,4,1) design. The
corollary follows by Theorem 5.13 with parameters

bk —1

v 3
s—A=s—1=d4n,
) 12n + 4
2 1 n +

Proposition 5.23. We have that R74(3) = 9.

Proof. There exists a resolvable (8,14, 4, 3) design. A resolution is listed below.

B,
Bl,l = {17 2a 374}
BLQ = {57 6a 77 8}

B;
B5,1 - {1747 67 7}
B5,2 = {27 3a 57 8}

B
By, = {1,2,5,6)
B2,2 = {3a 47 77 8}

Be
Bg1 ={1,3,6,8}
Bgo = {2,4,5,7}

B;
B3,1 = {17 27 7a 8}
B3,2 = {37 47 5a 6}

B
B7,1 - {1747 57 8}
B7,2 = {27 37 6a 7}

B,
B4,1 - {17 3a 57 7}
By =1{2,4,6,8}

The proposition follows from Theorem 5.13. O]

With the result of Keevash’s study [16] on the existence of resolvable designs, we get the
following.
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5 Design construction

Theorem 5.24. For all k, A € N with k > 2, there exists ng = ng(k,\) € N such that
for allv>mng, ifk|v and (k—1) | A(v — 1), then for s = ,\5::11);

Roon (7 4+1) =v+1.
’ k

Proof. By Corollary 5.7, for all v > ng, there exists a resolvable (v, k, \) design with s

parallel classes. The statement follows from Theorem 5.13. O

Remark 5.25. We emphasize the condition that v must be sufficiently large for The-
orem 5.24. For example, consider the design (v = 6,k = 3, A\ = 2). The divisibility
conditions are satisfied: k | v and (k — 1) | AMv —1). For s = ’\gf__ll) = 5, it would
follow that R, s (% + 1) = R53(3) equals 7. We will show later in Proposition 7.8 that
Rs53(3) = 5. The reason is that v is not large enough for Theorem 5.24. More precisely,
v is not large enough for the existence of a resolvable (v, k, \) design in this case. There
is a unique (6,3,2) design (see Colbourn and Dinitz [6]) and it is not resolvable. The

blocks of the design are listed below, the number of blocks is b = 10.

B ={1,2,3}  Bs3=1{1,3,5}  Bs={1,5,6}  B;={2,4,5)  By=1{3,4,5}
BQ - {1,2,4} B4 - {1,4,6} B6 - {2,3,6} Bg - {2,5,6} BlO - {3,4,6}
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6 Hadamard construction and lower bounds for Ry, ,(3)

6 Hadamard construction and lower bounds for
RQn,n(g)

We recall the proof of Theorem 4.3. To prove the lower bound Ry5(3) > 8, we con-
structed a (4, 2)-coloring of Kg without monochromatic triangle. The matrix H describ-
ing this coloring is

1 1 1 1
1 -1 -1 1
H = Ho = 1 -1 1 -1
1 1 -1 -1

This is a Hadamard matrix which we will define below. In this section we study the con-
nection between Hadamard matrices and certain (s, t)-colorings without monochromatic
triangle. We start with definitions and known results for Hadamard matrices.

6.1 Basics of Hadamard matrices

A Hadamard matrixz of order n is an n x n matrix H with coefficients +1 or —1 such
that
HH" =nl

If H is a Hadamard matrix, then so is H”. Any two columns and any two rows of H
are orthogonal. If we permute rows or columns of H or multiply some rows or columns
by —1, the resulting matrix is again a Hadamard matrix and is called equivalent to H.
If two Hadamard matrices H and H' are equivalent, we write H ~ H'.

A Hadamard matrix H is called standardized if the first row and the first column contain
only +1. Any Hadamard matrix can be transformed to a standardized one. If we delete
the first row (or column) of a standardized Hadamard matrix, then the remaining rows
(or columns) have as many +1 as —1.

For a Hadamard matrix H = (h; ;) we denote the columns of H by h; and rows of
H by r;, i € [n].

n
i,j=1

Example 6.1.
(i) Both (1) and (—1) are Hadamard matrices of order 1.

(ii) A standardized Hadamard matrix of order 2 is

()

(iii) Hadamard matrices of order 4 are for example
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6 Hadamard construction and lower bounds for Ry, ,(3)

11 1 1 1 -1 —1 1
11 -1 1 1 1 1 1
=1 431 1 1| M= 4 1 1|
11 -1 —1 1 1 -1 -1
1 -1 1 1 1 1 1 1
1 1 -1 1 -1 1 1 —1
Hs = 1 1 1 -1 | Hy = 1 -1 1 -1
1 —1 -1 -1 1 1 -1 -1

All of these are equivalent to Hy from above. We can transform H, to H; by
permuting the first two columns, to Hy by permuting the first two rows. We
attain Hs from H, by negating the second column and H; from H, by negating
the second row.

A popular interest in the study of Hadamard matrices is the existence of such. Below is
a necessary condition.

Theorem 6.2. (Stinson [2/]) If there exists a Hadamard matriz of order n > 2, then
n =0 (mod 4).

The Hadamard Conjecture states that there exists a Hadamard matrix of order n for all
n € N with n = 0 (mod 4) (see [24]). For study on the existence and construction of
specific Hadamard matrices, see for example Paley [19], Baumert, Golomb and Hall [3].

Hadamard matrices have a strong connection to a class of designs.

Theorem 6.3. [2/] Let m be positive integer with m > 1. Then there ezists a Hadamard
matriz of order 4m if and only if there exists a (v =4m — 1,k =2m — 1, =m — 1)
design.

Av(v—1)
k(k—1)

Note that for this design, the number of blocks is b =
symmetric design.

=4m —1=wv, thus it is a

Given a Hadamard matrix H of order n, a (4m —1,2m —1,m —1) design can be induced
as follows. Since every Hadamard matrix is equivalent to a standardized one, we can
assume that H is standardized. We delete the first row and column of H, and replace
in the remaining matrix every "—1" entry with "0". Then the resulting matrix A is the
incidence matrix of a symmetric (4m — 1,2m — 1, m — 1) design.

Conversely, let A be the incidence matrix fo a (4m — 1,2m — 1,m — 1) design. Now

replace every entry of "0” with "—1", then add a row and column of "1". The resulting
matrix is a Hadamard matrix of order 4m.
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6 Hadamard construction and lower bounds for Ry, ,(3)

Example 6.4. The incidence matrix of the (7,3,1) design in Example 5.1 is equivalent
to a Hadamard matrix of order 8.

11 1 1 1 1 1 1
1110000

1 1r 1 1 -1 -1 -1 -1
1001100

11 -1 -1 1 1 -1 -1
L0000 11 1 1 -1 -1 -1 -1 1 1

A= 01 0 1 01 0], H =

1 -1 1 -1 1 -1 1 -1
0100101

1 -1r 1 -1 -1 1 -1 1
0011001
0010110 1 -1 -1 1 1 -1 -1 1

1 -1 -1 1 -1 1 1 -1

6.2 Hadamard colorings

We state and prove our main result for Hadamard matrices.

Theorem 6.5. If there exists a Hadamard matriz H of order n € N, n even, then

Rn,% (3) > 2n.

Note that theorem 6.5 is not tight for n = 2, since Ry1(3) = R(3) =6 >4+ 1 =15.

Definition 6.6. For any integer n > 2 and any Hadamard matrix H = (h;;)};—;, we
define the set system & = Sy = {S1,...,S,} such that for all i,k € [n], Si, C [n] and

t € Sy if and only if h;, = —1.

We then define the edge coloring ¢ = ¢y : F(Ky,) — 2l of K, as follows. First, fix
some partition of V(K,,) into two n-element sets L = {uy,...,u,} and R = {vy,...,v,}.
Then for all k € [n], let

Ly :={u;:ien]\ S} U{v; :i€ Sk}
Ry ==V (Ks,) \ Ly.

Additionally, for all k& € [n], let G}, :== K, g,, the balanced complete bipartite graph with
parts Ly and Ry. Finally, for every uwv € E(Kay,), let c(uwv) == {k € [n| : wv € E(Gy)},
i.e. ¢ is the coloring with color graphs Gy. We call cy a Hadamard coloring of Ks,
(induced by H).

Note that for i,k € [n], u; € Ly means v; € Ry, which occurs if and only if h;x = 1 and
we say the pair (u;,v;) is fired in Gg. Otherwise if u; € Ry, we say (u;,v;) is swapped,
which is the case if and only if h; ; = —1. The set Sy describes which pairs are swapped
and is called the swapping set of cy.
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6 Hadamard construction and lower bounds for Ry, ,(3)

Example 6.7. We consider H, from Example 6.1 and the associated Hadamard coloring.

1 1 1 1

1 1 1 -1

Hy = 1 -1 1 -1
1 1 —1 -1

The swapping set Sp, is determined by the columns of H,. The first column implies
that the pair (us,v9) is the only pair that is swapped in G, i.e. us € Ry and vy € L.
Similarly, the second column implies that in color graph G, only the pair (us,vs) is
swapped. We have Sy, = {51, 52,53, 5:} where S; = {2}, Sy = {3}, S3 = {4}, S, =
{2,3,4}. The induced Hadamard coloring is of the following scheme.

Gy G G Gy
L | Ry Ly | Ry Ly | R3 Ly | Ry
up | n up | n up | n up | n
V2 | U2 Uz | V2 Uz | V2 V2 | U2
Usg | Us V3 | ug Usg | Us V3 | ug
Uyg | Vg Uyg | Vg Vg | Ug Vg | Ug

The swapped pairs are marked bold. Each color graph is a complete bipartite graph
K4’4.

We first show a property of a Hadamard coloring that u; and v; have complementing
roles in its color graphs.

Proposition 6.8. Let H be a Hadamard matriz of order n with n € Nyn > 2 and cy
be the corresponding Hadamard coloring of Ka,. Then for all i € [n] and any vertex w

of V(Kap) \ {ui, v}, the following hold:
(1) wiw € E(Gy) if and only if viw ¢ E(Gy),
(ii) Ne(us) = (Ni(0:))" =V (K20) \ Ni(v3),
(iii) c(wiw) = (c(vw)) = [2n] \ e(vw).
Proof. If w;w € E(Gy), then u; and w lie on two partite sets of Gy. Without loss of
generality, let u; € Ly and w € Ry. Then v; € Ry, which implies v;w ¢ E(Gy). The

opposite direction follows similarly, which proves Item (i). Item (ii) follows from Item
(i) and implies Item (iii) directly. O

Let H be a Hadamard matrix of order n and cy be the induced Hadamard coloring of
Ks,. An edge e of Kj, has one of the forms w;u;, v;v; or uv;, for some i, j € [n]. We
examine when e is an edge of color graph Gy, k € [n].
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6 Hadamard construction and lower bounds for Ry, ,(3)

Proposition 6.9. Let H = (h;;)i';,—; be a Hadamard matriz of order n for a positive
integer n > 2 and cy be the Hadamard coloring induced by H. Let 1,5,k € [n],i # j and
w a vertex of Ko,. Then the following are equivalent:

(1) hig-hjx=1 (or hix, = hjyi),
(i1) wv; € E(Gy),
(111) u;v; € E(Gy),

() uiu; & E(Gr),

(v) viv; & E(Gy).

Proof. We look into the pair (h;, hjx) and the relationship between the pairs (u;,v;)
and (u;v;) in Gy. There are 4 cases which are shown in Table 3.

(hig, hjr) = (1L,1)  (hig, hyn) = (1, =1)  (hig, hyin) = (=1,1)  (hig, hjx) = (=1, —1)

Ly | Ry Ly | Ry Ly | Ry Ly | Ry
U; | U; U; | U; (% Uj U; U;
Uj | Y5 Uy U Uj | U5 Uj Uj

Table 3: h;j - h; i determines edges and non-edges in Gy,

It is clear that w;v; € E(G)) means also u;jv; € E(Gy). The edge u,;v; is an edge in the
bipartite graph Gy if and only if the pairs (u;,v;) and (u;,v;) are both fixed or both
swapped in Gy, i.e. (hig, hjr) € {(1,1),(=1,—1)}. Thus we have the equivalence of
Items (i), (ii) and (iii). Moreover, if (u;,v;) and (u;, v;) are both fixed or both swapped
in Gy, then u; and u; are on the same partite set of Gy and so w;u; ¢ E(Gy). The
same holds for v;v;. Edges w;u; and v;v; are contained in Gy only in the other two
cases (hix, hjr) € {(1,—1),(—1,1)}, which shows the equivalence of Items (iv), (v) and
(i). O

n—+

5 )-coloring of Ky,

Now we prove that a Hadamard matrix of order n induces an (n,
where each edge has at least n/2 colors.

Lemma 6.10. Suppose H is a Hadamard matriz of order n where n € Nyn > 2 and let
¢ = cy be the Hadamard coloring of K», induced by H. Then the following hold.

(i) For alli € [n], |c(uv;)| = n.
(i) For all distinct i,j € [n], [c(usuy)| = |e(uv;)| = |e(viv;)| = 5.

In particular, a Hadamard coloring of Ka, is an (n, %Jr)—colom'ng of Ks,.
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6 Hadamard construction and lower bounds for Ry, ,(3)

Proof. First, we observe that for all i,k € [n],u;v; is always an edge of G, thus each
edge u;v; have n colors, which proves Item (i).

For i,7,k € [n],i # j, wyv; € E(Gy) if and only if h;j - hj, = 1 by Proposition 6.9. The
case u;u; € E(Gy,) is equivalent to v;v; € E(GYy,), both if and only if h; - hjp = —1. Let
r; be the rows of H, i € [n]. Since the inner product of every two rows of H is 0, we

have
n n
0= (rir;) = E 1+ g —1.
k=1, k=1,
hik-hj =1 hik-hje=—1
Therefore,

n
|{]{3 € [n} : hz‘,k . thg = 1}| = ‘{l{? € [n] : hi,k . hj,k = —1}| = 5

It follows that for all distinct 4, j € [n], each edge of the form u,v;, u;u;, v;v; is an edge
of § of the color graphs {Gy : k € [n]}. Hence each of these edges get 7 colors, which
proves Item (ii). O

Proof of Theorem 6.5. Let cy be the Hadamard coloring of K», induced by H and

G; the corresponding color graphs of c¢y. By Lemma 6.10, ¢y is an (n, %Jr)—coloring
of Ks,. Since all color graphs of ¢y are bipartite graphs, ¢y has no monochromatic

triangle. By Proposition 3.11, we have R, »(3) > 2n. O

The following result arises from the equivalence between Hadamard matrices and certain
designs.

Corollary 6.11. Suppose there exists a (dm —1,2m —1,m — 1) design for some integer
m > 1. Then
R4m72m(3) > 8m.

Proof. By Theorem 6.3, there exists a Hadamard matrix of order 4m. The corollary
follows by Theorem 6.5. O

Example 6.12.

e A Hadamard matrix of order 2 implies
R271(3) = R(B) > 4.

It is known that R(3) = 6, thus the lower bound given by a Hadamard construction
in this case is not tight.
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6 Hadamard construction and lower bounds for Ry, ,(3)

e A Hadamard matrix of order 4 implies
R472(3) > 8.

We know from Theorem 4.4 that R42(3) = 9, hence the lower bound given by a
Hadamard construction in this case is best possible.

e The (7,3,1) design in Example 5.1 is a (4dm —1,2m — 1, m — 1) design with m = 2
and yields
Rs4(3) > 16.

e There exists a (11,5, 2) design (see Charles and Dinitz [6]), which is a (4m—1,2m—
1,m — 1) design with m = 3. This is equivalent to the existence of a Hadamard
matrix of order 12 and implies

R1276 (3) > 24.

Remark 6.13. We compare the lower bound of Ry, ,(3) given by the Hadamard con-
struction and the lower bound by the probabilistic method. Let n € N, by Proposi-
tion 3.12,

Ronn(3) > E(zn)—lﬂ’) - QJ

_ {6 . 21/3”_1/3J |

e

By Theorem 6.5, if there exists a Hadamard matrix of order 2n, then
RQn,n(B) > 4n.

Accordingly, the existence of a Hadamard matrix of order 2n gives a better lower bound
for Ry,.,(3). Moreover, we can construct a witness coloring to the lower bound Ry, ,,(3) >
4n with a Hadamard coloring, as opposed to the probabilistic method which is not
constructive.

A Hadamard matrix H can be transformed to another Hadamard matrix equivalent to
H by permuting rows/columns, or by multiplying rows/columns of H by —1. An equiv-
alent matrix, however, does not necessarily induce the same Hadamard coloring. In the
following we observe how the four operations of Hadamard equivalence affect ¢y when
applied to H.

For the rest of this section, we assume that H = (h;;)7';—; is a Hadamard matrix of
order n with n € N, n even, n > 2 and ¢ = ¢y is the Hadamard coloring of K, induced
by H with swapping set Sy and color graphs Gy = Ky, g, for k € [n]. Moreover, let

H' = (h; ;)i ;= be an equivalent Hadamard matrix to H which we will define explicitly
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6 Hadamard construction and lower bounds for Ry, ,(3)

in each case. Let ¢ = ¢ be the Hadamard coloring of K5, induced by H’ whose color
graphs are G}, with partite sets L) and R}, k € [n]. Let Sgpr = {5}, : k € [n]} be the
swapping set of ¢.

First note that any edge of the form wu;v; with i € [n] always has all n colors in a
Hadamard coloring, and so in ¢. For this reason we only need to consider how other
edges are colored in . We recall the essential fact that by Lemma 6.9, the product
hiy - hjr determines whether w;v;, ujv; and w;u;, v;v; are edges of a color graph Gy. In
other words, we can consider all edges of G, by looking into the value of h; j - h; for all
i,j € [n].

Proposition 6.14. For distinct k,l € [n], let H' be the equivalent matriz to H attained

by swapping columns k and | of H. Then the color graphs Gy and G, are swapped, i.e.
Gy, = G and G} = G, and G, = G; for alli € [n]\ {k,l}. For any edge e € E(Ka,),

(i) k € d(e) if and only if | € c(e),
(i1) 1 € d(e) if and only if k € c(e).
Proof. Swapping columns k and [ of H means swapping the sets S and .5;, i.e for all

i €[n], i€ S, ifand only if i € S; and i € 5] if and only if i € Sy,. Then hj, = h;; and
h;, = hiy for all i € [n]. It follows that for all 4,5 € [n],

/ r
h‘i,k ) hj,k = hig - Iy,

and
/ r
h’i,l ) hj,l - hz’,k ’ hj,k'

By Lemma 6.9 and Table 3, for any edge e € E(K,), e € E(G}) if and only if e € Gy,
which implies Item (i). Similarly, e € F(G)) if and only if e € E(G}), which proves Item

(ii).

Note that Items (i) and (ii) also hold for any edge of the form e = u;v; for ¢ € [n], since in
this case ¢(e) = c(e) = [n]. Also for any edge e with k,[ ¢ c(e), we have ¢/(e) = c(e). O

Proposition 6.15. Let i,j € [n],i # j and H' be attained from H by swapping rows i
and j of H. Then the roles of (u;,v;) and (uj,v;) are swapped in ¢'. More precisely, for
any vertex w € V(Kap,) \ {ws, uj,v;,v;,},

(1) ¢ (uw) = c(ujw) and (ujw) = c(uw),
(i1) ¢ (viw) = c(vjw) and (vjw) = c(vw),

(111) For any edge e € {u;u;,v;vj, u;vj, uv;}, we have ¢(e) = c(e).
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6 Hadamard construction and lower bounds for Ry, ,(3)

Proof. By swapping rows ¢ and j of H, we swap ¢ and j in all sets S; of Sy. It means
for k € [n], i € Sk if and only if j € S}, 7 € Sk if and only if i € S;. In other words,
h;) = hjx and R}, = h;y. For [ € [n]\ {7, j}, the entries in row [ of H does not change,
that means for k € [n], h;; = hyy. Thus for [ € [n]\ {3, j},

h;,k : h;,k = hj,k: : hl,k
and

It follows that the roles of u; and u; are swapped, as well as v; and v;. Let w be a vertex
of Ky, such that w ¢ {u;, u;,v;,v;}, then w € {w;, v} for some [ € [n]\ {7, j}. Then by
Lemma 6.9,

e ww € E(G),) if and only if ujw € E(Gy),
e ujw € E(G),) if and only if u,w € E(Gy),

and

vw € E(G}) if and only if vjw € E(Gy),

vjw € E(GY) if and only if v;w € E(Gy).

The first two facts imply that for any k € [n], k € ¢(ww) if and only if k € ¢(u;w) and
k € /(u;w) if and only if k¥ € c¢(u;w). Thus we have Item (i) that ¢/(u,w) = c¢(ujw) and
d(ujw) = c(uw). Similarly, Item (ii) follows from the last two facts.

For Item (iii), observe that for all k& € [n],

!/ /
hz’,k ) h',k - hj,k : hi,k»

J

which implies that the relationship between (u;,v;) and (u;,v;) does not change in Gj.
Thus the colors of edges w;u;, v;vj, u;v;, ujv; stay the same in ¢/, which completes the
proof of the proposition. O

Proposition 6.16. Let k € [n] and H' be attained from H by negating column k of H.
Then ¢ = c.

Proof. Note that except for the column k of H which is negated, all other columns are
the same in H' as in H. Then for all [ € [n]\ {k}, color graphs G} of ¢ are the same as
G, and we only need to consider Gj.. Column k of H' has entries

/
hi,k = —hik

for all ¢ € [n|. For the swapping set Sy it means that i € S) if and only if i ¢ Sy. For
i € [n], a pair (u;,v;) is fixed in G}, if and only if it is swapped in Gj. However, this
swapping causes no change in edges of Gy, since

Wig - W = (=hig) - (=hjr) = hig - hjx

J
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6 Hadamard construction and lower bounds for Ry, ,(3)

for all distinct 4,5 € [n]. That means, for any edge e € E(Ks,), e is an edge of G}, if
and only if e is also an edge of Gj. Accordingly, G}, = G, and all color graphs stay the
same in ¢ as in ¢, thus ¢ = c. H

We can transform Hadamard matrix by negating more than one columns. Applying
Proposition 6.16 for each column, we obtain the same Hadamard coloring induced by
the resulting equivalent matrix.

Corollary 6.17. Let H' be attained from H by negating columns of H. Then

d=cp =c

We consider the last equivalence operation for H.

Proposition 6.18. Leti € [n| and H' be attained from H by negating row i of H. Then
the roles of u; and v; are swapped. More precisely,

(1) ¢ (uv;) = c(uv;),
(ii) ' (e) = c(e) for all edges e € E(Ky,) that are not incident to u; or v;,
(11i) (ww) = c(v;w) and d(v;w) = e(ww) for any verter w € V(Kap) \ {ui, v;}.

Proof. Ttem (i) is trivial since ¢ (uv;) = c(uv;) = [n].

For S, i € Sy, if and only if i & S for all k € [n]. For all k € [n], ki, = —h,), and for
all j € [n] \ i, we have ), = h;y, . For j,1 € [n]\ {i}, since

/ /
Wik e = hjk - hug,

Lemma 6.9 implies that the property of edges u;u;, u;v;, wv;, v;u; does not change in all
G, which proves Item (ii).

For Item (iii), notice that

Let w be a vertex of Ky,, w ¢ {u;,v;} and k € [n], then w € {u;,v; : j € [n]\ {j}}.
It follows that w,w € E(G}) if and only if u,w ¢ E(Gy), which by Proposition 6.8 is
equivalent to v;w € E(Gy). Hence k € ¢(u;w) if and only if k& € ¢(v;w), which implies
d(u;w) = c¢(v;w). Moreover, by Proposition 6.8,

 (vw) = (¢ (w;w))° = (c(vw))C = c(uw).

This completes the proof of Item (iii) and the proposition. O
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6 Hadamard construction and lower bounds for Ry, ,(3)

Table 4 summarizes the effect of 4 Hadamard equivalence operations on cy. Let 7, j, k €

[n], i # J.

Hadamard equivalence

Su

CH

Swap columns 17, j

swap sets S; and S

&

swap color graphs G; and

Swap rows i, j

swap ¢ and j in all sets S C

Su

relabel (u;,v;) and (u;, v;)

Negating column ¢

new set S = [n]\S;

coloring stays the same

Negating row ¢

new set S; = SpA{i} for all

k € [n]

swap u; and v;

Table 4: Hadamard equivalence applied on H and Hadamard coloring cy

The symmetric difference Sy A{i} means i € S, if and only if i ¢ Sj.

Example 6.19. We consider again Hy and the induced Hadamard coloring. Let H =
Hy and cy = cy, be the Hadamard coloring of Kg induced by H with color graphs
Gy, k € [4]. We assume furthermore that H' is an equivalent matrix to H and ¢ = ¢y
is the Hadamard coloring induced by H’ with color graphs G}, k € [4]. The structure of
H' is determined explicitly in each individual case below.

1 1 1 1
1 -1 -1 1
Ho = 1 -1 1 -1
1 1 -1 —1

G

Ly

Ry
U1
V2
U3
Uy

G
Ly Ry
upr U1
Vg U2
V3 Uug
Uy Uy

G
Ly Rs
upr U1
Vg U2
uz Vs
Vg Uy

Gy
Ly Ry
ur U1
Uy Vg
V3 Uug
Vg Uy

(i) Let H' = H; be attained from H by swapping the first and second columns of H.
Then the color graphs G; and G5 are swapped, i.e. G} = Gy and G, = G.

11 1 1
-1 1 -1 1
Hy = -1 1 1 -1
11 -1 —1

G}
Ly Ry
Uu; 1
V2 U2
V3 Uug
Uy Uy

G
Ly Ry
Uup U1
U2 V3
Uz U3
Uy Uy

Ly
Uy
Vg
us
Vg

(ii) Let H' = Hj be obtained from H by swapping rows 1 and 2.
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Gy

Ry
U1
Uz
U3
Uy

L
Uy
Uz
U3
Vg

G
R,
U1
U2
Uus
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6 Hadamard construction and lower bounds for Ry, ,(3)

Gll 2 3 4
1 -1 -1 1 L R, L, R, L, R, L, R,
H, — 1 1 1 1 Uy v 1 U, U1 uq u; v
2 1 -1 1 -1 U2 Vo U Vo U Vo Ug Vo
1 1 -1 -1 us V3 V3 us us Vs V3 Uus
Uy V4 Uy () V4 Uy V4 Uy

In this particular case, the color graphs GG; and G4 do not change in ¢, since
hi1 = hey = 1 and hyy = hyy = 1, columns h} = hy, hj = hy. Figure 13

illustrates the comparison between G, G5 and GY, GY.

@ W W G m W
e ouz
W

@ us ’03e @

Vg U2

g W @,

V2 © o2 U2 ¢

(4 9 [ 9
®  w W W w @

Figure 13: Color graphs of ¢ and cg, in color 2 and 3

The elements of the partite sets L and L) are circled for all k € [4]. The second
figure of GY% is created by swapping the positions of u; and wus, as well as v; and
vg. The result is the same as G3, with the swapping roles of (uq,v1) and (ug, vs).

Moreover, we have in this case

1 -1 -1 1 1 1 1 1

111 1 -1 -1 1|

Ho=1 1 1 1 4 |~[1 1 4 4|75
1 1 -1 -1 1 -1 1 -1
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6 Hadamard construction and lower bounds for Ry, ,(3)

and
1 1 1 1 1 1 1 1
, 1 -1 -1 1 -1 -1 1|
Ho=1 1 1 1 1 |~[1 21 1 4|78
1 -1 1 -1 1 1 -1 -1

We attain H) from H, by negating columns 2 and 3 of Hy. By Corollary 6.17,
¢ = cy, = cy. On the other hand, Hj can be attained from H by swapping the
second and third columns of H. By Proposition 6.14, it means the color graphs G4
and G5 are swapped, we have G, = G5 and G% = G,. This effect is also reflected
in Figure 13.

(iii) Let H' = Hj be attained from H by negating the second column of H.

a a, A @,

1 -1 1 1 L R, L, R, L, R, L, R,

. — 1 1 -1 1 Uy V1 V1 Uy U vV UL Uy
5 1 1 1 -1 (%) (%) U2 V2 Vo (%) Uy V2
1 -1 -1 -1 us Us us s Uz Vs (%} Us

Ug Vg Vg Uy () Uy () Uy

The only change are in G5, the partite sets Ly and Ry are swapped, but the edges
stay the same in G5 and in all other color graphs.

(iv) Let H' = H, be attained from H by negating the second row of H.

G G/ Gl Q@

11 1 1 L R, L, R, L, R, L, R,

H, — —1 1 1 -1 (5] V1 Ul V1 U1 U1 Uq U1
1 1 -1 1 -1 V2 U2 U2 Vo Uz V2 V2 U2

1 1 -1 -1 Uz Us V3 us us V3 (%] Uus

Uy V4 Uy V4 V4 Uy V4 Uy

In the coloring ¢, the roles of us and vy are swapped. Figure 14 illustrates the
color graphs of ¢ and ¢, where vertices of L;, and Lj, are circled for all k& € [4]. Let
w be a vertex of Kg with w # wus, vy. By Propositions 6.8, for all k € [4],

o upw € FE(GYy) if and only if vow € E(G)),
o vow € E(GYy) if and only if uow € E(G}),

o c(ugw) = (vew) and c(vyw) = ¢ (ugw).
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6 Hadamard construction and lower bounds for Ry, ,(3)

e (w

U1

V4

()

Vg

» U2
V3 @
GQ @ U1
U2
©
® =
U1

u2

Uy

G

V4

(w) w

NC

U2

Uq

@ u3

V2

Figure 14: Color graphs of ¢ = ¢y and ¢ = ¢y,



7 Upper bounds for R, (3)

7 Upper bounds for R,;(3)

In Section 4, we proved that Rs32(3) = 5 and R42(3) = 9. In the previous section, we
gained a lower bound for Ry, ,(3) > 4n from a Hadamard matrix of order 2n. In this
section, we investigate upper bounds for Ramsey numbers of the form R, ;(3). We first
consider upper bounds for general cases, then apply these bounds for some concrete
cases.

7.1 General bounds

In Proposition 4.3, we use information about R32(3) to find an upper bound for R4 5(3).
This idea can be generalized to find the relationship between R, ,(3) and R,_1.(3).

Proposition 7.1. For all s,t € N with s >t > 2,

R.,(3) < {M _ ;J +9.

Proof. Let n := Rs4(3) — 1 and ¢ be an (s,t)-coloring of K,. Note that ¢ has no
monochromatic triangle. Fix some vertex u € V(K,,). Note that u is incident to n — 1

edges, each edge has t distinct colors. It follows that, there exist m := P”_—;)ﬂ distinct

vertices vy, ..., v, € V(K,)\{u} such that wvy,...,uv, have some color i € [s]. In
other words, |N;(u)] > m and {v; : i € [m]} C N;(u). Since ¢ has no monochromatic
K3, it follows that the induced subgraph K, [{vi,...,v,}] has no edge with color i. In
particular, this graph is (s — 1,¢)-colored and avoids monochromatic K3. By definition
of Rs_1,4(3) and using the fact that n = R,,(3) — 1, we obtain:

[(RS,t(i%) -2) 'ﬂ < Ry 1,(3) 1

N Re4(3) —2< {(35—1715(3) —-1)- ;J
N Roi(3) < { Reondd) ﬂ .

This completes the proof of the proposition.

In case t = 2,k = 3 we have

L] R272<3)
[ R372<3)
L4 R472<3) < 10.

3,
5,

20



7 Upper bounds for R, (3)

Applying Proposition 3.4 inductively, we can find a bound for R, 5(3) with s > 5.

Theorem 7.2. For all positive integers s > 5,

5 sl 1—2
< —. 'E .
Boa(3) = 5 5 (i 4 2)l 25— 1 (7.1)

Proof. We proceed with a proof by induction on s.

For s = 5, by Proposition 7.1 we have

. 1 1 1
M_§+2<H__:25__.

R:(3) <
52(3) < 2 9 2 9 2

The right side of the inequality (7.1) is equal to

5 5l 5! 1
62 s Py

Hence, the induction starts for s = 5. For the induction step, we consider

Ry112(3) < (s + DéRS’Q(g) 2 —; ! + 2
(s+1) Ro(3) s-3

2 2

By the induction hypothesis, we have

2
s+ 1 71— 2 s—3
R, 3) < - E _
+1,2( )— 2 ( 95— 3 ’L—i—2 9s—i— 1> 2

5 (s+1)! < i—2 s—3
- _. l _
6 ;
s—1

252 (14 2)! 25— 2
5 (s+1)! i—2
=2 By
6 252 — (14 2)! 25—
which completes the induction and the proof of the theorem. m

For Ramsey numbers of the form R, ;(3) where ¢ > 3, we get a similar formula. First we
consider the case s =t + 1.

Proposition 7.3. For all integers t > 3, Ri114(3) = 3.

Proof. There are t colors on each edge, hence 3t colors are needed to color K3. From
these only (¢ + 1) colors are distinct. The pigeonhole principle implies that, there exist

one color i € [t + 1] that appears on at least (;’r—ﬂ edges. We have that
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7 Upper bounds for R, (3)

3t ] [3t+3-3] . 3 s
t+1] t+1 a t+1 7

since for all ¢ > 3,0 < t% < 1, hence 3 > 3 — t% > 2. That means, there is a
monochromatic triangle in color i, showing Ry ,(3) < 3. Clearly R;;1,.(3) > 3, which
proves the proposition. O

Theorem 7.4. For all integerst > 3,n > 2,

3(t+n)! t—i
T N e
U e

1=

Rt+n7t(3) <

< W (7.2)

Let s :=t+n >t + 2, then we can rewrite (7.2):

3-s! t—1
- - | E
Rs,t(g) S (t + 'ts t—1 + s! t+ Z [tsftJrlfi'

Proof. We fix t and apply induction on n. For n = 2, by Proposition 7.1,

t+2) Repie(3) 142

Rit24(3) < (

2
t ;T
C(t+2) Ruaa(3) |t -2
N t + t

Since t > 3, Ri114(3) = 3 by Proposition 7.3,

3(t+2 t—2
Ri24(3) < ( ) + -
t 2

On the other hand, the right side of (7.2) is equal to

3t+2)!  (t+(t—2) 3(t+2) t—2
t+Dt  (E+2) -2 T

Therefore, the theorem holds for n = 2.

We now consider the induction step. By Proposition 7.1,

(t+n+1) Ryni(3) t+n+l

Rt+n+1,t(3) < ; ; +2
(t+n+l) Rt—l—n,t(?)) t—n—1
= ; + : .
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7 Upper bounds for R, (3)

The induction hypothesis implies that

n

t+n+1]| 3(t+n) t—1 t—n—1
Riin 3) < t !E ,
rni1a(3) € = @+Uuwl+(+m,:(rmﬂwﬂﬂ L
3(t+n+1)! = t—i t—n—1
=TT 1)!
G TeEnt )Z;@+nw%%f+ /
3(t+n+1) (A
= — > 4+ (¢ ! —_—
(t+ 1) Tlttn+l) ;(t+z‘)!tn+2—2’

which completes the proof of the theorem.

We use Stirling’s formula to approximate this upper bound. For n € N,

n n
nl ~v2mn (—) , N — 00.
e

Theorem 7.5. Let k > 2 be fized. Then for all n > 3,

Renn(3) < [14 o(1)] Vi(kn —n +2) " (5) "

e
Proof. By Theorem 7.4 we have

3. (kn)! T (kn)! (n— 1)
kan(g) < n—1 + Z (TL + Z)' nkn—n+l—i’

> =2 Q 7
~~ ~~

=A =:B;

We first approximate the term A.

3v/ 2k (kz)*"

2r(n+1) ("Tfl)nﬂ nhn—n-1

B n 3\/E (kn)k:n ent1—kn
S Vn+1 (n+4 1)t phnont
1

~ 3Vk enti=kn

~

kkn nkzn
(n + 1)n+1 nknfnfl

nn—i—l 7,Llcn—n—l
— 3\/E en-l—l—k:n kkn

(n + 1)n+1 nknfnfl

n+1
— 3\/E en-i-l—kn kkn < n ) ’ <E>k’n—n—1
-

n+1 n

~ 3\/E enfkn k,kn
kn
= 3Vk " (E) .

e
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7 Upper bounds for R, (3)

For i € [2,kn — n] we approximate B;.

Vorkn (7”) (n—1)
27r(n +1) ( Z)nJrZ kn—n+1—i
L kkn n+i—kn s : :
- +i VE e (n —1) (n + i)t pnnti=i

——
~1

kn _n+i—kn . n
~VE k" e (n —1) (ot 2]+

. n+i s

_ \/Ekkn en-i-i—kn n—1 ( n ) (E)kn n
n

S—~— —

- NY

nkn

n—+i nkn—n—i

n-+1 n

~ \/E kkn enfkn

L kn
ke (—) )
e

Altogether we obtain

~avie (8 v (5
e (é)kn[3+(k’n—n—1)]
~VE(kn —n+2) ¢ (E)}m.

(&

This completes the proof of the theorem. O

In case k = 2, Theorem 7.5 implies the following.

Corollary 7.6. For all positive integers n > 3,

Ronn(3) < [1+0(1)]V2(n + 2) (ﬁ) .

e

Remark 7.7. Together with results from the previous section about the Hadamard
construction, by Theorem 6.5, if there exists a Hadamard matrix of order 2n for n € N,
then

4n < Ropn(3) < [1+o(1)]V2(n + 2) (g)n .
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7 Upper bounds for R, (3)

In case n = 2, the lower bound resulted from Hadamard colorings is tight. We have
Ry2(3) > 8 and Ry2(3) = 9. However, for general cases, it stays unclear how close
the lower bound by a Hadamard coloring (4n) is to the actual value of R, (3). At
this point, there is a great gap between the linear bound 4n and the exponential bound
above.

7.2 Application

We will apply the results above to compute some concrete (s,¢) Ramsey numbers of the
form R,.(3).

Proposition 7.8. We have R53(3) = 5.

Proof. Figure 15 shows a (5, 3)-coloring of K4 without monochromatic triangle. We
identify color 5 with purple. This proves the lower bound R;3(4) > 4.

(41
clujug) = {1,2,3}
| clujug) = {1,2,4}
c(ujuy) = {3,4,5}
Uy c(ugug) = {3,4,5}
/\\ C(UQU4) = {17 2, 4}
clusuy) = {1,2,3}

U2 - @ Us

Figure 15: Witness coloring to the lower
bound Rj;3(3) > 4

On the other hand, by Proposition 7.3, R43(3) = 3, and by Proposition 7.1,

(R 3
Ry 3(3 { i J +2
5-(3-1)
{ J o
=9,
which proves the upper bound and hence Rs3(3) = 5. ]

Now we consider Rg3(3). First note that by Propositions 7.1 and 7.8,

Rg3(3) < r' (R5’33(3) — 1)J +2

6-4
= 2 = 10.
-5

Next we prove Rg3(9) < 10.
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7 Upper bounds for R, (3)

Proposition 7.9. We have Rg3(3) = 9.

Proof. For the lower bound, we recall that R;4(3) = 9 by Proposition 5.23. It follows
from Proposition 3.4 (ii) that

Rs3(3) > Rya(3) = 0.

We now prove the upper bound. In order to show that Rg3(3) < 9, we proceed with
a similar proof as the alternative proof of Theorem 4.4 that R,2(3) < 9. For the sake
of contradiction, we assume that ¢ is a (6,3)-coloring of Ky without monochromatic
triangle. Let V(Kg) = {uy,...,u9}. Fix some vertex of Ky, say u;. There are 8 edges
at uy, which have in total 8 - 3 = 24 colors. By the pigeonhole principle, there are some
color i € [6], say color 1, that appears at least (%] = 4 times on all edges at uy, i.e.
|N1(up)| > 4. For any edge uv with u,v € Ny(uy), if 1 € c(uv) then uv, uju, uyv will form
a monochromatic triangle in color 1. By the assumption that ¢ has no monochromatic
triangle, 1 ¢ c(uv) for all u,v € Ny(uy). Hence in Ko[N(u;)] we have a (5, 3)-coloring.
Since R;3(3) = 5 by Proposition 7.8, it must follow that |Ny(u;)| < 4. Altogether we
have | Ny (uq)| = 4.

There are now 20 colors left on all edges at u;. Again there is some color i € [6]\ {1} that
appears at least (?] = 4 times on those edges. By the same argument as for Nq(uy),
we have |N;(u;)| = 4 for all colors ¢ € [6] and all vertices u; € V(Ky). Therefore, each
color graph G; of ¢,i € [6], is a triangle-free 4-regular graph on 9 vertices. Such a graph
does not exists (see Figure 6 and [18]), which proves that there is no (6, 3)-coloring of
Ky without monochromatic triangle. This completes the proof of the proposition. [
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8 Off-diagonal (s,t) Ramsey numbers

In this section we introduce the off-diagonal version of Ramsey numbers for set-colorings.

Definition 8.1. For positive integers s > ¢, and ky, ko, . .., ks > 2, we define Rg¢(ky, ..., k)
to be the least positive integer n such that for any (s,t)-coloring of K, there is a
monochromatic Ky, in color ¢ for at least one i € [s].

Remark 8.2. We note some special cases of ¢, s and k;, i € [s].
e By definition R(k, ..., k) = Rs(k).

e Incaset = 1, we have the classical off-diagonal Ramsey number R; 1 (k1, ko, ..., ks) =
R(ky, ks, ..., ks), which denotes the least positive integer n such that any s-coloring
of K, has a monochromatic Kj, in color ¢ for some i € [s].

o Rys(ki,...,ks) =min{k; : i € [s]}.
[ J Rs,t<2; k’Q, ceey ]CS) - Rs_l,t<k2’ ey ]CS)
o R, (ky,... k) is invariant under the reordering of ki, ..., ks.

For the classical off-diagonal Ramsey numbers, there is an implicit upper bound (see
Greenwood and Gleason [12]):

R(ky, ... k) <2—s5+ > Rlky,... ki1, ki — Lk, k)
i=1
In case s = 2 this bound reduces to
Ry 1(k1, ko) = R(k1,ke) < R(ky — 1, ko) + R(ky1, ko — 1).
We prove a similar formulation for R,¢(k1, ..., ks).

Proposition 8.3. For all positive integers s,t,s >t and ky,...,ks > 2, we have

S 1<
Roi(ky ko, ... ks) <2 — -+ Z;R&t(kl,...,ki_l,ki — 1, ki1, k)

Proof. Let n = Rs4(k1,ka, ..., ks) — 1 and let ¢ be an (s,t)-coloring of K, without
monochromatic Ky, for all ¢ € [s]. Fix some vertex u € V(K,), then u is incident
to (n — 1) edges. For i € [s], let V; := N;j(u) = {v € V(K,) : i € c(uv)}, i.e. V;
contains all neighbors of u that are connected to u by an edge with color 7. Since c is
an (s, t)-coloring, we have

Vi| 4+ |Va| + -+ Vi = (n— 1) - £,
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8 Off-diagonal (s,t) Ramsey numbers

which implies
1 S
=14- Vil.
n + ; ZZl| |

On the other hand, Vj, contains no monochromatic Ky, _; in color 7, otherwise together
with u, V; would form a Kj, in color i. Furthermore, V; contains no monochromatic Ky,
in color j for all j € [s], j # i. Altogether,

"/;| S Rs,t(kla <o 7ki717ki - 17ki+17 c '7k8) -1
for all i € [s]. Since n =1+ 137 | |Vi| and n = Ry (ki, ..., ks) — 1, we have
Rs,t(kla'”)ks) = 1+n

1 S
:2+¥;|Vi|

1 S

which completes the proof of the proposition. n

We want to find an upper bound on Rg¢(ki,...,ks). For s = 2, Erdds and Szekeres |9
proved in 1935 that

ki + ko — 2
Ry (K1, ko) = R(ky, ko) < ( 1]{: 21 )
-

We attempt below to find an equivalent formula for general s. We first consider a special
case, where k; = 2 in at least (s —t + 1) positions of ;.

Lemma 8.4. For all s,t € N,s >t and Y ;_, k; < 2s+t — 1, we have

stt(l{fl, .o ,ks) - 2

Proof. Since k; > 2 for all i € [s], we have Y 7_, k; > 2s. Then the assumption ) ., k; <
2s +t — 1 implies that there are at most (t — 1) positions of k; such that k; > 2, in
other words, there are at least (s — ¢ + 1) positions of k; with k; = 2. Without loss of
generality, let k; = ko = --- = ky_;,1 = 2. It follows that

Rs,t(klv ) ks) = Rs,t(kl = 2, ko = 2., ks—t—i—l = 2, ks—t—i—?y R ks)
= Rs—l,t<k2 = 27 R ks—t—l—l = 27 ks—t+27 ) ks)

- Rt,t(ks—t—i—l - 27 ks—t—i—?: ceey ks)
=min{2, ks_yy9,...,ks}
= 2’

which proves the lemma. O
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8 Off-diagonal (s,t) Ramsey numbers

Example 8.5. For s = 5,t = 3 and Zle ki = 2s 4+t —1 = 12, there are only two
possible ways to arrange (ki, ..., ks) up to permutation of k;. In the first case we have

Rs3(2,3,2,2,3) = R53(2,2,2,3,3)
= R43(2,2,3,3)
= R33(2,3,3)
= min{2,3,3} = 2.

In the other case we have R;3(2,2,2,2,4) = Ry3(2,2,2,4) = 2.

We now prove an upper bound for R¢(ky, ..., k).
Theorem 8.6. For all s,t,ky,...,ks € N such that s > t and k; > 2,1 € [s], let
K =57 k. Then

S C K —s
selky, k) <2— —— + — ’ !
R,t(l ) 3—t+tK(k1_177k3_1) <8 )

| _
where C' = =5 . L. ¢2s+i=1
s—t sl

Proof. Let M be the right side of the inequality (8.1),

s C K—s
M=2— = .
s—t+tK<k1—1,...,ks—1)

We proceed with a proof by induction on K. First we proof the base case when K <
2s +t — 1. Then there are at least (s — ¢ + 1) positions of k; with k; = 2. Without loss
of generality, let k; = --- = ks_;11 = 2. Then

> ki<2s4t—1-2s—t+1)
i=s—t+2
— 3t — 3.

By Lemma 8.4, Ry (ki,...,ks) = 2. Further consider

K —s B K —s
kv—1,. . ks—1)  \1,... Lkeryo—1,... ki—1

B (K —s)!
(kg — D) (kg — 1)

Since k; > 2 for all i € [s], K > 2s and K —s > s. Moreover, since » |

ki < 3t—3,

s
t=s—1+2

(hoepgo — Dl (kg —DI< 2= . 2=1)1-(3t—3—=2(t—2)— 1))

!

-~

(t—2) times

=t
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8 Off-diagonal (s,t) Ramsey numbers

K—s s!
> —.
ki—1,...,ks—1/) — ¢!

Further, since K < 2s 4+t — 1, we have t& < ¢2¥=1 thus

1 1
K 2 {2s+t—1"

It follows that

Altogether we have

- Rs,t(kl) EII) ks>7

which proves the base case. For the induction step, let K > 2s+t—1. By Proposition 8.3
and the induction hypothesis,

S 1<
Rs,t(kl,...,ks)g2—2+¥;}23,t(/ﬁ,...,ki1,/@-—1,1@”1,...,/%)
s 1L s C Yoo ki—1—s
<92 4= 92— =1

_o s+s 5 S +C’ : K—-s5—-1
B t s—t R\ by =1,k =2,k — 1

~

_2+s 1 s +C’ K—s
Tt s—t) tK\ki—1,.. .k —1
S s—t—s
—24 2.
e Ko
s C
- — .
s—i </<;1—1 k:—l)
This completes the proof of the theorem. n

We apply Theorem 8.6 for s = 2t.
Corollary 8.7. For all positive integers t and ki, ... ko > 2, let K = Z% ki. Then

2.4l 5! K -2t
Royi(ky, .. k) < —— - '
ot i (K1, k) < s tK (kl—l,...,kzt—l)

Remark 8.8. For t = 1, s = 2 and positive integers ki, ko > 2, Theorem 8.6 reduces to
the well-known formula:

ki + ko —2 fy+ky =1
ki, ko) = R(k1, ko) < - '
Ro1 (K, k2) = Rk, 2)—(k1_1,k2—1) ( ki —1 )
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8 Off-diagonal (s,t) Ramsey numbers
For s = 2t and ky = --- = ks = k, we have R (k1,...,ks) = Ro (k) and the following
result.

Corollary 8.9. For positive integers t, k such that k > 2, there exists a positive number
Cy such that

Ry 4(k) < C; - 2%,

Proof. By Corollary 8.7, for ky = -+ = ko = k,
2.t ot 2kt — 2t
Ropi(ky, ... ko) = Ropy(k) < . .
2t,t( 1, ; Zt) 27571‘/( ) — S! t2kt <k_]_77k_1>
Note that
(k 21k:t — 2}5 1) < (26)2K2,
therefore,
2.4 g5t
R2t7t(k‘) S ' . tzkt X 22kt—2t . t2k‘t—2t
s!
— t_" . t3t—1 X 21—2t . 22k‘t‘
s!
The corollary follows from setting C' := i—', g3t g1t [
Alternatively we can prove an upper bound on R, ;(ky, . . ., ks) without using multinomial
coefficients.

Theorem 8.10. For all s,t, ky,..., ks € N such that s > t and k; > 2,1 € [s], let
K =5 k. Then

s s\ K
<2-— - .
Ryglky,... k) <2 = ——+C., (t) , (8.2)

where Cs; = —= (5)28.

s—t \s

Proof. Similarly to proving Theorem 8.6, we apply induction on K.

For the base case, let K < 25+t —1. By Lemma 8.4, we have Rs;(ky,...,ks) = 2. Since
K > 2s, consider the right side of 8.2:

s S\ i1 ki s s £\ 75\ 25
e e 5 ()6
s—1 G = s—t+s—t(s) t
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8 Off-diagonal (s,t) Ramsey numbers

For the induction step, let > 7 | k; > 2s +t — 1. Proposition 8.3 implies that

Roi(ky, ... k) < 2——+ ZRstkl,... ki, ki — 1 ki, . k).

By the induction hypothesis,

S

Rye(ky, ... k) < + 1 z; { ey G)K_l}

S 1 S S s\ EK-1
—2- 2.2 (2- e} (—)
;e t( s—t +¢ \1

= s—t :Cs,t(%)K

e (;)K

—2_

s—t

This completes the proof of the theorem. n

Remark 8.11. The induction step of the proof follows from the induction hypothesis
no matter what value C; has. The term C;; was determined merely for the sake of the
base case.

We apply Theorem 8.10 for s = 2t.

Corollary 8.12. For all positive integers t and k; > 2,1 € [2t],
R2t7t(l€1, ceey l{?gt) < C- 225:1 ki,
where C = 2174 [f k; = k for all i € [2t] then

Ro (k) < C - 2%+,

Remark 8.13. At this point, we have several bounds for general Ry (k).

Ry (k) < (t + 1)HEHD (Corollary 3.7),
t!

Ro (k) < - g3t gl=2t g2kt (Corollary 8.9),
s!

Ro4(k) < 14t g2kt (Corollary 8.12).

The second and third bounds have the same growth and both are an improvement for
the bound in Corollary 3.7.
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9 Conclusion

We first summarize the main results from the previous sections.

9.1 Main results

The classical Ramsey number R(k) can be seen as a special case of the (s,t) Ramsey
number Rg,(k) with s = 2,¢ = 1. The off-diagonal Ramsey number R;.(k1,...,ks) is
again a generalization of the (s, t)-Ramsey number. Computing upper bounds for R, (k)
as a special case of Rs(ky, ..., ks) where k; = k for all ¢ € [s] gives a better upper bound
as we have seen in Remark 8.13. In general, for all s,¢, k € N such that s > t,k > 3, we

have E 1 /s\'5 s s\ sk
["S - (3) W <R S2- 5+ G (5)
where Cy; = =2 (3)25.

s—t \s

Some exact values of Ramsey numbers of the form R, ;(3) were determined and are listed
below.

For R34(4) we have the estimation 10 < R35(4) < 14.

In some cases, the study on small Ramsey numbers R;;(k) can be generalized. For ex-
ample, a witness coloring to the lower bound R45(3) > 8 was generalized to Hadamard
colorings. In addition, the concept of design colorings arises from the witness coloring
to the lower bound R43(4) > 9.

For all n € N, n, if there exists a Hadamard matrix of order 2n, then

4n < Roynn(3) < [14 o(1)]V2(n +2) (é)n

e

The lower bound for Ry, ,(3) given by a Hadamard matrix of order 2n is better than
by the probabilistic method. However, it remains an open question how close the lower
bound by the Hadamard construction is to the exact value of Ry, ,,(3). An advantage is
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9 Conclusion

that we can construct a (2n,n")-coloring of Ky, without monochromatic triangle with
Hadamard colorings, in contrast to the non-constructive probabilistic method.

A resolvable design gives the exact value of some Ramsey numbers. For all v, k, A € N

such that v > k > 2, if there exists a resolvable (v, k, \) design, then for s = ’\(:T_ll),

v

Roon (7 4+1) =v+1.
’ k

A disadvantage of the design construction, similar to the Hadamard construction, is that

it is only applicable in specific cases.

9.2 A new definition

To end this thesis, we introduce a new direction for further study. We first recall that
for graphs G, H, R(G, H) denotes the least positive integer n such that any 2-coloring
of E(K,) contains a red G or a blue H.

For any positive integers s,¢ with s > ¢ and graph G, we denote by R,(G) the least
positive integer n such that any (s, t)-coloring of K, contains a monochromatic copy of
G. We also call Rs(G) the graph Ramsey number for set-coloring. A prospective study
is to find lower and upper bounds for R;;(G) with various kinds of graphs G such as
cycles, stars, paths, etc.

For motivation, we give a small example by determining R35(Cy). Note that by the
same arguments as in Proposition 3.4, the following holds. For all graphs G and s,t € N
with s >t > 2,

Rs(G) < Re—1,-1(G).

It was proved by Chvatal and Harary [5| that R(C,) = 6. Hence, R32(Cy) < 6.

Theorem 9.1. We have that R35(Cy) = 5. Moreover, up to relabeling of colors and
vertices, the only (3,2)-coloring of K, without monochromatic Cy is given in Figure 16.

U1

Us

Uo o Uz

Figure 16: (3,2)-coloring of K, without monochromatic Cy
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Proof. The coloring in Figure 16 proves the lower bound R3(Cy) > 4. We will prove that
it is unique up to the permutation of vertices and colors. Let V(Ky) = {uy, uz, us, uys}
and ¢ be a (3,2)-coloring of K, without monochromatic Cy. An edge e of K, can
have color set {1,2},{1,3} or {2,3}. In the following let 4, j, k be arbitrary elements of
{1, 2,3} and pairwise distinct. We first prove the following claims for the coloring c.

(i) For any spanning cycle C' of Ky, ¢(C) = {{1,2},{1,3},{2,3}}, i.e. all 3 color

combinations must appear on edges of C.

(ii) For any vertex u € V(K}), there are at most two edges at u with the same color
set.

(i) Any two edges of K, that are not adjacent have distinct color sets.

For Item (i), if C' has at most two color sets, ¢(C) = {{i,j},{i,k}} or ¢(C) = {{3,7}},
then C'is monochromatic in color ¢, which is a contradiction. This proves Item (i). Note
that Item (i) also means that there are at most two edges of C' have the same color set.

For Item (ii), for the sake of contradiction, assume without loss of generality that
c(urug) = c(ugus) = c(uyuy) = {i,5}. We apply Item (i) for 3 spanning cycles of K. For
cycle (uq,ug, ug, ug, ur), Item (i) implies {c(uqus), c(uguqs)} = {{i,k},{j, k}}. Without
loss of generality, let c(ugus) = {7, k} and c(usuy) = {j, k}. For cycle (uq,ug, uy, uz), we
have c(uquy) = {i, k}. It follows that cycle (uq,uy, ug, us, 1) is monochromatic in color
i, which is a contradiction and thus proves Item (ii).

For Item (iii), we now assume without loss of generality that wujus,usu, are not ad-
jacent and c(ujug) = c(usug) = {i,7}. We prove Item (iii) again by applying Item
(i) for spanning cycles of K,. For cycle (ug,us,us, uy,ur), without loss of generality,
c(ugug) = {i, k}, c(uguy) = {j,k}. For cycle (uy,us, ug,uq, uq), Item (i) implies that
c(uguy) = {1,2} or c(ujuz) = {1,2}. On the other hand, Item (i) applied for cycle
(uy, ug, ug, us, uy) yields {c(uy,us), c(usug)} = {{1,3},{2,3}}. In particular, {1,2} ¢
{c(uqus), c(uguy)}, which is a contradiction. This proves Item (iii).

With Items (i), (ii), (iii), we can prove the uniqueness of ¢. By Items (i), without
loss of generality, c(ujus) = {1,2}, c(uguz) = {1,3}, c(usus) = {2,3}. By Item (iii),
c(ujuyg) # c(ugug) = {1,3}, without loss of generality, c(ujuy) = {1,2}. There are
now 2 edges at u; with the same color set: c(ujuz) = c(ujuy) = {1,2}. By Item (ii),
c(ujug) # {1,2}, without loss of generality, let c(ujuz) = {1,3}. By Item (i) for cycle
(w1, ug, ug, us, uy), c(uguy) = {2,3}. Therefore, the witness coloring to the lower bound
R55(Cy) > 4 is given in Figure 16.

For the upper bound, let ¢ be any (3,2)-coloring of K5. We prove that ¢ contains a

monochromatic C4. For the sake of contradiction, we assume that ¢ has no monochro-
matic Cy. Due to the uniqueness of the (3, 2)-coloring of K4 without monochromatic C,
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9 Conclusion

up to relabeling of colors and vertices, we can assume without loss of generality that c
is as in Figure 17. We have

c(ugug) = {1, 2},
C(U2U3) = C(UIUS) = {17 3}7
c(uguy) = {2, 3}.

U7

U2 Us

Us @ Uy

Figure 17: Assumption: (3,2)-coloring of K5 without monochromatic Cy

Observe that in the cycle (ug,uy,us, us, us), there are two edges with the same color
set: c(uguy) = c(usuy) = {2,3}. Then by Item (i), c(ugus) # {2,3}. Similarly, for
cycle (uq,us, ug, us, u1), two edges have the same color set: c(ujus) = c(ugug) = {1, 3},
hence c(uqus) # {1,3}. Consequently, c(uqus) = {1,2}. Then cycle (uq,ug, us, tq, 1)
has 3 edges with the same color set: c(uquy) = c(ugug) = c(ugus) = {1,2}. Item (i)
implies that K5[{uy, ug, ug, us}| has a monochromatic Cy, which is a contradiction to the
assumption of ¢. This completes the proof of the theorem. O
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