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Abstract: The onset of morphological instabilities along a solidifying interface has a tendency to
influence the microstructural characteristics of cast alloys. In the present study, the initiation as
well as the mechanism of microstructural pattern formation is investigated by a quantitative phase-
field approach. For energetically isotropic interfaces, we show that the presence of grain boundary
grooves promotes the initiation of morphological instabilities, and with progressive solidification,
they subsequently amplify into tip-splitting microstructures. We also demonstrate that the grain
boundary groove shape influences the amplification of the ridge-shaped instability near the pit region.
The structural transition of tip splitting to dendritic microstructures is showcased through the effect
of interfacial anisotropy. In addition, the prediction of the tip-splitting position is discussed through
an analytical criterion, wherein the sign of the surface Laplacian of interfacial curvature dictates the
formation of crest and trough positions in a tip-splitting pattern. In complete agreement with the
sharp-interface theory, our phase-field simulations validate the analytically obtained tip-splitting
position and suggest that the two tips evolve symmetrically on either side of the hindered concave
region. Furthermore, the role of lattice anisotropy on the tip-splitting phenomenon is also discussed
in detail.

Keywords: pattern formation; tip splitting; phase-field model; grain boundary groove; microstructure
formation

1. Introduction

Over the last few decades, the selection of microstructural patterns has been a long-
standing fundamental interest in scientific and technological advancements. In the presence
of high supercoolings [1], pressure gradients [2–4], and low magnetic fields [5], complex
microstructural patterns systematically evolve in simulated environments. In unidirec-
tional solidification, the crystal–melt interface generally consists of imperfections in the
form of grain boundaries, impurities, and distortions. When morphological instabilities are
triggered along a planar front by thermal or constitutional undercooling, these crystal im-
perfections act as preferred locations for the initiation of interfacial instabilities. Especially,
in the presence of grain boundaries, the solid–liquid interfaces become unstable by passing
through a different, slightly more complicated, sequence of morphological changes [6].
Schaefer and Glicksman [7] performed seminal experiments and recorded the temporal
evolution of morphological instabilities in a polycrystalline sample. Originated near the
grain boundary grooves, it was concluded that the protuberances amplified into liquid
melt in the form of dendritic branches.

After successful experiments, the stability of a dendritic pattern was first quantitatively
evaluated by Mullins and Sekerka [8,9]. It was concluded that an advancing interface splits
if the tip radius ρi is larger than the critical wavelength λi. For example, the tip radius
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becomes unstable at the smallest wavelength and results in the formation of symmetrically
broken fingers. Later, based on this theory, several investigators [7,10,11] carried out
experiments on succinonitrile-based transparent alloys to demonstrate the lateral spreading
of the instabilities. For example, Noël et al. [10] performed in situ experiments to study the
emergence of non-planar patterns, and they analyzed the cellular interfaces in a transparent
binary alloy. It was confirmed that the initiation and the formation of a grain boundary
groove lead to the propagation of ridges and depressions along a planar front. In addition,
as the solidification velocity was increased beyond the critical velocity of a planar interface,
the initial instability occurred at the two slightly convex ridges, which later coarsened and
dominated the growth competition among cellular microstructures. Furthermore, at high
growth rates, the progressive development of low-amplitude ripples via the formation
of ramified patterns was also noticed. Several directional solidification studies [12–14]
have shown the emergence of complex tip-splitting microstructures in the absence of
interfacial anisotropy. A split tip defines a disordered pattern, whereas the presence of
interfacial anisotropy energy brings in a steady and a directionally dependent tip with side
branches. Over the last few decades, the structural transition of a solidifying interface into
an unidirectionally solidified microstructure has been of considerable interest in cast binary
alloys. Therefore, it is important to characterize and control such shapes resulting from
solidification.

Apart from the aforementioned literature, various experiments [13,15,16] and theo-
retical findings [17] have attempted to justify and elucidate the underlying mechanism of
branching. While Martin et al. [17] presented the side branching in a dendrite through
the disturbances in the mean curvature, Nittman et al. [13] illustrated the tip-splitting
phenomenon as a relation with the imposed numerical noise in the bulk. Similarly, De-
vachelle et al. [18] provided an optimization principle in order to describe the dynamics of
a diffusion-limited finger. Moreover, another classical way to study the pattern genesis is
through the Hele–Shaw cell [4]. Confined in-between two parallelly separated plates, this
method describes the generation of Saffman–Taylor cells, as a result of an unstable interface
between the two viscous fluids. Likewise, Suekane et al. [19] studied the three-dimensional
characteristics of viscous fingers, where the flow instabilities events were described as a
combination of frequent tip splitting, shielding, and coalescence.

More recently, Glicksman [16] proposed a deterministic side-branching mechanism for
anisotropic dendrites. According to this theory, the rotation points near the dendritic tip
developed a wrinkle, which later grew into a side branch. The local analysis was proved
to be successful in kinematically determining the rotation points for branching, wherein
the crystal experienced an accelerated growth depending upon the sign of the surface
Laplacian of the interfacial curvature ∇2

s κ. Later, several phase-field simulations [20–22]
subsequently confirmed the role of capillary-mediated fluxes in an anisotropic dendrite.
In particular, Mullis [20] re-evaluated the findings in Ref. [16] and reported that the
above criterion is a useful tool for understanding the branching mechanism. However, in
light of the above-mentioned literature, the determination of tip-splitting positions for an
energetically isotropic microstructure has been less understood. For example, although
previous studies [23,24] have addressed the tip-splitting phenomenon, a quantitative study,
whereby the dynamic comparison of the sharp-interface criterion, as well as the role of
numerical effects, such as grid anisotropy and numerical noise, is still elusive. Additionally,
it needs to be established if the theoretical criterion previously deduced to explain the
behavior of secondary branches can be extended to accurately predict the tip-splitting
positions. In this regard, the present work intends to fill the gap in our understanding, and
it reports a two-dimensional phase-field investigation to elucidate the formation and the
behavior of unidirectionally solidified tip-splitting microstructures.

The rest of the manuscript is organized as follows: in the following section, we
briefly describe our phase-field model through the evolution equations for the phase
and the concentration fields. In the Results and Discussion section, we first simulate the
two-dimensional tip-splitting microstructures from a bicrystal specimen. Initiated at the
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grain boundary grooves, we illustrate that the morphological instabilities amplify into
tip-splitting microstructures due to the presence of isotropic interfacial energy. Next, the
role of groove shape as well as the strength of interfacial anisotropy is discussed in detail.
Furthermore, the underlying mechanism of tip instability is discussed in detail, wherein,
based on the sharp-interface analytical criterion, the splitting region is showcased. Later,
we perform phase-field simulations to demonstrate and validate the analytically derived
branching region. In addition, a comparative study between simulations and a sharp-
interface theory reveals the effect of the underlying grid on our numerical results. Finally,
we put forward the conclusions from the present work.

2. Model Description

Over the last two decades, the phase-field approach is gaining popularity as a method
of choice to model complex microstructures in solidification, precipitation, and strain-
induced transformation studies [25]. In the present work, the phase-field model employed
is based on the grand potential formulation by Choudhury and Nestler [26] where the evo-
lution of phases is determined by the minimization of the modified functional dΩ/dt 6 0,
given by

Ω(T, µ, φ) =
∫

Ω

[
Ψ(T, µ, φ) +

(
εa(φ,∇φ) +

1
ε

w(φ)

)]
dΩ, (1)

where T is the temperature, µ = (µ1, . . . , µi, . . . , µK−1) is a vector consisting of K− 1
chemical potentials of the system at a given temperature, and φ = (φ1, . . . , φα, . . . ., φN)
describes the phase index vector, where φα represents the local volume fraction of the α
phase. In addition, ε is a length scale related to the thickness of the diffuse interface. The
terms εa(φ,∇φ) and 1

ε w(φ) are the gradient and obstacle-type energy densities, which
take the thermodynamics of the interface into account [25]. In the present work, the
mole fractions of component B in the solid and liquid are set as cs,eq

B = 0.8 and cl,eq
B = 0.2,

respectively. Similar to our previous studies [27,28], we consider a binary alloy model
system, and we also would like to reiterate that the temporal evolution of tip-splitting
microstructures is not affected by the selected mole fractions. Rather, the evolution of the
microstructure depends on the imposed melt supersaturation, expressed as ∆ = (cl,eq

B −
cl

B)/(c
l,eq
B − cs,eq

B ), where cl
B is the initial concentration in liquid phase. Lastly, all the

parameters used in our numerical simulations are given in Table 1.

Table 1. Dimensionless parameters for the present study.

Description Parameter Value

Partition coefficient k 0.25
Discretized grid space ∆x =∆y 1.0 × 10−7 m
Domain size Nx× Ny 1000× 1000
Interface width ε 4.0 × 10−7 m

Melt supersaturation ∆ =

(
cl,eq

B −cl
B

cl,eq
B −cs,eq

B

)
0.50

The evolution equations for the phase-field is given as

τε
∂φα

∂t
= ε

(
∇ · ∂a(φ,∇φ)

∂∇φα
− ∂a(φ,∇φ)

∂φα

)
− 1

ε

∂w(φ)

∂φα
− ∂Ψ(T, µ, φ)

∂φα
− λ, (2)

where λ is a Lagrange multiplier so that the local constraint ∑N
α=1 φα = 1 is fulfilled. The

gradient energy term reads as,

εa(φ,∇φ) = ε
N,N

∑
α,β=1

γαβ[ac(qαβ)]
2|qαβ|2, (3)
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where qαβ models the surface energy of the evolving phase boundary and γαβ is the
interfacial energy per unit area of the α/β interface. Here, to simulate a tip-splitting
microstructure, an isotropic interfacial energy is imposed using ac(qαβ) = 1. Interfaces
with finite interfacial anisotropy and having an underlying four-fold cubic symmetry are
modeled by the expression

ac(qαβ) = 1− δαβ

(
3∓ 4

|qαβ|44
|qαβ|4

)
, (4)

where |qαβ|44 = ∑d
i=1(q

4
i ) and |qαβ|4 = [∑d

i=1(q
2
i )]

2. The strength of the anisotropy of
the α − β phase or grain boundary is given by the parameter δαβ. In general, phase
transformation in alloy solidification is driven by both heat and mass transport. However,
since these processes occur at significantly different time scales, for the present study, the
conduction of heat in the system is treated as isothermal, wherein the domain temperature
T in Equation (2) is assumed to be constant throughout the system and thereby plays
no role in the temporal evolution of the microstructures. The term w(φ) represents the
multiobstacle potential. Now, the evolution equation for the chemical potentials can be
expressed as

∂µ

∂t
=

[
N

∑
α=1

h(φα)
∂c(µ)

∂µ

]−1

×
{
∇ ·

(
M(φ)∇µ− Jat − q

)
− cα(µ)h

′
(φα)

∂φ

∂t

}
. (5)

In the above equation, the mass flux on the right-hand side has contributions from
diffusion due to the gradient in the chemical potential and the interface mobility Mij(φ).
Additionally, with an imposed magnitude of 0.06, the term q represents the conserved noise
in the bulk liquid phase, and the anti-trapping current Jat compensates the solute-trapping
effect due to an enlarged interface in our phase-field model. This effect can be negated
through the anti-trapping current; see Choudhury and Nestler [26] for more details. All
terms in Equations (2) and (5) are explicitly defined by Choudhury and Nestler [25,26].
Lastly, while Equations (2) and (5) are numerically solved in space via a finite difference
discretization, the time derivative follows an explicit Euler scheme. Finally, the current
numerical algorithm is parallelized via message passing interface (MPI) to distribute the
computing task on multicore high-performance architectures.

3. Results and Discussion
3.1. Tip-Splitting Microstructures

Initiated at the grain boundary, we first investigate the temporal evolution of a mor-
phological pattern, wherein the planar solidification front transforms into a ramified tip-
splitting microstructure in a supersaturated melt under isothermal conditions; see Figure 1.
Here, we perform the numerical simulations in a two-dimensional domain of 1000 × 1000
numerical cells, with the space discretization ∆x = 1.0 × 10−7 m. In addition, the in-
terface width is given as ε = 4× ∆x, such that the equilibrium diffuse-interface profile
encompasses eight grid points in the numerical domain. Furthermore, on the left and right
side of the domain walls, the periodic boundary condition is imposed for the phase and
concentration fields. At the top boundary, the Neumann boundary condition is applied for
both the fields.

In a supersaturated melt of composition ∆ = 0.50, and during the initial stages, the
interface remains planar and advances slowly toward the liquid region. As shown in
Figure 1, with the accumulation of solutal fields ahead of the solid–liquid interface at the
groove pit, the planar interface loses its stability and undergoes the well-known Mullins–
Sekerka instability [8], which states that the stability of a solid–liquid interface is governed
by the critical wavelength and the extent of constitutional supercooling in the bulk. When
compared with the grain centers, the instabilities at the grain boundary amplify at a faster
rate into primary ridges. We also notice that parts of the grain centers not immediately
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adjacent to the grain boundary remain featureless and undistorted. Afterwards, while
the shape of the instability across the domain depends on whether it decays or grows,
the initial morphological instability from a liquid groove always coarsens. As a ridge is
developed near a grain boundary, the solute is laterally rejected outwards, leading to the
formation of secondary depressions. Nevertheless, these primary ridges evolve into a
periodic array of hills and later transform into a ramified dendritic network, depending
upon the anisotropy in the solid–liquid interfacial energy. Analogous to the present
observation, the correlation between grain boundaries and the formation of cellular arrays
was reported in the experimental work of Noël et al. [10]. It was suggested that the
surface undulations and cell alignment along the grain boundary, typically observed
during the initial stages, give way to a flat, regular arrangement of cells. Moreover, in
the present scenario and as depicted in Figure 1, the dynamic evolution of the interface
instabilities is simulated with isotropic solid–liquid energy such that random tip-splitting
structures are observed. The simulated non-planar tip-splitting microstructures are widely
known as seaweed structures, which were originally observed in several experimental and
phase-field investigations [1,2,12,13,29]. While the columnar dendrites are directionally
dependent with a steady-state dendritic shape, the ramified microstructures in Figure 1
are considered as solidification patterns without any orientational order. Only from a
morphological point of view these tip-splitting microstructures look like the degenerate
tips in a directionally solidified dendrite [30].

Figure 1. Temporal evolution of a tip-splitting microstructure in a supersaturated melt of composition
∆ = 0.50. The primary ridges developed at the grain boundary groove amplify into split structures
along with the propagation of hillocks across the two solid grains. The combined influence of
constitutionally supercooled alloy melt near the solid–liquid interface and isotropic interfacial energy
promote the formation of a tip-splitting morphology. Here, the magenta and orange colors refer to
the two distinct solid grains, and blue color represents the liquid phase, respectively.

Depicted in Figure 2a–c, it is important to note that the fundamental and repeating
characteristic of a seaweed structure is the successive and continuous splitting of the tips.
Herein, a local competition between the preferred crystal growth direction and the presence
of strong concentration gradients results in the repeated splitting of the leading tip into
two parts. In Figure 2a, when growth conditions are imposed for which a planar interface
just becomes unstable, a zone of supercooled liquid exists ahead of the planar interface,
which causes the interface to become unstable and to form a perturbed shape. As the
threshold value of the interface velocity is exceeded, the lateral diffusion of solute reduces
the solute concentration at the cell tip. Subsequently, with progressive solidification, this
sequential process is repeated, and thereafter, a complex fractal-like dense microstructure
is generated. Similar to the diffusion-limited growth of isotropic crystals [2,12,13], the
formation of seaweed patterns is inherently related to the low anisotropic properties of the
solid–liquid interface. Nevertheless, the absence of anisotropy promotes an uninhibited,
omnidirectional growth via irregular branching and splittings of an evolving interface [24].
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Figure 2. (a–c) Phase-field isolines illustrating the development of a tip-splitting microstructure from
a unidirectionally solidified solid–liquid interface. Morphological instabilities evolve with time to
undergo successive branching at the tip. Sequential steps to generate a seaweed microstructure:
Initial morphological instabilities→ amplification of tips→ tip-splitting event. Isolines with various
colors represent different simulation timesteps.

3.2. Effect of Groove Shape

Grain boundary grooves develop along a solidification front whenever bicrystal or
polycrystal grains are in close contact with an alloy melt. Since the grain boundary groove
region initiates pattern formation, in this section, we study the role of groove shapes on the
morphological development of instabilities during alloy solidification. Figure 3 depicts the
temporal inception of a ridge-shaped instability near a groove pit for different R0, where R0
is the ratio between solid–solid γgb and solid–liquid interfacial energies γsl. As shown in
Figure 3, we observe that an increase in the ratio R0 amplifies the growth of the instability
adjacent to the grain boundary groove region. As the solidification of the solid–liquid
interface commences from an initial configuration, the imposed surface energy modifies
the groove shape, which in turn assists in the temporal development of ridges into tip-
splitting microstructures. With increasing solid–liquid interfacial energy contribution, i.e.,
for decreasing R0 , and as shown via Figure 4, we also notice that a shallow groove shape
promotes the constrained growth of humps such that the instability height decreases as a
function of simulation time. This behavior qualitatively agrees with previous experimental
and phase-field studies [7,31], where the role of a grain boundary groove on the initiation of
morphological instabilities during alloy solidification was discussed in detail. Furthermore,
the stability analysis by Coriell et al. [32] also provided a theoretical background. It was
reported that the groove pit depth determines the transient amplification of the ridges, and
the main role of a grain boundary is to provide an initial perturbation based on the local
concentration gradients at the pit region. Therefore, the formation of an instability near the
grain boundary groove and the initiation of perturbations across the solid grains is largely
controlled and influenced by the chosen surface energies at the trijunction. Nonetheless,
for the limiting case R0 → 0, as the grain boundary energy contribution diminishes, we
expect the development of an instability to be completely inhibited.
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Figure 3. Effect of groove shape on the morphological development of primary ridges near a grain
boundary. An increase in the ratio R0, where R0 is the ratio between solid–solid γgb to solid–liquid
interfacial energies γsl increases the local amplification of the ridge shaped instability. In contrast, a
shallow groove due to an increase in the solid–liquid interfacial energy contribution (decreasing R0)
hinders the growth of the instability near the groove pit region. Various colored isolines represent
different simulation timesteps.
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Figure 4. Ridge height as a function of simulation time for different groove shapes (different R0). An
increase in the ratio R0 assists the morphological development of ridge-shaped instability near the
grain boundary groove region.

3.3. Effect of Interfacial Anisotropy

In this section, we briefly study the role of interfacial anisotropy on pattern formation,
and the various morphologies that arise from an unidirectionally solidified interfacial front
are depicted in Figure 5. Here, we impose a four-fold interfacial anisotropy in solid–liquid
energy formulation such that the strength of anisotropy of an α/β interface is given by the
parameter δαβ; for expression and implementation, see Ref. [25]. As shown in Figure 5,
we observe that the imposed strength of anisotropy controls the direction as well as the
morphology of the microstructure. While δαβ = 0.0 generates a disoriented tip-splitting
structure, an increase in the anisotropic strength δαβ promotes the formation of steady-
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state columnar dendrites. In general, the local competition of bulk and interfacial forces
determines the transition of a planar interface into a ramified pattern. Due to the presence
of significant surface energy anisotropy, the absence of frequent tip splitting is noticed
for δαβ > 0.01. As reported in our previous study [28], the presence of a grain boundary
promotes an inter-dendritic growth competition among converging dendritic networks,
which in turn influences the texture as well as the structural stability of single-crystal alloys
in high-temperature applications.

Figure 5. Reconstructed simulation screenshots illustrating the role of interfacial anisotropy on
pattern formation. With an increase in the anisotropic strength δαβ, the tip-splitting microstructure
translates into an array of columnar dendrites.

3.4. Analytical Criterion for Tip Splitting

From the aforementioned simulations, it is evident that for a tip-splitting morphol-
ogy, the stability ranges exist over a wide range of growth conditions, and the solidifica-
tion patterns evolve into dendrites or seaweeds depending upon the imposed interfacial
anisotropy [33]. However, one of the major drawbacks in the literature is that such a
study shows no clarity on the tip-splitting position. Recently, Glicksman [16] proposed
an analytical criterion for the branching mechanism through the Gibbs–Thomson tem-
perature distribution as an active interfacial energy. According to this theory, the sign
of the surface Laplacian of interfacial curvature ∇2

s κ, where κ is the interfacial curvature,
predicts whether the interface moves toward the melt or the crystal. It was reported that a
positive ∇2

s κ represented the growth of the interface, whereas a negative ∇2
s κ promoted

a hindered growth of the interface [16]. Thereupon, the local analysis was proved to be
successful in kinematically determining the rotation points for branching, where the crystal
experienced an accelerated growth. The present section builds on this theory and addresses
the fundamental tip-splitting behavior in seaweed microstructures. In the forthcoming
segments, the expressions for the sharp-interface analytical criterion for a convex profile in
two dimensions is derived and subsequently compared with two-dimensional phase-field
simulations.

Since the main objective of this section is to demonstrate and predict the tip-splitting
phenomenon, similar to the instabilities observed in the Figure 2a, the interface shape is
chosen to be convex and symmetric in order to avoid any mathematical complexity. To
begin with, the analytical criterion for a two-dimensional surface is determined in the
following manner. Let f (x) be the equation of a parabola in a two-dimensional domain,
given as

f (x) = −α(x− h)2 + p, (6)

where α, h, and p are the scaled dimensionless parameters controlling the width and the
position of the parabola. In the present study, h = 500 and p = 250, and α is taken as 0.02.
Let us begin the calculation of the analytical criterion ∇2

s κ, starting with the expression of
interfacial curvature κ(x), for a two-dimensional convex interface,

κ(x) =
f ′′(x)

(1 + f ′(x)2)
3
2

. (7)
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Now, the gradient of the interfacial curvature along the arc length s can be written as

∂κ

∂s
=

∂κ

∂x
∂x
∂s

, (8)

∂κ

∂s
=

1√
1 + ( ∂y

∂x )
2

∂κ

∂x
. (9)

Let the above equation be termed as g(x); thus,

g(x) =
1√

1 + ( ∂y
∂x )

2

∂κ

∂x
. (10)

Finally, in order to calculate the surface Laplace, the surface divergence of the gradient
along the arc length is taken. Using Equation (10), we obtain

∇2
s κ =

∂g(x)
∂x

∂x
∂s

=
1√

1 + ( ∂y
∂x )

2

∂g(x)
∂x

. (11)

The above derivation can be rewritten by substituting f (x) from Equation (6) into
Equation (7) as

∇2
s κ =

576α5(x−h)2

(1+4α2(x−h)2)4 − 24α3

(1+4α2(x−h)2)3√
1 + 4α2(x− h)2

. (12)

The positions along the x-direction for which the analytical criterion is exactly zero
are given by

x =
2hα±

√
5

5
2α

. (13)

As shown in Figure 6, Equation (12) represents the analytically predicted tip-splitting
position for a convex crystal–melt interface. Herein, we observe that the sharp-interface cri-
terion∇2

s κ for α = 0.02 has two positive regions at x < 490 × 10−7 m and x > 510 × 10−7

m, whereas the negative region lies in between 490 × 10−7 m < x < 510 × 10−7 m.
During solidification, and as represented with a red dot in Figure 6, the minimum at
∇2

s κ = −0.000191 starts to evolve toward the solid in a hindered manner. In contrast,
we notice that the two maxima at ∇2

s κ = 4.6× 10−5 (black dots in Figure 6) shall accel-
erate toward the opposite direction in order to generate the foremost point. Therefore,
the tip-splitting region is predicted where the interface undergoes a hindered growth,
and it begins when the analytical criterion passes through zero. The form of the plot in
Figure 6 is a direct comparison with the normal flux reported by Glicksman [16], where the
solid–liquid interface evolved accordingly to undergo systematic branching. Nonetheless,
having derived the analytical positions for a tip-splitting event, in the next section, we
systematically compare with our phase-field results.
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Figure 6. Calculated sharp-interface analytical criterion for α = 0.02 as a function of the grid position.
The positive and negative regions indicate the crest and the trough positions during a tip-splitting
event. The forked region lies between the ∇2

s κ < 0 region, whereas the two tips start to evolve at the
∇2

s κ > 0 positions.

3.5. Comparison between Sharp-Interface Analytical Criterion and Phase-Field Simulation

In the present section, two-dimensional phase-field simulations are performed to
comprehend and subsequently validate the analytically derived tip-splitting position. As
shown earlier and in previous studies [29,33], crystal–melt interfaces with weak anisotropies
evolve into tip-splitting microstructures in a unidirectionally solidification setup. Similar
to previous sections, the domain size as well as the boundary conditions are considered to
be the same; i.e., on the left and right side domain walls, the periodic boundary condition
is imposed for the phase and concentration fields. At the top boundary, the Neumann
boundary condition is applied for both the fields. In order to have a direct comparison with
the sharp-interface criterion, the initial condition is a convex crystal–melt interface profile
with δαβ = 0.005 as given by Equation (6), and the temporal evolution of the solid–liquid
interface is shown in Figure 7 via the red isolines. At t = 130 × 10−3 s, the red isoline
in Figure 7 depicts the formation of a crest and trough, which in turn indicates that the
evolving crystal–melt interface has undergone tip splitting. The projection of Figure 6
(dashed blue line) in Figure 7 (solid red line) further reveals that the interface evolves into
a crest where the analytical criterion is positive, while the negative ∇2

s κ corresponds to
a hindered forked region. In Figure 7, it can be seen that this segment now proceeds in
the opposite direction toward the crystal, compared with the two hillocks developed on
either side, when∇2

s κ passes through zero. Such positions are known as Laplace or rotation
points; i.e., the sign of the analytical criterion ∇2

s κ reverses [24]. As derived earlier, the
interface positions where the analytical criterion is exactly zero are given by Equation (13),
and a direct comparison with the phase-field result also shows a convincing agreement
with the splitting positions in Figure 7. Further comparisons with different α are included
in the supplemental material. The present analysis agrees in spirit with Kesseler, Koplik,
and Levine [34,35], where a geometrical approach successfully proved that the interfacial
curvature at the tip decreases with time, and finally, a tip-splitting event is initiated once
the interfacial curvature at the tip passes through zero. Additionally, a sharp-interface
criterion for side branching in anisotropic dendrites was reported with similar remarks [17].
Here, the evolution of a convex instability was tracked, wherein the difference between
the time-dependent curvature and the curvature of a steady-state crystal was plotted to
present different scenarios for the generation of side branches.
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Figure 7. The temporal formation of crests, at x = 490 × 10−7 m, x = 510 × 10−7 m, and the forma-
tion of a trough at 490 × 10−7 m < x < 510 × 10−7 m exhibit the tip-splitting phenomenon from a
two-dimensional phase-field simulation (red isolines). The initial interface profile in accordance with
Equation (6) is also illustrated. A direct comparison with the analytically obtained positions (blue
dashed lines) reveal that both tips are generated in the positive regions of Figure 6, whereas the split
region is determined by the negative region of the interface. The left and right arrows respectively
indicate the ∇2

s κ and the grid positions.

In general, the magnitude of fluxes plays an important role in the formation of tip-
splitting microstructures. A recent study by Mullis [20] found the magnitude of tangential
flux and location of the first perturbation to be consistent at high undercoolings. For a
solid–liquid interface profile, where the interfacial curvature varies non-linearly with its arc
length, the gradients developed parallel to the interface contribute toward the generation of
an inflection point, especially at the tip region. However, as these fluxes are proportional to
the interfacial curvature, they recede significantly away from the tip, where the bulk fluxes
are dominant. The surface accelerates due to cooling and retards by virtue of heating; a
combination of such effects creates the development of an inhibited interface at the negative
∇2

s κ region, facilitating the branching process at the predicted position. In other words, the
initiation of the cusped region transpires when ∇2

s κ turns negative. The concave portion
of the interface in Figure 7 also indicates some sort of solutal sink along the U-shaped
interface. Finally, the two tips that are triggered by means of strong fluxes multiply into
several tip-splitting events during the later stages of the simulation and produce a classic
seaweed microstructure.

While we have discussed the initiation and the mechanism of a tip-splitting event, the
absence of such instabilities is also observed when a sphere is considered as an initial condi-
tion; see Figure 8. For a sphere with an isotropic interfacial energy, the curvature-dependent
analytical criterion is defined by the absence of crest and trough regions. Likewise, with
such an initial condition, the sphere evolves consistently without any tip-splitting events,
and the simulated isotropic spherical seed in Figure 8 is in excellent agreement with the
sharp-interface theory. Lastly, while the role of lattice anisotropy is investigated in the up-
coming section, the role of discretization spacing is discussed in detail in the supplementary
material.
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Figure 8. (a,b) Simulation screenshots and phase-field isolines for an isotropic spherical seed. As the
interfacial curvature varies linearly with its arc length, the absence of tip splitting is also captured.
This phenomenon is in complete accordance with the sharp-interface analytical prediction, which is
defined by the absence of crest and trough regions. The color bar illustrates the phase-field according
to the legend embedded below the simulation snapshots. Left to right simulation frames, as well as
the phase-field isolines, indicate the evolution of the spherical seed with time.

3.6. Effect of Lattice Anisotropy

In the present section, the effect of lattice anisotropy on our numerical results is
discussed in detail. In order to accurately analyze the tip-splitting phenomenon and
minimize the pinning effect of the underlying lattice on the solid–liquid interface, we
systematically compare the equilibrium shapes of a spherical crystal seed from the phase-
field simulation with its corresponding shape in the sharp-interface theory [36,37], which is
expressed in the Cartesian coordinates as

x = r0

[
f (θ, ϕ) sin(θ) cos(ϕ) +

∂ f (θ, ϕ)

∂θ
cos(θ) cos(ϕ)− ∂ f (θ, ϕ)

∂ϕ
sin(ϕ)/ sin(θ)

]
, (14)

y = r0

[
f (θ, ϕ) sin(θ) sin(ϕ) +

∂ f (θ, ϕ)

∂θ
cos(θ) sin(ϕ) +

∂ f (θ, ϕ)

∂ϕ
cos(ϕ)/ sin(θ)

]
, (15)

z = r0

[
f (θ, ϕ) cos(θ)− ∂ f (θ, ϕ)

∂θ
sin(θ)

]
, (16)

and,

f (θ, ϕ) = 1 +
4δe

αβ

1− 3δe
αβ

[
cos4(θ) + sin4(θ)(1− 2 sin2(ϕ) cos2(ϕ))

]
. (17)

Here, (θ, ϕ) are the spherical angles along the normal direction to the solid–liquid
interface. Since our study is focused on two-dimensional simulations, we restrict ourselves
by comparing the equilibrium shapes along the x− y plane only. Furthermore, in the above
equation, δe

αβ represents the effective anisotropic strength of the solid–liquid interface,

given as δe
αβ = r10/r11−1

r10/r11+1 , where r10 and r11 are the radial distances from the origin to the
solid–liquid interface along the y axis, and along the x = y line, respectively, from the
phase-field simulation.

Next, the equilibrium shape obtained from our phase-field study is first initialized with
a two-dimensional seed of radius r0 = 45 × 10−7 m. In addition, the melt supersaturation
∆ = 0.8 is selected such that the bulk phases are in equilibrium, and the solid phase
would neither shrink nor grow with time. As shown in the earlier section, the tip-splitting
microstructures are widely observed for δαβ < 0.01, and thereby, we have considered two
different anisotropic strengths, δαβ = 0 for the isotropic case, and δαβ = 0.005 for weakly
anisotropic interfaces. Figures 9 and 10 depict the equilibrium shapes from the phase-field
simulations, and an excellent agreement with the obtained sharp-interface profiles for
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two different cases is observed. Henceforth, from the the above analysis, we emphasize
that the grid or lattice anisotropy has a minimal effect on the crystal–melt shapes, which
quantitatively illustrates the accuracy of our phase-field results. Nevertheless, for the sake
of further investigating the role of lattice anisotropy, direct comparisons for simulations
with strong anisotropic strengths and different crystal radii have been discussed in detail
in the supplementary material.
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Figure 9. For an energetically isotropic interface δαβ = 0, the simulated solid phase with radius
r0 = 45 × 10−7 m shows a complete agreement with the sharp-interface theory. Here, the obtained
effective anisotropy δe

αβ = 0.0001 shows negligible effect from the underlying lattice on our simulated
crystal shape.
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Figure 10. For a weak anisotropic solid–liquid interface, δαβ = 0.005, a direct comparison with the
sharp-interface equilibrium shape shows excellent agreement, and the obtained effective anisotropy
δe

αβ = 0.0045 shows a minute variation when compared with the imposed value.

4. Conclusions

In the present work, we have extensively discussed the unidirectional solidification
of tip-splitting microstructures through the phase-field modeling approach. Here, the
formation as well as the temporal evolution of morphological instabilities along a solid-
ifying interface as a result of constitutional supercooling near the solid–liquid interface
is simulated. At first, we have shown that the presence of grain boundaries in bicrystal
alloys promotes ridge-shaped morphological instabilities near the grain boundary grooves.
The convex instabilities across the solidification front consequently amplify and develop
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into a tip-splitting microstructure for energetically isotropic interfaces. With an increase in
the ratio R0, the role of the groove shape on the amplification of ridge-shaped instabilities
near a grain boundary is demonstrated to be qualitatively in agreement with previous
studies. Next, we have studied the tip-splitting phenomenon in a microstructural pattern,
whereby the sharp-interface analytical criterion operates as the focal point for analyzing
and predicting the tip-splitting position. The tip-splitting phenomenon builds upon the
previous experimental and theoretical studies, and it successfully provides the regions for
tip splitting for the first time.

The analytically obtained tip-splitting position is dynamically validated via perform-
ing two-dimensional phase-field simulations. Furthermore, the advancing interface tries to
split in the same region as evaluated analytically. As a consequence of heating and cooling,
the interface starts to evolve via forking between the positions, i.e., where the ∇2

s κ passes
through zero. The solidifying interface amplifies into the melt as a crest where ∇2

s κ > 0,
and it concurrently evolves as a trough where ∇2

s κ < 0. Moreover, since the present
mechanism is curvature dependent, the absence of tip-splitting events is also illustrated
for a sphere, where the interfacial curvature varies linearly with its arc length. The effect
of lattice anisotropy on the crystal–melt interfaces is also investigated, where we have
successfully compared the equilibrium shapes from the phase-field simulations with its
corresponding shape in the sharp-interface theory. In the end, through various numerical
simulations and validation studies, we conclude by suggesting that through the present
analytical criterion, a tip-splitting phenomenon is deterministic and predictable vis-á-vis
the local interfacial curvature of the crystal, which should vary non-linearly with its arc
length.
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