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1 Introduction and motivation

The quest for uncovering the true nature of dark matter (DM) comes as a compelling
and challenging endeavor for both particle physics and cosmology communities. On the
one hand, gravitational effects provide a strong evidence of the existence of DM, while
possible alternative explanations seem inconclusive. On the other hand, we still lack the
much anticipated discovery of signals of dark particles at colliders or experimental facilities
dedicated to direct as well as indirect DM searches.

The non-observation of any DM signal has resulted in cornering many minimal DM
models. In particular, models comprising weakly interacting massive particles (WIMPs) are
under strong tension with current experimental observations [1]. This naturally prompts

– 1 –



J
H
E
P
0
3
(
2
0
2
2
)
1
7
2

us to consider the existence of richer dark sectors, containing multiple dark particles, cf.
e.g. refs. [2–4]. The dark particles can experience their own hidden forces, which are
partially or entirely secluded from the Standard Model (SM) sector. Furthermore, the
existence of light force mediators with masses much smaller than that of the actual DM
particles may affect the DM dynamics in many ways. A straightforward consequence is that
DM may experience sizable self-interactions that depend on the relative velocity among
dark particles and can provide a dynamical explanation for the scaling relations governing
galactic halos and clusters of galaxies [5–13]. In this sense, from a phenomenological point
of view a next-to-minimal dark sector is more than welcome.

Another remarkable property of DM models with light mediators is the possibility
to have bound states within the dark sector [14–16]. Depending on the details of the
model, both stable and unstable bounds state may form. Under the conditions, that the
dark particles have reached a thermal equilibrium in the early universe and the DM relic
density is generated through the well-known freeze-out mechanism, bound-state formation
and dissociation can become important for an accurate determination of the present-day
energy density. Indeed, whenever bound states are formed, and not effectively dissociated
or melted away in the thermal plasma, they provide an additional process for the depletion
of DM particles in the early universe.1

A quantitative estimation of bound-state effects on the DM relic density is model
dependent. Most of the past and recent literature is focused on vector mediators, that
resulted in complementary and diversified approaches to calculate formation cross sections
at zero [14, 16, 20–24] and at finite temperature [25–33]. A more careful look at scalar
mediators has been initiated only recently [24, 34–41]. Even without the addition of scalars
in the dark sector, it has been shown that if the dark particles couple to the SM Higgs
boson, and DM is sufficiently heavier than the SM scalar, Sommerfeld enhancement and
bound-state formation are relevant [42, 43]. The in-vacuum bound-state formation has been
scrutinized for both neutral and charged scalar mediators and, in the latter case, it was
found that fast monopole interactions can dramatically change the relic density estimation
even for small values of the couplings [39–41].

As for the treatment of the bound-state dynamics, one of the main approaches adopted
so far relies on the Bethe-Salpeter [44] equation for the wave functions, and the reduc-
tion thereof to a Schrödinger equation using the instantaneous approximation in the non-
relativistic regime [35]. The building blocks of this framework are relativistic four-point
Green functions of single DM particles at zero temperature, whereas [29] features a finite-
temperature version of this formalism. A complementary approach, that we adopt in this
work, is to exploit the technology of non-relativistic effective field theories (NREFTs). Our
main goal is to provide quantum field theoretic tools for computing thermal processes in-
volving bound states, or in general heavy pairs interacting through a potential. It is easy
to see that the problem at hand comes as a multi-scale system. One finds three typical
and presumably well-separated scales relevant for the non-relativistic dynamics, which are
M �Mv �Mv2, whereM is the DM particle mass, while v stands for its typical velocity

1Bound-state effects on non-thermally produced DM particles have been considered in refs. [17–19].
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in a bound state. A Coulombic bound state satisfies v ∼ α, with α being the relevant
coupling constant. Furthermore, our system comprises the mediator mass m, which is as-
sumed to be much smaller than M , and the thermal scales, most notably the temperature
of the early universe. Whenever the scalar mediator can interact with other light degrees
of freedom in the dark sector, or with itself via a self-coupling, a thermal mass mT can be
generated. In this case it must be added to the hierarchy of scales mentioned beforehand.

Bound states in general exhibit a strong sensitivity to thermal scales, and it is rather
useful to make an analogy between a well-studied system that arises in QCD, namely heavy
quarkonium in a quark-gluon plasma, and heavy DM pairs in the early universe. In the
following we choose to call a bound state made of two DM particles a darkonium. Two
processes are at play for the dissociation of quark-antiquark bound states in the medium,
which are the gluo-dissociation [45] and the dissociation by inelastic parton scattering [46].
The former describes a situation, where a thermal gluon hits the quark-antiquark pair
in a singlet configuration and, if sufficient energy is available, breaks it into an unbound
color-octet state. In this work we will address the analogue process induced by a ther-
mal scalar being responsible for the breaking of a darkonium into a scattering state. The
second dissociation process comes as a 2 → 2 scattering reaction, where the thermal par-
ticles in the bath exchange energy with the heavy quarkonium through a gluon exchange,
turning a bound-state into an unbound one. A distinctive feature of an EFT approach is
the availability of rigorous power counting rules that can be used to show that the gluo-
dissociation process is dominant over the inelastic parton scattering for E > mD [47–49],
where mD ∼ gsT is a thermal mass for the gluon called Debye mass and E ∼Mv2 defines
the ultra-soft scale.

It is now clear that in order to follow the intricate dynamics of bound states in a
thermal medium, an EFT approach constitutes a powerful tool that (i) allows scrutinizing
the various arrangements of the energy scales and (ii) can be employed to devise the proper
field theory to carry out the derivation of cross sections and decay widths by using the
relevant degrees of freedom at the scale of interest. We shall attack this problem by using a
recently proposed EFT for non-relativistic fermion-antifermion pairs interacting via a scalar
mediator. Building upon the well-known NREFTs and potential NREFTs (pNREFTs) of
QED and QCD [50–54] as well as scalar Yukawa theory [55, 56], we developed potential
non-relativistic Yukawa theory (pNRY) [57] that is well suited to address the questions at
hand. The relevant degrees of freedom of pNRY are heavy fermion-antifermion pairs and
ultra-soft scalars. In the first paper on the subject, we have applied pNRY to compute the
darkonium spectrum and the bound-state formation cross section at zero temperature. Here
we make a first step towards the generalization of pNRY at finite temperature. We shall use
the so-obtained EFT to derive the thermal cross section for bound-state formation and the
reverse process, namely the dissociation rate via the absorption of a thermal scalar from the
medium. The latter process is a genuine finite temperature effect, and we will show how it
can be recast as a convolution of the thermal distribution of the scalar particles and an in-
vacuum dissociation cross section, without the need of Boltzmann-like prescriptions. Our
pNREFT can be also used to treat pair annihilations, which are known to be key ingredients
for DM freeze-out calculations. Here, the Sommerfeld-enhanced cross section and bound-
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state decay width will emerge naturally. Our program closely follows the successful strategy
outlined in the case of heavy quarkonium at finite temperature [48, 58, 59]. It is worth
mentioning that an EFT approach to search for DM in atomic-spectroscopy measurements
has been recently developed for different types of force mediators, including scalar and
pseudoscalar ones, in ref. [60].

In this work we focus on a particular hierarchy of scales, that reads

M �Mα ∼Mv � πT ∼Mα2 ∼Mv2 � m (1.1)

and enables us to use pNRY as a starting point, as we explain in section 2. This hierarchy
of scales is motivated by two main aspects. First, temperatures of order of or smaller than
the binding energy are interesting for DM phenomenology, since a depletion of DM pairs in
the form of bound states is more efficient in such a temperature window. Indeed, due to a
suppression of the dissociation process, bound-state formation becomes more relevant and
opens up an additional channel for the pair annihilation. Second, as guided by the potential
non-relativistic QCD (pNRQCD) at finite temperature and the inherent power counting, it
is expected that the bound-state formation (dissociation) via scalar emission (absorption)
dominates over 2 → 2 scattering processes with plasma constituents. This latter effect
will be addressed in a future study on the subject, as it requires the derivation of thermal
self-energies for the scalar field at NLO.2 A similar investigation for the same hierarchy of
scales (1.1), however in the case of an Abelian DM model with a vector mediator, is in
preparation [62].

The structure of the paper is as follows. In section 2 we introduce pNRYγ5 , a variety
of pNRY featuring scalar and pseudoscalar Yukawa interactions, and discuss the thermal
propagators of the heavy pair and the scalar mediator as the main ingredients for the finite
temperature treatment. Then, in section 3, the bound-state formation and dissociation is
computed in pNRYγ5 starting from the self-energies of the heavy-pair field. The thermal
rates are naturally obtained in terms of quantum mechanical matrix elements, that are an-
alytically simplified in the Coulombic regime for the first nS states. Annihilations of heavy
pairs in pNRYγ5 are discussed in section 4. Next, section 5 is devoted to a phenomenolog-
ical study of the DM energy density, where the bound-state formation, bound-state decay
width and the thermal width from scalar dissociation enter as key ingredients. Conclusions
are offered in section 6, while some technical details underlying our results are collected in
the appendices.

2 Non-relativistic EFTs for a scalar mediator

In this section we introduce the DM model featuring a light scalar force mediator between
heavier DM particles, in particular fermions. Such model Lagrangian will be our funda-
mental theory, from which we can construct towers of low-energy theories by integrating
out energy scales. Next, we proceed with the discussion of the pNRY Lagrangian, and we
introduce the thermal propagators of the heavy-pair field and the scalar particle.

2A finite temperature treatment of NLO effects and the connection to the interactions among heavy
pairs and bound states for a DM model with a vector mediator has been carried out in refs. [33, 61].
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2.1 Dark matter model

We assume DM to be a Dirac fermion singlet under the SM gauge group that couples
to a scalar particle via Yukawa-type interactions. The Lagrangian density of the model
reads [63, 64]

L = X̄(i/∂ −M)X + 1
2∂µφ∂

µφ− 1
2m

2φ2 − λ

4!φ
4 − X̄(g + ig5γ5)Xφ+ Lportal , (2.1)

where X is the DM Dirac field and φ is a real scalar field. The scalar self-coupling is
denoted with λ, whereas the scalar and pseudo-scalar couplings are g and g5 respectively.
The mass of the scalar mediator m is assumed to be much smaller than the DM particle
mass M , m � M . In our work, we adopt a simplified model realization, where the
issues of the fermion mass generation and of the gauge group governing the dark sector
are not addressed (cf. e.g. [65, 66] for a simplified model with two mediators, scalar and
vector, where the gauge invariance and spontaneous symmetry breaking in the dark sector
is fully accounted for). Our aim is to consider the Lagrangian given in eq. (2.1) as one of
the simplest representatives for minimal DM models [3, 64] with a light scalar mediating
interactions between DM particles. It is worth mentioning that the model can be much
more involved, and can be extended to have a richer set of interaction terms [34, 38, 67].
For example, an interaction of the form ρλφ

3 can be foreseen, that is responsible for an
additional bound state formation process [38, 39].

Then, Lportal comprises the interactions between the scalar φ and other degrees of
freedom that can belong to the SM sector or to the dark sector. One of the most com-
mon realizations of such a portal involves interactions with the SM Higgs boson. Portal
interactions are welcome in order to introduce a mechanism that allows φ particles to
decay and deplete their population. Indeed, the light scalar particles φ are abundant in
the early universe and a substantial population survives after the freeze-out of the dark
fermion [64, 68].3 A richer portal sector also allows alleviating and often removing the
tension with the experiments for the model, if one considers only the interactions of the
scalar φ with the Higgs boson [64, 70].

However, when dealing with a thermal environment, many interactions between the
scalar mediator and other plasma constituents may endanger the assumed hierarchy of
scales. In particular, a thermal mass of the form mT ∼ g′T is generated, that can become
larger than the in-vacuum mass or the typical ultrasoft scale Mα2. Moreover, in the case
of the bound-state formation process, when the scalar mass exceed the difference between
an above-threshold scattering state and a bound-state, cf. eq. (3.4), the 1 → 2 radiative
formation process becomes kinematically forbidden. For example, if one only considers the
scalar self interaction, a thermal scalar mass mT =

√
λ/12T is generated, that translates

3As for the Higgs portal, the interaction terms with the scalar mediator φ read, before electroweak
symmetry breaking, as Lportal = −aφH†H − bφ2H†H; H is the SM Higgs doublet. The smallest portal
couplings that ensure a thermalization between the SM and dark sector, and allow for the decay of the
scale φ before BBN, are typically much smaller than the electroweak gauge couplings, see e.g. [64, 69].
We have explicitly verified this for the assumed range of numerical values for our model parameters g, g5

and M . This means that the portal interactions can be safely neglected in our EFT construction and the
corresponding matching calculations.
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into the condition T � Mα2√12/λ to attain the hierarchy of scales given in eq. (1.1).
We defer the scrutiny of the impact of thermal masses, and a thermal width, of the scalar
propagator to future works on the subject. Since we included a fermion-pseudoscalar
interaction, we denote the following towers of EFTs with NRYγ5 and pNRYγ5 in order to
make clear that the corresponding low-energy theories differ from the ones obtained in the
case of the sole scalar interaction [57].

To ensure the correctness of the results presented in the next sections we make use
of computer tools that were already employed in our previous work on the subject [57].
Calculations within the fully relativistic DM model given in eq. (2.1) can be automatized
using FeynArts [71], FeynRules [72] and FeynCalc [73–75]. The matching between
the full theory and the corresponding non-relativistic EFTs is done using FeynOnium [76],
while we employ QGRAF [77] interfaced to FeynCalc via FeynHelpers [78] to generate
the corresponding Feynman diagrams. Together with extensive pen and paper cross checks,
this approach greatly facilitates the task of avoiding typos and unintentional mistakes.

2.2 NRYγ5

We now want to proceed to the construction of the low-energy theory relying on the hierar-
chy of scales in eq. (1.1). As highlighted and extensively discussed in the existing studies of
heavy quarkonia as well as hydrogen and muonic atoms at finite temperature [48, 49, 79],
one can first integrate out the in-vacuum scales M and Mα. Subsequently, all the smaller
scales, including the thermal ones, can be set to zero. Let us stress that in practice the
matching and the derivation of the low-energy theories is insensitive to the thermal scales.
Therefore, we can first integrate out the scale M to obtain NRYγ5 and then do the same
for the scale Mα thus arriving at pNRYγ5 . We refer to ref. [57] for further details on the
construction of these two EFTs.

NRYγ5 is well suited to describe non-relativistic fermions and antifermions interacting
with a soft scalar. In particular, fermion-antifermion annihilations into light mediators are
accounted for by four-fermion operators. Schematically, the NRYγ5 Lagrangian reads

LNRYγ5
= Lbilinearψ + Lbilinearχ + L4-fermions + Lscalar , (2.2)

where ψ (χ) is the Pauli field that annihilates (creates) a heavy fermion, while all the
scalar particles have energy and momenta much smaller than M . The inclusion of the
pseudoscalar interaction as in eq. (2.1) introduces new operators in the bilinear sector with
respect to NRY, whereas the set of four-fermion operators and Lscalar remain the same. As
for the modification of the bilinear sector, we find that the leading fermion-pseudoscalar
interaction is suppressed with respect to the leading fermion-scalar interaction by k/M ,
where k is the soft or ultra-soft momentum carried by the field φ. The fermion bilinear at
order 1/M with the matching coefficients set to their tree-level values reads

Lbilinearψ = ψ†
(
i∂0 − gφ+ g5

σ · [∇φ]
2M − g2

5
φ2

2M + ∇2

2M

)
ψ . (2.3)
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As for the antifermion fields one finds

Lbilinearχ = χ†
(
i∂0 + gφ+ g5

σ · [∇φ]
2M + g2

5
φ2

2M −
∇2

2M

)
χ . (2.4)

Some details on the derivation of the above fermion-bilinear Lagrangians are given in
appendix A. The operators proportional to one power of g5 are parity violating, and the
notation [∇φ] stands for the derivative acting on the scalar field only. The operators
proportional to g2

5 and involving two powers of the scalar fields were absent in NRY. Our
result for the bilinear sector with a pseudoscalar interaction agrees with the findings in
ref. [80].

Most notably, the presence of the pseudoscalar coupling generates non-vanishing match-
ing coefficients for the leading dimension-6 four-fermion operators. In this paper we are
mostly interested in such leading order modification to the four-fermion sector, whereas
the correction to the bilinear sector, and the corresponding ones in the pNRYγ5 , will not
be carried out in full details. The two independent dimension-6 operators read [51]

(L4-fermions)d=6 = f(1S0)
M2 ψ†χχ†ψ + f(3S1)

M2 ψ† σ χ · χ† σ ψ , (2.5)

and the corresponding matching coefficients are found to be

Im[f(1S0)] = 2παα5 , Im[f(3S1)] = 0 . (2.6)

The spectroscopy notation is borrowed from NRQED/NRQCD, so that one can classify the
annihilations in terms of the total spin S of the pair, the relative angular momentum L and
the total angular momentum J , by writing 2S+1LJ . The pseudoscalar interaction modifies
the matching coefficients of the velocity suppressed operators as well. These dimension-8
operators are

(L4-fermions)d=8 = f(1P1)
M4 O(1P1) + f(3P0)

M4 O(3P0) + f(3P1)
M4 O(3P1)

+f(3P2)
M4 O(3P2) + g(1S0)

M4 P(1S0) + g(3S1)
M4 P(3S1)

+g(3S1,
3D1)

M4 P(3S1,
3D1) + · · · , (2.7)

where we refer to ref. [51] for their explicit definitions. The matching coefficients, that
generalize our result for the sole scalar interaction in ref. [57], read

Im[f(1P1)] = Im[f(3P1)] = 0 , (2.8a)

Im[f(3P0)] = π

6 (5α− α5)2 , Im[f(3P2)] = π

15(α+ α5)2 , (2.8b)

Im[g(1S0)] = −8π
3 αα5 , Im[g(3S1)] = Im[g(3S1,

3D1)] = 0 . (2.8c)

It is worth to mention that the vanishing of f(3S1) and also f(1P1) can be understood using
symmetry arguments. Although the pseudoscalar Yukawa interaction violates parity, it still
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preserves the charge conjugation symmetry. The conservation of the charge conjugation
selects particular combinations of spin and angular momentum of the annihilating fermion-
antifermion pair into two scalars.4

We conclude this section by calculating the non-relativistic annihilation cross section
for the process XX̄ → φφ without any kind of resummation of the soft physics, which
implies that we are solely sensitive to the hard energy modes at the scale M . In order to
compare to the results in the literature, we average over spin polarizations of the incoming
fermion and antifermion. The cross section then reads

σann = 2Im[M(ψχ→ ψχ)]
(2sψ + 1)(2sχ + 1)vrel

, (2.9)

where we choose the heavy fermion fields to be normalized non-relativistically as is cus-
tomary in NRQCD [51]. The relative velocity in the center-of-mass frame is given by
vrel = |vψ − vχ| = 2v. The imaginary part of the non-relativistic amplitude in the nu-
merator of eq. (2.9) can be easily computed using the four-fermion Lagrangians given in
eqs. (2.5) and (2.7), and the matching coefficients in eqs. (2.6) and (2.8a)–(2.8c). We obtain

σannvrel = 1
M2

{(1
3Im[f(3P0)] + 5

3Im[f(3P2)] + Im[g(1S0)]
)
v2
rel
4 + Im[f(1S0)]

}

= 2παα5
M2 + π

24M2 (9α2 + α2
5 − 18αα5)v2

rel . (2.10)

The result agrees with the literature [34, 36] as for the terms proportional to α2v2
rel and

α2
5v

2
rel and the velocity independent term, whereas the term proportional to the product of

the couplings at order v2
rel is new. To the best of our knowledge, the αα5v

2
rel-piece was not

included in former derivations. An analogous recasting of DM annihilations, as in the first
line of eq. (2.10), in the context of supersymmetric models can be found in ref. [81].

2.3 pNRYγ5

Having obtained NRYγ5 , the next natural step is to derive the corresponding EFT at the
ultra-soft scale in order to calculate processes relevant to this work, namely the bound-state
formation cross section, the bound-state dissociation width and the bound-state decays. To
this aim, we work with the pNRY Lagrangian [57] where the degrees of freedom are heavy
fermion-antifermion pairs and low-energetic scalars. In the following we briefly summarize
its form and elucidate on the modifications that occur when the pseudo-scalar interaction
is considered.

In order to obtain NRYγ5 , we integrated out the hard scale M . The next scale one has
to integrate out according to the scale hierarchy in eq. (1.1) is Mα, or the inverse of the

4The C quantum number for a bound state of two fermions is (−1)L+S , whereas a scalar field is a parity
eigenstate, we have C = 1n for n scalar particles in the final state. This would select only C = 1 darkonium
states, which are 1S0 and 3PJ . Additional light fermion species, that couple to the scalar field, can lift this
condition and allow non vanishing matching coefficients.
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typical distance between X and X̄ in a pair.5 As long as we assume that the mass of the
scalar satisfies m � Mα, we find ourselves in a Coulomb-like regime, where the velocity
of the particles in a bound state scales as v ∼ α. As explained in section 2.2, we can set
the thermal scales to zero in the matching between NRYγ5 and pNRYγ5 . In practice, one
projects the NRYγ5 Hamiltonian onto the particle-antiparticle sector via∫

d3x1d
3x2 ϕij(t,x1,x2)ψ†i (t,x1)χj(t,x2)|φUS〉 , (2.11)

where i, j are Pauli spinor indices, while the state |φUS〉 contains no heavy particles or
antiparticles but an arbitrary number of scalars with energies much smaller than Mα,
including thermal scales. Here ϕij(t,x1,x2) is a bilocal wave function field representing the
XX̄ system. The multipole-expanded Lagrangian written in terms of the relative distance
of the pair r = x1 − x2 and its center-of-mass coordinate R = x1 + x2 reads [57]

LpNRYγ5
=
∫
d3r d3Rϕ†(r,R, t)

{
i∂0 + ∇2

r

M
+ ∇2

R

4M + ∇4
r

4M3 −V (p, r,σ1,σ2)

−2gφ(R, t)− g r
irj

4

[
∇iR∇

j
R φ(R, t)

]
− gφ(R, t) ∇2

r

M2

}
ϕ(r,R, t)

+
∫
d3R

[
d1

2 ∂
µφ∂µφ− d2

m2

2 φ2 + d3

4! φ
4 + d4

M2 (∂µφ)∂2(∂µφ) + d5

M2 (φ∂µφ)(φ∂µφ)
]
,

(2.12)

where the square brackets in the second line of (2.12) indicate that the spatial derivatives
act on the scalar field only, which has to be understood as multipole expanded in the last
line of eq. (2.12) as well. The typical size of the two coordinates is given by r ∼ 1/(Mα)
and R ∼ 1/(Mα2). The multipole expansion for the scalar fields in r � R ensures
that they carry only ultra-soft energies and momenta. To avoid cluttering the notation
we suppress the spin indices of the bilocal fields that are contracted with each other.
Each term in the pNRYγ5 Lagrangian has a well-defined scaling. The time derivative
scales as ∂0 ∼ Mα2 ∼ T , the inverse relative distance and the corresponding derivative
obey r−1,∇r ∼ Mα, whereas the scalar field and the center-of-mass derivative satisfy
gφ,∇R ∼ Mα2 ∼ T . Indeed, the dynamical scales active in the so-obtained EFT are the
ultrasoft scale and the temperature.

The potential is understood as a matching coefficient and is organized as an expansion
in α(M) and λ(M), as well as 1/M , the coupling α(1/r) and the relative distance r. The
imaginary part of the potential comprises local terms of the form ϕ†δ3(r)ϕ as inherited from
the four-fermion operators of NRYγ5 accounting for fermion-antifermion annihilations [53,
54, 82, 83], that we shall address explicitly in section 4.6 In the second line of eq. (2.12),

5It is worth pointing out that the physical degrees of freedom that are removed when going to pNRY,
or pNRYγ5 , are soft and potential scalars with energies and momenta larger than Mα2. Hence, in the zero
temperature case only ultrasoft scalars having E ∼ |p| ∼ Mα2 remain. As far as non-relativistic fermions
are concerned, we are left with pairs having E ∼Mα2 and |p| ∼Mα.

6Thermal corrections to the Coulomb potential can be calculated in pNRYγ5 , by computing self-energies
of the wave function field, where the typical energy and momenta in the loop diagrams are of order Mα2

and T (cf. refs. [48, 49, 58, 79] for QED and QCD).
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Figure 1. Leading order NRYγ5 diagrams for the potential matching with scalar and pseudo-scalar
interactions required to calculate V (p, r,σ1,σ2).

we see the appearance of a monopole and a quadrupole interactions as well as interactions
involving the derivative in the relative distance. Such structures arise from the multipole
expansion. In contrast to pNRQED and pNRQCD, the dipole term is absent. The last
line of eq. (2.12) accounts for the scalar sector, where the scalar field φ should be equally
understood as being multipole expanded. The matching coefficients d1, . . . , d5 are inherited
from NRY and they read, at tree level, as follows [57]

d1 = d2 = 1, d3 = −λ, d3 = d4 = 0 . (2.13)

Let us discuss the modifications of pNRY in the presence of the pseudo-scalar coupling.
There are two main aspects to be addressed. The first one concerns the modification of the
potential V (p, r,σ1,σ2), or simply V in the following, from the inclusion of the pseudo-
scalar coupling. We have

V (p, r,σ1,σ2) = V (p, r,σ1,σ2)
∣∣
g

+ V (p, r,σ1,σ2)
∣∣
g5
, (2.14)

where V (p, r,σ1,σ2)
∣∣
g
denotes the part of the potential induced by pure scalar inter-

actions, while V (p, r,σ1,σ2)
∣∣
g5

stems from pseudoscalar and mixed scalar-pseudoscalar
contributions.

The potential is obtained by matching four-fermion off-shell Green’s functions of NRYγ5

onto pNRYγ5 . The insertions of the scalar operator with the matching coefficient d4 and the
contributions from the four-fermion operators are suppressed in the power counting. This
is why at the accuracy we are aiming at it is sufficient to consider tree level diagrams with
two vertices involving the leading fermion-scalar and antifermion-scalar interactions shown
in figure 1. The first diagram in figure 1 is identical to the one found in NRY, meaning
that the leading contribution to V (p, r,σ1,σ2) is the Coulomb potential V (0) = −α/r. In
addition to that, one has to consider diagrams that involve pseudoscalar interactions with
g5, which are a distinctive feature of NRYγ5 . Here one finds a mixed scalar-pseudoscalar
contribution and a pure pseudoscalar term. Doing the matching in the momentum space
and Fourier transforming [84] the results to the position space we obtain

V (p, r,σ1,σ2)
∣∣
g5

= − gg5
4πM

r · σ1 − r · σ2
r3

+ πα5
M2

[
−σ1 · σ2

3 δ3(r) + 3σ1 · r̂ σ2 · r̂ − σ1 · σ2
4πr3

]
, (2.15)

where r̂ = r/r with σ1 (σ2) being the spin matrix of the two-component particle (antipar-
ticle) field in the fermion bilinear. In order to estimate the relative importance of such
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corrections, we set 1/r ∼ Mα. Therefore, the mixed and pure-pseudoscalar terms are of
order Mα3(g5/g) and Mα4(g2

5/g
2) respectively. As for the pure pseudoscalar potential,

our result agrees with earlier derivations [67, 85]. In the case of g5 ≈ g, the pseudo-scalar
exchange induces an α- and α2-suppressed contributions as compared to the leading scalar
Coulomb potential. In the following we assume the pseduoscalar coupling g5 to be smaller
than g, which renders the contributions from eq. (2.15) even more suppressed. Hence, we
work with the leading Coulombic energy levels and the Bohr radius given by

En = −Mα2

4n2 = − 1
Ma2

0n
2 , a0 ≡

2
Mα

. (2.16)

The second aspect to be discussed is the modification of the second line in eq. (2.12), namely
the interaction between fermion-antifermion pairs and ultra-soft pseudoscalars. One may
compute the corresponding vertices by multipole expanding terms containing g5 in eq. (2.3)
and eq. (2.4), where we refer to appendix B for further details. The main outcome is that
the pseudoscalar induced ultra-soft transitions are suppressed by powers of α and g5/g

with respect to the ultra-soft contributions displayed in the second line of eq. (2.12).
In summary, upon neglecting the suppressed corrections from the pseudo-scalar cou-

pling and assuming the hierarchy of scales given in eq. (1.1), we find that pNRYγ5 is
formally identical to the in-vacuum case already studied in ref. [57]. However, there is a
crucial difference: the vertices and propagators now have to be understood in a finite tem-
perature field theory, since the EFT in eq. (2.12) comprises the temperature as a dynamical
scale.

We conclude the section by stressing that a different choice of the coupling arrange-
ment, namely g5 > g, would change the low-energy theory eq. (2.12) in a number of ways.
First, one would need to include the pseudoscalar and mixed scalar-pseudoscalar contribu-
tions to the potential given in eq. (2.15). In this case the leading order potential V is not
Coulombic anymore, and nice analytic results for the quantum mechanical matrix elements
should be superseded by a purely numerical evaluation. Second, one has to include the
ultra-soft contribution originated by the pseudoscalar vertex as well. Phenomenologically,
we expect such a regime to be important when g5/g ∼ 1/α, that lifts the suppression we
rely on.

2.4 Thermal propagators

Let us introduce the finite temperature formalism needed for the calculation of the bound-
state formation and dissociation rate in a thermal environment. In particular, we shall
provide the Feynman rules for heavy fermion-antifermion pairs and light scalars of the
Yukawa model as given in eq. (2.1). We work within the real-time formalism (RTF) of
thermal field theory. Real-time expectation values depend on how the contour of the
time integration in the partition function is deformed to include real times. The modified
contour has two lines stretching along the real-time axis. The main practical consequence
of this is that the number of degrees of freedom doubles. Fields on the upper branch
enjoy the usual time ordering, whereas for the fields living on the lower branch the time
ordering is reversed. The physical degrees of freedom describing initial and final states, are
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of type 1 (upper branch), while fields of type 2 stem from the lower branch. Propagators
are represented by 2 × 2 matrices, and they can mix fields of type 1 with fields of type 2.
The vertices, however, do not couple fields of different types. For further details, we refer
to the standard textbook treatment [86, 87] of the subject.

In order to introduce the finite temperature propagator of a darkonium system, we can
build upon its QCD counterpart, the heavy quarkonium [48, 58]. The two systems share
many similarities, since both are made of a heavy particle-antiparticle pair with a mass
much larger than the temperature of the thermal bath. The non-relativistic propagator of
a fermion-antifermion pair interacting through a potential V (r) reads [48]7

∆ϕ(k0, k) =

 i
k0−h+iη 0

2πδ(k0 − h) −i
k0−h−iη

 (2.17)

where the Hamiltonian h at leading order comprises Mα2 terms, namely h(0) = k2/M +
V (r). As first noted in ref. [48], since the [∆ϕ(k0, k)]12 component vanishes, the fermion-
antifermion field of type 2 never appears in amplitudes with final and initial states being
physical fields of type 1. Hence, it comes as a great simplification in the non-relativistic
theories at finite temperature to discard the type-2 fields when considering physical ampli-
tudes. Notice that even though in RTF the heavy-pair propagator acquires a matrix form,
it does not depend on the temperature.

Next, one needs the thermal propagator of the scalar mediator. In this work we assume
the in-vacuum and thermal masses of the scalar to be negligible with respect to the binding
energy. As discussed earlier, it suffices to assume a very small scalar self-coupling λ in order
not to generate a sizable mT . The 2× 2 free scalar propagator at finite temperature reads

∆φ(k0, k) =

 i
k2

0−k2+iη θ(−k0) 2πδ(k2
0 − k2)

θ(−k0) 2πδ(k2
0 − k2) −i

k2
0−k2−iη


+ 2πδ(k2

0 − k2)nB(|k0|)
(

1 1
1 1

)
, (2.18)

where nB(x) = 1/(ex/T − 1) is the Bose-Einstein equilibrium distribution. Due to the de-
coupling of the type-2 heavy pair fields, in the following we will only need the 11-component
of the heavy fermion-antifermion propagators. Accordingly, the relevant scalar propagator
is given by [∆φ(k0, k)]11, whereas the other entries of [∆φ(k0, k)] are irrelevant at the order
we are working in this paper. One-loop corrections to the scalar propagator, where all
entries of [∆φ(k0, k)] contribute, as well as the connection to additional physical processes
between the heavy pairs and the thermal environment are deferred to another study in
preparation [88].

7In heavy-ion collisions the heavy quarkonium pairs are taken to be far away from chemical and kinetic
equilibration. In the DM case, it is possible to assume kinetic equilibration after the chemical decoupling.
In any case, the condition M � πT holds for the problem at hand, and the thermal contribution to the
heavy-pair propagator, here the darkonium, is exponentially suppressed as well.
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Figure 2. Self-energy of a heavy pair in a scattering state (solid double line) induced by the
quadrupole (crossed vertex) interaction, derivative interaction (triangle vertex) and their mixing.
The internal single line stands for a pair in a bound state, the dashed line is the scalar mediator.

3 Thermal cross section and thermal width

We are now in the position to carry out the calculation of the bound-state formation cross
section in pNRYγ5 at finite temperature, thus extending the result presented in ref. [57]
for the in-vacuum case. Moreover, we compute the inverse process, namely bound-state
dissociation, which is a genuine thermal effect. Let us stress that as far as the extraction of
the bound-state formation and dissociation are concerned, when working at the accuracy
we are aiming at in this work, pNRY and pNRYγ5 are equivalent. This is not true when
dealing with heavy-pair annihilations and bound-state decays, as will be shown in section 4.

3.1 Bound-state formation via scalar emission

The main advantage in addressing bound-state calculations within pNRYγ5 is that we can
describe the system using appropriate degrees of freedom at the energy scale of interest,
which are heavy fermion-antifermion pairs as well as ultrasoft and thermal scalars. The
bound-state formation cross section can be extracted from the imaginary part of the self-
energy diagram of the pair, that reads

σbsfvrel = 〈p|2Im(−Σs)|p〉 , (3.1)

where |p〉 denotes a scattering state. The self-energy diagrams contributing to Σs are
shown in figure 2.

Out of the three vertices in the second line of eq. (2.12), only the quadrupole and the
derivative interactions contribute. As has already been observed in the literature [34, 89],
the monopole contribution is zero due to the vanishing overlap between the scattering
and bound state wave functions. This still holds at finite temperature. The momentum
region in the loop diagrams are those still dynamical in pNRYγ5 according to the assumed
hierarchy of scales, namely the ultrasoft scale and the temperature scale, which are taken
to be of the same order.

As an example, let us explicitly show the contribution to the self-energy as originating
from the quadrupole interaction, and elucidate on the main steps towards the thermal cross
section. We adopt dimensional regularization (DR) with D = 4 − 2ε. The corresponding
self-energy, leftmost diagram figure 2, reads

ΣQ = −iπα4 µ4−Drirj
∫

dDk

(2π)D
i

P 0 − h− k0 + iη
kikjkmkn

×
[

i

k2
0 − k2 + iη

+ 2πδ(k2
0 − k2)nB(|k0|)

]
rmrn , (3.2)
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where one may notice the appearance of powers of the scalar three momenta in (3.2) as
induced by the action of the derivative operator ∇R on the scalar propagator. Notice that
here r is a quantum mechanical operator that generates expectation values when acting
on the scattering states. The scalar propagator contains both an in-vacuum and a finite
temperature contribution, that are manifestly disentangled in RTF and at the order we
perform the calculation. Next, we insert a complete set of bound states, thus ensuring that
the internal propagator in the loop diagram describes the propagation of the discrete states
of the particle-antiparticle spectrum

i

P 0 − h− k0 + iη
=
∑
n

i

P 0 − h− k0 + iη
|n〉 〈n| =

∑
n

i

Ep − En − k0 + iη
|n〉 〈n| , (3.3)

with
Ep − En ≡ ∆Epn = p2

M
+ Mα2

4n2 , (3.4)

at leading order, where p = Mvrel/2 is the relative momentum of the pair in a scattering
state. Finally, one can extract the imaginary part of the in-vacuum contribution with the
standard cutting rules, whereas for the term involving the finite temperature contribution to
the scalar propagator, which already gives an on-shell thermal distribution of propagating
scalar fields, we simply select the imaginary part of the bound-state propagators with the
relation 1/(x±iη) = P.V.(1/x)∓iδ(x) (cf. [48] for a similar derivation in pNRQCD), where
P.V. stands for the Cauchy principal value. The result for the quadrupole-induced cross
section reads

σQbsfvrel
∣∣
T

= α

120
∑
n

(∆Epn)5
[
|〈p|r2|n〉|2 + 2|〈p|rirj |n〉|2

]
[1 + nB(∆Epn)] . (3.5)

This expression contains non-trivial quantum mechanical expectation values that must be
explicitly evaluated in order to arrive at a final result. The thermal cross section (3.5) is a
generalization of the in-vacuum counterpart derived in ref. [57] and constitutes an original
result of the present work. It is easy to see that for T → 0 we readily recover the in-vacuum
result.

The contributions from the derivative vertex (middle diagram in figure 2) and the
mixed diagrams (rightmost diagram in figure 2), that comprises one quadrupole and one
derivative vertices, have to be added as well. These contribute at the same order in the
power counting [57]. The finite temperature cross section, upon including all the relevant
diagrams reads

σbsfvrel
∣∣
T

= σbsfvrel
∣∣
T=0 [1 + nB(∆Epn)] , (3.6)

where the in-vacuum cross section is

σbsfvrel
∣∣
T=0 = α

120
∑
n

(∆Epn)5
[
|〈p|r2|n〉|2 + 2|〈p|rirj |n〉|2

]

+2α
∑
n

∆Epn
∣∣∣〈p∣∣∣∇2

r

M2

∣∣∣n〉∣∣∣2
−α3

∑
n

(∆Epn)3 Re
[〈
p
∣∣∣∇2

r

M2

∣∣∣n〉〈n|r2|p〉
]
. (3.7)
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Figure 3. Contour levels for the ratio of the thermal and in-vacuum cross sections 1 +nB(∆Epn) in
the (|E1|/T, ζ)-plane. The solid (dashed) lines stand for a 50% (100%) increase of the in-vacuum
cross section due to the Bose enhancement.

As expected from the quadrupole-induced thermal cross section in eq. (3.5), [1 + nB(∆Epn)]
factors out in each term. The second line in eq. (3.7) corresponds to the derivative contri-
bution, whereas the third line accounts for the mixed contribution from the quadrupole-
derivative interaction. Let us stress that the result given in eq. (3.6) is obtained without
making use of any semi-classical construction from Boltzmann equations to describe parti-
cle collisions in the plasma. The thermal character of the cross section is rigorously derived
from a quantum field theory at finite temperature, here pNRYγ5 . One may recognize the
typical factor that one would introduce according to the Boltzmann prescription to ac-
company the produced scalar particle φ in the final state. There is no such factor for the
heavy darkonium, since in our setting M � T . This means that the corresponding Bose
distribution is exponentially suppressed and cannot show up in our EFT. Another relevant
derivation that exploits a pNREFT can be found in ref. [33], where a carbon copy of QED
for the dark sector is employed to derive a thermal cross section. However, the identifica-
tion of the thermal cross sections appears to be partly based on the network of Boltzmann
equations.

The cross section (3.6) can give us a first indication of the importance of thermal
effects in the temperature region allowed for the hierarchy of scales of interest. The fac-
torization of the in-vacuum and thermal parts of the cross section allows to rewrite the
ratio σbsfvrel

∣∣
T
/σbsfvrel

∣∣
T=0 as [1 + nB(∆Epn)], and we express the argument of the Bose

distribution as |E1|/T (1/ζ2 + 1/n2). Here we defined ζ = α/vrel, which is commonly used
in the literature to estimate the relative velocity of the particles in the pair in a scattering
state, while E1 = −Mα2/4 stands for the ground-state energy. In figure 3, we show the
contour lines, solid and dashed respectively, for a 50% and 100% increase of the in-vacuum
cross section due to thermal effects. One may notice that for sufficiently large value of ζ
or sufficiently small relative velocities for a fixed α, the argument of the Bose distribution

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
1
7
2

becomes independent of ζ, and this is reflected in the solid and dashed curves reaching
an asymptotic behavior. As we adopt the variable |E1|/T for the different bound states,
the same increase of the in-vacuum cross sections for the excited states occurs at smaller
temperature. This essentially implies that |En| < |En′ | for n > n′. A larger increase of the
cross section requires larger temperatures, which corresponds to smaller values of |E1|/T .

The result in terms of pNRY matrix elements allows us to address the calculation
of excited states as well. We provide explicit expressions for the ground state and the
excited 2S and 3S states (cf. appendix C for details). The corresponding in-vacuum cross
sections read

σ1S
bsfvrel

∣∣
T=0 = πα4

M2 S(ζ) 26

15
ζ2(7 + 3ζ2)
(1 + ζ2)2 e−4ζ arccot(ζ) , (3.8a)

σ2S
bsfvrel

∣∣
T=0 = πα4

M2 S(ζ) 25

15
ζ2(448 + 528ζ2 + 100ζ4 + 15ζ6)

(4 + ζ2)4 e−4ζ arccot(ζ/2) , (3.8b)

σ3S
bsfvrel

∣∣
T=0 = πα4

M2 S(ζ) 26

135e
−4ζ arccot(ζ/3)

× ζ2(137781 + 186624ζ2 + 57618ζ4 + 8376ζ6 + 881ζ8)
(9 + ζ2)5 , (3.8c)

where the Coulombic S-wave Sommerfeld factor is defined as S(ζ) = 2πζ/(1 − e−2πζ).
The result for the ground state in eq. (3.8a) has been adopted from ref. [57], whereas the
expressions for the excited states are an original contribution of this work. The in-vacuum
cross sections are consistent with the unitarity bound on the annihilation cross section in
the non-relativistic regime [90], and have been lately revisited and extended to the bound-
state formation process [16, 35, 91]. The velocity scaling at ζ � 1 obeys σbsf ∝ 1/v2

rel,
which equally holds for our findings in eqs. (3.8a)–(3.8c).

Figure 4 shows the in-vacuum (solid lines) and thermal (dotted and dashed lines) cross
sections for the 1S and 2S states, plotted as functions of ζ for two different values of
|E1|/T . Some comments are in order. First, the in-vacuum and thermal cross sections are
virtually identical for sufficiently small values of ζ, whereas the thermal cross sections get
larger than the vacuum ones for ζ > 1. Second, the larger the temperature, i.e. the smaller
the values of |E1|/T , the sooner σbsfvrel|T gets enhanced by the finite-temperature nature
of the emitted scalar particle. For |E1|/T = 3, the in-vacuum and thermal cross section
for the ground-state are the same, whereas for ζ & 10 there is still a factor of 2 or 4 in the
case of the excited state 2S or 3S respectively.

In addition to the bound-state formation in nS states, we can easily compute the
formation in P -waves. The result for the |21m〉 and |31m〉 states, where we sum over the
magnetic component of the angular momentum read∑

m

σ21m
bsf vrel

∣∣
T=0 = πα4

M2 S(ζ) 29

15
ζ4(1 + ζ2)(36 + 5ζ2)

(4 + ζ2)4 e−4ζ arccot(ζ/2) , (3.9)

∑
m

σ31m
bsf vrel

∣∣
T=0 = πα4

M2 S(ζ)3 · 211

5
ζ4(1 + ζ2)(729 + 270ζ2 + 26ζ4 + ζ6)

(9 + ζ2)6 e−4ζ arccot(ζ/3) .

(3.10)
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Figure 4. Bound-state formation cross section, normalized by the factor πα4/M2, for the 1S and
2S states as function of ζ (left plot). Two choices for |E1|/T are considered. The comparison
between the 1S and 3S states is shown in the right plot.
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Figure 5. Bound-state formation cross section for the |2P 〉 and |3P 〉 states as a function of ζ. The
corresponding bound-state formation for the |2S〉 and |3S〉 states are shown. The in-vacuum and
thermal cases, for |E1|/T = 1 are considered.

We show the corresponding cross sections in figure 5, where they are plotted together with
the corresponding bound-state formation cross section for 2S and 3S states. One may
notice that for ζ & 1 the cross section is larger for the nP states. Moreover, we have
|2P 〉 / |2S〉 ≈ 5.3 and |3P 〉 / |3S〉 ≈ 3.1 for ζ & 10 where the ratios stay constant.8 Also
eqs. (3.9) and (3.10) respect the unitarity bound for large ζ values.

We close the section by inspecting more closely the thermal effects in the ratios of the
bound-state formation cross section σbsfvrel for the different nS states. In particular, we

8Notice that the combination Sp ≡ S(ζ)(1 + ζ2) appearing in eqs. (3.9) and (3.10) defines the P -wave
Sommerfeld factor. We shall explicitly see how this quantity arises from the scattering-state wave function
at the origin in section 4.
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Figure 6. The ratio σnSbsfvrel/σ
1S
bsfvrel for n = 2, 3 is shown for both the in-vacuum (gray-dotted

line) and thermal cross sections (colored curves).

consider σnSbsfvrel/σ1S
bsfvrel for n = 2, 3. In figure 6, we show the ratio of the in-vacuum bound

state formation cross sections (gray dotted line), as well as the corresponding ratio when
thermal cross sections are considered, the latter for some benchmark values of |E1|/T . For
ζ & 1 the ratio of the thermal bound-state formation cross section deviates from the in-
vacuum case. As for the comparison between the 1S and 2S states (cf. left panel of figure 6),
one may see how the ratio is almost constant in the whole range of ζ for |E1|/T = 1, and
there is no sudden decrease for large ζ-values (dotted yellow line contrasted with dotted
gray). In the case of the 3S state for the same choice |E1|/T = 1, the ratio apparently
increases with ζ in the region ζ & 1. We note in passing, that within pNRYγ5 the relative
velocity of the scattering states is typically vrel . α (hence ζ & 1). Indeed, in this regime
the relevant degrees of freedom are non-relativistic fermions with momenta of order Mα

and low-energetic scalars.

3.2 Bound-state dissociation

In the following we shall take pNRYγ5 as a starting point for the computation of the
dissociation rate of a bound-state, as triggered by the absorption of a scalar from the
thermal medium. As it was done for the bound-state formation, we again consider the self-
energy of the heavy pair and exploit the optical theorem. The relevant diagrams are shown
in figure 7, where one may see that this time the external wave function field describes
a bound state, rather than a scattering state. The optical theorem provides the master
formula that we use to extract the thermal width as follows

Γnbsd = 〈n|2Im(−Σb)|n〉 , (3.11)

where the subscript “bsd” stands for bound-state dissociation. In order to illustrate the
main steps as it was done for the bound-state formation, we again consider the contribution
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Figure 7. Self-energy of a heavy pair in a bound state (solid line) induced by the quadrupole
(crossed vertex) interaction, derivative interaction (triangle vertex) and their mixing. The internal
single line stands for a heavy pair in a scattering state.

that originates from the leftmost diagram of figure 7, which contains two quadrupole ver-
tices. Formally, the self-energy of the bound state is identical to ΣQ in eq. (3.2). However,
the incoming state has an overall negative energy, and one has to insert a complete set of
scattering states with positive energy as in

i

P 0 − h− k0 + iη
=
∫

d3p

(2π)3
i

P 0 − h− k0 + iη
|p〉 〈p|

=
∫

d3p

(2π)3
i

En − Ep − k0 + iη
|p〉 〈p| . (3.12)

This readily explains the difference in the normalization and mass dimension of the bound
and scattering state wave functions, that results in obtaining a width for the former and
a cross section for the latter from eq. (3.11) and eq. (3.1) respectively. Then, the second
and most relevant difference arises when extracting the imaginary part. As the sign of
the energy difference has changed, the real process at T = 0 (first term in the scalar
propagator [∆φ(k0, k)]11) becomes kinematically forbidden, and only the finite temperature
contribution is left. This conforms with the scalar-induced dissociation as a genuine in-
medium effect, as in the case of gluo-dissociation for a heavy quarkonium state [48, 59].
The thermal width from the pure quadrupole contribution reads

Γn,Qbsd =
∫

d3p

(2π)3
α

120 |∆E
n
p |5nB(|∆Enp |)

[
|〈p|r2|n〉|2 + 2|〈p|rirj |n〉|2

]
= α

240

∫
|k|>|En|

d3k

(2π)3 nB(|k|)|k|3M
3
2

√
|k|+ En

×
[
|〈p|r2|n〉|2 + 2|〈p|rirj |n〉|2

] ∣∣∣
|p|=
√
M(|k|+En)

,

(3.13)

where ∆Enp = En − Ep = −∆Epn < 0, and in the last equation we have used the energy
conservation |k|+En = p2/M to trade the relative momentum of the pair for the momentum
of the incoming scalar particle. We notice that the matrix elements of pNRY have to
be evaluated accordingly for |p| =

√
M(|k|+ En) fixed by the momentum conservation.

Furthermore, one can see that the scalar needs to have a threshold momentum to trigger
the thermal break-up of the bound state.

Our result in eq. (3.13) resembles expressions obtained for the gluo-dissociation of a
color-singlet quark-antiquark in the same hierarchy of scales [59], and for the hydrogen
atom in QED [49]. In the form of the second expression, the thermal width (3.13) can be
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interpreted as a convolution of the scalar thermal distribution and an in-vacuum function
of the scalar momentum. The latter can be taken to be the in-vacuum scalar-dissociation
cross section, and we identify it with σnbsd(|k|) as appearing in the factorized form9

Γn =
∫
|k|≥|En|

d3k

(2π)3 nB(|k|)σnbsd(|k|) . (3.14)

Let us again emphasize that the dissociation rate is obtained from pNRYγ5 at finite tem-
perature, by calculating the thermal self-energy of the bound-state. The thermal average
of the incoming scalar particle naturally arises from a quantum field theoretical derivation,
rather than being inferred from a Boltzmann-like treatment. Indeed, we have never intro-
duced rate equations to formulate thermal rates in the first place. In the context of DM,
the dissociation rate from a vector boson (a dark photon for a U(1) Abelian DM model)
has been given in ref. [16], where the convolution of the in-vacuum dissociation cross sec-
tion with the thermal distribution of the vector boson has been introduced by relying on a
network of Boltzmann-like equations for the heavy pairs.

In order to provide the full thermal width at the leading order, and the corresponding
bound-state dissociation cross section, all the diagrams in figure 7 have to be considered.
The calculation is very similar to the case just shown, and from the total thermal width,
Γbsd = ΓQbsd + Γ∇bsd + Γmix

bsd , we write the total dissociation cross section as follows

σnbsd(|k|) = αM
3
2

√
|k|+ En

{
|k|3

240
[
|〈p|r2|n〉|2 + 2|〈p|rirj |n〉|2

]

+ 1
|k|

∣∣∣〈p∣∣∣∇2
r

M2

∣∣∣n〉∣∣∣2 − |k|6 Re
[〈
p
∣∣∣∇2

r

M2

∣∣∣n〉〈n|r2|p〉
]} ∣∣∣

|p|=
√
M(|k|+En)

.

(3.15)

The result is organized in a transparent way in terms of pNRY matrix elements, that can be
evaluated in a quantum mechanical calculation for the given bound state. As a reference,
in the following we list the result for the ground state

σ1S
bsd(|k|) = α3 27π2

15
|E1|2

M |k|3
(

7− 4 |E1|
|k|

)
e
− 4
w1(|k|) arctan(w1(|k|))

1− e−
2π

w1(|k|)
, (3.16)

where w1(|k|) ≡
√
|k|/|E1| − 1. Explicit expression for the 2S, 3S, 2P and 3P states can

be found in appendix D. In figure 8 we show the dissociation rate for the first nS states.
One may notice how for T . 0.3|E1|, the bound-state dissociation is larger for the shallower
states.

By adopting the results available in the literature, we can write the bound-state dis-
sociation cross section induced by a dark photon [16] for an Abelian gauge group. It reads

σ1S
bsd(|k|)

∣∣∣
photon

= α 210π2

3
|E1|3

M |k|4
e
− 4
w1(|k|) arctan(w1(|k|))

1− e−
2π

w1(|k|)
. (3.17)

9To be more precise, the identification would work with the inclusion of a relative velocity, say v′rel.
However, this is not the relative velocity of the particle-antiparticle pair vrel, but rather the relative velocity
between a darkonium bound state and a highly relativistic scalar from the thermal bath. Therefore, v′rel
can be safely set to unity.
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Figure 8. (Left) Thermal width of the bound states, normalized by |E1|2/M , for the |1S〉, |2S〉
and |3S〉 states. We fixed α = 0.1. (Right) Comparison among the thermal widths induced by a
scalar, photon and gluon (with Nc = 3 in eq. (3.18)) for the ground state.

For the sake of comparison, we also add the result for a heavy quarkonium [59], that
illustrates the case of a non-Abelian vector boson, where the scattering state is in an
octet configuration. Then, the unbounded pair in the final state experiences a repulsive
interaction

σ1S
bsd(|k|)

∣∣∣
gluon

= αCF 210π2

3 ρ(ρ+ 2)2 |E1|3

M |k|4
(

1 + |E1|
|k|

(ρ2 − 1)
)
e

4ρ
w1(|k|) arctan(w1(|k|))

e
2πρ

w1(|k|) − 1
,

(3.18)
where ρ ≡ 1/(N2

c − 1), with Nc being the number of colors. By comparing the powers
of the corresponding fine structure constants, one may see how the bound-state disso-
ciation induced by the thermal scalar is α2-suppressed with respect to the photo- and
gluo-dissociation in eqs. (3.17) and (3.18) respectively. This can be traced back to the
different vertices inducing the ultrasoft or thermal transitions (quadrupole and derivative
for the scalar case and dipole interactions for the vector mediators). Upon plugging the
dissociation cross sections into eq. (3.14), the scalar, photo- and gluo-dissociation rates are
given in figure 8 (right panel) for the ground state.

4 Pair annihilations in pNRYγ5

As a preparation for the next section where we address the extraction of the DM energy
density, let us first discuss the annihilations of heavy pairs. This process is responsible for
the depletion of the DM particles into lighter degrees of freedom. Annihilations can equally
occur for a particle-antiparticle pair in a scattering state or in a bound state. At variance
with the annihilation cross section presented in eq. (2.10) for the scattering states, where
the heavy fermions were taken as free particles, here we shall include the effect of soft
momentum exchange as mediated by the scalar particle φ. In order to derive pNRYγ5 , we
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Figure 9. Annihilation diagrams in pNRYγ5 for a scattering state (left) and a bound state (right).

integrate out the momentum scale associated to the soft scalar exchange, thus obtaining the
leading order Coulomb potential. Accordingly, the bilocal field ϕ in pNRYγ5 satisfies the
Schrödinger equation with the potential induced by the scalar exchange. In the evaluation
of the annihilation diagrams we will also encounter the wave-function of the interacting
pair that will lead us to quantum mechanical matrix elements entering our quantum field
theoretical predictions.

In NRYγ5 heavy pair annihilations are accounted for by local four-fermion operators.
The same process can be also described in pNRYγ5 , where the four-fermion operators of
NRYγ5 generate local terms in the imaginary part of potential V (p, r,σ1,σ2) in eq. (2.12).
As for the NRYγ5 , the relevant ingredient is the imaginary part of the matching coefficients
as given in eqs. (2.6) and (2.8a)–(2.8c). As mentioned earlier, the presence of the pseudo-
scalar coupling allows for velocity-independent pair annihilations (cf. eq. (2.10)) which
are typically more relevant for the freeze-out dynamics that fixes the DM energy density.
Nevertheless, a non-trivial dependence on the relative magnitude between g and g5 can
make velocity-dependent annihilations equally relevant, which is why in the following we
explicitly include the corresponding operators. We write the annihilation term from the
Lagrangian density of pNRYγ5 as follows [54, 92]

LannpNRYγ5
= i

M2

∫
d3rϕ†(r)δ3(r)

[
2Im[f(1S0)]− S2

(
Im[f(1S0)]− Im[f(3S1)]

)]
ϕ(r)

i

M4

∫
d3rϕ†(r)T ijSJ∇

i
rδ

3(r)∇jr Im[f(2S+1PJ)]ϕ (r)

i

2M4

∫
d3rϕ†(r) Ωij

SJ

{
δ3(r),∇ir∇jr

}
Im[g(2S+1SJ)]ϕ (r) , (4.1)

where S is the total spin of the pair (S2 = 0 for spin singlets and S2 = 2 for spin triplets),
while T ijSJ and Ωij

SJ are spin projector operators (cf. e.g. [54, 92]). We did not write the R
and t dependence in the argument of the field ϕ to avoid cluttering the notation. Some
comments are in order. First, the Lagrangian term given in eq. (4.1) is suited to provide the
annihilation of the heavy fermion-antifermion pair both in a scattering or a bound state.
The different normalization of the states, as outlined in section 3.1 and section 3.2, will
automatically determine the corresponding observable: on the one hand a cross section for
the annihilation of scattering states, on the other hand a bound-state decay width. Second,
the operators are contact terms, as inherited from NRYγ5 , and the wave functions and their
derivatives contribute only at the origin (r = 0), as originally showed for NRQCD [82].
Rigorous formulations for quarkonium wave functions have been developed in the pNRQCD
formalism [52–54].

In pNRYγ5 we can express the decay width from the self-energy of the field ϕ in the
same fashion as we did it for the bound-state dissociation/formation at one loop. This
amounts to a simple vertex insertion at tree-level as shown in figure 9. Then the decay
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width for nS bound states can be written as

ΓnSann = 〈nS| 2Im(−Σann) |nS〉 , (4.2)

where the subscript “ann” stands for annihilation.
At lowest order in the couplings, as one may see from eq. (2.6), only bound-states in

a spin-singlet configuration can annihilate into a pair of scalars. Moreover, the operator in
the second line of eq. (4.1) does not contribute because the derivative of nS wave functions
vanishes at the origin. The corresponding decay width reads

ΓnSann = |R
(0)
nS(0)|2

πM2

{
Im[f(1S0)] + E

(0)
n

M
Im[g(1S0)]

}
= M α4α5

n3

(
1 + α2

3n2

)
, (4.3)

where in the last step we used |R(0)
nS(0)|2 = 4/(n3a3

0) from the wave function given in
appendix C, the Bohr radius and the binding energy at leading order from eq. (2.16).
Let us also comment on the second term in the curly brackets in eq. (4.3). This term
is generated by the operator in the third line of eq. (4.1), and corresponds to the wave
function combination Re(R∗nS∇2

rRnS)(r), that diverges at r = 0. As noted in the context of
NRQCD, and subsequently reinterpreted in pNRQCD, some perturbative matrix elements
are indeed UV divergent and require regularization and renormalization. Here, we employ
the relation Re(R∗nS∇2

rRnS)(0) = −MEnl|RnS(0)|2 from [92], which holds in dimensional
regularization, and leads to the expression in eq. (4.3). Alternative possibilities to regularize
this divergence employ a hard cut-off [82], or well dimensional regularization in conjunction
with the MS scheme [93].

Let us remark that, in principle, these annihilation rates can be also obtained directly
in NRYγ5 by relating the bound-state-to-vacuum matrix elements to the wave functions at
the origin. The corresponding discussion in the context of NRQCD and heavy quarkonia
can be found e.g. in section III C of [51]. In this respect the situation in NRYγ5 is even
simpler as compared to NRQCD since our matrix elements are perturbative (at least in the
Coulomb-limit) and do not contain covariant derivatives. The decays of heavy fermions into
two scalars in NRYγ5 correspond to the electromagnetic decays of ηq or χqJ with q = c, b

into 2 photons in NRQCD.
For the ground-state and the first two excited 2S and 3S states, one finds from eq. (4.3),

and the matching coefficients in eqs. (2.6) and (2.8a)–(2.8c)

Γ1S
ann = α5α

4M

(
1 + α2

3

)
, Γ2S

ann = α5α
4M

8

(
1 + α2

12

)
, Γ3S

ann = α5α
4M

27

(
1 + α2

27

)
.

(4.4)
The same derivation holds for nPJ states, where the decay width reads

ΓnPJann = 3|R′(0)
nP (0)|2

πM4 Im[f(3PJ)] , for J = 0, 2 . (4.5)

It is easy to find the result for the two combinations of the total angular momentum J = 0, 2
by using the matching coefficients in eq. (2.8a)–(2.8c) and |R′(0)

nP (0)|2 = 4(n2 − 1)/(9n5a5
0).
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In order to compute the annihilation cross section, we instead evaluate the annihilation
vertex on a scatterings state, where we include the spin average factor 1/4 as it was done
in eq. (2.10)

σannvrel = 〈p| 2Im(−Σann) |p〉 = Im[f(1S0)]
M2 |R0(0)|2

+ Im[f(3P0)] + 5Im[f(3P2)]
3M4

∣∣R′(0)
1 (0)

∣∣2 + Im[g(1S0)]
M4 Re(R∗0∇2

rR0)
∣∣
r=0

= 2παα5
M2

(
1− v2

rel
3

)
S(ζ) + (9α2 − 2αα5 + α2

5)v2
rel

24M2 Sp(ζ) , (4.6)

where in the second line used the expressions for the radial wave function at the origin for
a DM pair in a scattering state (cf. eq. (C.4)), while the S- and P -wave Sommerfeld factors
are defined as follows∣∣R(0)

0 (0)
∣∣2 = 2πζ

1− e−2πζ ≡ S(ζ) ,
∣∣R′(0)

1 (0)
∣∣2 = p2S(ζ)(1 + ζ2) ≡ p2Sp(ζ) , (4.7)

with p = Mvrel/2. We remark that also the quantity Re(R∗0∇2
rR0)

∣∣
r=0 appearing in

eq. (4.6) is divergent. We employ the analog expression already exploited for the bound
states for the positive part of the spectrum, namely the scattering states. Hence, we trade
the divergent combination for a finite expression using Re(R∗0∇2

rR0)(0) = p2|R0(0)|2.
We would like to highlight that in pNRYγ5 , the annihilation cross sections automati-

cally include the Sommerfeld enhancement originating from the attractive Coulomb poten-
tial, namely S(ζ) and Sp(ζ) that agree with the literature (cf. e.g. [94–96]). In other words,
when computing the annihilation cross section for scattering states, the resummation of
multiple soft-scalar exchanges (ladder diagrams) is already taken care of, since pNRY is a
quantum field theory of interacting pairs. In the limit α5 → 0 our eq. (4.6) reproduces the
result from ref. [91] for the same model.

5 Phenomenological discussion on the energy density

The depletion of DM through bound states in the early universe depends on many aspects:
which darkonium states are formed, how fast they decay and how efficiently they are
dissociated by the interactions with the medium. The thermal rates we have computed in
section 3.1 and section 3.2 can serve as ingredients when plugged into some rate equations
that govern the time evolution of bound and scattering states. Our derivation of thermal
cross sections and dissociation rates is based on a quantum field theoretical treatment at
finite temperature, meaning that the evolution equations should be worked out in the same
fashion. A promising approach that brings together pNREFTs and the evolution equations
of heavy pairs in a thermal environment has been recently put forward in the case of heavy
quarkonium [97–99]. However, a derivation of quantum evolution equations for DM pairs
in a thermal environment is beyond the scope of the present work.10

10For DM with an Abelian vector mediator the corresponding evolution equations from pNRQED in an
open-quantum-system approach are addressed in a work in preparation [100].
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Nevertheless, there already exists a treatment of bound states in terms of semi-classical
Boltzmann equations, which allows estimating the bound-state effects on the DM energy
density [16, 101].11 In the most general case, the situation is rather intricate since there is
an equation for the single DM particle number density, denoted by nX , and an equation
for the number density of each bound state, denoted by nϕb . All possible reactions have
to be taken into account. Yet, under the assumption that the bound states are kept close
to the chemical equilibrium through their direct and inverse decays, that is ensured by
having Γann � H, where H is the Hubble rate, one can obtain algebraic equations for
each nϕ in terms of its equilibrium counterpart neqϕb and nX , and reuse these results in the
Boltzmann equation for nX . Such an approach was originally suggested in [101], and it is
often adopted in the literature on the subject. Here, the annihilations of DM particles are
treated in an effective way with a single Boltzmann equation for the DM number density
nX which reads

dnX
dt

+ 3HnX = −〈σeff vrel〉(n2
X − n2

X,eq) , (5.1)

where the Hubble rate can be expressed in terms of the energy density H =
√

8πe/3/MPl,
where MPl is the Planck mass with MPl = 1.22 × 1019 GeV, while e = π2T 4geff/30 and
geff denotes the effective number of relativistic degrees of freedom. The effective thermally
averaged cross section, when neglecting bound-to-bound transitions, is

〈σeff vrel〉 = 〈σann vrel〉+
∑
n

〈σnbsf vrel〉
Γnann

Γnann + Γnbsd
, (5.2)

where the sum runs over bound states.
The quantities involved are the thermally averaged annihilation cross section for the

pair in a scattering state 〈σann vrel〉, the thermally averaged bound-state formation cross
section 〈σnbsf vrel〉, the state bound-state decay width Γnann and the bound-state thermal
width Γnbsd, the latter accounting for the dissociation process. As for the cross sections,
we are going to use the standard definition of the thermal average (cf. e.g. [16, 103]).
Then, the combination of the decay width and dissociation width, that we label with
In ≡ Γnann/(Γnann +Γnbsd), determines to what extent DM annihilations via bound states are
efficient. One typically has to wait until the temperature, that sets the scale for the energy
of the light particles that hit the bound states, is of order of the binding energy of the bound
states or smaller. A small population of ionized bound states corresponds to Γbsd � Γann
and therefore to In ' 1. A more quantitative assessment is model dependent, and one has
to look at the rates that appear in eq. (5.2). In the following, we shall consider values of
the pseudoscalar coupling that satisfy g5 < g according to our discussion in section 2.3.

For the model under consideration benchmark values for In are summarized in figure 10
for the ground state. Three benchmark values of the coupling constant are chosen as
α = 0.05, 0.1, 0.3 for a fixed combination g5 = g/5. In addition to that, in the right panel,
we fix α = 0.1 and vary the ratio of the coupling g5/g for the ground state. Let us observe
that in the scalar case, there is a visible dependence on α. This is different with respect
to the case of the vector mediator model in ref. [16] (black-dashed line in the left panel

11Such treatment has been very recently revisited in refs. [19, 102].
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Figure 10. Left: In for the scalar mediator for three values of α = 0.05, 0.1, 0.3 displayed with
the dotted-red, dashed-brown and dotted-dashed orange curves respectively. The black-dashed line
corresponds to the In for the vector mediator model. Right: In for the ground state, for different
values of g/g5, and comparison with the 2S and 2P0 bound states.

of figure 10). In this latter case, the combination of the dissociation rate and bound-state
decay is such, that the resulting ionization factor is α-independent.12 Also, for the model
under study, we obtain larger values of I1S with respect to the Abelian vector mediator,
pointing to an earlier contribution of bound-state effects. Nevertheless, one has to bear in
mind that the bound-state formation process mediated by a scalar mediator features an α2

suppression [35], and so the overall impact of bound-state effects on the DM energy density
is a non-trivial combination of In and 〈σbsfvrel〉 for different models.

In the right panel of figure 10, one may see how decreasing values of α5, that make the
bound-state decay width in eq. (4.4) smaller, but at the same time leaving unaffected the
dissociation thermal width, determines a larger ionized population of bound states in the
same temperature window. The dashed lines correspond to different states (1S, 2S and
2P0) for the same value of g5 = g/5. Excited states remain ionized for longer times.

As a final summarizing result, we give the solution of the effective Boltzmann equa-
tion (5.1). As usual, we solve the evolution equation for the DM yield YX = nX/s, where
s = 2π2heffT

3/45 is the entropy density; we assume that the dark states are at the same
temperature as the plasma of SM particles. The thermalization condition can be easily
satisfied via interactions between the scalar mediator and the Higgs boson. The typi-
cal size of the couplings that ensure thermalization at high temperatures are typically
much smaller than the couplings g and g5 that we consider in this work. Therefore, the
corresponding contribution to dark matter annihilations and bound-state decays can be
safely neglected. As for heff and geff, we take their temperature-dependent values from

12For the bound-state decay width we use Γ1S
ann = Mα5/2, that corresponds to the para-positronium. For

this comparison, we take the decay width in eq. (4.4) at leading order, namely at O(α5α
4).
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Figure 11. Left: parameter space in the (M,α)-plane that reproduces the observed DM energy
density for g5 = g/5. The purple dotted curve accounts for the ground state only, whereas the
purple-dashed curve corresponds to the inclusion of excited states. Right: ratio between the DM
energy density as obtained with and without bound-state effects. The parameter α is fixed as a
function of the mass M to account for the observed DM energy density when bound-state effects
are considered. Dashed (dotted) lines do (not) include excited states.

ref. [104]. In the left plot of figure 11, the curves reproduce the observed DM energy den-
sity ΩDMh

2 = 0.1200± 0.0012 [105] in the parameter space (M,α). Both the Sommerfeld
enhancement and bound-state effects are more prominent for large values of α as expected.
One may notice the large impact upon including the Sommerfeld enhancement, both for
the S- and P -wave annihilations (cf. eq. (4.6)), with respect to the free annihilation cross
section (cf. eq. (2.10)). In contrast to that, the contributions of the bound-state formation
and decays are moderately relevant, albeit still non-negligible.

In order to single out the bound-state effects, we consider the ratio between the DM
energy density as obtained by including or omitting the bound-state formation and decays
(namely the second term on the right-hand side of eq. (5.1)), in addition to the Sommerfeld
enhancement for the pair annihilations. This is shown in the right plot of figure 11. The
ratio is smaller than unity because, when neglecting bound-state formation, a smaller
population of DM particles is annihilated away, and a larger energy density is found. The
formation of bound-states and their decays into light scalars act as an additional channel
for depleting DM. We notice that a smaller pseudoscalar coupling makes the bound-state
formation term more relevant, and this traces back to the different powers of α and α5
entering various cross sections.13 For the smaller ratio between the pseudoscalar and scalar
couplings we consider, g5 = g/10, and the largest mass compatible with the observed relic

13For the case when only the ground state is considered, and looking at the S-wave annihilations only,
the effective cross section is 〈σeffvrel〉 ≈ 2παα5〈S(ζ)〉/M2 + πα4〈Sbsf(ζ)〉R1S/M

2. Here, 〈Sbsf(ζ)〉 can be
read off from eqs. (3.6) and (3.8a).
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density for αmax = 0.3, namely M = 13TeV, we find a 30%–36% effect on the predicted
energy density if bound-state formation is not included. The dotted lines correspond to
the inclusion of the ground state only, whereas upon adding the excited states (nS and
nP states with n = 2, 3) we obtain the dashed lines. Bound states with n > 4 induce
a contribution smaller than the uncertainty in the observed DM energy density in our
numerical implementation.

Upon solving the Boltzmann equation (5.1), we start the integration at temperatures
larger than those strictly admitted by the hierarchy of scales (1.1), which implies that T �
Mα is not always satisfied. This would amount to deriving the bound-state formation and
dissociation rate at such temperatures, in the so-called screening regime, cf. refs. [48, 49] for
QCD and QED, and refs. [27, 29] for a DM application.14 However, due to our assumption
for the self-coupling of the scalar, and upon neglecting the explicit interactions in Lportal,
a thermal mass for the scalar mediator does not appear and, moreover, 2 → 2 scattering
processes with the medium constituents mediated by a soft scalar are absent at least in
the Hard Thermal Loop limit [107]. Despite of the fact that bound-state formation and
corresponding decays are more effective at later temperature stages, further investigations
on this aspect can be worthwhile, and are left for future research on the subject.

6 Conclusions

In this paper we have taken the first step towards the generalization of a potential non-
relativistic effective theory for scalar mediators at finite temperature. In addition to the
dynamically generated energy scales typical of bound states, there are also thermodynamic
scales at play. Most notably, these are the plasma temperature and thermal masses. Our
main goal is to contribute to the recent effort and the development of theoretical tools
for estimating the near-threshold and bound-state effects on DM freeze-out calculations.
In this scenario DM particles are indeed non-relativistic and slowly moving in the early
universe plasma in the relevant temperature window. This means that suitable NREFTs
can help in inspecting the corresponding dynamics and calculating thermal cross sections
and widths.

We considered a simplified DM model where the dark particles are Dirac fermions and
antifermions interacting via a light scalar mediator. With respect to our previous work, we
have included the pseudo-scalar coupling between the mediator and the dark fermions. This
very fact has important consequences for the processes that drive the thermal freeze-out
of the dark fermions, and ultimately on the corresponding phenomenology. In particular,
velocity independent pair annihilations are possible. We recast the relevant processes in
terms of low-energy theories, where the degrees of freedom are heavy DM pairs, both in a
scattering and in a bound states, as well as ultrasoft and thermal scalars. In our framework,
the bound-state formation, bound-state dissociation, annihilations of the unbound pairs

14Pair annihilations would be affected in terms of the thermal potential at such temperatures, and the cor-
responding modifications to the wave functions from a plasma-modified Schrödinger equation, cf. refs. [25–
27, 29, 106]. From an EFT perspective, one has to integrate out the temperature scale before obtaining a
pNREFT, the latter finally attained when removing potential scalars.
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and decays of bound states are inferred from (thermal) self-energies of the bilocal fields in
pNRYγ5 . We investigated a specific hierarchy of scales and set of choices for the couplings,
that allow us to neglect thermal masses in our present study.

According to our assumed hierarchy of scales, the bound-state formation cross section
factorizes into an in-vacuum contribution and a thermal factor. The latter arises from the
thermal character of the scalar mediator (cf. eq. (3.6) and eq. (3.7)). The thermal factor
implements and resembles the Bose enhancement of the emitted scalar in the formation of
a bound-state through radiative emission of the mediator.

A special effort was dedicated to obtain explicit analytic results for the matrix elements
of the corresponding pNREFT under the assumption of Coulombic wave functions. We have
derived the bound state formation for the ground state, and the excited states in nS- and
nP -wave configurations for the principal quantum numbers n = 2, 3.

The thermal width for the bound state, namely its thermal break-up as induced by a
thermal scalar particle, was extracted from the thermal self-energy of the corresponding
wave function field. It is worth noting that this approach features a manifest factorization
between an in-vacuum dissociation cross section and the thermal distribution of the scalar
particles in the medium (cf. eq. (3.14)). Most importantly, the in-vacuum dissociation
cross section can be written in terms of generic pNRYγ5 matrix elements. These quantities
represent genuine quantum mechanical expectation values that, depending on the states
under consideration and the assumed nature of the potential, can be evaluated by solving
the corresponding Schrödinger equation analytically or numerically. The scalar-induced
thermal break up of a bound state is the analog of the photo- and gluo-dissociation, the
latter being particularly relevant for heavy quarkonium physics in heavy ion collisions.

As third and last piece of information, we considered scattering state annihilations
and bound state decays, that were written in terms of local operators in pNRYγ5 . Here
the matrix elements arising in the course of the calculation can be naturally understood
as expectation values of quantum mechanical operators, where the wave functions follow
from solving Schrödinger equation with the corresponding pNRYγ5 potential. This is an
obvious advantage as compared to NRYγ5 , where the connection between the given matrix
element and the corresponding quantum mechanical expression is not always straightfor-
ward. In this respect the situation in pNRYγ5 is much more clear. First, in the case of
an unbound above-threshold pair, the Sommerfeld enhancement shows up when comput-
ing the annihilation cross section. Second, for the negative part of the spectrum, namely
bound states, the bound-state decay width is recovered. As an original result of our work,
we provided the Sommerfeld enhanced annihilation cross section for the model in eq. (2.1)
at O(α2v2

rel, αα5v
2
rel, α

2
5v

2
rel).

We exploit the so-obtained rates in an effective Boltzmann equation, routinely used in
phenomenological studies, in order to estimate the effect of the Sommerfeld enhancement,
bound-state formation and decays on the DM energy density. We find that a large effect is
played by the Sommerfeld enhanced annihilations for the scattering states. In this model,
that features a non-vanishing pseudoscalar coupling, S-wave velocity-independent annihi-
lations are possible, in addition to the P -wave annihilations of the sole scalar interaction
case. The former boost DM annihilations in a prominent way, and the DM mass compat-
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ible with the observed relic density is pushed to much larger values with respect to those
obtained with free annihilations for the same values of the couplings. Moreover, despite
the bound-state effects being more moderate, we find them to be non-negligible. Their
impact depends on the ratio g5/g between the couplings in the Lagrangian model (2.1).
In particular, decreasing the ratio g5/g makes bound-state formation more prominent. For
g5/g = 0.25 (g5/g = 0.1) we find a 16% (35%) effect on the DM energy density with re-
spect to the case one includes only the Sommerfeld enhancement for the scattering states.
The effect of the excited state decays accounts for few per-cents depending again on the
particular values of the couplings. A highlight of our study is the observation, that even
when the bound-state formation is driven by a scalar mediator, bound-state effects may
affect the determination of the DM energy for the simplified model (2.1). The main rea-
son for this is rooted in the presence of a pseudoscalar interaction, and in a non-trivial
interplay between bound-state decay widths, bound-state formation and dissociation, and
Sommerfeld enhancements.

We conclude by remarking that, in order to make connections with experimental con-
straints on the parameter space of the model, one has to specify the portal interactions
and inspect the corresponding possible modifications on the various ingredients presented
in our study.
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A Tree-level Lagrangian for NRYγ5

The bilinear part of the NRYγ5 Lagrangian given in eqs. (2.3)–(2.4) can be explicitly
obtained from the full theory Lagrangian eq. (2.1) by means of the Foldy-Wouthuysen-
Tani (FWT) technique. This way we can directly get the two-fermion operators including
their tree-level matching coefficients. The well known drawbacks of this approach are that
the so-obtained operator basis may not be the most useful one and that by construction we
miss operators whose Wilson coefficients happen to be loop-induced. Here we would like
to refer to appendix A.3 of ref. [57] for a detailed treatment of the purely scalar Yukawa
theory. In the following we will make use of the concepts and the notation introduce there.

The leading order ansatz Ŝ for the mixed case at hand reads

Ŝ = − i

2Mβ~α · p̂+ g5
2Mγ5φ, (A.1)

while the Hamiltonian is given by

Ĥ = ~α · p̂+Mβ + gβφ+ ig5βγ5φ . (A.2)
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It is worth noting that the ansatz given in eq. (A.1) is identical to Ŝ required for the pure
pseudoscalar Yukawa theory. When doing the decoupling of even and odd operators we
need to keep in mind that βγ5 and αi1 . . . αi2nγ5 with n ∈ N are odd, while αi1 . . . αi2n+1γ5
is even.

At O(1/M) the bilinear Lagrangian is just a direct sum of the non-relativistic La-
grangians for the pure scalar [55, 56] and pseudoscalar [80] Yukawa theories. Operators
with tree-level matching coefficients induced by the mixing of the two interactions start
occurring at O(1/M2). For the sake of completeness, let us explicitly provide the O(1/M2)-
piece of the bilinear part of the NRYγ5 Lagrangian with tree-level matching coefficients
obtained using FWT transformations

Lbilinear
ψ,O( 1

M2 ) = ψ†
(
− igσ · (∇φ×∇)

4M2 − g{∇, {∇, φ}}
8M2 − ig5σ · {∇, (∂0φ)}

4M2

+3gg5σ · [φ2,∇]
8M2 + gg2

5φ
3

2M2

)
ψ

χ†
(
igσ · (∇φ×∇)

4M2 + g{∇, {∇, φ}}
8M2 + ig5σ · {∇, (∂0φ)}

4M2

+3gg5σ · [φ2,∇]
8M2 − gg2

5φ
3

2M2

)
χ, (A.3)

where in (∂0φ) the time derivative acts only on the φ field, while ∇ always acts on every-
thing to its right.

B Derivation of pNRYγ5 from NRYγ5

In section 2.3 it was stated that pNRYγ5 can be obtained from NRYγ5 by projecting the
Hamiltonian of NRYγ5 onto the particle-antiparticle sector. Since the technicalities behind
this approach are rarely discussed in the literature, here we would like to provide some more
details on the corresponding calculation for the bilinear part of the NRYγ5 Lagrangian.

Switching to Hγ5 effectively means multiplying the expressions given in eqs. (2.3)
and (2.4) by −1 and removing the kinetic terms with time derivatives ψ†i∂0ψ and χ†i∂0χ.
Then, we must sandwich the Hamiltonian between the following ket and bra states∫

d3x1d
3x2 ϕij(t,x1,x2)ψ†i (t,x1)χj(t,x2) |φUS〉 ≡ |P 〉 , (B.1a)∫

d3x1d
3x2 〈φUS|χ†j(t,x1)ψi(t,x2)ϕ†ij(t,x2,x1) ≡ 〈P | . (B.1b)

In order to evaluate the resulting expression we need to move all ψ- and χ†- fields to the
very right and all χ- and ψ†-fields to the very left, since

ψi(t,x) |φUS〉 = χ†i (t,x) |φUS〉 = 〈φUS|ψ†i (t,x) = 〈φUS|χi(t,x) = 0. (B.2)

To this end we make use of the equal-time anticommutation relations obeyed by the Pauli
fields

{ψi(t,x), ψ†j(t,x
′)} = {χ†i (t,x), χj(t,x′), } = δij δ

(3)(x− x′). (B.3)
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In the case of spatial derivatives acting on one of the fields, it is convenient to let the
derivative formally act on the Dirac delta e.g. as in

{∇ψi(t,x), ψ†j(t,x
′)} = δij ∇xδ

(3)(x− x′). (B.4)

When evaluating the integral over x we can always integrate by parts to move ∇x away
from δ(3)(x− x′).

The bilocal field ϕij carries two Pauli indices and behaves as

ϕij(t,x1,x2) ∼ ψi(t,x1)χ†j(t,x2). (B.5)

Its Hermitian conjugate is given by15

ϕij(t,x1,x2)→ −ϕ†ji(t,x1,x2) ∼ [ψi(t,x1)χ†j(t,x2)]† = −χj(t,x2)ψ†i (t,x1), (B.6)

so that
ϕ†ij(t,x1,x2) ∼ χi(t,x2)ψ†j(t,x1), (B.7)

and consequently

ϕ∗ij(t,x1,x2) ∼ ψ∗i (t,x1)χTj (t,x2), (B.8a)
ϕTij(t,x1,x2) ∼ χ∗i (t,x2)ψTj (t,x1). (B.8b)

When projecting the Hamiltonian we encounter following Pauli structures involving the
bilocal field

ϕ†ij(t,x1,x2)ϕji(t,x1,x2) ∼ −ψ†j(t,x1)ψj(t,x1)χ†i (t,x2)χi(t,x2), (B.9a)

ϕ†ij(t,x1,x2)σjkϕki(t,x1,x2) ∼ −ψ†j(t,x1)σjkψk(t,x1)χ†i (t,x2)χi(t,x2), (B.9b)

ϕ†ij(t,x1,x2)ϕjk(t,x1,x2)σki ∼ −ψ†j(t,x1)ψj(t,x1)χ†k(t,x2)σkiχi(t,x2). (B.9c)

Sometimes NREFT practitioners prefer to trade the field χ for χc defined as

χc = −iσ2χ∗, χ†c = iχTσ2, (B.10)

with
{χc,i(t,x), χ†c,j(t,x

′)} = δij δ
(3)(x− x′). (B.11)

The reason for this is that while the basis (ψ, χ) is best suited for studying annihilations
and formations of heavy fermions, the set (ψ, χc) often turns out to be more convenient
when dealing with scattering processes. Switching from χ to χc on the level of the pN-
REFT Lagrangian can be easily achieved via a suitable field redefinition, which amounts
to introducing

ϕ̃ij(t,x1,x2) = −iσ2
ikϕ

T
kl(t,x1,x2)σ2

lj ∼ χc,i(t,x2)ψTj (t,x1), (B.12a)

ϕ̃†ij(t,x1,x2) = iϕ∗ik(t,x1,x2)σ2
kj ∼ ψ∗i (t,x1)χ†c,j(t,x2), (B.12b)

15The additional minus sign as compared to the standard relation for the Hermitian conjugate of a matrix
Mij → M†ji arises from the fact that the elements of ϕij are made of anticommuting fields i.e. they are
Grassmann numbers rather than c-numbers.
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with

ϕTij(t,x1,x2) = iσ2
ikϕ̃kj(t,x1,x2), (B.13a)

ϕ∗ij(t,x1,x2) = −iϕ̃†ik(t,x1,x2)σ2
kj . (B.13b)

Then we have

ϕ†ij(t,x1,x2)ϕji(t,x1,x2) = ϕ̃†ij(t,x1,x2)ϕ̃ji(t,x1,x2)

∼ ψ†j(t,x1)ψj(t,x1)χ†c,i(t,x2)χc,i(t,x2) (B.14a)

ϕ†ij(t,x1,x2)σjkϕki(t,x1,x2) = ϕ̃†ik(t,x1,x2)σijϕ̃kj(t,x1,x2)

∼ ψ†j(t,x1)σjkψk(t,x1)χ†c,i(t,x2)χc,i(t,x2) (B.14b)

ϕ†ij(t,x1,x2)ϕjk(t,x1,x2)σki = −ϕ̃†ij(t,x1,x2)σjkϕ̃ki(t,x1,x2)

= ψ†j(t,x1)ψj(t,x1)χ†c,k(t,x2)σkiχc,i(t,x2), (B.14c)

where in the first step we transposed the initial expression with respect to its Pauli indices
and the employed eqs. (B.13). Furthermore, we used that

χ†iχi = −χTi χ∗i = −χ†c,iχc,i, (B.15a)

χ†iσijχj = −χTj σTjiχ∗i = χ†c,kσklχc,l (B.15b)

and

σTji = −σ2
jkσklσ

2
li. (B.16)

In this context it is worth noting that, in general, one can eliminate χ in favor of χc already
at the level of the NREFT Lagrangian and then directly project onto∫

d3x1d
3x2 ϕ̃ij(x1,x2)ψ†i (x1)χ†c,j(x2) |φUS〉 . (B.17)

In this case one would first apply eq. (B.15) to the bilinear part of the NREFT Lagrangian
and then make use of the Fierz transformations in the Pauli space

δijδlk = 1
2δilδjk + 1

2σli · σjk, (B.18)

σij · σkl = 3
2δilδjk −

1
2σli · σjk, (B.19)

when rewriting the four-fermion operators accordingly.
Hence, even though physical results clearly do not depend on whether we use χ or

χc, the former turns out to be more useful to study production or annihilation of heavy
particles (as is often done in NREFTs), while the latter is very convenient for scattering
processes typically arising in pNREFTs.
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Finally, for the sake of completeness, let us provide the explicit O(1/M) result for the
projection of Hγ5 onto the subspace spanned by eqs. (B.1) before the multipole expansion

〈P |Hγ5 |P ′〉 =
∫
d3x1d

3x2

gϕ†ij(t,x1,x2) (φ(t,x1) + φ(t,x2))ϕji(t,x1,x2)

−

(
∇2
x1ϕ

†
ij(t,x1,x2)

)
ϕji(t,x1,x2)

2M −
ϕ†ij(t,x1,x2)∇2

x2ϕji(t,x1,x2)
2M

+ g2
5

2Mϕ†ij(t,x1,x2)
(
φ2(t,x1) + φ2(t,x2)

)
ϕji(t,x1,x2)

− g5
2Mϕ†ij(t,x1,x2)σjk · (∇x1φ(t,x1))ϕki(t,x1,x2)

+ g5
2Mϕ†ij(t,x1,x2)σki · (∇x2φ(t,x2))ϕjk(t,x1,x2)

 . (B.20)

Then we only need to switch to the center-of-mass coordinates via

x1/2 = R± 1
2r, ∇x1/2 = ±∇r + ∇R (B.21)

and multipole expand the scalar fields in r up to the desired order using

φ(t,x1/2) = φ

(
t,R± r2

)
= φ(t,R)± r2 ·∇φ(t,R) + 1

8r
irj∇iR∇

j
R φ(t,R) +O(r3)

(B.22)

to arrive at the final bilinear piece of the pNRYγ5 Lagrangian at O(1/M).

C Matrix elements

The matrix elements presented in the main body of the paper can be evaluated analytically
in the Coulomb limit, where we essentially employ analytic solutions for the bound and
scattering state wave functions of the Hydrogen atom. The bound state wave function
reads

ψn`m(r) = Rn`(r)Y`m(θ, φ) , (C.1)

with

Rn`(r) = 1
(2`+ 1)!

√( 2
na0

)3 (n+ `)!
2n(n− `− 1)!

( 2r
na0

)`
× 1F1

(
`+ 1− n; 2`+ 2; 2r

na0

)
e−r/(na0), (C.2)

where Y`m(θ, φ) is the spherical harmonic, while 1F1(a; b; z) denotes the confluent hyper-
geometric or Kummer’s function. The scattering wave functions arise as solutions of the
Schrödinger equation (

−∇
2

2m + Zα

r

)
ψp(r) = p2

2mψp(r), (C.3)
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with Z = −1 for the Hydrogen atom. Solving this equation in the parabolic coordinates
and choosing the solution that describes the wave before approaching the source at the
origin we can expand the resulting wave function in plane waves. This yields

ψp(r) =

√
2πζ

1− e−2πζ e
ipr
∞∑
`=0

eiσ`e+iπ`2
(2pr)`

(2`)! 1F1 (`+ 1− iζ; 2`+ 2;−2ipr)

× P`(cos θ)
∏̀
s=1

(
s2 + ζ2

) 1
2 , (C.4)

where ζ ≡ α/v = −η is related to the Sommerfeld parameter η, while σl denotes the
Coulomb phase shift

σl = arg Γ(l + 1 + iη), (C.5)

that satisfies
e2iσl = Γ(1 + l + iη)

Γ(1 + l − iη) . (C.6)

Notice that the scattering state wave function is decomposed in terms of partial waves with
definite angular momentum ` and that we choose the relative momentum p to be aligned
along the z-axis. This agrees with the conventions commonly used in quantum mechanics
textbooks [108, 109] and DM literature [34, 38].

C.1 Expectation values of r2

We start with the discussion of matrix elements involving the position operator squared

〈p|r2|n`m〉 =
∑
`′

∫
d3r r2ψ∗`′(r)ψn`m(r). (C.7)

This integral obviously factorizes into a radial and an angular part. The integration over
the solid angle can be straightforwardly evaluated using the following identity∫

dΩ P ∗`′(cos θ)Y`m(θ, φ) =
( 4π

2`′ + 1

)1/2 ∫
dΩ Y`′,0Y`m =

( 4π
2`′ + 1

)1/2
δ``′δm,0 . (C.8)

The remaining radial integral16

∫ ∞
0

dr r4+2` e
− r2

(
2ip+ 2

na0

)
1F1 (`+ 1 + iζ; 2`+ 2; +2ipr) 1F1

(
`+ 1− n; 2`+ 2; 2r

na0

)
(C.9)

for generic quantum numbers n and ` can be calculated with the aid of the relation (cf.
section 7.622 in [110])∫ ∞

0
dt tc−1e−ρt 1F1 (a, c; t) 1F1 (b, c;λt)

= Γ(c)(ρ− 1)−a(ρ− λ)−bρa+b−c
2F1

(
a, b, c;λ(ρ− 1)−1(ρ− λ)−1

)
, (C.10)

16Notice that 1F
∗
1 (`+ 1− iζ; 2`+ 2;−2ipr) = 1F1(`+ 1 + iζ; 2`+ 2; 2ipr) for p, ζ ∈ R.
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where we set

a = `+ 1− n , b = `+ 1 + iζ , c = 2`+ 2 ,

ρ = 1
2

(
1 + i

n

ζ

)
, λ = i

n

ζ
, t = 2r

na0
. (C.11)

Differentiating both sides of eq. (C.10) with respect to ρ three times and plugging in the
values from eq. (C.11) we can directly evaluate the radial integral and arrive at a compact
analytic expression for the desired expectation value∑
`′

〈p`′|r2|n`0〉 = e−iσ`(−1)n−`δm,0 2π
(
na0
2

) 7
2 28+2`Γ(2`+ 2)

(2`+ 1)!(2`)!

√
n(n+ `)!

(2`+ 1)(n− `− 1)!

×
∏̀
s=1

(
s2 + ζ2

) 1
2 n`ζ6+`

√
ζ

1− e−2πζ
e−2ζ arccot(ζ/n)

(n2 + ζ2)3+` e
−i2(n−`−1) arccot(ζ/n)

× e−i
π`
2 2F1

(
1 + `− n, 1 + `+ iζ, 2`+ 2; 4inζ

(n+ iζ)2

)
. (C.12)

Notice that the arising phase cancels out when squaring the above quantity.17 Let us also
remark that if we are interested only in the expectation values for fixed quantum numbers
(e.g. n = 1, ` = 0,m = 0 etc.), then the radial integral in eq. (C.9) simplifies and can be
evaluated using a much simpler identity (cf. section 7.522 in [110]) that reads∫ ∞

0
dt tb−1 e−zt 1F1(a, c; kt) = Γ(b)z−b 2F1(a, b, c; k/z) , (C.13)

with Re(b) > 0 and Re(z) > max(Re(k), 0).
Finally, let us provide explicit results for the phenomenologically relevant lowest-lying

S- and P -wave matrix elements. The matrix elements squared for the first three nS

states read

| 〈p| r2 |1S〉 |2 = 218π2

M7α7

(
ζ

1− e−2πζ

)
ζ12

(1 + ζ2)6 e
−4ζ arccot(ζ) , (C.14a)

| 〈p| r2 |2S〉 |2 = 227π2

M7α7

(
ζ

1− e−2πζ

)
ζ12(4 + 3ζ2)2

(4 + ζ2)8 e−4ζ arccot(ζ/2) , (C.14b)

| 〈p| r2 |3S〉 |2 = 21839π2

M7α7

(
ζ

1− e−2πζ

)
ζ12(81 + 78ζ2 + 13ζ4)2

(9 + ζ2)10 e−4ζ arccot(ζ/3), (C.14c)

where |1S〉, |2S〉 and |3S〉 should be understood as |100〉, |200〉 and |300〉 respectively. In
the case of P -waves we consider |210〉, |21± 1〉, |310〉 and |31± 1〉 where only the states
with m = 0 are non-vanishing. We obtain

| 〈p| r2 |210〉 |2 = 231π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(1 + ζ2)
(4 + ζ2)8 e−4ζ arccot(ζ/2) , (C.15a)

| 〈p| r2 |310〉 |2 = 223310π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(1 + ζ2)(9 + 2ζ2)2

(9 + ζ2)10 e−4ζ arccot(ζ/3) . (C.15b)

17It should be noted, that for nS states, the remaining phase e−2i(n−1) arccot(ζ/n) is exactly canceled by
the factor that appears in 2F1(1−n, 1 + iζ, 2, 4inζ/(n+ iζ)2) when setting n to specific integer values. The
matrix element is then purely real.
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We have explicitly verified these results by calculating the matrix elements either via the
master formula eq. (C.12) or on a case-by-case basis using eq. (C.13). Furthermore, we
conducted a numerical check that gave a perfect agreement over a large range of ζ values.

C.2 Expectation values of ∇2

As far as the evaluation of the matrix element

〈p|∇2
r/M

2|n`m〉 = 1
M2

∑
`′

∫
d3r ψ∗`′(r)∇2

rψn`m(r) (C.16)

is concerned, we choose to proceed on the case-by-case basis by considering explicit values
of the quantum numbers n, ` and m. To this end we only need to use the identities given
in eq. (C.8) and eq. (C.13). This yields

〈p|∇2
r/M

2|1S〉 = −23e−iσ0π

√
ζ

1− e−2πζ

√
Mα

M2
ζ2

(1 + ζ2)e
−2ζ arccot(ζ) , (C.17a)

〈p|∇2
r/M

2|2S〉 = −27/2e−iσ0π

√
ζ

1− e−2πζ

√
Mα

M2
ζ2(4 + 3ζ2)
(4 + ζ2)2 e−2ζ arccot(ζ/2) , (C.17b)

〈p|∇2
r/M

2|3S〉 = −2331/2e−iσ0π

√
ζ

1− e−2πζ

√
Mα

M2
ζ2(81 + 78ζ2 + 13ζ4)

(9 + ζ2)3 e−2ζ arccot(ζ/3) ,

(C.17c)

〈p|∇2
r/M

2|210〉 = i 211/2π

√
ζ

1− e−2πζ

√
Mα

M2
ζ3(1 + iζ)
(4 + ζ2)2 e

−2ζ arccot(ζ/2) , (C.17d)

〈p|∇2
r/M

2|310〉 = i 3 · 211/2π

√
ζ

1− e−2πζ

√
Mα

M2
ζ3(1 + iζ)(2ζ2 + 9)

(9 + ζ2)3 e−2ζ arccot(ζ/3), (C.17e)

where we would like to remark that matrix elements for the P -wave states |21± 1〉 and
|31± 1〉 vanish. The so-obtained results are also in perfect agreement with our numerical
checks.

C.3 Expectation values of rirj

Last but not least, we also need to deal with the tensor matrix elements given by

〈p|rirj |n`m〉 = 1
M2

∑
`′

∫
d3r rirjψ∗`′(r)ψn`m(r). (C.18)

Here it is useful to observe that the first 9 spherical harmonics Ylm with ` ≤ 2 and the
corresponding m-values can be written as linear combinations of x, y, z, x2, y2, z2, xy, xz
and yz. Inverting this linear system we can express each of these 9 quantities as a linear
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combination of the spherical harmonics. More explicitly, introducing T ij = rirj we have

T xx = r2
[

2
√
π

3 Y0,0 −
2
3

√
π

5Y2,0 +
√

2π
15 (Y2,2 + Y2,−2)

]
, (C.19a)

T yy = r2
[

2
√
π

3 Y0,0 −
2
3

√
π

5Y2,0 −
√

2π
15 (Y2,2 + Y2,−2)

]
, (C.19b)

T zz = r2
(

2
√
π

3 Y0,0 + 4
3

√
π

5 Y2,0

)
, T xy = ir2

√
2π
15 (Y2,−2 − Y2,2) (C.19c)

T xz = r2
√

2π
15 (Y2,−1 − Y2,1) , T yz = ir2

√
2π
15 (Y2,1 + Y2,−1) . (C.19d)

Notice that while the above results can be found in many quantum mechanics textbooks
(cf. e.g. [108]), the algorithm itself naturally works also for higher rank tensors beyond
rank 2. Applying eqs. (C.19a)–(C.19d) to our problem leaves us with angular integrals
over products of three spherical harmonics. Those can be evaluated using∫

dΩ [Y`3,m3(θ, φ)]∗ Yl1,m1(θ, φ)Yl2,m2(θ, φ)

=
√

(2`1 + 1)(2`2 + 1)
(4π)(2`3 + 1) 〈`1`200|`1`2`30〉〈`1`2m1m2|`1`2`3m3〉 , (C.20)

where the quantities in the angle brackets are the familiar angular momentum Clebsch-
Gordan coefficients. As far as the radial integrals are concerned, eq. (C.13) again turns out
to be sufficient for all cases with explicit values of the quantum number n, ` and m.

Putting everything together, we obtain following expressions for the first three S-wave
states

| 〈p| rirj |1S〉 |2 = 218π2

3M7α7

(
ζ

1− e−2πζ

)
ζ12(33 + 9ζ2)

(1 + ζ2)7 e−4ζ arccot(ζ) , (C.21a)

| 〈p| rirj |2S〉 |2 = 227π2

3M7α7

(
ζ

1− e−2πζ

)
ζ12 [(4 + ζ2)(4 + 3ζ2)2 + 2048(1 + ζ2)

]
(4 + ζ2)9

× e−4ζ arccot(ζ/2) , (C.21b)

| 〈p| rirj |3S〉 |2 = 21838π2

M7α7

(
ζ

1− e−2πζ

)
e−4ζ arccot(ζ/3)

(9 + ζ2)10 ζ12

×
[
2332(ζ2 − 27)2(ζ4 + 5ζ2 + 4) + (13ζ4 + 78ζ2 + 81)2

]
. (C.21c)

In the case of P -wave states we find

| 〈p| rirj |210〉 |2 = 231π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(ζ2 + 1)(3ζ2 + 44)

(4 + ζ2)9 e−4ζ arccot(ζ/2) , (C.22a)

| 〈p| rirj |310〉 |2 = 223 310π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(ζ2 + 1)(2ζ6 + 108ζ4 + 2349ζ2 + 8019)

(9 + ζ2)11

× e−4ζ arccot(ζ/3) . (C.22b)
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At variance with the results for the other two types of matrix elements involving r2 and
∇2, here we also find nonvanishing matrix elements squared for m 6= 0

| 〈p| rirj |21± 1〉 |2 = 232π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(ζ2 + 1)
(4 + ζ2)8 e−4ζ arccot(ζ/2) , (C.23a)

| 〈p| rirj |31± 1〉 |2 = 224 310π2

M7α7

(
ζ

1− e−2πζ

)
ζ14(ζ2 + 1)(ζ4 + 27ζ2 + 81)

(9 + ζ2)10 e−4ζ arccot(ζ/3).

(C.23b)

D Bound-state dissociation cross sections

In section 3.2 we provided only one explicit result (|1S〉 state) for the bound-state dissocia-
tion cross section. For the sake of completeness, here we list the results for the remaining S-
and P -wave states that can be calculated using the matrix elements given in appendix C.
The bound-state dissociation cross sections for the |2S〉 and |3S〉 states read

σ2S
bsd(|k|) = α3 28π2

15
|E2|2

M |k|3

(
7 + 12 |E2|

|k|
− 20 |E2|2

|k|2
+ 16 |E2|3

|k|3

)
e
− 4
w2(|k|) arctan(2w2(|k|))

1− e−
2π

w2(|k|)
,

(D.1a)

σ3S
bsd(|k|) = α3 27π2

45
|E3|2

M |k|3

(
63 + 516 |E3|

|k|
+ 208 |E3|2

|k|2
+ 576 |E3|3

|k|3
+ 1280 |E3|4

|k|4

)

× e
− 4
w3(|k|) arctan(3w3(|k|))

1− e−
2π

w3(|k|)
, (D.1b)

where wn(|k|) ≡
√
|k|/|En| − 1/n, En = −Mα2/(4n2) and ζ = 1/wn(|k|). For the P -wave

cross sections we find

σ2P
bsd(|k|) = α3 210π2

15
|E2|3

M |k|4

(
9 + 23 |E2|

|k|
− 12 |E2|2

|k|2

)
e
− 4
w2(|k|) arctan(2w2(|k|))

1− e−
2π

w2(|k|)
, (D.2a)

σ3P
bsd(|k|) = α3 212π2

15
|E3|2

M |k|4

(
9 + 75 |E3|

|k|
+ 17 |E3|2

|k|2
− 52 |E3|3

|k|3
+ 32 |E3|4

|k|4

)

× e
− 4
w3(|k|) arctan(3w3(|k|))

1− e−
2π

w3(|k|)
. (D.2b)
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