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ABSTRACT: The effect of adhesion on the chemical potential of
supported nanoparticles is derived for the case of spherical caps. It is
explicitly shown that for the minimum-energy particle shape
(neglecting any anisotropy in surface energy), the chemical
potential of a spherical cap attached to any flat support material
reduces to μ = 2γVm/r, where r is the radius of curvature, γ is the
surface energy, and Vm is the volume per mole of atoms. This is
identical to the well-known Gibbs−Thomson relation derived
instead for free-standing spherical particles. The chemical potential
nevertheless depends on the adhesion energy Eadh because this
radius r is a strong function of both adhesion (specifically, of Eadh/γ)
and particle volume. The approximation of hemispherical particle
shape, for which μ = (3γ − Eadh)Vm/r as proposed by Campbell and
Hemmingson (ACS Nano 2017, 11, 1196) is exact for γ = Eadh, where it reduces to μ = 2γVm/r. Using hemispheres, or any fixed
particle shape, is furthermore shown to be a linear approximation to the exact dependence of μ on Eadh for the minimum-energy
particle shape, with error <10% for contact angles between 66 and 120° (i.e., for Eadh/γ = 0.5−1.4). Generally, these approaches only
consider the limit of a large radius of curvature, where γ and Eadh are constant. It is known that both γ and Eadh increase with the
decreasing r below 4 nm.
KEYWORDS: nanoparticles, chemical potential, sintering, adhesion, metal-support interaction

■ INTRODUCTION

The stability of metal nanoparticles plays an important role
both in the synthesis as well as in the stability of heterogeneous
catalysts. With increasing size, metal particles generally become
more stable and the metal atom chemical potential approaches
that of the bulk metal. This trend in stability can be attributed
to the ratio of the surface area to volume (or number of
atoms), which is higher for small particles. This situation
provides a thermodynamic driving force for small particles to
sinter to larger particles. On the other hand, the high surface
area of small particles is generally a desirable property for
catalysis because it leads to higher overall activity, in the
absence of other particle size effects. For this reason, sintering
of nanoparticles that form an active catalyst is generally a
process that is sought to be avoided.1−3 This is even more
important for some catalyst materials like Au, where the
activity per unit area decreases strongly with the increasing size
above 2 nm.4

The most important problem with sintering is its inhibiting
effect on the development of new industrial catalysts for the
production of fuels and commodity chemicals, the clean
combustion of fuels and vehicle exhaust cleanup. To be
practical, these types of catalysts often need to remain on-
stream for times of nearly a year or more before replacement.

Thus, every time a promising new catalyst material is
discovered, it must be tested for a year to determine if it
deactivates by sintering. This greatly slows down the
development of better industrial catalysts. Thus, for new
catalyst development, there is a tremendous practical
motivation to develop theoretical methods that can predict
long-term catalyst sintering behavior based on short-term
measurements. It is well known that the chemical potential (μ)
of metal atoms in nanoparticles depends sensitively on the
particle size and support material upon which it is anchored
and that it is a key parameter required for any quantitative
kinetic model that could predict such sintering rates.5,6 We
present here new insights into how this chemical potential
depends on the nanoparticle size and support material.
This chemical potential enters into many rate equations for

catalyst sintering, where it approximately enters as a negative
contribution to the activation energy for sintering.7−10 The
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chemical potential also serves as a descriptor for the chemical
reactivity of the metal atoms at the surface of a catalyst. The
higher the chemical potential, the more strongly the metal
atoms bind to small adsorbates like −OH and −CH3.

5,6 Thus,
there is a strong motivation to achieve a quantitative
description of how chemical potential varies with the particle
size and support material.
Catalyst nanoparticles are generally supported, often on an

oxide, carbon, or a nitride, and the choice of this support
material provides a degree of freedom that can be utilized
effectively to suppress sintering and increase particle stability.
The support material may directly influence the kinetics of
sintering, for example, for surface-mediated Ostwald ripening,
where metal atoms diffuse over the support.11−18 More
generally, however, the metal/support interface influences the
stability of the nanoparticles.
For a theoretical, quantitative description of the stability of

supported particles, two general approaches exist. One is
explicit modeling or simulation of supported particles. This
approach is computationally very demanding and is, when
based on the density functional theory, usually explored only
for relatively small systems.19−22 Larger systems were also
investigated,23,24 but here, it is not viable to systematically
explore many local minima to obtain a reasonable estimate of
the global minimum.
The second approach relies on a continuum description of

the particle, where atoms in the bulk have the bulk chemical
potential μbulk and surfaces increase the total energy by the
product of surface area and surface energy γ. For free-standing
crystalline particles, surface energies generally depend on the
facet orientation and the minimum energy particle shape is
given by the Wulff construction,25 which is then modified upon
adhesion to a foreign support surface.26,27 The bonding
interaction with the support is expressed through the adhesion
energy per surface area, Eadh. Generally, the Wulff construction
and its modification through adhesion to a support therefore
require knowledge about the stability of all relevant facets. For
example, clean metal fcc particles typically expose the fcc(111)
and fcc(100) surfaces. However, in the presence of adsorbates
such as oxygen, higher-index facet become more stable and the
particle can then become more rounded.28

If the surface energy is independent of facet orientation, the
minimum particle shape is given by a sphere in the absence of
adhesion and by a spherical cap in the presence of adhesion.
This is the case for liquids, which have no facets, but the
approximation is also often applied to solid particles. The
chemical potential of free-standing spherical particles is given
by the Gibbs−Thomson relation11,29,30

μ
γ

=
V
r

2 m
(1)

where r is the particle radius and Vm is the volume per atom.
Both the Wulff-construction and the Gibbs−Thomson relation
lead to the same functional behavior, μ ∝ 1/r (or, equivalently,
μ ∝ V−1/3). Because the surface energy (or energies) are often
used as an adjustable parameter that is fitted to the experiment,
both approaches can lead to the same result upon fitting.
Compared to the Wulff-construction, the Gibbs−Thomson
relation has the advantages of having a simple functional form
and of depending only on a single parameter. The Gibbs−
Thomson relation is therefore convenient to use when no
detailed knowledge on the facet dependence of γ is available,
which is common because experimental values for γ are usually

only measured for flat polycrystalline but annealed surfaces,
which are dominated by the lowest-energy facet.
Although it has been noted, for example, by Wynblatt and

Gjostein11 that μ given by the Gibbs−Thomson relation “is
independent of θ” (θ being the contact angle), it is not obvious
how the chemical potential depends on adhesion. Hemi-
spherical particles have also been used to describe the chemical
potential of supported nanoparticles, where Campbell and
Hemmingson31 have derived the relation

μ γ= − E
V
r

(3 )adh
mi

k
jjj

y
{
zzz

(2)

that explicitly depends on the adhesion energy Eadh. This
equation assumed that the values of γ and Eadh were constant at
their large-particle-size limits. An empirical correction factor of
[1 + (0.75 nm/r)] was later added to this equation to
approximately account for the fact that these increase strongly
with the decreasing r below ∼4 nm.5,6 The goal of this present
work is to explore the general dependence of μ on Eadh and r
for spherical caps with any contact angle and, specifically, with
minimum energy shape.

■ RESULTS AND DISCUSSION
This work is organized as follows: we will first discuss the
general shape of spherical caps and the involved quantities.
Starting from the total energy, we will then derive the chemical
potential and from that the chemical potential of the minimum
energy particle shape. Lastly, the effect of adhesion will be
analyzed and compared to the model of hemispherical
particles.

Total Energy of a Spherical Cap with Adhesion.
Spherical caps on surfaces can generally be categorized by the
height h that is cut off from the corresponding full sphere with
radius r. Henceforth, we will refer to this r as the radius of
curvature. We will use the ratio

=x
h
r (3)

as a general size-independent measure of the particle shape. As
illustrated in Figure 1a, for 0 ≤ x ≤ 1, the particle is in between
a sphere and a hemisphere. For 1 < x ≤ 2, the particle is in
between a hemisphere and a thin film, that is formed in the
limit of complete wetting. Figure 1 also shows the apparent

Figure 1. Illustration of the quantities occurring for a spherical cap
describing a particle for adhesion leading to (a) h ≤ r and (b) r < h ≤
2r. The contact angle θ is also indicated, and a = r sin θ.
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radius R that is obtained by projecting the spherical cap on the
support area. Importantly, for x < 1, R and r are equal, while
for x > 1, we find R < r.
The particle/support interface area and total surface area are

given by

π= −A r x x(2 )interface
2 2

(4)

π= −A r x(4 )total
2 2

(5)

The total energy can now be calculated based on the surface
energy γ and the adhesion energy Eadh, where we use the
convention that binding adhesion is positive. We are only
interested in the extra energy that exceeds the energy per mole
for the bulk solid (or liquid) at infinite particle size. This
energy arises due to surface energy and interfacial adhesion
energy. We limit our derivation to particles with the same
number of atoms (i.e., constant volume) and investigate the
effect of adhesion on the energy. We thus use E = Esurface =
Etot − Ebulk

γ= × − ×E A E Atotal adh interface (6)

Inserting the areas from eqs 4 and 5 gives

π γ= [ × − − × − ]E r x E x x(4 ) (2 )2 2
adh

2
(7)

Chemical Potential of a Particle with Fixed Particle
Shape. We now reformulate the size dependency in terms of
number of moles of atoms (n) and molar volume (Vm), as in
ref 31. As mentioned above, we consider only the surface
energy, which means that the chemical potential μ that we
derive is given relative to the bulk chemical potential in an
infinite-size particle: μ = μtot − μbulk:
Calculating the chemical potential by ignoring the small

variation with particle size in the entropic contribution to free
energy, as in ref 31, we have

μ = ∂
∂ γ

E
n x E, , adh

i
k
jjj

y
{
zzz

(8)

Substituting eq 7 for E, we arrive at (see Appendix for
details)

μ
γ

= ×
− − × −

− +
γV

r

x x x

x x
2 (4 ) (2 )

4 3

E

m
2 2

2 3

adh

(9)

Equation 9 is the final expression of the chemical potential
for a given particle shape. For x = 0, it reduces to the Gibbs−
Thomson equation (eq 1); for x = 1, it reduces to the formula
given by Campbell and Hemmingson for hemispherical
shape31 (eq 2).
Chemical Potential of a Particle with Optimal Particle

Shape. In order to determine the optimum particle shape
(neglecting any anisotropy in surface energy), we locate the
minimum of E with respect to x, which is identical to the
minimum of μ with respect to x at constant n (or constant V)
rather than constant r. Using the volume of the particle (see
Appendix) and V = nVm and

π
=

− +
r

V
x x

3
(4 3 )2 3

1/3Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (10)

we obtain

μ γ
π

= ×
− − × −

− +
γV

n

x x x

x x
2

3

(4 ) (2 )

(4 3 )

E

m
2 1/3 2 2

2 3 2/3

adhÄ

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (11)

and determine the first derivative of μ with respect to x

γ
π∂μ

∂
=

×
−

+ × [ − + ]

γ

γ( )
x

V
n

x

x x x

2
3

2

( 1) ( 2) ( 1)

n E

E

, ,

m
2 1/3

2 2/3

adh

adh
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(12)

This derivative is zero for the minimum energy (most
stable) shape. From the numerator in eq 12, we can directly
read off the root that x = Eadh/γ. This means that, in the
equilibrium shape, x = h/r is simply equal to Eadh/γ.
This is consistent with the well-known result for the

equilibrium shape, whereby Eadh/γ = 1 + cos θ where θ is the
contact angle.32 As seen in Figure 1, x = h/r = 1 + cos θ, which
equals Eadh/γ. If we now substitute Eadh/γ = x into eq 11, it
gives

μ
γ

= × − − −
− +

=

V
r

x x x x
x x

2 (4 ) (2 )
4 3

m
2 2

2 3

1

i
k
jjjjj
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zzzzz
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(13)

where the entire x-dependent part reduces to one, thus giving
us the final result

μ
γ

=
V
r

2 m
(14)

This is somewhat surprisingly the same equation as the
Gibbs−Thomson relation for a free-standing particle, already
shown in eq 1. We discuss next the role of the adhesive contact
between the particle and the support, which is absent from this
equation as written, but nevertheless true for supported
particles as well. We show that the adhesion energy dictates the
particle’s radius of curvature (r) for a given volume and thus
strongly affects the chemical potential at fixed volume.

Role of Adhesion. Equation 14 is identical to the so-called
Gibbs−Thomson equation and is therefore obviously correct
in the limit of no adhesion, where x = 0 and Eadh = 0. It is also
correct in the limit investigated by Campbell and coworkers,
for hemispheres, which are the equilibrium particle shape for
Eadh = γ. Here, for the formula given by Campbell (eq 2)

μ γ= − E
V
r

(3 )adh
mi

k
jjj

y
{
zzz

(15)

if we insert Eadh = γ, it gives again eq 14. This result may seem
puzzling because it seems to imply that the support and
adhesion have no effect. However, the effect of adhesion comes
through determining the equilibrium radius of curvature for a
given volume particle. This radius (r) is a function of adhesion
(x = Eadh/γ) and volume (or, equivalently, number of atoms n).
Qualitatively, stronger adhesion willat constant number of
atoms or volumelead to a larger radius and therefore a lower
chemical potential. Still, this means that, within the assumption
of sphere-derived particles, a particle with a given radius r has
the same chemical potential on any support. However, it is
important to differentiate between the radius r that refers to
the radius of the sphere from which the cap is derived and the
apparent (projected) radius R that may be observed in an
experiment (see the Supporting Information for a more
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detailed discussion of particles with constant apparent radius
R).
Figure 2 shows the chemical potential of a spherical cap with

constant volume as a function of Eadh/γ. In the absence of

adhesion, the most stable shape is a sphere with radius r0 and
chemical potential

μ
γ

=
V

r
(sphere)

2 m

0 (16)

For constant V, as adhesion increases, the radius increases.
Finally, for Eadh/γ = 1, we arrive at the half-spherical shape with
r = r0 × 21/3 ≈ r0 × 1.26, with a chemical potential of

μ
γ γ γ

= = × ≈
×−V

r
V

r
V

r
(hemisphere)

2 2
2

1.58m m

0

1/3 m

0
(17)

Generally, substituting the radius r in the Gibbs−Thomson
relation (eq 1) again with eq 10 and expressing the constant
volume V = 4/3πr0

3 in terms of the radius of the sphere r0, we
get

μ
γ

γ
= × − + =

V
r

x x
x

E2 4 3
4

withm

0

2 3 1/3
adh

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (18)

which nicely shows the relation to the Gibbs−Thomson
relation as formulated with a variable radius r. When given
relative to the chemical potential of a sphere with radius r0,
adhesion is seen to modify μ with a function f(x) that varies
between f(0) = 1 and f(2) = 0. Alternatively, one can formulate
μ directly in terms of the total particle volume V

μ
γ

π
γ

= × − + =
V

V
x x

x
E2 4 3

3
withm

1/3

2 3 1/3
adh

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (19)

Equation 19 transparently shows size and adhesion depend-
ence of the chemical potential. For increasing adhesion at
constant V, we find limx→2μ(x,V) = 0 and limx→2r(x,V) = ∞,
which means that a thin film is formed and that the chemical
potential μ becomes identical to the bulk chemical potential (μ
= 0). This corresponds to the situation of a metal particle
deposited on a flat surface of the same metal. The dependence
of the chemical potential on adhesion for a particle with
constant volume is shown in Figure 2.
Figure 2 shows that μ(hemisphere) is a tangent to μ for

particles with the minimum energy shape at x = 1, where
hemispheres are the minimum energy shape. This means that
μ(hemisphere) can be considered a first-order approximation
around x = 1. This can be generalized to any fixed-particle
shape. Taking the first derivative of the chemical potential for
the optimal particle shape (eq 19) with respect to x = Eadh/γ
gives

γ π∂μ
∂

= × −
− +γx

V
V

x x
x x

2
3

2
(4 3 )V ,

m

1/3 2

2 3 2/3
i
k
jjj

y
{
zzz

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (20)

The chemical potential for the fixed particle shape x = h/r
(eq 11) can be seen to depend linearly on Eadh, which is due to
the fact that the particle/support interface area remains
constant for the fixed particle shape. The partial derivative of
eq 11 with respect to Eadh/γ at constant γ is identical to eq 20.
This shows that the chemical potential of the spherical cap
with a fixed particle shape x = h/r is not only identical to the
minimum energy shape at x = Eadh/γ but can also be
considered a linear approximation to the variation of μ with
Eadh.
Besides the absolute value of the chemical potential, its

variation with particle size is also important, as it determines
the driving force for sintering. The dependence of μ on size is
given in Figure 3 as a function of V−1/3, which gives a linear
relationship. This shows that the variation of the chemical
potential with particle size, as measured through the volume or

Figure 2. Blue curve: chemical potential of a particle with the fixed
number of atoms n, which is identical to fixed volume V = (4/3)πr0

3,
as a function of adhesion, Eadh/γ, for the minimum-energy
(equilibrium) shape, from eq 18. The chemical potential is given in
units of [γVm/r0], where r0 is the radius of a spherical particle of the
same volume. The equilibrium radius r changes as a function of Eadh/
γ, and the depicted chemical potential is always equal to 2γVm/r with
the respective r. Red line: chemical potential assuming the
hemispherical particle shape, which is not the equilibrium shape.

Figure 3. Dependence of the chemical potential on particle size
(V−1/3) for varying adhesion, x = Eadh/γ. Results for hemispherical
particles are indicated with a dashed line for x = 0.6 and = 1.5. For x =
1.0, this is identical to the minimum energy shape shown with a solid
line.
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number of atoms, is reduced with the increasing x. Therefore,
in agreement with general expectations, stronger adhesion
leads to a weaker driving force for sintering. Figure 3 also
shows that approximating particles as hemispheres generally
overestimates the variation of μ with particle size, except at x =
1, where the approximation is exact.
Finally, it is interesting to study the effect of adhesion on μ

for a few specific examples. Using the data for γ and Eadh
compiled in ref 31 and the corresponding values for Vm (see
also Table S1), the chemical potentials for hemispherical and
minimum energy shapes calculated using eq 18 are shown in
Figure 4.

When Eadh Exceeds 2γ: Complete Wetting. For
completeness, we also consider the case when Eadh exceeds
2γ and the material wets the support to make a continuous thin
film of thickness t. In that case

=A n V t( / )interface m (21)

and

γ γ= − × = −E E A E n V t(2 ) (2 ) ( / )adh interface adh m (22)

The chemical potential is then

μ γ= ∂
∂

= −E
n

E V t(2 )( / )
t E,

adh m
adh

i
k
jjj

y
{
zzz

(23)

This is a negative value whose magnitude decreases with t
proportional to 1/t. Such complete wetting often arises when
late transition metals adsorb onto the surfaces of earlier
transition metals.33

Implications Regarding Sintering Kinetic Models.
Perhaps the most important pioneering paper about sintering
kinetics of supported nanoparticle catalysts was the extensive
series of derivations presented by Wynblatt and Gjostein (W−
G),13 which have been widely used in modeling of sintering
kinetics.7−10,34,35

In the part of that W−G paper about sintering via the
Ostwald-ripening mechanism, they used the Gibbs−Thomson
relation, eq 1, which we have proven above is appropriate even
when the adhesion energy between the particle and the
support is strong, because eq 14 is identical to eq 1, although
derived for the more general case that considers adhesion. As
noted above, Eadh manifests itself only through the contact
angle θ. The effect was well modeled by Wynblatt and Gjostein
through their geometrical factor α1 equal to (2 − 3 cos θ + cos3

θ)/4, which is the ratio of the particle volume to that of a full
sphere with the same radius of curvature: V = 4/3 πR3 α1. As
adhesion gets stronger, the contact angle gets smaller, α1 gets
smaller, and the radius increases for fixed volume, and so, the
chemical potential drops. These effects are all still accurately
represented in the classic Wynblatt−Gjostein equations.
However, there are two important corrections that need to

be considered when using the Wynblatt−Gjostein equations.
Those equations were derived using this Gibbs−Thomson
relation for μ, assuming that γ is independent of size and
neglecting all but the first-order terms in a Taylor series
expansion of exp[μ/(RT)], where R is the gas constant and T
is the temperature. We have shown that both of these
simplifications are problematic and lead to substantial
errors.8,10

Most recently, we have shown that γ for late transition
metals increases with the decreasing r approximately propor-
tional to [1 + (0.75 nm)/r], thus doubling from the bulk value
when r drops to 0.75 nm.5,6 Both of these effects must be
included when using the Wynblatt−Gjostein equations to
achieve the best accuracy in sintering rate predictions.

Summary and Conclusions. The chemical potential of
metal atoms in supported nanoparticles with the shape of
spherical caps in the presence of adhesion has been derived.
The most stable shape of a spherical cap can be described in
terms of the ratio of adhesion energy per surface area to surface
energy, x = Eadh/γ = 1 + cos θ. Starting from a sphere with a
height of d = 2r, a segment with the height h is cut off due to
adhesion, leaving a spherical cap with shape h/r = x. Thus, for
ratios of 0 < Eadh/γ < 2, the particle shape varies in between a
sphere and a thin film. At constant r, the height of the particle
varies linearly with x = Eadh/γ. The most stable shape is a
hemisphere only for the special case where Eadh = γ (i.e., x = 1).
For the minimum-energy particle shape, it was proven here

that the chemical potential is given by μ = 2γVm/r, which is the
same equation as the Gibbs−Thomson relation for free-
standing spheres. The chemical potential thus depends only on
the radius of curvature of the particle, r. However, the chemical
potential for particles of constant volume (or number of
atoms) at their lowest-energy shape depends strongly on
adhesion (i.e., on x = Eadh/γ) because r depends strongly on x
for that case (as given by eq 40 in the Appendix).
Describing a particle’s chemical potential assuming the

hemispherical shape is a reasonable first-order approximation
around x = Eadh/γ = 1. For example, as shown in Figure 4, the
error is <10% when x is between 0.5 and 1.4 (i.e., when θ is
between 66 and 120°). When θ approaches 0 (wetting), the
error in that approximation gets very large and one must

Figure 4. Calculated chemical potential for particles of constant
volume (equal to that for a sphere of radius r0 = 1 nm) using eq 18
with experimentally determined values of γ and Eadh for various
supports [MgO(100), TiO2(110), CeO1.8(111), CeO1.9(111),
CeO1.95(111), Fe3O4(111), and α-Al2O3(0001)] and metals from
ref 31. Filled symbols show the chemical potential as computed for
the minimum energy particle shape, and hollow symbols correspond
to hemispherical-shaped particles. For Cu and Au, μ is shown
additionally as a continuous function of x (dashed for hemispheres).
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accurately consider the shape. One must also consider the fact
that both γ and Eadh increase with the decreasing r below 4 nm
and are only truly constant for large r.5,6

■ APPENDIX

Surface Areas
The circular interface area for weak adhesion (Figure 1) is
given by

π=A ainterface
2

(24)

π= − −A r r h( ( ) )interface
2 2

(25)

π π= −A rh h2interface
2

(26)

The exposed surface area is given by the difference of the
area of a sphere (A = 4πr2) and the area of the curved part of
the cut-off spherical cap (A = 2πrh)36

π π= −A r rh4 2exposed
2

(27)

The total surface area (including interface) is given by

= +A A Atotal exposed interface (28)

π π= −A r h4total
2 2

(29)

Substituting x = h/r into eqs 26 and 29 gives eqs 4 and 5.
For strong adhesion leading to h > r, the same formulas as

shown above apply. Here, the spherical cap is smaller than a
hemisphere and has the height H, which is related to the
quantity h as follows

= −H r h2 (30)

The interface area is given by

π=A ainterface
2

(31)

π= − −A r r H( ( ) )interface
2 2

(32)

π π= −A rH H2interface
2

(33)

π π= − − −A r r h r h2 (2 ) (2 )interface
2

(34)

π π= −A rh h2interface
2

(35)

which is identical to eq 26. The exposed surface area is given
by

π=A rH2exposed (36)

π π= −A r rh4 2exposed
2

(37)

which is identical to eq 27. Therefore, the same formulas for
the surface can be used for 0 < h < 2r.
Chemical Potential
The volume of the particle is given by the difference between
that of a sphere (V = 4/3πr3) and that of the cut-off spherical
cap [V = 1/3π(3rh2 − h3)]36

π= − +V r rh h
1
3

(4 3 )3 2 3

(38)

π= − +V r x x
1
3

(4 3 )3 2 3

(39)

We note the similarity with the α1 parameter in the work of
Wynblatt and Gjostein.13 We now equate this with V = Vm × n
and solve for r

π
=

− +
r

V
x x

n
3

(4 3 )
m
2 3

1/3
1/3

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (40)

Using eq 7, the total energy is now expressed as

π
π

γ=
− +

[ −

− − ]

E n
V
x x

x

E x x

3
(4 3 )

(4 )

(2 )

2/3 m
2 3

2/3
2

adh
2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(41)

We can now calculate the chemical potential by taking the
derivative of E with respect to n, according to eq 8

μ π
π

γ=
− +

[ −

− − ]

−n
V
x x

x

E x x

2
3

3
(4 3 )

(4 )

(2 )

1/3 m
2 3

2/3
2

adh
2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(42)

Using eq 40 we now express n back in terms of r:

μ π
π

γ=
− +

[ −

− − ]

−r
V
x x

x

E x x

2
3

3
(4 3 )

(4 )

(2 )

1 m
2 3

2

adh
2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(43)

and obtain eq 9.
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