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Abstract 

The ambitious Net Zero aspirations of Great Britain (GB) require massive and rapid 
developments of Variable Renewable Energy (VRE) technologies. GB possesses 
substantial resources for these technologies, but questions remain about which VRE 
should be exploited where. This study explores the trade-offs between landscape impact, 
land use competition and resource quality for onshore wind as well as ground- and roof-
mounted photovoltaic (PV) systems for GB. These trade-offs constrain the technical and 
economic potentials for these technologies at the Local Authority level. Our approach 
combines techno-economic and geospatial analyses with crowd-sourced ‘scenicness’ 
data to quantify landscape aesthetics. Despite strong correlations between scenicness 
and planning application outcomes for onshore wind, no such relationship exists for 
ground-mounted PV. The innovative method for rooftop-PV assessment combines 
bottom-up analysis of four cities with a top-down approach at the national level. The 
results show large technical potentials that are strongly constrained by both landscape 
and land use aspects. This equates to about 1324 TWh of onshore wind, 153 TWh of 
rooftop PV and 1200-7093 TWh ground-mounted PV, depending on scenario. We 
conclude with five recommendations that focus around aligning energy and planning 
policies for VRE technologies across multiple scales and governance arenas. 
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1. Introduction and overview 
The United Kingdom (UK) has passed the 2008 Climate Change Act (UK Government, 
2008), which sets a legally binding target to reduce indigenous greenhouse gas (GHG) 
emissions by 80% relative to 1990 levels by 2050. The Act was subsequently amended 
in 2019 to a 100% reduction target, i.e. net-zero GHG emissions, by 2050. The Climate 
Change Committee (CCC) has developed four pathways to demonstrate the ways in 
which the UK energy system can meet this target (CCC, 2020b). The four pathways have 
in common a further strong uptake of Variable Renewable Energy (VRE) technologies, 
especially solar photovoltaic (PV) as well as onshore and offshore wind – increasing from 
a total generation of 88 TWh in 2020 to 514 TWh in 2050.  

Solar PV has seen strong growth in recent years, from just 0.04 TWh of electricity 
generation in 2010 to 13 TWh in 2019; of this, about 7 TWh is from systems larger than 5 
MW and mainly ground-mounted and 5 TWh from smaller rooftop systems (BEIS, 2020b). 
Whilst new small systems below 5 MW are no longer eligible for Feed in Tariffs since 
2019, existing plants continue to be supported in this way. Instead, in 2020 the Smart 
Export Guarantee (SEG) scheme was launched, which obliges licensed electricity 
suppliers (with over 150,000 customers) to offer small scale low-carbon generators a price 
per kWh of exported electricity (BEIS, 2020b). Current levelized costs of electricity 
(LCOEs) for these small-scale PV systems in a UK context are about 0.12 £/kWh (BEIS, 
2020b), which is below the household electricity price of about 0.19 £/kWh (ofgem, 2021) 
and therefore economically incentivizes self-consumption.    

Onshore wind will also undoubtedly play a crucial role in the future UK energy 
system, having increased from around 7 TWh of generation in 2010 to over 32 TWh in 
2019 (BEIS, 2020b). This development was briefly slowed by a lack of political support 
for this technology, but the return to eligibility for the Contract for Difference (CfD) 
subsidies reverses this decision (DCLG, 2017). In addition, onshore wind has very high 
approval ratings amongst the public: a YouGov survey in 2018 found general support for 
onshore wind technology (YouGov, 2018). Overall support for renewable energy reached 
its highest ever level of 85% in 2018, increasing from 79% in 2017 (BEIS, 2018).  

Despite this general approval, onshore wind proposals can encounter local 
opposition from planning authorities and local communities, especially if they are not 
directly engaged in the planning processes (Boudet, 2019; Fast et al., 2016). Visual 
impact is one of the central arguments from local residents against onshore wind 
installations (Molnarova et al., 2012; Petrova, 2016; Wolsink, 2018), although concern is 
reduced when people live further away from turbines (Betakova et al., 2015; Wolsink, 
2018) and in contexts where the affected people have previous experience with wind 
energy (Schumacher et al., 2019; Sonnberger and Ruddat, 2017; van der Horst, 2007; 
Warren et al., 2005).  

In order to reflect this lack of local support, studies devoted to resource 
assessments for onshore wind have recently tried to consider non-technical constraints 
and trade-offs between technologies (Höltinger et al., 2016; Jäger et al., 2016; McKenna 
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et al., 2021c). But so far this has been focussed on wind, with little attention to ground-
mounted PV systems.  

The background analysis for the CCC study (Vivid economics and ICL, 2019) 
assessed feasible potentials for onshore wind and solar PV in the UK. Rather than 
consider all suitable locations and assess technical and economic feasibility of installing 
these technologies, this study pre-filtered the geographical potential1 to exclude possibly 
unsuitable areas based on the quality of the wind resource. This means that the resulting 
potentials of 215-479 TWh for onshore wind and 35 TWh for rooftop PV (cf. Table 7) can 
be considered rather conservative (further comparisons with other studies are given in 
section 4.f). 

The CCC scenarios are also strongly affected by land use competition between 
renewable energy technologies. This is a well-known and researched topic, especially but 
not only in relation to bioenergy and food. For example, Konadu et al. (2015) previously 
delineated this with respect to land use for bioenergy in a UK context. But land use 
competition was apparently not a focus of the (Vivid economics and ICL, 2019) study and 
has not been widely analysed for VRE technologies in the UK. Price et al. (2018) recently 
analysed how land and water restrictions can shape the least cost design of Great 
Britain’s power system in 2050, but their analysis did not engage stakeholders or draw on 
empirical data to develop their land use constraints.  

The present study takes this background as the starting point to analyse the 
potential future contributions of VRE technologies to the long term decarbonization target 
in the UK, in the context of the CCC (CCC, 2020b) pathways of 25-30 GW onshore wind 
and 75-90 GW solar in 20502. We analyse and economically assess the technical potential 
for onshore wind, ground-mounted and rooftop PV with a detailed geospatial analysis of 
the whole of Great Britain (GB). We further explore the implications of aesthetic landscape 
impact and land-use competition on these potentials and costs within a quantitative 
framework. This paper thereby builds on and complements two related studies: firstly, in 
(McKenna et al., 2021c) we analysed the trade-off between scenicness and onshore wind 
costs at the national level; secondly, in Price et al. (2020) we explored the system-level 
impacts on the power system of this new dataset, for which the detailed methodology and 
spatially-disaggregated results are shown in the present paper. The key contributions and 
objectives of this paper are as follows: 

1. Test the significance of any link(s) between scenicness data and VRE planning 
outcomes for both onshore wind and ground-mounted PV; 

2. Provide a spatially disaggregated dataset of existing installed capacity and 
estimated resource potentials at Local Authority level across GB; 

                                                 
1 Potential definitions can be found in McKenna et al. (2021b). 
2 With average annual full load hours from 2015-2019 of 2200 and 900, this equates to about 55-66 TWh 

and 68-81 TWh wind and solar respectively (BEIS (2020b). 
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3. Develop and apply a new combined top-down/bottom-up method for rooftop PV 
potentials at national scale; 

4. Explore the impacts of scenicness and land competition for the three VRE 
technologies and derive insights relating energy and planning policy. 

The paper is structured as follows. Section 2 introduces the employed scenicness dataset 
and establishes the statistical relationship between this and the outcome of planning 
applications for wind and solar plants. Section 3 presents the methodology for the 
resource assessments of onshore wind, ground- and rooftop PV. Section 4 then presents 
the results both at national and local levels, with a focus on the implications of scenicness 
and land-use competition. Section 5 is devoted to a discussion of the method and the 
results, and section 6 concludes with policy implications.    

2. Scenicness and planning applications for renewable energy plants 
This section presents the “Scenic or Not” dataset in section 2.a before analyzing the link 
between scenicness and planning applications for wind and PV in section 2.b. 

a. Scenic or Not dataset 
Here we analyse the association between the scenicness and the planning outcome of 
energy projects using scenic ratings from Scenic-Or-Not 
(http://scenicornot.datasciencelab.co.uk/) as a measure of scenicness and detailed data 
about renewable energy applications in Great Britain from the Renewable Energy 
Planning Database (BEIS, 2014). Users of Scenic-Or-Not have rated random geotagged 
photographs taken at 1km2 resolution for the whole of Great Britain on an integer scale of 
1–10, where 10 indicates “very scenic” and 1 indicates “not scenic”. The database 
contains 1,536,054 ratings for 212,212 images. We use the mean scenicness values for 
all photos rated three times or more taken at the locations after the energy project has 
been implemented.  

The Renewable Energy Planning Database (BEIS, 2014) includes the date of the 
application, operator, information on the site, project attributes (e.g. technology and 
capacity), and the outcome of the application (granted or rejected) for plants larger than 
150 kW. This database has previously been employed by Roddis et al. (2018) and Harper 
et al. (2019) in a similar manner, but without any scenicness data.   

For onshore wind energy the mean success rate is about 0.6 (514 project 
applications have been rejected and 740 have been granted for the time period 2001-
2017) while for the ground-mounted PV projects the mean success rate is about 0.8 
(1,275 project applications have been granted and 282 have been rejected). Moreover, in 
order to account for highly-sensitive areas, we compute for all locations in our database 
the distance to the closest Special Areas of Conservation (SAC), distance to the closest 
Special Protection Areas (SPA), distance to the closest Ramsar areas (wetlands), 
distance to the closest National Park, and distance to the closest airport.  
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The results for onshore wind are taken from (McKenna et al., 2021c); here we apply 
the same method to explore ground-mounted PV systems. For more details on the data 
see (McKenna et al., 2021c).  

b. Logistic regression of planning applications for wind and solar 
We assume a standard model specification for the planning outcome for a project 

application � at year �: 

Pr�D�,	 = 1 | S, �;  α, β, �, �� = F�� + � ��,	 +  �′��,�  +  �� !1" 

where #�,	 denotes the discrete dichotomous variable taking a value of 1 if the application 

decision is positive, otherwise 0; α is a constant term and γ is the year fixed effect; ��,	 is 

the scenicness value; and ��,� denotes controls for project characteristics such as 

technical and geographical attributes. We assume that the error term is identically and 
independently Extreme Value type I distributed (i.i.d. EV I) and estimate the model 
coefficients using maximum likelihood, viz. logit regression (McFadden, 1974). We are 
particularly interested in the value of �, as if the scenicness is not related to the application 

decision then � = 0, whereas � < 0 if the scenicness value is negatively related to the 
planning outcome. 

Table 1 shows the results of the logit. The upper panel (a) reports the estimation 
results for the wind energy projects and the lower panel (b) for the ground-mounted PV 
projects. Model 1 includes only the scenicness value and in the following models 2-4 we 
sequentially introduce the year fixed effects (to account for possible year-specific 
structural trends such as business cycles, inflation rate and political environment), the 
project size, and the environmental variables, respectively. For the wind energy projects 
the estimated odds ratios associated with the scenicness value are below one (estimated 
coefficient are negative) and highly significant. Model 4 is our preferable specification. 
This model suggests that for every one unit increase in the scenicness value, we expect 
a 0.22 decrease in the log-odds of a positive application decision, all else being equal. 
For the solar PV projects the estimated odds ratios associated with the scenicness value 
are close to one and never significant, suggesting that the impact of the ground-mounted 
solar panels on landscape aesthetics is less pronounced.  

We have performed a number of sensitivity analyses. First we have assumed that 
the error term is i.i.d. normally distributed, viz. probit regression. The results of this probit 
regression model are very similar to the preferable model (4). We have also estimated 
logit models on a subsample when the number of votes is larger than 11 (10% percentile), 
15 (25% quartile) and 25 (median), but the coefficients remain unchanged. The estimation 
results for these models are available upon request from the authors. 
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Table 1: Logit regression results (odds-ratio) for onshore wind (McKenna et al., 2021c) and ground-mounted PV 

project planning outcomes 

 Model 1 Model 2 Model 3 Model 4 

 (a) Wind energy projects 

Scenicness value 0.844*** 0.796*** 0.768*** 0.778*** 
 (0.033) (0.035) (0.036) (0.038) 
Number of turbines   1.225*** 1.222*** 
   (0.032) (0.032) 
Capacity (MW)   0.936*** 0.936*** 
   (0.008) (0.008) 
log distance to the closest     1.171*** 
     National Park      (0.068) 
log distance to the closest airport    0.984 
    (0.114) 
log distance to the closest Special     0.972 
     Protection Areas (SPA)    (0.044) 
log distance to the closest Special     0.874** 
     Areas of Conservation (SAC)    (0.054) 
log distance to the closest Ramsar areas     1.040 
    (0.064) 
Year fixed effect no yes yes yes 
Constant 2.930*** 162.290*** 133.568*** 98.401*** 
 (0.518) (167.191) (138.216) (111.718) 

Number of observations 1,252 1,252 1,252 1,252 
AIC 1,683 1,461.83 1,371.13 1,370.11 
Log likelihood -839.40 -717.92 -846.94 -665.05 

     
 

 

(b) Ground-mounted PV projects 

Scenicness value 0.973 0.972 0.972 0.970 
 (0.050) (0.051) (0.051) (0.052) 
Capacity (MW)   0.987 0.987 
   (0.008) (0.008) 
log distance to the closest     1.107* 
     National Park      (0.066) 
log distance to the closest airport    1.232** 
    (0.111) 
log distance to the closest Special     0.971 
     Protection Areas (SPA)    (0.093) 
log distance to the closest Special     0.755*** 
     Areas of Conservation (SAC)    (0.061) 
log distance to the closest Ramsar areas     1.027 
    (0.085) 
Year fixed effect no yes yes yes 
Constant 4.985*** 3.344** 3.510** 1.843 
 (1.004) (1.857) (1.952) (1.257) 

Number of observations 1,558 1,558 1,558 1,558 
AIC 1,480 1,434 1,434 1,423 
Log likelihood -738.16 -709.29 -708.02 -697.44 

Note: the dependent variable is a discrete dichotomous variable taking a value of 1 if the application decision 

is positive, otherwise 0; ***, **, * indicate that estimates are significantly different from zero at the 0.01, 0.05 

and 0.10 levels, respectively; standard errors are in parentheses. AIC is Akaike’s information criterion.  
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3. Resource assessment method for VRE technologies  
The method employed in this paper involves first determining the geographical potential, 
followed by the technical one, which is economically assessed (McKenna et al., 2021b). 
This procedure involves the stepwise removal of unsuitable (negative) areas from total 
available areas in a Geographical Information System (GIS), leaving suitable (positive) 
areas or polygons (cf. Figure 1). The standardized parts of the method are summarily 
reported with references to literature for details, and the focus in this section is on the new 
aspects of the methodology. This section presents the method for ground-mounted PV in 
section 3.a, rooftop PV in 3.b and onshore wind in 3.c. Section 3.d explains the LCOE 
calculation, 3.e is about matching multiple spatial datasets for VRE capacities in the UK 
and 3.f presents the analysed scenarios.  

a. Ground-mounted PV  
For ground-mounted PV, the geographical potential is determined as follows. The 
maximum terrain slope that guarantees the technical feasibility of a ground-mounted PV 
plant is 15° (Borgogno Mondino et al., 2015; Carrión et al., 2008; Perpiña Castillo et al., 
2016). Thus, all areas steeper than 15° are excluded using the OS Terrain 50 data 
(Ordnance Survey, 2018). All protected areas such as Ramsar areas, Special Areas of 
Conservation (SAC), Special Protection Areas and the National Parks are excluded. The 
National Parks data are extracted from the (Office for National Statistics, 2020) and the 
other protected areas are retrieved from the Joint Nature Conservation Committee (JNCC, 
2016). Urban areas are extracted from Open Street Map (OpenStreetMap Contributors, 
2020). High quality agricultural land is extracted from different websites depending on the 
country: for England, the data come from the Ministry of Agriculture, Fisheries and Food 
(1988), for Scotland, Scotland's soil (1981) and for Wales, it is the Welsh Government 
(Welsh Government, 2017). Agricultural lands of England and Wales are graded one to 
five with one the highest quality and five the poorest. The scale is different for Scotland; 
they are graded from one to seven with one being the highest quality and seven the 
poorest. Based on the description of each level of agricultural land for each country, the 
levels are matched into a single classification (from 1 to 5) across Great Britain. Thereby, 
the Scottish Classes 3 and 4 were equated with the Subgrades 3a and 3b in the English 
and Welsh classification, and Classes 6 and 7 were equated with Grade 5. In order to 
investigate the land use competition between the agriculture land (for food or bioenergy) 
and ground-mounted PV, two different types of restriction are considered: a low restriction 
in which the lands with grade 1 and 2 are excluded, and a high restriction in which lands 
with grade 3 are excluded as well (cf. scenarios in section 2.f).   

The technical potential for ground-mounted PV, EPVG, is determined with solar 
radiation data SAF “SARAH” from PVGIS (European Commission, 2018), which gives the 
yearly average global irradiance on a horizontal surface (W/km2), H, for the whole of Great 
Britain, as long-term averages for 2005-2016. Multiplying by the hours in a year h (i.e. 
8760) yields the annual irradiance in kWh/m2. The data is converted from raster to vector 
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in order to intersect with the geographical potential. Optimal inclinations for all parts of the 
world are taken from PV GIS (European Commission, 2019), for GB this varies from 30° 
in the south to 40° in the north. It is assumed that all modules are oriented south facing. 
Hence using (Mainzer et al., 2014) yields the relative solar irradiation on the inclined 
surface relative to a horizontal surface (inclination of 0°), meaning a maximum of 17% 
increase from the horizontal at 30-40°. The Packing Factor (PF) considered to account 
for space between modules is based on the median value from (Ong et al., 2013) of 51%. 
The final step is a Performance Ratio (PR) of 85% and efficiency η of 15% based on 
(Hoogwijk, 2004; Mainzer et al., 2014), which corresponds to polycrystalline silicon, the 
most dominant technology on the market (Gangopadhyay et al., 2013). Equation 2 defines 
the technical generation potential:  

&'() = 117% ∙ ℎ ∙ . ∙ / ∙ 0 ∙ 12 ∙ 13             (2) 

with A the total area [m2].  

b. Rooftop PV  
For rooftop PV, the geographical potential is determined based on a combination of the 
bottom-up approach based on (Mainzer et al., 2017), and the top down method based on 
(Mainzer et al., 2014), with different data sources to transfer the method from a German 
to British context (see Gassar and Cha (2021) for a review of these methods). The bottom-
up approach employs Bing Maps and Open-Street-Map alongside machine learning to 
recognize rooftop geometry and features. The method has a high resolution at the 
individual building level, but cannot be employed for the whole of the UK for computational 
reasons. Instead the four cities of Leeds, Glasgow, Birmingham and London are chosen 
based on expert discussions about the diversity of the building stock here (Liddiard, 2021). 
To connect the bottom-up method from (Mainzer et al., 2017) with the top-down approach, 
the following variables are employed: land area A is total area in m2 in a specific land use 
category; building footprint area s is the plan outline of a building in m2; and roof area U 
is the total roof area in m2 (if a flat roof, equal to the footprint area). Furthermore, a 
dimensionless ratio r is found for the four cities between the land area of each land use 
category i and the total footprint area of the buildings that fall into this land use type s. For 
this, the following land-use categories from CORINE land cover (EEA, 2012) at a 
resolution of 100 m for 2012 are employed (the update to 2018 was not yet available at 
the time this study): 111: continuous urban fabric; 112: discontinuous urban fabric, 121; 
industrial or commercial unit. The ratio r is calculated according to Equation 3. 

4 = 5

6
                   (3) 

The assumption is made that, as 83% of the UK population lives in cities (DEFRA, 2019), 
that the majority of buildings and rooftop potentials are also in cities and therefore this 
method combining bottom-up and top-down approaches is highly transferable.  

The usable roof area U is determined through the cosine of the footprint area, for 
each of the 72 azimuth/tilt combinations obtained from the method in (Mainzer et al., 
2017). A utilization factor is not required as the bottom-up methodology already delivers 
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partial (i.e. suitable) roof areas (Figure 8 shows some of these), excluding chimneys, 
obstructions etc. Equation 4 defines the useable roof area U per azimuth/tilt class i: 

7� = 0 ∙ 4 ∙ 89

:;< !=9"
                  (4) 

where pi is the proportion of class i, and vi is the tilt of the roofs in class i.  
The technical potential energy yield EPVR is determined in the same manner as for 

ground-mounted PV above, see Equation 5, whereby the yields are looked up in (Mainzer 
et al., 2014) and irri is the relative irradiance for class i. 

&'(> = ℎ ∙ . ∙ / ∙ 12 ∙ ∑ 7� ∙ �44�
@A
�BC                       (5) 

The LCOEs are calculated with the method in section 3.d below. 

c. Onshore wind  
The approach to assessing the technical potential for onshore wind is very similar to one 
applied in (McKenna et al., 2014) and (McKenna et al., 2021c), with the results adopted 
from the latter source. The geographic potential is determined by excluding unsuitable 
areas for onshore wind, as follows. Based on Digital Elevation Models, regions with a 
slope over 20° are excluded, with slopes calculated in the same way as for ground-
mounted PV (cf. section 3.a). Unsuitable areas are then excluded based on CORINE 
(EEA, 2012) data at 100 m from 2012. For this reason, the CORINE data is combined 
with OSM data to improve the coverage in and around urban areas. There is no general 
guidance on the buffer distances to housing and this differs between countries (McKenna 
et al., 2021b), but some guidance suggests 350 m for England, 2 km for Scotland and 
500 m for Wales, which are the assumptions adopted (Barclay, 2012). Otherwise the 
assumptions relating to offset distances are based on Table 4.2 in (McKenna et al., 2014). 
The combination of the two datasets, OSM and CORINE, is based on the following 
precedence relationships. The basic approach is to prioritize OSM data where this is 
available, i.e. if both CORINE and OSM refer to the same polygon with (different) 
information, OSM takes precedence. This is based on the following steps, whereby 
positive and negative areas represent those suitable and unsuitable for wind energy 
respectively: 1. OSMPositive – CLCPositive; 2. CLCPositive – OSMNegative; 3. Unite (1) and (2); 
and 4. combine with OSM total area to obtain the land use categories (where available). 

The technical potential for onshore wind energy is then calculated for the 
determined geographic potential area, again based on the method in (McKenna et al., 
2014). This involves combining the land-use data with annual average wind speeds at 5 
km2 resolution and 10 m above ground for 2001 to 2006 inclusive from the UK Met Office 
(UK Met Office, 2018). These wind speeds are extrapolated to hub heights, and converted 
from average wind speeds to average wind speed distributions based on the roughness 
length of the land-use category (Silva et al., 2007). Finally, the energy generation for 
specific turbines is simulated based on the product of the integral of the wind speed 
distribution and the turbine’s power curve. The most economical turbine for a specific 
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location is determined by minimizing the LCOEs (section 3.d), based on a database of 
techno-economic turbine characteristics.  

d. Levelized Costs of Electricity (LCOE) 
The Levelized Costs of Electricity (LCOEs) are calculated in the same way for each 
technology, based on the following Equation 6: 

DEF& =
GH∙∑ IJ

!KL9"J
M
JNK

∑ OJ
!KL9"J

M
JNK

                 (6) 

where n is the lifetime of the technology, Io the investment [£], Mt the annual costs in year 
t [£/year], Et energy produced in year t [MWh/year] and i the interest rate. Table 2 below 
gives an overview of the economic assumptions for the studied technologies. To reflect a 
private investor’s perspective, i is assumed to be 8%.  
 

Table 2: Economic assumptions for VRE technologies (BEIS, 2020d; Open Energy Information, 2017; Philipps and 

Warmuth, 2019; Vartiainen et al., 2020) 

Technology Investment 

(£/kW) 

O&M costs O&M cost units Lifetime 

(years) 

Ground-mounted PV 500 8.00 
(£/kW.year) 

20 

Rooftop PV 1130 9.57 20 

Onshore wind 1050 0.02 £/kWh 20 

 

e. Matching multiple local datasets of VRE capacities   
In order to underpin the disaggregated geospatial analysis carried out in this paper, 
multiple different databases relating to the installed capacities of VRE technologies were 
combined. The table “Renewable electricity by local authority” (BEIS, 2020c) contains all 
VRE generation on a Local Authority level for the whole of the UK. The Renewable Energy 
Planning Database (BEIS, 2014) mentioned above only includes larger VRE plants, i.e. 
those requiring planning permission and therefore over 150 kW rated capacity (BEIS, 
2014). A further table, “Sub-national-total-final-energy consumption…” (BEIS, 2020e) 
includes disaggregated electricity demand figures at the LA level. Linking these databases 
is not trivial, for example because the first one contains nine-digit LA codes and the 
second contains X-Y coordinates and in some cases postcodes. These two databases 
were therefore linked on the basis of LA codes and the postcodes, by employing an online 
batch lookup tool (Ordnance Survey, 2021). The matched database is employed for the 
results analysis in section 4 and is provided as supplementary material to this article 
(McKenna et al., 2021a). 
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Figure 1: Schematic of the approach of this paper, showing techno-economic and GIS analysis of 3 VRE technologies 
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f. Accounting for scenicness and definition of scenarios 
In this paper we define eight high-level scenarios that are intended to explore the solution 
space under consideration. The result from section 2 above demonstrates that the 
scenicness only has a statistically significant correlation with the planning outcomes for 
onshore wind (and not ground-mounted PV). It is also well researched that the landscape 
visual impact of rooftop PV is minimal. In the German, Swiss and French regions of the 
Upper Rhine Region, for example, 75% of those surveyed stated that the distance to a 
rooftop PV system is not relevant for their acceptance, which also reflects the wider 
acceptance literature (Schumacher et al., 2019). Therefore we consider four scenarios for 
the onshore wind potential, based on gradually reducing the technical potential by 
quartiles of the scenicness distribution. The ground-mounted PV potential is delineated 
into two scenarios based on high and low restrictions to reflect agricultural land quality. 
Due to its limited interaction and land use competition with other technologies, the rooftop 
PV scenario merely reflects the technical potential. An overview of these eight scenarios 
is given in Table 3 below.  
 

Table 3: Overview of eight analysed scenarios for onshore wind, ground-mounted and rooftop PV potentials 

Scenarios Wind onshore Ground-mounted PV Rooftop PV 

 Rationale Definition Rationale Definition Rationale Definition 

1 Technical potential Scenicness <=10 
Technical 
potential 
with high 
restriction 

Only 
agricultural 

land 
categories 4-
5 are feasible Technical 

potential 

All partial 
rooftop 
areas 

across 72 
inclination 

and azimuth 
categories 

2 75% scenicness Scenicness <=5.80 

3 50% scenicness Scenicness <=4.67 

4 25% scenicness Scenicness <=3.67 

5 Technical potential Scenicness <=10 
Technical 
potential 
with low 

restriction 

Only 
agricultural 

land 
categories 3-

5 are feasible 

6 75% scenicness Scenicness <=5.80 

7 50% scenicness Scenicness <=4.67 

8 25% scenicness Scenicness <=3.67 

 

4. Results and discussion 
This section presents the results, starting with high-level national results in the eight 
scenarios in section 4.a, followed by results at the Local Authority level in section 4.b. 
Section 4.c then explores the regional scenicness impacts on onshore wind before section 
4.d analysis the land-use competition between areas for ground-mounted PV and onshore 
wind.   

a. Overall results in context 
Overall the results show some large technical potentials for the three technologies 
analysed, as shown in Table 4 and Figure 2 below. This equates to about 1324 TWh of 
onshore wind, 153 TWh of rooftop PV and 1200-7093 TWh ground-mounted PV. These 
results relate to total areas of 11-80 million km2, 1,190 km2 and 15-93 million km2 for 
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onshore wind, rooftop and ground-mounted PV respectively. Consecutively removing the 
most-scenic locations based on quartiles of the distribution reduces the onshore wind 
potential to 962 TWh, 586 TWh and 267 TWh up to and including scenicness thresholds 
of 5.8, 4.67 and 3.67 respectively (McKenna et al., 2021b).  
 
Table 4: Overall results showing total available area and generation potential in the eight scenarios shown in Table 3 

Scenarios Rooftop 

PV area 

(km2) 

Rooftop 

PV (TWh) 

Wind area 

(Mkm2) 

Wind 

potential 

(TWh) 

Ground-

mounted PV 

area (Mkm2) 

Ground-

mounted PV 

potential (TWh) 

1 

1190 153 

81 1324 

93 7093 
2 35 962 

3 22 586 

4 11 267 

5 81 1324 

15 1051 
6 35 962 

7 22 586 

8 11 267 

 
The LCOEs for these technologies vary, from 0.12 £/kWh for rooftop PV, increasing 
rapidly to over 0.20 £/kWh, around 0.06 £/kWh to 0.10 £/kWh for ground-mounted PV and 
upwards of 0.04 £/kWh for onshore wind (Figure 2).  
 

 
Figure 2: Cost curves for the three VRE technologies (the curve for ground-mounted PV (high) extends to about 7000 

TWh, 0.11 £/kWh). Note the current generation for onshore wind, ground and rooftop PV is about 32, 7 and 5 TWh 

respectively (BEIS, 2020c, 2014). 
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b. Results at the Local Authority level 
This section explores the results at the Local Authority level, based on the classification 
from 2019 with 382 distinct regions (ONS, 2020). Figure 10 in the Appendix provides an 
overview of the 382 regions along with their official names, whereas Figure 11 and Figure 
12 show their distribution across GB and London respectively. Whilst the area of these 
regions varies greatly (i.e. from 2 to 26,000 km2), their average size is about 640 km2 – 
with the exception of seven very large regions, most have areas under 5,000 km2, with 
321 under 1,000 km2.  

Starting with onshore wind, Figure 3 shows the generation in 2018 (left) alongside 
the technical potential (middle) and the potential at the 75% scenicness quartile (i.e. 
<=5.8,  right). The data is normalised by the total area of each LA, in GWh/km2, and plotted 
on two separate logarithmic axes. The left panel of the figure clearly shows the existing 
distribution of onshore wind generation across GB, with the highest values coinciding with 
the best wind resource in the south west (e.g. Cornwall and Devon), mid-Wales (e.g. 
Powys, Ceredigion, Carmarthenshire), northern England (e.g. Northumberland) and most 
of Scotland, especially the north-west parts. Conversely, the south east and urban areas 
have relatively low potentials, with the exception of several regions on the east coast and 
to the north-east of London. The technical potential in the middle panel broadly reflects 
similar trends, with the contrast between rural and urban locations accentuated.  

 

 
Figure 3: Onshore wind: generation in 2018 (left, (BEIS, 2020c, 2014)), technical potential (middle) and potential at 

scenicness <=5.8 (i.e. the 75% quartile, right), in units of GWh/km2. The data is normalised by the total area of each 

LA and plotted on two separate logarithmic axes. 

Moving to a situation with the 25% most scenic locations excluded, as in the right-hand 
panel, reveals some interesting differences. In generally, exactly the regions with the 
largest potentials are those affected by the reduction in available area, confirming that the 
windiest locations are also the most scenic (McKenna et al., 2021c). The overall potential 
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is reduced and also spread more evenly across the remaining area, with less variation 
between the regions. 

Figure 4 shows the ground-mounted PV generation in 2018 (left), the high 
restriction scenario (middle) and low restriction scenario (right). Again the data is 
normalised with the total area of the region and displayed on logarithmic axes. Clear from 
the left hand panel is the distribution of existing ground-mounted PV systems, which are 
mainly in lowland areas in England and Wales (black indicates no generation in these 
figures). Most of Scotland, the mountainous areas of Wales and England, and 
predominantly urban areas all have little or no generation from this technology. The middle 
panel (i.e. high restriction scenario) in Figure 4 shows potentials that are still generally 
higher than the current generation in the left panel, i.e. above 1 GWh/km2. In the right 
hand panel (low restirction scenario) the technical potential is very high indeed, in many 
places exceeding 10 GWh/km2. Note that the highest resources for ground-mounted PV 
partly coincide with those for onshore wind in Figure 3. This will be further explored in 
section 4.d. 
 

 
Figure 4: Ground-mounted solar PV: generation in 2018 (left, (BEIS, 2020c, 2014)), technical potential in high 

restriction scenario (middle) and low restriction scenario (right) respectively, in units of GWh/km2. The data is 

normalised by the total area of each LA and plotted on two separate logarithmic axes. 

Figure 5 shows the results for rooftop PV, with the generation in 2018 on the left and the 
total technical potential on the right. Once more, these results are displayed per unit of 
the total region’s area and scaled on a logarithmic access. The left hand panel illustrates 
the concentration of existing rooftop PV capacity in primarily urban and/or lowland areas, 
with only a small number of regions having no installed capacity. The right hand panel 
demonstrates a substantial remaining potential for this technology, again concentrated in 
urban areas of GB – clearly visible are London, Birmingham, Manchester, Newcastle and 
Glasgow. 
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Figure 5: Rooftop solar PV: generation in 2018 (left, (BEIS, 2020c, 2014)) and total technical potential (right), in units 

of GWh/km2. The data is normalised by the total area of each LA and plotted on two separate logarithmic axes. 

c. Scenicness impacts on regional wind potentials and costs 
In a parallel study we demonstrated the general link between low-cost wind resources 
and locations with a high scenicness at the national level (McKenna et al., 2021c). In 
Figure 6 this relationship is explored for selected Local Authorities, chosen based on the 
following criteria. Firstly, the regions account for at least 1% each of the total GB onshore 
wind potential. Secondly, the generation potential in these regions is reduced to at most 
98% of this total at scenicness levels up to and including 9. The figure therefore shows 
one point for each scenicness level from 3 to 10, whereby excluding lower values is due 
to the very small sample sizes. At each point, the LCOEs should be understood as the 
mean cumulative ones, i.e. for all scenicness levels up to and including the present one.  
 It is clear from Figure 6 that there is correlation between the size and quality (as 
measured by LCOEs) of onshore wind resources in a region and the scenicness values. 
Removing the locations with the highest scenicness values also removes the lowest cost 
potential. For some regions, this correlation is stronger than in others – in fact in the 
Shetland and Orkney Islands the curves are roughly horizontal. This is probably related 
to an overall very high wind speed/good wind resource throughout these whole regions, 
and therefore little impact, other than the obvious reduction in potential, when removing 
the most scenic locations. On the other hand, the locations with the strongest correlation 
are those such as Eden with the most varied topography and (therefore) wind speeds. In 
none of these regions does the removal of the most scenic locations reduce the LCOEs. 
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It seems that this general trend is consistant across all LAs, with regional variations related 
to land use cover as expected. 
 

 
Figure 6: Mean cumulative LCOEs and cumulative generation potential at discrete scenicness thresholds from 3 to 10 

(as shown by points) for selected Local Authority regions in GB (for selection criteria, refer to the text)  

 

d. Scenicness and land competition between PV and wind 
The combination of PV and wind technologies into hybrid power plants (HPPs) is a well-
established concept. WindEurope (2019) identifies diverse motivation for employing 
these, including optimized network use, high capacity factors, more stable output etc., 
and review nine examples worldwide. Two types of HPPs are distinguished, namely those 
where both plants share the same substation and grid connection, and those where the 
PV panels are integrated with the wind park. The latter are especially relevant in the 
context of land use competition because they imply a loss in output due to shared land 
usage. Whilst ground-mounted PV and onshore wind can be closely integrated on the 
same area of land, their combined capacity density (in MW/km2) is lower than the sum of 
their individual capacity densities due to required offsets between the technologies. Love 
(2003) demonstrated this for a highly-renewable US energy system, showing the trade-
off between these two technologies when installed to meet a pre-specified demand. In 
addition, there is a shadowing effect of wind turbines on ground-mounted PV systems, 
resulting in 1-8% generation losses (Deltenre et al., 2020; Mamia and Appelbaum, 2016).  
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 For these reasons, the overlap between the potentials for onshore wind and 
ground-mounted PV for selected Local Authorities are shown in Figure 7. These regions 
are selected based on two criteria, firstly that the overlap at the 75% scenicness threshold 
(5.8) is at most 80% of the overlap at the 100% threshold, and secondly the overlap in the 
latter case exceeds 35% of the total region’s area. Furthermore, Figure 7 only shows the 
low restriction PV scenario, as the low PV scenario both exhibits low potentials and 
generally low overlaps below 20%.  
 

 
Figure 7: Overlap between onshore wind and ground-mounted PV at different scenicness values for selected Local 

Authorities based on criteria detailed in the text (rural and urban denomination is based on predominant land cover 

category in CORINE (EEA, 2012))  

In the low restriction PV scenario, many mostly urban areas have very high overlaps, as 
can be seen for the urban areas to the right of Figure 7. The rural regions in this figure 
are focussed in Scotland (five left-hand bars), where the large area and good wind 
resource combine to around 45 TWh of generation potential. This is some of the most 
economic onshore wind potential in GB, located towards the bottom-left of the cost curve 
in Figure 2. Stepping down the four scenicness thresholds consecutively but differently 
reduces the overall generation potential and overlap in these regions. In rural regions the 
overlap varies from about 5-80%, whereas the urban regions show a range of about 10-
100%. Overall, the areas with the best onshore wind resource have some of the largest 
overlaps, meaning inevitable trade-offs between technologies and criteria in the context 
of constrained land availability. 
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5. Critical discussion and validation of methodology  
One of the main novelties in the presented method is the integration of bottom-up with 
top-down approaches to rooftop PV estimations. Whilst the BU method in Mainzer et al. 
(2017) has already been validated, the extension developed here has not been. This 
section is devoted to the validation of the new hybrid top-down/bottom-up method for 
rooftop PV potential estimation, beginning with a case study for the city of Leeds and 
followed by a comparison of the results for the whole Yorkshire and Humber region, 
including 15 LA districts. 

In order to give a deeper insight into the results and to validate these with existing 
plants and studies, we focus on Leeds as one of the cities employed to link bottom-up 
and top-down approaches. Figure 7 shows the results of the bottom-up method in four 
panels, whereby a detailed map of city with wards can be found in the Appendix. Panel 
a) shows the locations of partial rooftop areas and existing PV plants (from Stowell et al. 
(2020)), both displayed as point clouds, with a cutout of several collocated points in east 
Leeds. Panel b) shows the CLC land use categories for the same area, whereas panels 
c) and d) plot the technical potential (in kWh/m2) and LCOEs (£/kWh) respectively.  

 

 
Figure 8: Results for PV rooftop and existing plants in Leeds: a) locations of partial rooftop areas and existing PV 

plants (from Stowell et al. (2020)), b) CLC land use categories c) technical potential (in kWh/m2) and d) LCOEs 

(£/kWh)  

Despite several studies having assessed the national potential for onshore wind and 
rooftop PV (Table 7), relatively few peer-reviewed studies analyze individual cities. Many 
studies are undertaken on a consultancy basis and are published as technical reports. In 
addition to those studies cited in Table 7Fehler! Verweisquelle konnte nicht gefunden 

werden., for example, the Mayor Of London has published a Solar Action Plan which 
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targets 2 GW of rooftop PV by 2050, but the Plan does not include any detailed resource 
assessment (Greater London Authority, 2018). In addition, Calderdale Metropolitan 
Borough Council (2018) published a Renewable and Low Carbon Energy Plan including 
details of renewable resources. One limitation of these one-off studies for individual cities 
is that the methodology often differs, which makes comparisons challenging. Against this 
background, an extensive study by AECOM (2011) covering large parts of Yorkshire and 
the Humber is particularly relevant. This report details resource assessments for the 
whole portfolio of renewable energy (heat and power) technologies across multiple Local 
Authorities in the region. For this reason of broad coverage, this source is employed here 
for the purpose of validation.  

The AECOM (2011) study assumes for domestic buildings that 25% of the existing 
stock and 50% of new build developments represent technically accessible resources. 
Due to the low rate of new build (typically 1-2%) the average here is nearer to 25% than 
50% (giving a factor of 2-4 compared to the technical potential). Further, commercial and 
industrial buildings in the existing stock are assumed to be 40% and 80% usable 
respectively, with more modest assumptions of 5-30% for new builds. In a second step, 
module sizes are predefined for these three building types of 2 kW, 5 kW and 10 kW on 
domestic, commercial and industrial buildings respectively (this results in a further factor 
of 2-3 compared to the technical potential). In a third step, the economically viable 
resource is assessed based on assumed proportions of the building stock: 5-40% in 2010 
and 18-45% in 2016 (this step introduces a factor of 2-10 relative to the technical 
potential). In order to make the results comparable to this paper, the results from AECOM 
(2011) are therefore multiplied by a factor of eight (i.e. the product of the previously-
mentioned factors). 
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Figure 9 shows the results of the present paper for rooftop PV in comparison to 

those from AECOM (2011), whereby the left axis displays the generation potential and 
the right axes specifies the ratio between this study and the other study. Whilst there is 
clearly a wide variation in the rooftop-PV potentials in different cities/regions, the 
agreement between the two sources is reasonably good. In other words, the ratio of the 
two is close to unity in most cases, with a mean of 0.97 and a standard deviation 0.30).  

Despite this overall generally good agreement between the two studies, there are 
some large deviations in individual cases. In order to explore this phenomenon, we 
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analysed the land use distributions in each of the 24 cities shown in 

 
Figure 9. Due to having 13 land use categories (MHCLG, 2020) and only 24 

observations (cities), we aggregated land use categories in order to reduce the number 
of model coefficients, as shown in Equation 7 below. Table 5 shows the descriptive 
statistics for this dataset. 
   
Vacant land = Undeveloped land  + Vacant 

Commercial land use = CommunityService + IndustryandCommerce + Defense Buildings  

Other = Unknown developed use + Minerals and landfill + Transport and utilities + Outdoor recreation                                  (7) 

Agricultural land and forest = Agriculture + Forest open land and water + ResidentialGardens 

 
Table 5: Descriptive statistics for land use dataset and 24 cities 

 Mean Std. Dev. Min. Max. 

Deviation 0.97 0.30 0.62 1.99 
Residential land (%) 1.85 1.79 0.15 8.43 
Commercial land use (%) 1.99 2.06 0.12 10.01 
Vacant land (%) 1.73 1.67 0.08 7.82 
Agriculture land and forests (%) 83.26 13.21 34.99 97.16 

Other land use  11.17 7.76 2.41 38.74 

Notes: Deviation is defined as the ratio between the results of the present paper for rooftop PV in comparison to those 
from AECOM (2011); Commercial land use includes community service buildings, industry and commerce buildings 
and defense buildings; vacant land includes underdeveloped land and vacant land; other land use includes outdoor 
recreation facilities, transport infrastructure, landfills and unknown use. Number of observations is 24.  
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It should be noted here that, by definition, the sum of land use shares for each city is 100. 
This means that coefficients for all land use categories (N) cannot be estimated, but only 
for N-1. Hence we employ the land use category “vacant” as the basis and present the 
regression results in Table 6. 

 

 
Figure 9: Comparison of results of this study for rooftop PV with those of AECOM (2011) (left hand axis) and the ratio 

of the two (right hand axis) 

The interpretation of these results is straightforward. Firstly, it should be noted that only 
the coefficient associated with residential land use is significant. The coefficient 
associated with commercial land use is only borderline significant. The other coefficients 
are not significantly different from zero. The estimation results therefore suggest that a 
higher share of the residential land use is associated with a lower deviation (ratio) 
between the study results. In other words, the proportion of residential land use is a 
strongly influencing factor for the correspondence (or otherwise) between the two 
methods.  

Here we also briefly put the results of this paper into the context of previous studies 
with a similar focus. The lack of research into the potential for ground-mounted PV in a 
national context means that we focus on onshore wind and rooftop PV. Table 7 below 
shows these potentials from eleven other sources, whereby not all cover both 
technologies. It should also be noted that the scope differs slightly between the UK, GB 
and the British Isles, as does the potential assessed, between technical and feasible. 
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The range of results for onshore wind in terms of technical potential are 1274-4700 
TWh for the UK, and the range for rooftop PV is 44-540 TWh. In both cases, the present 
study, with an estimated 1324 TWh and 153 TWh for wind and rooftop PV respectively, 
lies well within and towards the lower end of this range. Certainly for the rooftop PV, the 
results it closer to the studies for feasible potential1, especially the recent one from Vivid 

economics and ICL (2019). 

 
Table 6: Regression results for the deviation variable defined in the text 

 (1) 
 Deviation 

Residential land (%) -0.878*** 
 (0.262) 
Commercial land use (%) 0.637** 
 (0.258) 
Agriculture land and forests (%) 0.017 

 (0.160) 
Other land use (%) 0.053 
 (0.178) 
Constant -0.681 
 (16.07) 

Number of observations 24 
R2 0.595 

Notes: Deviation is defined as the ratio between the results of the present paper for rooftop PV in comparison to those 
from AECOM (2011); commercial land use includes community service buildings, industry and commerce buildings and 
defense buildings; vacant land includes underdeveloped land and vacant land; other land use includes outdoor 
recreation facilities, transport infrastructure, landfills and unknown use. Vacant land use is the basis land use category. 
Standard errors are in parentheses. ** p<0.05, *** p<0.01. 

   

Hence the results can be interpreted as well within the range of existing studies and rather 
towards the conservative end for both technologies, notwithstanding minor differences in 
geographical coverage. Further discussion of underlying reasons for differences in results 
can be found in McKenna et al. (2020). 
 
Table 7: Potentials for onshore wind and rooftop PV from selected studies 

Study Onshore wind 

potential (TWh) 

Rooftop PV 

(TWh)  

Geographical 

scope 

Potential 

definition 

Bódis et al. (2019)  44 UK Technical 

UK PMA (2009)  460 UK Technical 

Defaix et al. (2012)  80 UK Technical 

ETSU (1999) 
318 266 (BIPV#) 

UK Total 

accessible 

Vivid economics and 
ICL (2019) 

215-479$ 35$ 
GB Feasible 

MacKay (2008) 4700 115* UK Technical 

Dalla Longa et al. 
(2018) 

1391  
UK Technical 
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Enevoldsen et al. 
(2019) 

2302  
British Isles ‘Socio-

technical’ 

Ryberg et al. (2019) 2262  UK Technical 

EEA (2009) 3961-4409  UK Technical 

(McKenna et al., 2015) 1274  UK Technical 

This study 1324 153 GB Technical 

* South facing roofs only; # Building-integrated PV; $ Based on 37 GW with 950 h FLH and 96-214 GW with 
2240 h FLH for rooftop PV and wind respectively (BEIS, 2020b).  
 

At this point it should also be pointed out that the developed method is based on some 
simplifying assumptions and is therefore not intended as a replacement for detailed local 
resource assessments with better quality data. Indeed, assumptions such as that all 
modules are facing south and relying on 83% of the population living in cities mean that 
the method has weaknesses in specific (e.g. rural) locations. But the key advantage in 
this method is in the broad coverage, as it relies solely on open data that is widely 
available for other countries. In principle, the method is highly transferable to any location 
in the world where both OSM and Bing maps have reasonable coverage, and a land use 
database such as CORINE or equivalent is available.  

6. Conclusions and policy implications 
In this concluding section, we reflect on some of the current issues with RE planning 
across GB and highlight some of the emergent tensions between energy and planning 
policy, before proposing five recommendations for realigning the two in the context of net 
zero. 

British planning policy and the implementation has a significant influence on 
individual energy projects and thus energy pathways more broadly. RE projects are 
subject to decision making across multiple scales and arenas of governance. At the 
national level, divergence of planning responsibilities has resulted in a patchwork of 
approaches across GB’s devolved administrations. Scotland has remained supportive of 
onshore wind with the 2017 Onshore Wind Policy Statement (Scottish Government, 2017) 
and net zero commitments are embedded in the 2020 4th National Planning Framework 
(Scottish Government, 2020). A spatial framework serves to highlight those areas most 
(and least) likely to gain approval based on National Park or National Scenic Area 
designations. Also broadly supportive of onshore wind, Wales has since 2005 considered 
wind proposals in the context of seven ‘Strategic Search Areas’, which are most 
appropriate for onshore wind (Welsh Government, 2005). The 2021 National 
Development Framework (Welsh Government, 2021) supersedes this, replacing area-
based targets with a national target. It includes a presumption in favour of large-scale 
wind energy developments, subject to some constraints. Onshore wind proposals in 
England, however, have since 2015 been heavily restricted by the National Planning 
Policy Framework, which requires projects to be aligned with wind provision set out in 
Local or Neighbourhood Plans, as well as demonstrate additional community backing at 
the point of application (Smith, 2016).  
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At the individual project level, planning decisions for VREs are shaped by local 
contexts and politics. The existence of multiple (often conflicting) stakeholder interests 
means that energy projects and pathways are shaped by conflict and negotiation (Bridge 
et al., 2013; Roelich and Giesekam, 2019). While this may be the case across the whole 
of GB, contentious projects are more likely to find approval when decisions can be 
defaulted to an overarching national policy, as is the case for onshore wind in Scotland. 
Elsewhere, there is a need for pragmatism to reconcile the interests and values of actors 
(Bhardwaj et al., 2019). 

As a relatively incoherent patchwork of policy statements, spatial approaches and 
governance arrangements, the GB energy planning landscape has arguably failed to 
evolve in step with political and cultural attitudes towards RE technologies. While public 
support for onshore wind at a national level has increased significantly over the last 
decade, onshore wind has only really found support in Scotland. However, new net zero 
commitments at the UK level will require planning regimes that are much more coherent 
with energy policy across all jurisdictions in order to provide an enabling environment for 
local energy developments (CCC, 2020b; HoC, 2019).  

The apparent trade-offs between good locations for VRE technologies, scenic 
landscapes and other land uses discussed in this paper suggest the need for realignment 
between planning policy and energy policy across local and national scales. Five key 
issues/recommendations for research and policy can be highlighted in this regard. 

First, while some trade-offs are inevitable, having an overarching national strategic 
vision for land use across GB embedded within planning regimes can provide clarity for 
developers and decision-makers alike. Planning has evolved from being underpinned by 
the notion of the ‘public interest’, and more recently around the similarly ambiguous 
objective of ‘sustainable development’ (Maidment, 2016). Given the specific trade-offs 
highlighted here for scenic landscapes, and interdependencies between land use and 
energy pathways (e.g. bioenergy cropping, forestation), there is a strong argument now 
for planning to be strategically aligned explicitly with net zero objectives (CCC, 2020a). 
This would not eradicate trade-offs of course, but could lend coherence in favouring 
decisions that provide efficient and just GHG mitigation impacts. 

Second, meeting the net zero challenge requires a significant increase in VRE 
penetration and it is generally agreed that a diverse portfolio of technologies will be 
needed to maximise overall RE deployment and reduce the need for additional flexibility 
(CCC, 2019; PÖYRY, 2011). In this context, robust and transparent appraisal of the 
synergies and trade-offs between development options – alongside other land uses – will 
be needed to legitimize support for specific technologies as well as the decision-making 
processes adopted (Rohe and Chlebna, 2021; Smith, 2007).  

A third consideration stems from the increased emphasis among academics, 
policymakers, and innovation agencies on the importance of local contexts as a key part 
of a whole system approach to decarbonisation. The Energy Systems Catapult (2018) for 
example suggests that spatial planning of low carbon developments should be considered 
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(alongside energy network planning and demand-side regulations) within an integrated 
Local Area Energy Planning framework. Understanding the potential for trade-offs across 
different localities will be an important consideration in such frameworks.  

Fourth, it is apparent that decarbonising energy is increasingly a challenge of 
technological integration, rather than only deployment of VREs. As such, decision-making 
around proposed RE projects needs to account for any impacts projects may have on the 
electricity system, e.g. the costs of balancing supply and demand, or the need to constrain 
or store excess VRE generation. The decision-making around trade-offs and synergies 
(through co-location of different technologies, for example) therefore need to take place 
in the context of such whole-system cost assessments (BEIS, 2020a). Future spatial 
modelling work in this space should also seek to move away from levelised cost of 
technologies as a basis for understanding trade-offs. Some inroads in this direction have 
been made in some parallel related work to this article (McKenna et al., 2021c; Price et 
al., 2020).  

Finally, the quality of decision making at any level of governance will be determined 
by the degree to which relevant interests can be taken into account. Such interests include 
the value placed on scenic landscapes – as discussed here – although other factors are 
also likely to play significant roles. In order for local RE development to respond to the 
climate change mitigation imperative, more meaningful engagement with the public is 
needed, particularly in those areas where these potential trade-offs are strongest. This 
could most readily take the form of encouraging best practice (and clarifying the meaning 
thereof) around community engagement as a necessary component of RE project 
proposals (regen and Electricity Storage Network, 2020). Examples of this best practice 
here include promotion of shared ownership, inclusion of community-led organisations 
and wider communities throughout all project stages (rather than just the planning stage), 
and maximisation of local employment opportunities. 

More generally, however, the development of national and local climate assemblies 
in the UK offer replicable frameworks for public deliberation around climate change 
responses  (Climate Assembly UK, 2021; Mellier-Wilson and Toy, 2020). Such fora 
provide valuable mechanisms for opening up discussions about GHG mitigation options, 
as well as the trade-offs these options might have with environmental and social 
outcomes. 
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8. Appendices 
A list and maps of the Local Authority regions employed in this analysis is shown in 
Figures 10, 11 and 12 below. 

 
Figure 10: List of LA regions and codes employed in Figure 11 (ONS, 2020) 
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Figure 11: Map of UK showing numbered LA regions corresponding to the list in Figure 10 (the Shetland Islands are 

cut off in the north-east corner of the map due to space constraints) (ONS, 2020) 
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Figure 12: Detail of LA regions in Greater London, corresponding to those in the list in Figure 10 (ONS, 2020) 

 

 
Figure 13: Map of Leeds city showing city wards for comparison with Figure 7 in the main text 
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