KIT | KIT-Bibliothek | Impressum | Datenschutz

Development of Prediction Models for Pressure Loss and Classification Efficiency in Classifiers

Betz, Michael 1; Nirschl, Hermann 1; Gleiss, Marco 1
1 Institut für Mechanische Verfahrenstechnik und Mechanik (MVM), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper presents the development of prediction models for pressure loss and classification efficiency in classifiers. Classifiers belong to one of the most important classification devices in gas particle processing and a fast and accurate determination of pressure loss and cut size is of great interest. The first model developed in this work allows the calculation of pressure loss as a function of geometric and operational parameters. It is based on a number of measured values that are obtained from previous numerical simulations (CFD). The maximum deviation of the model is less than 20% and the model operates in real time. However, the model requires calibration for each type of classifier. The second model for classification efficiency is based on a simplified two-dimensional approach in which the flow profile and particle trajectories are determined exclusively for the area between two classifier blades. The model is applicable for all geometrical and operational parameters and calculates the desired parameters within a few minutes, with a maximum error rate of 25%. In combination, the two models allow for the process optimization of classifiers in complete systems.


Verlagsausgabe §
DOI: 10.5445/IR/1000145744
Veröffentlicht am 04.05.2022
Originalveröffentlichung
DOI: 10.3390/pr10040627
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanische Verfahrenstechnik und Mechanik (MVM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2227-9717
KITopen-ID: 1000145744
Erschienen in Processes
Verlag MDPI
Band 10
Heft 4
Seiten Art.-Nr.: 627
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 23.03.2022
Schlagwörter air classifier; CFD; optimization; classification performance
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page