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Phase-dependent microwave response of a graphene Josephson junction

R. Haller ,1,* G. Fülöp ,1,2 D. Indolese,1 J. Ridderbos ,1 R. Kraft,3,4 L. Y. Cheung,1 J. H. Ungerer,1,5 K. Watanabe ,6

T. Taniguchi ,7 D. Beckmann ,8 R. Danneau ,8 P. Virtanen ,9 and C. Schönenberger 1,5,†

1Department of Physics, University of Basel, Klingelbergstrasse 82 CH-4056, Switzerland
2Department of Physics, Budapest University of Technology and Economics and

MTA-BME Momentum Nanoelectronics Research Group, H-1111 Budapest, Budafoki út 8, Hungary
3Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany

4Institute of Physics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
5Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82 CH-4056, Switzerland

6Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
7International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

8Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany
9Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), University of Jyväskylä FI-40014, Finland

(Received 30 July 2021; revised 18 August 2021; accepted 6 February 2022; published 14 March 2022)

Gate-tunable Josephson junctions embedded in a microwave environment provide a promising platform to
in situ engineer and optimize novel superconducting quantum circuits. The key quantity for the circuit design
is the phase-dependent complex admittance of the junction, which can be probed by sensing a radio frequency
SQUID with a tank circuit. Here, we investigate a graphene-based Josephson junction as a prototype gate-tunable
element enclosed in a SQUID loop that is inductively coupled to a superconducting resonator operating at 3 GHz.
With a concise circuit model that describes the dispersive and dissipative response of the coupled system, we
extract the phase-dependent junction admittance corrected for self-screening of the SQUID loop. We decompose
the admittance into the current-phase relation and the phase-dependent loss, and as these quantities are dictated
by the spectrum and population dynamics of the supercurrent-carrying Andreev bound states, we gain insight to
the underlying microscopic transport mechanisms in the junction. We theoretically reproduce the experimental
results by considering a short, diffusive junction model that takes into account the interaction between the
Andreev spectrum and the electromagnetic environment, from which we estimate lifetimes on the order of
∼10 ps for nonequilibrium populations.

DOI: 10.1103/PhysRevResearch.4.013198

I. INTRODUCTION

For Josephson junctions (JJs), in which the superconduct-
ing electrodes are linked with a short normal-conducting
region, the coherent superconducting interaction is promoted
by so-called Andreev bound states (ABSs) [1]. The material
and geometrical properties of the weak link together with
the superconducting phase difference ϕ across the JJ define
the energy of the ABSs [2]. Their structure and occupation
dynamics determine the inductive and dissipative microwave
response, i.e., the admittance of the JJ [3,4]. In particular, the
inductive response relates to the time-averaged dispersion of
the populated ABSs and reflects the phase dependence of the
supercurrent Is(ϕ) across the junction [5,6], which is known
as the current-phase relation (CPR). However, the dissipative
response relates to the fluctuations in the ABS population
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resulting in temporal changes of the supercurrent [7,8]. The
microscopic source for those dynamics are thermally activated
or microwave induced short-lived ABS excitations [9]. Con-
clusively, the junction admittance, which is the key quantity to
engineer high-frequency Josephson circuits, is highly depen-
dent on the underlying microscopic processes.

The junction admittance can be probed as a function of
phase by embedding a JJ in an radio frequency (rf) SQUID
that couples to a resonator [9–13]. The rf SQUID acts as
a magnetic flux-tunable complex impedance in the circuit
that shifts and broadens the resonate behavior, from which
one can infer the phase-dependent inductive and dissipative
response of the junction [14]. The strong demand for in situ
controllable junctions in microwave applications has raised
the attention to JJs consisting of gate-tunable weak links
[15]. Here, we determine the full complex admittance of a
Josephson weak link made of graphene, which is a two-
dimensional (2D) material with a linear band structure and
excellent gating properties.

Although graphene JJs have already demonstrated their
compatibility in different superconducting high-frequency cir-
cuits, such as bolometers [16,17], transmon qubits [18,19],
and tunable microwave cavities [20], only few experiments
have addressed the determination of their phase-dependent
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FIG. 1. Graphene rf SQUID inductively coupled to a supercon-
ducting transmission line resonator. (a) Optical image of the NbTiN
λ/4-resonator consisting of a meandered coplanar transmission line
with the shorted end (current anti-node) on top, seen also at the
bottom of image (b), and the open end (current node) at the bottom,
shown in the zoom-in. (b) Optical image of the monolayer graphene
(G) Josephson junction (JJ) embedded in an Al loop forming the
rf SQUID. The DC current Iflux creates a flux � inside the loop (blue
line), which allows to phase bias the junction. The inductive coupling
to the resonator induces a small oscillating probe flux δ� (red lines).
The gate voltage Vbg applied on the bottom graphite sheet tunes
the charge carrier density in G. (c) Scanning electron micrograph
and cross-sectional schematics of the hBN-encapsulated G-JJ with
Al side-contacts of width W = 1 μm and length L = 400 nm.

admittance [13,21]. While Ref. [13] has been focusing on
the phase-dependent dissipation of the junction under the
influence of external irradiation and Ref. [21] on the in-
ductive behavior, we here investigate both the inductive and
dissipative response simultaneously by studying the inher-
ent photonic phase-dependent interplay between the sensing
resonator and the graphene JJ. We present a classical,
comprehensive circuit model to infer the full complex junc-
tion admittance from the reflective response of a graphene
rf SQUID coupled to a superconducting microwave resonator
operating at ∼3 GHz. We further translate this to the CPR
and the phase-dependent dissipation as a function of gate
voltage, under consideration of the self-screening effect that
arises due to the finite inductance of the SQUID loop. We
describe our observations within the framework of ABSs and
find remarkable agreement between the experimental results
and the theoretically predicted microwave response of a short,
diffusive junction.

II. DEVICE

The device is presented in Fig. 1 and consists of a graphene
JJ embedded in a superconducting loop, which inductively
couples to a coplanar transmission line (CTL) resonator. The
resonant structure and supply lines are etched into NbTiN
(80 nm) sputtered on an intrinsic Si/SiOx (500 μm/170 nm)
substrate. The meandered CTL shown in Fig. 1(a) is shorted to
ground on one side, and interrupted by a coupling capacitor on
the other. Both of these terminations act as microwave mirrors
of the opposite type, and thereby form a superconducting
λ/4-resonator with a fundamental bare resonance frequency
fbare = 3.098 GHz.

The graphene JJ, shown in Fig. 1(c), is made of a van der
Waals heterostructure consisting of a monolayer graphene en-
capsulated in hexagonal boron nitride (hBN). The lower hBN
layer (47.5 nm) separates the graphene flake from the bottom
graphite gate. A thermally evaporated Ti/Al (5 nm/90 nm)
lead contacts the graphene from both sides [22] and encloses
the junction in a loop, thus forming a graphene rf SQUID,
which is inductively coupled to the current anti-node of the
resonator as illustrated in Fig. 1(b). The galvanic grounding
of the loop defines the reference potential for the gate voltage
Vbg applied on the bottom graphite structure. The DC current
Iflux controls the magnetic flux � inside the loop and therefore
tunes the external phase difference ϕext = 2π�/�0 across
the rf SQUID, where �0 = h/2e is the superconducting flux
quantum with h being the Planck constant and e the elemen-
tary charge. Consider the Supplemental Material (SM) for
details about the device fabrication [23].

In the subsequent experiment we perform reflectance mea-
surements on the port denoted by � in Fig. 1(a) and investigate
the resonant circuit as a function of Vbg and Iflux, from which
we later infer the CPR and the phase-dependent loss of the
graphene JJ.

III. REFLECTOMERTY

The coupled microwave circuit is probed by reflectometry
in a dry dilution refrigerator, in which the device is surrounded
by a permalloy shield. With a vector network analyzer we
measure the complex reflection coefficient � as a function
of probe frequency f and Iflux. We ensure a quasiequilibrium
sensing by setting the probe power to an averaged intracavity
occupation of ∼100 photons, which corresponds to an oscil-
lating probe flux δ� ≈ �0/100 inside the SQUID loop. Ad-
ditionally, we tune the charge carrier density in the graphene
layer by applying a gate voltage in the range Vbg = [−9, 9] V.
The conversion from Vbg to charge carrier density as well
as the measurement scheme and the calibration of the probe
power can be found in the SM [23].

The reflective response at Vbg = 6 V presented in Fig. 2
is exemplary for the whole measurement set. Clear periodic
shifts of the resonance frequency f0 as a function of Iflux can
be observed in Figs. 2(a) and 2(b). We encounter no phase
jumps and relate the external phase ϕext = noddπ (= nevenπ ) to
points of minimal (maximal) resonance frequencies [10,14].
Besides f0, the resonance lineshape also changes as seen in
Figs. 2(c) and 2(d) when comparing line cuts at ϕext = −π

and ϕext = 0. As we will show, both the modulation in f0

and the altered lineshape are the consequence of the phase-
dependent complex admittance of the graphene JJ.

To characterize the JJ from the reflective response, we fit
|�| and arg(�) simultaneously for each combination of Vbg

and Iflux with the complex resonance curve of a loaded λ/4-
resonator expressed according to Ref. [24] as

� =
[

�min + 2 jQ f − f0

f0

1 + 2 jQ f − f0

f0

− 1

]
e jφ + 1. (1)

Thus, we can deduce f0 and assess the broadening of the
resonance curve. The latter is determined by the total quality
factor Q = 1/(Q−1

load + Q−1
i + Q−1

c ), which in turn, consists
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FIG. 2. Flux dependence of the reflection coefficient � at
Vbg = 6 V. (a, b) Colormaps of |�| and arg(�) as a function of
probe frequency f and DC flux current Iflux. The horizontal top
axis represents the conversion to the external phase ϕext across the
rf SQUID. (c, d) |�| and arg(�) at ϕext = [−π, 0] overlaid with
fits to Eq. (1) (solid lines), from which we obtain the resonance
frequency f0, asymmetry angle φ, coupling quality factor Qc and
effective quality factor Qe as listed below:

ϕext f0 φ Qc Qe

−π 3.09755 GHz 0.224 23 400 19 400
0 3.09821 GHz 0.235 23 700 >200 000

of three different dissipation sources: (i) The inverse load
quality factor Q−1

load describes loss generated by the rf SQUID,
(ii) the inverse internal quality factor Q−1

i describes loss in-
herent to the properties of the CTL, and (iii) the inverse
coupling quality factor Q−1

c describes loss to the measurement
environment. Here, Q−1

load and Q−1
i are merged to an effec-

tive quality factor Qe = 1/(Q−1
load + Q−1

i ). Furthermore, we
define �min = (Qc − Qe)/(Qc + Qe) and introduce the angle
φ, which accounts for an asymmetric line shape.

The fits to Eq. (1) at ϕext = −π and ϕext = 0, shown in
Figs. 2(c) and 2(d) as solid lines, reveal an overall shift
of 660 kHz in f0 and a drastic change in Qe, while Qc

and φ remain similar. At ϕext = −π , we obtain Qe = 19 400
and Qc = 23 400, whereas at ϕext = 0, we find Qe > 200 000
and Qc = 23 700. Consequently, the resonator is undercou-
pled (Qe < Qc) at ϕext = −π , but overcoupled (Qe > Qc) at
ϕext = 0, which explains the distinct resonance lineshapes
[25]. Since Qi can be treated as a constant with Qe being a
lower bound, we conclude that Qi > 200 000. This large value
allows us to treat the CTL as lossless (Q−1

i = 0) such that
Qe ≈ Qload. The SM provides further insights to the resonance
curve fitting [23].

The observed flux tunable microwave response in terms of
f0 and Qload is the direct manifestation of phase-dependent
microscopic processes in the graphene JJ [10], which will be
discussed in detail in Secs. VII and VIII within the framework
of ABSs. In the following section we model the electrical
properties of the graphene JJ with lumped elements and ex-
plain their effect on the resonant behavior with the circuit of a
loaded λ/4-resonator.

FIG. 3. Circuit schematic of a rf SQUID coupled to a λ/4 res-
onator. The resonator couples inductively to the rf SQUID with
strength M and connects to the reflectometry setup via capacitance
Cc. The rf SQUID is modeled as a loop with self-inductance Lloop in
series with the JJ, which in turn, is modeled as a variable Josephson
inductance LJ in parallel with a variable shunt resistance Rs. This
forms a variable load impedance Zload, which tunes the reflective
response �.

IV. CIRCUIT MODEL

The inductively coupled rf SQUID acts as a variable load
impedance Zload attached to the resonator, which tunes the
reflective response. We express Zload according to the cir-
cuit schematic depicted in Fig. 3. The rf SQUID is modeled
as a loop with self-inductance Lloop in series with the JJ.
The mutual inductance M quantifies the coupling strength to
the resonator, which is built from a CTL with characteris-
tic impedance Zr . The JJ itself is represented by a variable
Josephson inductance LJ in parallel with a variable shunt
resistance Rs. For this arrangement the load impedance ter-
minating the resonator is detailed in the SM and reads [23]

Zload = ω2M2

jωLloop + (Gs + jBJ )−1 , (2)

where ω = 2π f is the angular frequency, Gs = 1/Rs is the
shunt conductance and BJ = −1/(ωLJ ) is the susceptance.
Note that Y = Gs + jBJ is the complex admittance of the JJ.

The influence of Zload on the λ/4-resonator is twofold:
First, the imaginary part of Zload causes a shift of the resonance
frequency as derived in the SM [23],

δ f0 = f0 − fbare = − 2

πZr
Im(Zload ) fbare, (3)

with respect to the unloaded resonance frequency fbare.
Second, the real part of Zload gives rise to dissipation in the
resonant circuit, which can be expressed according to the
derivations presented in the SM as [23]

Qload = πZr

4 Re(Zload )
. (4)

From Eq. (2) one recognizes that the junction variables,
Gs and BJ affect both Re(Zload ) and Im(Zload ). Consequently,
δ f0 and Qload would need to be considered simultaneously to
evaluate them. However, it turns out that, due to the obtained
relatively large Qload values, one is allowed to set Gs → 0
in Eq. (3), which simplifies the relation as shown in the
SM to [23]

δ f0 ≈ 8

π2

M2

Lp(LJ + Lloop)
fbare, (5)

where Lp is the parallel LC-equivalent inductance of the
λ/4-resonator. This means that the shift of the resonance
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FIG. 4. Evaluation of the CPR. (a) Colormap of the resonance frequency shift δ f0 = f0 − fbare with fbare = 3.098 GHz as a function of
gate voltage Vbg and external phase ϕext . (b) δ f0 at Vbg = 6 V as a function of ϕ and ϕext , respectively overlaid with the fits to Eq. (5) (solid
lines), from which the CPR is deduced. (c) Presents the CPR at Vbg = 6 V, corrected for the self-screening of the SQUID (blue) and uncorrected
(dashed), in comparison with the sine function (dotted). In panels (b, c) arrows illustrate the correction introduced by the nonlinear mapping
from ϕext to ϕ. (d) Corrected CPR inferred from panel (a) as a function of Vbg. (e) δ f0 at the charge neutrality point (Vbg = −0.44 V) as a
function of ϕ overlaid with the fit and in panel (f) the corresponding CPR.

frequency mainly originates from the Josephson inductance
LJ , whereas the broadening of the resonance originates from
the dissipation in the JJ specified by the shunt conductance Gs.

Since the inverse Josephson inductance is a measure of the
change in the supercurrent Is(ϕ) with respect to the phase ϕ

across the junction [6],

LJ (ϕ)−1 = 2π

�0

∂Is(ϕ)

∂ϕ
, (6)

we can express the resonance frequency shift and the behavior
of LJ (ϕ) with the current-phase relation (CPR).

To quantify the CPR and Gs from the resonator response,
we perform finite-element simulations [26] based on the de-
vice geometry, to acquire Lloop = 211 pH and M = 30.83 pH.
Moreover, we find Zr = 69.5 � from the aspect ratios of the
CTL [27] in combination with the resonant behavior of the
circuit and deduce Lp = 4.55 nH. The evaluation of Zr and Lp

can be found in the SM [23].

V. CURRENT-PHASE RELATION

In this section we extract the CPR by fitting the peri-
odic shift of the resonance frequency under consideration
of self-screening effects. The coupling strength between the
superconducting leads is determined by the Cooper pair trans-
mission probability and defines the shape of the CPR. For
small coupling or low transmission probability the CPR is
sinusoidal, whereas the CPR becomes forward-skewed for
increased coupling. Due to the semiconducting properties in
graphene JJs, the coupling strength and therefore the CPR
skewness can be tuned with the gate voltage [20,28–31]. To
capture the nonsinusoidal behavior, we express the CPR as
Fourier series [32]

Is(ϕ) =
∑

k

(−1)k−1Ak sin(kϕ), (7)

with k being the harmonic order and Ak the corresponding
amplitude.

To extract the CPR from the measured resonance frequency
modulations, we need to relate the external phase ϕext to the
phase difference ϕ across the JJ. This is not straightforward,
since if a supercurrent flows within the rf SQUID, there is a
phase drop over the loop inductance Lloop in addition to the
phase drop over the JJ, which leads to a nonlinear relation
between the internal phase ϕ and the external phase ϕext—
known as the screening effect [33]:

ϕ = ϕext − 2π

�0
LloopIs(ϕ). (8)

Here, we obtain the CPR for each gate voltage by solving
the set of equations Eqs. (5)–(8) in a self-consistent way by
using an iterative fitting method. The basis for this method
is the resonance frequency shift as a function of ϕext, which
is presented for the entire gate range in Fig. 4(a). At each
fitting iteration we include Fourier amplitudes Ak up to the
10th-harmonic and allow for small changes in fbare. Details
about the method can be found in the SM [23].

In Fig. 4(b) we illustrate the effect of screening by com-
paring δ f0 as a function of ϕ and ϕext, respectively—for the
example at Vbg = 6 V. The corresponding CPRs, deduced
from fitting the modulations in δ f0 with respect to phase,
shown as solid lines in Fig. 4(b), are presented in Fig. 4(c).
The screening consideration causes a distortion of the phase
around π as indicated by arrows. Omitting this effect results in
an apparent enhancement of the skewness [34]. Even after cor-
recting for screening, we find a substantially forward-skewed
CPR, visualized by the comparison with a sinusoidal behavior.
Although screening effects are small in this case, we empha-
size that they can have a significant impact on the evaluated
skewness, especially for large Is and Lloop.

In Fig. 4(d) we map the extracted CPR as a function of
Vbg. The smallest CPR amplitude is found at Vbg = −0.44 V,
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FIG. 5. Characteristics of the CPR as function of gate voltage
Vbg. The step size in Vbg is reduced close to the CNP (Vbg = −0.44 V).
(a) Critical current Ic and Fourier amplitudes Ak. (b) Skewness pa-
rameter S and ratios Ak/A1. The theoretical skewness value for a
short, diffusive system under ideal conditions S = 0.255 is illustrated
with the pink mark. (a, b) Systematic error bars in Ic and S are
generated by modifying M by ±3% and Lloop by ±5% in the CPR
evaluation. The amplitudes Ak for k � 5 are negligibly small and
omitted in the figures.

which we attribute to the charge neutrality point (CNP) of
graphene. Here, resonance frequency modulations of only
±10 kHz can still be clearly resolved as seen in Fig. 4(e),
which demonstrates the sensitivity of the microwave circuit.
The CPR at the CNP, shown in Fig. 4(f), is slightly skewed
and has a maximal supercurrent of Ic = 6.3 nA.

In the following, we quantify the CPR and its skewness
by two commonly used ways: (i) by the skewness parame-
ter S = (2ϕmax/π ) − 1, where ϕmax is the phase maximizing
the CPR to the critical current Ic [29], and (ii) by directly
providing the set of Fourier amplitudes Ak [32]. The latter
description is more precise, since it captures the entire CPR
lineshape, whereas the S-parameter together with Ic do not
uniquely characterize the CPR, but are more intuitive.

In Fig. 5 we employ both of these characterizations to
illustrate the gate dependence of the CPR. We observe a
rapid enhancement of Ic up to ∼200 nA for gating toward
positive voltages (n-doped), whereas toward negative voltages
(p-doped) the increase is weaker and reaches only ∼50 nA
as seen in Fig. 5(a). Because A1 closely follows Ic, the CPR
is mainly determined by the 2π -periodic sinusoidal contri-
bution for all Vbg. However, the small additions from higher
harmonics lead to a forward-skewed CPR. From Fig. 5(b) it

FIG. 6. Evaluation of the shunt conductance Gs. (a) The load
quality factor Qload in logarithmic scale as a function of Vbg and ϕ,
deduced from resonance curve fittings. (b) Gs in logarithmic scale
obtained by using Eq. (4) with Qload and the CPR results. (c) Phase
dependence of Gs for different gate voltages. (d) Gate dependence
of Gs for phase biasing conditions ϕ = noddπ . These correspond to
the local dissipation maxima, indicated by the horizontal arrows in
panel (b).

appears that the skewness saturates in both doping regimes
with a slight reduction around the CNP. For the n-doped
side, the skewness saturates around S ≈ 0.22, whereas on the
p-doped side the skewness is less pronounced, saturating
around S ≈ 0.12. The ratios Ak/A1 follow the same trend.

The asymmetric behavior in Ic and S with respect to Vbg are
attributed to the presence of n′-doped contact regions induc-
ing additional scattering potentials. The JJ is therefore more
transparent in the n′n n′ situation compared to the n′ p n′ case
[29,35]. We speculate that the minimal skewness of S ≈ 0.05
close to the CNP originates from the formation of electron-
hole puddles [36] in the graphene flake, which further enhance
the scattering probability.

VI. PHASE-DEPENDENT LOSS

Having extracted the CPR from the resonance frequency
shift, we now deduce the phase-dependent dissipative part
of the graphene JJ; namely, the shunt conductance Gs. We
can infer Gs from Eq. (4), in which we express the suscep-
tance BJ with the CPR according to Eq. (6) and make use of
Qload obtained from the reflectance curve analysis presented
in Sec. III.
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From Fig. 6(a), we observe that around the 0-points
(ϕ = nevenπ ) the dissipation in the microwave circuit stem-
ming from the rf SQUID is minor (Qload > 200 000) for all
Vbg. However, at the π -points (ϕ = noddπ ), the dissipation be-
comes significantly larger and gate dependent with a minimal
quality factor of Qload ≈ 9800.

This behavior is reflected in Gs, which is mapped in
Fig. 6(b) as a function of Vbg and ϕ. Around the 0-points,
we deduce low conductance values Gs � 0.1 m�−1, which
refers to weak dissipation according to the parallel junction
circuit model used here. In contrast, at the π -points, a pro-
nounced Lorentzian-shaped dissipation peak develops, as seen
in Fig. 6(c). The dissipation onsets are located symmetrically
around the π -points and are weakly gate dependent. However,
the peak heights are strongly influenced by Vbg and reach a
maximal value of Gs ≈ 10 m�−1 at large n-doping. Although
the amplitude of the peak appears to fluctuate as a function of
Vbg, the height replicates for the three different π -points mea-
sured here, as illustrated in Fig. 6(d). This demonstrates the
stability of the gate-tunable potential landscape in graphene.
To explain the dissipative response of the JJ, the underly-
ing phase-dependent transport processes need to be consider,
which are discussed in the next section.

VII. THEORY OF ANDREEV BOUND STATES

In the following we relate the CPR and the phase-
dependent dissipation to the microscopic concept of Andreev
bound states (ABSs) formed within the JJ.

Coherent Andreev reflections of quasiparticles at the
graphene-superconductor interfaces lead to the formation of
ABSs [37]. These quasiparticle states transfer Cooper pairs
across the junction in form of counter propagating electron-
hole pairs [38]. Due to the electron-hole symmetry, the ABSs
come in pairs; one state has negative energy E−

n � 0 and
the other has positive energy E+

n = −E−
n , where n denotes

a specific transport channel. The spectral gap δE quantifies
the minimal transition energy between states with negative
and states with positive energies. Each occupied state carries
current proportional to the derivative of its energy with respect
to phase. The sum over the set of all channels defines the total
supercurrent [39], which can be expressed as

Is(ϕ) = 2π

�0

∑
n

f (E±
n )

∂E±
n

∂ϕ
, (9)

where f (E±
n ) is a functional describing the occupation prob-

ability of the nth ABS. In equilibrium the functional is given
by the Fermi-Dirac distribution.

At zero temperature and in the absence of photons, all
ABSs with negative energies are occupied [ f (E−

n ) = 1],
whereas all ABSs with positive energies are empty
[ f (E+

n ) = 0]. In this situation the system is in the ground
state and the occupation of the ABS spectrum is constant.
Therefore, the supercurrent Is is free of any fluctuations. By
virtue of the fluctuation-dissipation theorem [40], there is
no dissipation and the effective junction shunt conductance
assumes Gs → 0.

When finite electronic temperatures T and/or the absorp-
tion of photons from the electromagnetic environment are

considered, the situation becomes different; thermal activation
and/or microwave-induced transitions will drive the system
out of the ground state. The excitation-relaxation dynamics
give rise to fluctuations in the ABS population, and corre-
spondingly, in the supercurrent as well. Consequently, there
is dissipation and a finite shunt conductance Gs appears
[8]. When the spectral gap closes (δE → 0) already small
temperatures T and small photon energies h f will trigger
fluctuations. We note that the fluctuations are determined by
the temperature, the photon absorption and emission rates and
as well by the relaxation time τrel of a nonthermal distribution
toward a thermal one, which we express in the following as
the energy γ = h̄/(2τrel ). In conclusion, this means that in
general, both the inductive and dissipative part of a JJ depend
on the ABS spectrum and the population dynamics within this
spectrum.

Inherent to wide junctions—like the graphene JJ inves-
tigated here—is that there are various possible transport
channels leading to many ABSs and hence to a dense ABS
spectrum [41]. The phase dependence of the ABS spectrum
is determined by the geometry of the JJ and its material
properties, i.e., the superconducting gap � in the leads and
the inverse transport time in the normal region that relates
to the Thouless energy ET . In the ballistic transport limit
ET = h̄vF /L, where vF is the Fermi velocity in the normal
region and L is the junction length. In the diffusive limit
ET = h̄D/L2, where D = vF lmfp/2 is the diffusion coefficient
determined by the elastic scattering mean-free path lmfp. An
important characteristics of JJs is whether they are in the
“short” or “long” junction limit. The former case is realized
when ET � �, while the latter holds in the opposite limit. The
condition for the short junction limit can also be expressed
with the coherence length ξ , which needs to be longer than
L. In the ballistic case the coherence length reads ξ = h̄vF /�

and in the diffusive case ξ = √
h̄D/�.

For JJs in the short junction limit the ABS energies
are given by E±

n (ϕ) = ±�
√

1 − τn sin2(ϕ/2), where τn is
the transmission probability of the nth channel. Thus, the
ABS spectrum strongly depends on the transparency dis-
tribution, which further defines the transport regime. For
diffusive transport the transmission coefficients are continu-
ously distributed following Dorokhov’s bimodal distribution
[43], which describes that there are many channels with
low transmission (τn → 0), but also many with high trans-
mission probabilities (τn → 1). Consequently, a dense ABS
spectrum emerges as illustrated in Fig. 7(a) with a spec-
tral gap δE =2�| cos(ϕ/2)| that closes (δE →0) toward the
π -points and maximally opens (δE =2�) toward the 0-
points. In long, diffusive junctions the spectral gap evolves as
δE ≈ 2×3ET | cos(ϕ/2)| [13].

To evaluate the dynamics of an ABS spectrum and translate
it to lumped element quantities, we make use of theoreti-
cal works that predict the phase-dependent linear microwave
response in terms of the susceptance BJ and the shunt con-
ductance Gs [3,4]. For the following theoretical analysis we
consider a diffusive multichannel JJ in the short junction limit
at finite temperature coupled to a photonic environment of
energy h f . Note that in the experiment the photonic envi-
ronment is provided by the driven microwave resonator. The
justification of the above mentioned junction classification for
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FIG. 7. ABS spectrum and theoretical microwave response for
a short, diffusive JJ. (a) Spectrum of a short JJ with multiple
channels of different transparencies. (b) Microwave-induced transi-
tions between states triggered by the absorption of a photon with
energy h f . (c) The finite lifetime of states described by the relaxation
rate γ causes a spectral broadening of the ABS energies and hence
blurs the transition condition. (d) Theoretically predicted dissipative
and inductive response: Gs (blue, left axis) and BJ (red, right axis)
normalized by the conductance value at ϕ = π as a function of ϕ

for different γ /ET ratios. The normalization values for increasing
γ /ET read: Gs(π )/GN = 45, 11, 8.6, 7, 5.9, 5, 4.4, where GN is
the normal state conductance. Here: �/ET = 0.1, h f /ET = 0.01,
and kT/ET = 0.008.

the graphene JJ investigated here is discussed in the beginning
of Sec. VIII.

We first focus on the dissipative response when long-lived
excitations (γ → 0) are considered. In this situation a sharp
onset in Gs(ϕ) emerges as seen by the solid gray line in
Fig. 7(d). The dissipation occurs in the phase range, where
the spectral gap becomes smaller than the excitation energy
δE � h f , thus allowing microwave-induced cross-gap tran-
sitions. The width and the height of the dissipation peak
depends on characteristic energy scales, which are denoted in
the figure caption. Not only transitions across the gap lead
to dissipation; all possible absorption processes, including
intraband excitations E+

n → E+
m , contribute to it, whereas the

transition probability scales according to Fermi′s Golden rule
with the available density of states [13]. Figure 7(b) depicts
a microwave-induced transition of a quasiparticle from an
arbitrary initial state to an available final state. The fact that
the ABSs have a finite lifetime causes a spectral broadening of
the energies. This results in a blurring of the transition condi-
tion (δE � h f ) as sketched in Fig. 7(c). Therefore, increasing
γ , i.e., shortening the lifetime, broadens the dissipation peak
as seen by the blue lines in Fig. 7(d). Importantly, the life-
time broadening also affects the susceptance, in particular
the phase conditions for BJ = 0 shift away from the π -point,
which is equivalent to a reduction of the CPR skewness. Note

that BJ for γ → 0 shown in dashed gray appears different,
because it is rescaled with a large conductance value Gs(π ).
A representation of Fig. 7(d) without normalization is shown
in the SM [23].

The influence of temperature on the microwave response
is theoretically discussed, and together with experimental re-
sults, presented in the SM [23].

In short, environmental perturbations, namely, temperature
and electromagnetic irradiation, cause dynamical variations
in the population of ABS spectra on the timescale of the
nonequilibrium occupation lifetime, which influence the sus-
ceptance BJ likewise the CPR and give rise to dissipation
captured by the shunt conductance Gs.

VIII. COMPARISON WITH THEORY

Finally, we compare the experimental results of the
graphene junction investigated here with theoretical predic-
tions based on the assumption of a short, diffusive multi-
channel JJ. The condition for the short junction limit (ξ > L)
seems reasonably valid, since the superconducting coher-
ence length of similar devices is reported to be ξ ≈ 500 nm
[41,42] and the junction under investigation has a length
L = 400 nm. The assumed predominant diffusive transport
is supported by multiple observations: (i) the small discrep-
ancy between the experimentally determined skewness at
large n-doping (S ≈ 0.22) and the one predicted theoretically
(S = 0.255) [44], (ii) the lack of Fabry-Pérot oscillations in
the gate dependence of the CPR presented in Fig. 5 indi-
cates suppressed ballistic transport [29], and (iii) the randomly
evolving shunt conductance Gs seen in Fig. 6 hints at universal
conductance fluctuations, which are expected for diffusive
systems. We believe that here the diffusive character of the
device is stemming from scattering processes at the graphene
edges, which are significant due to a small width to length
ratio (W/L ≈ 2), and hence reduce the amount of ballistic
channels.

One theoretical prediction, which was not explicitly
pointed out above, is that the inductive and dissipative
response (BJ , Gs) scale linearly with the normal state conduc-
tance GN [3,4], which is tunable with the gate voltage in our
experiment. From Fig. 8(a) one can verify this relation, since
the relation between the experimentally deduced values of the
susceptance BJ and conductance Gs obtained at ϕ = π for
all different Vbg—clearly follows a linear trend. Furthermore,
the ratio BJ/Gs is the inverse loss tangent describing the
quality of the Josephson inductance [14], where a larger ratio
implies a more ideal behavior of the inductance. We attribute
the cone-shaped spread in Fig. 8(a) around the mean ratio
(〈BJ (π )/Gs(π )〉 ≈ 7) to altered ABS spectra and modified
relaxation dynamics at different gate voltages.

In the next step, we search for the best match between
the theoretically predicted and the experimentally deduced
phase-dependent microwave response by considering both the
inductive and the dissipative properties of the JJ. To this end,
we numerically generate sets of BJ and Gs with different char-
acteristic parameters. In particular, we vary the ratios kT/ET

and γ /ET to account for a finite electronic temperature and
to capture the effect of lifetime broadening. We have fixed
the Thouless energy to ET = 10� and the photon energy
to h f = �/10: the first condition ensures the short junction
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FIG. 8. Experimental observations in comparison with theoreti-
cal predictions for a short, diffusive JJ. (a) Experimentally obtained
susceptance BJ versus shunt conductance Gs at ϕ = π follows a
mean ratio of ∼7 indicated with the dashed line. (b, c) Normalized
measured Gs (dotted blue, left axis) and BJ (dotted red, right axis)
overlaid with the normalized theoretical predictions for Gs (solid)
and BJ (dashed), for which �/ET = 0.1 and h f /ET = 0.01 are
fixed, but kT/ET and γ /ET are variable. The best fitting parameter
ratios are indicated. For Vbg = −6 V (6 V) the normalizations read
〈Gs(π )〉 = 0.98 m�−1 (5.19 m�−1) for the experimental traces and
for the theoretical traces Gs(π )/GN = 4.4 (7).

limit, whereas the second one compares favourably well to
the expected experimental relation between the photon energy
of the resonator and the superconducting gap of the contact
material. Because in our experimental setting we are only
sensitive to the low-energy ABS spectrum, the precise choice
of ET is irrelevant as long as the short junction limit can be
assumed.

In Figs. 8(b) and 8(c) we compare the normalized theoret-
ical and experimental values for Vbg = −6 V and Vbg = 6 V.
The experimental values Gs (blue dots) and BJ (red dots) are
normalized with the shunt conductance at ϕ = π , denoted by
〈Gs(π )〉 [45]. Close overlap between theory and experiment
can be found for both gate voltages with the same temperature
(kT/ET = 0.008), but distinct relaxation rates γ .

At Vbg = −6 V we observe differences between the
model and the experimental data even with the best match
(γ /ET = 0.03). This is especially evident at the flanks of
the dissipation peak and the susceptance at the π -point.
We attribute this mismatch to an inappropriate choice of
transport regime for this gate voltage, because here the ad-
ditional pn′-junctions at the interfaces effectively elongate the
quasiparticle trajectories. Consequently, the JJ tends to be in
the long-junction limit causing a compression of the ABS
spectrum.

However, we stress that we observe striking agreements
between the theoretical predictions with γ /ET = 0.015 and
the experimental data at Vbg = 6 V. Apparently, the model
of a short, diffusive junction reproduces simultaneously the
inductive and dissipative response of the graphene JJ for
this doping configuration. By evaluating the best fitting
ratios kT/h f = 0.8 and γ /h f = 1.5 with the resonance fre-
quency f = 3.098 GHz, we deduce an electronic temperature
T = 120 mK and obtain a relaxation time τrel = 17 ps. A
similar equilibration time (τrel = 7 ps) is reported for an
equivalent short, diffusive Al-graphene JJ probed at mK tem-
peratures and large n-dopings [46]. We stress that the ABS
spectrum of a short, diffusive junction might not be the only
spectrum, which in a similar theoretical model could repro-
duce the experimentally observed response. In particular, in
a wide JJ the ABS spectrum can be built from quasiparticles
with long and short trajectories leading to more complex ABS
structures than discussed here [41]. Therefore, the relaxation
time given above should be interpreted as an order of magni-
tude estimation.

IX. CONCLUSION

We have measured the reflective response of a microwave
resonator inductively coupled to a graphene-based rf SQUID
as a function of flux-bias and charge carrier density. We
developed a concise circuit model to infer the CPR and
the phase-dependent dissipation of the graphene JJ from
the changes in the resonance frequency and broadening. We
hereby obtain the full complex admittance of the junction,
which is the key parameter to design Josephson microwave
circuits.

Our comprehensive investigation demonstrates the impact
of the environment on the performance of JJs in terms of
finite temperature and microwave photons. If the environment
provides energies larger than the spectral gap, short-lived exci-
tations appear in the ABS spectrum, which induce fluctuations
in the supercurrent leading to dissipation. The comparison
between the experimentally deduced microwave response at
high electron density and the one predicted by theory for
a short, diffusive junction model, yields striking agreement,
from which we estimate a relaxation time on the order of
∼10 ps. This fast thermal relaxation makes graphene-based
JJs unique candidates for highly sensitive and fast bolo- and
calorimeters [16,17,47].

Furthermore, the device architecture and measurement pro-
tocols presented in this work are well-suited to explore the
fundamental properties of other JJs, such as junctions made of
2D/3D topological insulators or Dirac and Weyl semimetals
[48]. Particularly, the topological nature of these JJs can be
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probed, because it is predicted that they host ABS states that
cross at the π -points but possess opposite parities, meaning
that microwave-induced transitions across the gap are prohib-
ited [49]. As a consequence, it is expected that the dissipative
character of topological JJs is distinctly different from trivial
ones [50–52].

All raw- and metadata in this publication are available in
numerical form together with the processing codes at Ref.
[54].
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