KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

Cramer, Estee Y.; Ray, Evan L.; Lopez, Velma K.; Bracher, Johannes 1; Brennen, Andrea; Castro Rivadeneira, Alvaro J.; Gerding, Aaron; Gneiting, Tilmann 2; House, Katie H.; Huang, Yuxin; Jayawardena, Dasuni; Kanji, Abdul H.; Khandelwal, Ayush; Le, Khoa; Mühlemann, Anja; Niemi, Jarad; Shah, Apurv; Stark, Ariane; Wang, Yijin; ... mehr

Abstract:

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000145738
Veröffentlicht am 04.05.2022
Originalveröffentlichung
DOI: 10.1073/pnas.2113561119
Scopus
Zitationen: 142
Web of Science
Zitationen: 109
Dimensions
Zitationen: 199
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 12.04.2022
Sprache Englisch
Identifikator ISSN: 0027-8424, 1091-6490
KITopen-ID: 1000145738
Erschienen in Proceedings of the National Academy of Sciences of the United States of America
Verlag National Academy of Sciences
Band 119
Heft 15
Seiten e2113561119
Vorab online veröffentlicht am 08.04.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page