
Vol.:(0123456789)

Machine Learning (2022) 111:1349–1375
https://doi.org/10.1007/s10994-022-06149-0

1 3

Efficient SVDD sampling with approximation guarantees 
for the decision boundary

Adrian Englhardt1   · Holger Trittenbach1 · Daniel Kottke2 · Bernhard Sick2 · 
Klemens Böhm1

Received: 18 November 2020 / Revised: 10 February 2022 / Accepted: 17 February 2022 /  
Published online: 7 April 2022 
© The Author(s) 2022

Abstract
Support Vector Data Description (SVDD) is a popular one-class classifier for anomaly and 
novelty detection. But despite its effectiveness, SVDD does not scale well with data size. 
To avoid prohibitive training times, sampling methods select small subsets of the training 
data on which SVDD trains a decision boundary hopefully equivalent to the one obtained 
on the full data set. According to the literature, a good sample should therefore contain 
so-called boundary observations that SVDD would select as support vectors on the full 
data set. However, non-boundary observations also are essential to not fragment contigu-
ous inlier regions and avoid poor classification accuracy. Other aspects, such as selecting 
a sufficiently representative sample, are important as well. But existing sampling methods 
largely overlook them, resulting in poor classification accuracy. In this article, we study 
how to select a sample considering these points. Our approach is to frame SVDD sampling 
as an optimization problem, where constraints guarantee that sampling indeed approxi-
mates the original decision boundary. We then propose RAPID, an efficient algorithm to 
solve this optimization problem. RAPID does not require any tuning of parameters, is easy 
to implement and scales well to large data sets. We evaluate our approach on real-world 
and synthetic data. Our evaluation is the most comprehensive one for SVDD sampling so 
far. Our results show that RAPID outperforms its competitors in classification accuracy, in 
sample size, and in runtime.

Keywords  One-class classification · Data reduction · Outlier detection · Anomaly detection

1  Introduction

Support Vector Data Description (SVDD) is one of the most popular and actively 
researched one-class classifiers for anomaly and novelty detection  (Tax and Duin 2004; 
Liu et al. 2010; Trittenbach et al. 2018). The basic variant of SVDD is an unsupervised 
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classifier that fits a tight hypersphere around the majority of observations, the inliers, to 
distinguish them from irregular observations, the outliers. Despite its resounding success, a 
downside is that SVDD and its progeny do not scale well with data size (Trittenbach et al. 
2019b). Even efficient solvers like decomposition methods  (Chaudhuri et  al. 2018; Chu 
et al. 2004; Kim et al. 2007; Platt 1998) result in training times prohibitive for many appli-
cations. In these cases, sampling for data reduction is essential (Li 2011; Hu et al. 2014; 
Li et al. 2019; Alam et al. 2020; Sun et al. 2016; Qu et al. 2019; Li et al. 2018; Xiao et al. 
2014; Zhu et al. 2014; Krawczyk et al. 2019).

One of the defining characteristics of SVDD is that only a few observations, the support 
vectors, define a decision boundary. Thus, a good sample is one for which SVDD selects 
support vectors similar to the original ones, i.e., the ones obtained on the full data set. This 
has spurred the design of sampling methods that try to identify support-vector candidates 
in the original data, to retain them in the sample (Li 2011; Li et al. 2019; Qu et al. 2019; 
Hu et al. 2014; Alam et al. 2020; Li et al. 2018; Xiao et al. 2014; Zhu et al. 2014). A com-
mon approach is to select so-called “boundary points” as support-vector candidates, e.g., 
observations that are dissimilar to each other (Li 2011; Zhu et al. 2014).

But calibrating existing methods such that they indeed identify boundary points is dif-
ficult. A reason is that the sample they return depends significantly on the choice of exog-
enous parameters, and selecting suitable parameter values is not intuitive (see Sect. 5). A 
further shortcoming is that including all boundary points in a sample does not guarantee 
SVDD training to indeed yield the original support vectors. The issue is that selection of 
support vectors hinges on other aspects, such as the ratio between inliers and outliers in the 
sample and a sufficient number of non-boundary observations in the sample. Disregarding 
them may, for instance, fragment contiguous inlier regions and yield wrong outlier classi-
fications after sampling, see Fig. 1. The influence of these aspects on SVDD is known, but 
their effects on sample selection are not well studied. It is an open question how to select a 
sample where SVDD indeed approximates the original decision boundary. Finally, a point 
largely orthogonal to these issues is that there also is very limited experimental comparison 
among competitors. This makes an empirical selection of suitable SVDD sampling meth-
ods difficult as well.

Contributions In this article, we propose a novel way to SVDD sampling. We make 
three contributions. First, we reduce SVDD sampling to a decision-theoretic problem of 
separating data using empirical density values. Based on this reduction, we formulate 
SVDD sampling as a constrained optimization problem. Its objective is to find a minimal 
sample where the density of all observations of the data set is close-to-uniform. We pro-
vide theoretical justification that a sample obtained in this way i) prevent a fragmentation 

Fig. 1   Sample and decision 
boundary of a state-of-the-art 
boundary-point method (Alam 
et al. 2020) and of our method 
RAPID
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of the inlier regions, and ii) retain the observations necessary to identify the original sup-
port vectors.

Second, we propose Reducing sAmples by Pruning of Inlier Densities (RAPID), an effi-
cient algorithm to solve the optimization. RAPID  is the first SVDD sampling algorithm 
with theoretical guarantees on retaining the original decision boundaries. RAPID  does 
not require any parameters in addition to the ones already required by SVDD. This lets 
RAPID stand out from existing methods, which all hinge on mostly unintuitive, exogenous 
parameters. RAPID further is easy to implement, and scales well to very large data sets.

Third, we conduct the – by far – most comprehensive comparison of SVDD sampling 
methods. We compare RAPID against 8 methods on 23 real-world and 85 synthetic data 
sets. In all experiments, RAPID  consistently produces a small sample with high clas-
sification quality. Overall, RAPID  outperforms all of its competitors in the trade-off 
between algorithm runtime, sample size, and classification accuracy, often by an order of 
magnitude.

2 � Fundamentals

The data mining community differentiates between lazy and eager learners  (Aggarwal 
2015a). This differentiation is available for outlier detection as well. There, lazy learners 
perform instance-based learning by defining measures of “outlierness” of an observa-
tion  (Aggarwal 2015b). Lazy learners delay the learning until predicting the class of an 
observation. For an overview and experimental comparison of lazy learners we refer to 
Campos et al. (2016). For eager learners, the computational effort takes place before the 
predictions, since they do construct a classification model. Eager learners perform explicit 
generalization, and the classification of new observations tends to be much faster than for 
lazy learners (Aggarwal 2015a). In our article, we focus on the most popular eager learners 
for outlier detection, Support Vector Data Description (SVDD) (Tax and Duin 2004).

The objective of SVDD is to learn a description of a set of observations, the target. A 
good description allows to distinguish the target from other, non-target observations. In 
our article, we focus on unsupervised outlier detection. So the targets, i.e., the class that 
SVDD explicitly learns, are inliers, and the non-targets are outliers. However, one does not 
have any labels available when learning an SVDD classifier, i.e., the learning scenario is 
unsupervised. First, we introduce preliminaries and then the SVDD optimization problem.

Preliminaries Let � = ⟨x1, x2,… , xN⟩ be a data set of N observations from the 
domain 𝕏 = ℝ

M where M is the number of dimensions. A sample is a subset � ⊆ � 
of the data set with sampling ratio |�|∕N . Further, we denote x ∈ � as selected, and 
x ∉ � as not-selected observations. The probability density of � is p(x). Further, let 
� = ⟨y1, y2,… , yN⟩ be a ground truth, i.e., each entry is the realization of a dichotomous 
variable � = {in, out} . The ground truth densities are the conditional probability densities 
pinlier(x) = P(� = x ∣ � = in) , and poutlier(x) = P(� = x ∣ � = out) respectively. One can 
estimate the empirical density of � by kernel density estimation.

where k is a kernel function with k(x, x) = 1 . A popular choice is the Gaussian kernel 
k� (x, x

�) = e−�‖x−x
�‖ , where � ≥ 0 is the parameter to control the kernel bandwidth. We use 

the shorthand dx = d
�
(x) when the reference to � is unambiguous. Note that d

�
 requires 

(1)d
�
(x) =

∑

x�∈�

k(x, x�)
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normalization further to represent a probability density. Densities can be used to character-
ize observations in different ways.

Definition 1  (Level Set) A level set is a set of observations with equal den-
sity L� ∶= {x ∈ � ∶ dx = �} . A super-level set is a set of observations with 
L+
�
∶= {x ∈ � ∶ dx ≥ �}.

One way to use level sets to categorize observations is to define a level-set classifier as a 
function of type g ∶ � → �  with

Another useful categorization is to separate observations into boundary points and inner 
points. There are different ways to define a boundary of � (Li 2011; Hu et al. 2014; Li et al. 
2019; Qu et al. 2019; Alam et al. 2020; Li et al. 2018; Xiao et al. 2014; Zhu et al. 2014). 
For this article, we define boundary points as observations with density values close to the 
minimum empirical density.

Definition 2  (Boundary Point) Let dmin = minx∈� dx , and let � be a small positive value. 
An observation x ∈ � is a boundary point of � if x ∈ �� with �� = L+

dmin
⧵ L+

(dmin+�)
.

SVDD ClassifierSVDD (Tax and Duin 2004) is a quadratic optimization problem that 
searches for a minimum enclosing hypersphere with center a and radius R around the data. 
The linear formulation of the optimization problem is

with cost parameter C and slack variables � . Solving SVDD gives a fixed a and R and a 
decision function

When solving SVDD in the dual space, f� only relies on inner product calculations 
between x and some of the training observations, the support vectors. So classification 
with SVDD is efficient if the number of support vectors is low. Also note that under mild 
assumptions, SVDD is equivalent to �-SVM (Schölkopf et al. 2001).

SVDD has two hyperparameters, C and a kernel function k. C ∈ ℝ[0,1] is a trade-off 
parameter. It allows some observations in the training data to fall outside the hypersphere 
if this reduces the radius significantly. Formally, observations outside the hypersphere with 
positive slack 𝜉 > 0 are weighted by a cost C. High values for C make excluding observa-
tions expensive; based on the dual of SVDD, one can see that if C = 1 , SVDD degenerates 
to a hard-margin classifier (Tax and Duin 2004).

To allow decision boundaries of arbitrary shape, one can use the well-known kernel 
trick to replace inner products in the dual of SVDD by a kernel function k. The most 

(2)g�
�
(x) =

{
in if x ∈ L+

�

out else.

SVDD ∶minimize
a, R, �

R2 + C ⋅

N�

i=1

�i

subject to ‖xi − a‖2 ≤ R2 + �i, i = 1,… ,N

�i ≥ 0, i = 1,… ,N

(3)f�(x) =

�
in if ‖x − a‖2 ≤ R2

out else.
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popular kernel with SVDD is the Gaussian kernel. Its bandwidth parameter � controls the 
flexibility of the decision boundary. For �→0 , the decision boundary in the data space 
approximates a hypersphere. Choosing good values for the two hyperparameters � and C 
is difficult (Liao et al. 2018). There is no established way of setting the parameter values, 
and one must choose one of the many heuristics to tune SVDD in an unsupervised set-
ting (Scott 2015; Liao et al. 2018; Tax and Duin 2004; Trittenbach et al. 2019a).

3 � Related work

SVDD is a quadratic problem (QP). The time complexity of solving SVDD is in 
O(N3)  (Chu et  al. 2004). Thus, training does not scale well to large data sets. However, 
the time complexity for classification is only linear in the number of support vectors. So 
for large N, training time is much larger than classification time. Still, long classification 
times may be an issue, e.g., in time-critical applications. So curbing the runtimes has long 
become an important topic in the SVDD literature. In Sect.  3.1, we categorize existing 
approaches that focus on SVDD speedup, see Fig. 2 for an overview. In Sect. 3.2, we then 
turn to Sampling, the category our current article belongs to.

3.1 � Categorization

We distinguish between Fast Training and Fast Classification.
Fast Training To speed up training of SVDD, one has two options: reduction of the 

problem size, and optimization of the solver. For Reduction, one can distinguish further: A 
first type reduces the number of observations by Sampling. This is the category of meth-
ods mentioned in our introduction (Alam et al. (2020); Hu et al. (2014); Krawczyk et al. 
(2019); Li (2011); Qu et al. (2019); Li et al. (2018, 2019); Sun et al. (2016); Xiao et al. 
(2014); Zhu et al. (2014)). A second type reduces the size of the Kernel matrix, e.g., by 
approximation (Schölkopf et al. 2000; Achlioptas et al. 2002; Fine and Scheinberg 2001; 
Nguyen et al. 2008). Examples are the Nyström-method (Williams and Seeger 2001) and 
choosing random Fourier features (Yang et al. 2012).

Fig. 2   Categorization of literature on SVDD speedup
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Optimization on the other hand decomposes QP into smaller chunks that can be 
solved efficiently. Literature features methods that decompose with clustering (Kim et al. 
2007) and with multiple random subsets  (Chaudhuri et  al. 2018). The most widely used 
decomposition methods are sequential minimal optimization (SMO)  (Platt 1998) and its 
variants. These methods iteratively divide SVDD into small QP sub-problems and solve 
them analytically. Finally, there are core-set method that expands the decision boundary 
by iteratively updating an SVDD solution (Chu et al. 2004; Chen and Li 2019). Core-set 
approaches are ( 1 + � ) approximations, i.e., they may not find the exact decision boundary, 
given training data.

Reduction and Optimization are orthogonal to each other. Thus, one can use problem-
size reduction in a pre-processing step before solving SVDD efficiently.

Fast Classification When SVDD uses a non-linear kernel, one cannot compute the pre-
image of the center a. Instead, one must compute the distance of an observation to a by a 
linear combination of the support vectors in the kernel space. However, literature proposes 
several approaches to approximate the pre-image of a (Mika et al. 1999; Kwok and Tsang 
2004; Bakır et al. 2004; Liu et al. 2010; Peng and Xu 2012). With this, classification no 
longer depends on the support vectors, and is in O(1) . Fast Classification is orthogonal to 
Fast Training, i.e., it can come as a post-processing step, after training.

3.2 � Sampling methods

Sampling methods take the original data � set as an input and produce a sample � . All 
existing sampling methods assume the target-only scenario, i.e., all observations in � are 
from the target class. This is equivalent to a supervised setting where one has knowledge of 
the ground truth, and � = ⟨in, in,… , in⟩ . Thus, most of the competitors therefore require 
modifications to apply to the outlier scenario, see Sect. 4.1 for details. In the following, we 
discuss existing sampling methods for the target-only scenario. We categorize them into 
different types: Edge-point detectors, Pruning methods and Others. Table  1 provides an 
overview.

Table 1   Sampling methods proposed for SVDD

∗ The listed values for the exogenous parameters are the ones used in our experiments
† Not included in our experiments, see Sect. 5.1 for details

Method Publication Year Exogenous Parameters∗

BPS Li 2011 k=⌊10 lnN⌋ , �=0.05
DAEDS Hu et al. 2014 k=30, �=0.1 , �=0.3
DBSRSVDD Li et al. 2019 minPts=7 , �=0.5
FBPE Alam et al. 2020 n=360

HSR Sun et al. 2016 k=20 , �=0.01 ⋅M
HSC† Qu et al. 2019 k=20

IESRSVDD Li et al. 2018 �=0.5

KFNCBD Xiao et al. 2014 k=100 , �=0.2
NDPSR Zhu et al. 2014 k=20 , �=10
OCSFLSDE† Krawczyk et al. 2019 8 different parameters
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Edge-point Most sampling approaches focus on selecting observations that demarcate 
pinlier from poutlier , and therefore are expected to be support vectors. Such observations are 
called “edge points” or “boundary points”. Literature proposes different ways to identify 
edge points. One idea is to use the angle between an observation and its k nearest neigh-
bors (Li 2011; Zhu et al. 2014) as an indication. An observation is selected as edge point 
if most of its neighbors lie within a small, convex cone with the observation as the apex. 
One has to specify a threshold for the share of neighbors and the width of the cone  (Li 
2011) as exogenous parameters. Others suggest to identify edge points through a farthest 
neighbor search. For instance, one suggestion is to first sort the observations by decreasing 
distance to its k-farthest neighbors (KFN) (Xiao et al. 2014), and then select the top � per-
cent as edge points. The rationale presented in the paper is that inner points are expected 
to have a lower KFN distance than edge points. A more recent variant uses angle-based 
search (Alam et al. 2020). The idea of the paper is to initialize the method by the mean 
over all observations as the apex and divide the space into a pre-specified number of cones. 
For each cone, one only keeps the farthest observation as edge points.

Next, there are methods that select edge points by density-based outlier rankings, e.g., 
DBSCAN  (Li et  al. 2019) and LOF  (Hu et  al. 2014). Here, the assumption is that edge 
points occur in sparse regions of the data space. A similar idea is to rank observations with 
a high distance to all other observations  (Li et  al. 2018). Others have suggested to rank 
observation highly if they have low density and a large distance to high-density observa-
tions  (Qu et al. 2019). Naturally, ranking methods require to set a cutoff value to distin-
guish edge points from other observations.

Pruning The idea of pruning is to iteratively remove observations from high-density 
regions as long as the sample remains “density-connected”. One way to achieve this is by 
pruning all neighbors of an observation closer than a minimum distance, starting from the 
observation closest to the cluster mean (Sun et al. 2016). Yet this approach requires to set 
the minimum distance threshold, and a good choice is data dependent.

Others There is one method that differs significantly from the other ones  (Krawczyk 
et al. 2019). The basic idea is to generate artificial outliers to transform the problem into 
a binary classification problem. Based on the augmented data, one can apply conventional 
sampling methods such as binary instance reduction. The sampling method then relies on 
an evolutionary algorithm where the fitness function is the prediction quality on the aug-
mented data. Finally, the method only retains the remaining inliers and discards all artifi-
cial observations. However, this requires to solve many SVDD instances in each iteration.

To summarize, there are many methods to select a sample for SVDD. However, they are 
based upon some intuition regarding the SVDD and do not come with any formal guaran-
tee. Edge point detectors in particular return a poor sample in some cases, since they do 
not guarantee coherence of a selected sample, see Fig. 1. Further, all existing approaches 
require to set some exogenous parameter. But the influence of the parameter values on the 
sample is difficult to grasp. Finally, existing sampling methods are designed for the target-
only scenario. It is unclear whether they can be modified to work well with the outlier 
scenario.
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4 � Density‑based sampling for SVDD

In this section, we present an efficient and effective sampling method for scaling SVDD 
to very large data sets. In a nutshell, we exploit that an SVDD decision boundary is in 
fact a level-set estimate  (Vert and Vert 2006), and that inliers are a super-level set. The 
idea behind our sampling method is to remove observations from a data set such that the 
inlier super-level set does not change. To this end, we show that for the Gaussian kernel the 
super-level set of inliers does not change as long as not-selected observations have higher 
density than the minimum density of selected observations. If this density rule is violated, 
sampling may produce “gaps”, i.e., regions of inliers that become regions of outliers. Such 
gaps curb the SVDD quality. Thus, we strive for a sample of minimal size that satisfies the 
density rule.

Figure  3 illustrates our approach. In a first step, we separate the unlabeled data into 
outlier and inlier regions based on their empirical density, see Sect. 4.1. We then frame 
sample selection as a optimization problem where the constraints enforce the density rule 
in Sect. 4.2. In Sects. 4.3 we propose RAPID, an efficient and easy-to-implement algorithm 
to solve the optimization problem. RAPID  returns a small sample which has a close-to-
uniform density, i.e., a small sample that still obeys the density rule, and also contains the 
boundary points of the original data.

Fig. 3   The idea of density-based 
sampling for SVDD
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4.1 � Density‑based pre‑filtering

Any sampling method faces an inherent trade-off: reducing the size of the data as much as 
possible while maintaining a good classification accuracy on the sample. One can frame 
this as an optimization problem

where diff is a similarity between two decision functions and � a tolerable deterioration in 
accuracy. Solving Optimization Problem 4 requires knowledge of f� . But obtaining this 
knowledge is infeasible. The reason is that |�| is too large to solve — SVDD would not 
need any sampling in the first place otherwise. Thus, one cannot infer which observations 
f� classify as inlier or outlier. However, we know that the SVDD hyperparameter C defines 
a lower bound on the share of observations predicted as outliers in the training data (Tax 
and Duin 2004). A special case is if C = 1 , since f�(x; C=1) = in,∀x ∈ � . Recall that 
this is the upper bound of the cost parameter C where SVDD degenerates to a hard-margin 
classifier, cf. Sect. 2. In this case, diff is zero if SVDD trained on � , i.e., f � , also includes 
all observations within the hypersphere. Further, we can make use of the following charac-
teristic of SVDD.

Characteristic 1  (SVDD Level-Set Estimator) SVDD is a consistent level set estimator for 
the Gaussian kernel (Vert and Vert 2006).

In consequence, inliers form a super-level set with respect to the decision boundary. 
Formally, this means that there exists a level set L� and a corresponding level-set classifier 
g�
�
 such that g�

�
≡ f� . We can exploit this characteristic as follows. First, we pre-filter the 

data based on their empirical density, such that a share of pout observations are outliers. 
Formally, pout is equivalent to choosing a threshold �pre on the empirical density, where �pre 
is the pout-th quantile of the empirical density distribution. Using this threshold in a level-
set classifier separates observations into inliers � and outliers �.

Second, we replace f� with f � and set C = 1 . With this, we know that f �(x) = in,∀x ∈ � , 
without training f � . Put differently, pre-filtering the data with an explicit threshold allows 
to get rid of an implicit outlier threshold C. This in turn allows to estimate the level set 
estimated by SVDD without actually training the classifier. Algorithm 1 is the pseudo code 
for the pre-filtering.

Pre-filtering does not add any new exogenous parameter, but replaces the SVDD trade-
off parameter C with pout . Further, pout is a parameter of SVDD, not of our sampling 
method. We also deem pout slightly more intuitive than C, since it makes the lower bound 
defined by C tight, i.e., pre-filtering assumes an exact outlier ratio of pout = |�|∕|�| . This 
in turn makes the behavior of SVDD more predictable. We note further that in an unsu-
pervised case the C parameter of the SVDD is commonly coupled with the “target error 
estimate” introduced in Tax and Duin (2004): The “target error estimate” is exactly the 
expected outlier percentage pout , and one sets C ≤ 1∕(N ∗ pout) . So our pre-filtering step 

(4)
minimize

�⊆�
|�|

subject to diff(f �, f�) ≤ 𝜀,

� = {x ∈ � ∶ g�
�pre

= in} � = {x ∈ � ∶ g�
�pre

= out}.
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uses exactly the pout estimate that one would use for parametrization of SVDD in an unsu-
pervised scenario. We close the discussion of pre-filtering with two remarks.

Remark 1  Technically, one may directly use the level-set classifier g�
�pre

 instead of SVDD. 
However, classification times are very high, since calculating the kernel density of an 
unseen observation is in O(N) . So one would give up fast classification, one of the main 
benefits of SVDD. Next, one may be tempted to interpret this pre-filtering step as a way to 
transform an unsupervised problem into a supervised one to train a binary classifier (e.g., 
SVM) on � and � . However, binary classification assumes the training data to be repre-
sentative of the underlying distributions. This assumption is not met with outlier detection, 
since outliers may not come from a well-defined distribution. Thus, binary classification is 
not applicable.

Remark 2  Pre-filtering is a necessary step with all sampling methods discussed in related 
work. In Sect. 3, we have explained that existing sampling methods assume to only have 
inliers in the data set, i.e., � = � and � = � . However, if � contains outliers, this affects the 
sampling quality negatively and leads to poor SVDD results, see Sect. 5.3.

4.2 � Optimal sample selection

After pre-filtering, we can reduce Optimization Problem 4 to a feasible optimization prob-
lem. We begin by replacing f� with f � . With Characteristic 1, we further know that both 
classifiers have equivalent level-set classifiers. We set g�

�pre
 as the equivalent level-set classi-

fier for f � . For f � , there also exists a level-set classifier g�
�′

 , but the level set �′ depends on 
the choice of � . Thus, we must additionally ensure that �′ indeed is the level set estimated 
by training SVDD on � . The modified optimization problem is

 where ≡ denotes the equivalence in classifying � . Constraint 5b is necessary, since one 
may select a sample that yields a level-set classifier similar to the one obtained from � , but 
on which SVDD returns another decision boundary. This can, for instance, occur if � does 
not contain the boundary points of � . Optimization Problem 5 still is very abstract. We will 
now elaborate on both of its constraints and show how to reduce them so that the problem 
becomes practically solvable.

Constraint 5a We now discuss how to obtain a sample that minimizes diff(g�
��
, g�

�
) . To 

this end, we use the following theorem.

Theorem 1  g�
�′
≡ g�

�
  if d

�
 is uniform on �.

Proof  Think of a sample � ⊆ � with uniform empirical density d
�
 . Then � has exactly one 

level set �� = �min = minx∈� d�(x) . Further, it also holds that d
�
(x) = �min , ∀x ∈ � . It follows 

that minx∈�⧵� d�(x) = minx∈� d�(x) , and consequently g�
�min

(x) = g�
�
(x),∀x ∈ � . 	�  ◻

(5)minimize
�⊆�

|�|

(5a)subject to diff(g�
��
, g�

�
) ≤ �

(5b)g�
�′
≡ f �,
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Theorem 1 implies that one can satisfy Constraint 5a with � = 0 if one reduces the sam-
ple to one with a uniform empirical distribution d

�
 . However, any empirical density esti-

mate on a finite sample can only approximate a uniform distribution. So one should strive 
for solutions of Optimization Problem 5 where epsilon is small. Put differently, one can 
interpret the difference between a perfect uniform distribution and the empirical density to 
assess the quality of a sample. We propose to quantify the fit with a uniform distribution 
as the difference between the maximum density �max = maxx∈� d�(x) and minimum density 
�min = minx∈� d�(x):

There certainly are other ways to evaluate the goodness of fit between distributions. How-
ever, Δ�

fit
 has some desirable properties of the sample, which we discuss in Theorem 2.

One further consequence of only approximating a uniform density is that there may be 
some not-selected observations x ∈ � ⧵ � with a density value d

�
(x) less than �min . Since the 

level set estimated by f � is L�min
 , these not-selected observations would be wrongly classi-

fied as outliers. Thus, we must also ensure that � is selected so that d
�
(x) ≥ �min,∀x ∈ � ⧵ � . 

We can now re-formulate Constraint 5a as a sample optimization problem SOP.

where I = {i | i ∈ {1,… ,N}, xi ∈ �} , O = {1,… ,N} ⧵ I  . The decision variable vj = 1 
indicates if an observation xj is in � , i.e., � = {xi ∈ � | vi = 1} . Constraint 7b is a techni-
cal necessity to obtain the maximum density of d

�
 . The first constraint in 7d rules out the 

trivial solution v = � . The first constraint in 7e results from the pre-filtering, cf. Sect. 4.1. If 
the solution set of SOP is not singular, we select the solution where |�| is minimal to mini-
mize training time.

Constraints 7a, 7c, and 7d together guarantee that the density of not-selected observa-
tions is at least �min , as follows. Only for one observation j we have wj = 1 and for all other 
observations i ≠ j, wi = 0 . Then for Constraint  7c and 7d to hold, j must be the obser-
vation with the minimum density and d

�
(xj) = �min . Additionally, with vj ≥ wj it follows 

that vj = 1 , thus observation j is in the sample � . So, for any feasible solution of SOP all 

(6)Δ�

fit
= �max − �min

(7)SOP ∶minimize
�,�,�min,�max

�max − �min

(7a)
s.t.

∑

j∈I

vj ⋅k(xi, xj)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
d�(xi)

≥ �min, ∀i ∈ I

(7b)
∑

j∈I

vj ⋅k(xi, xj) ≤ �max, ∀i ∈ I

(7c)
∑

j∈I

wi ⋅vj ⋅k(xi, xj) ≤ �min, ∀i ∈ I

(7d)
∑

j∈I

vj > 0;
∑

j∈I

wj = 1; vj ≥ wj,∀j ∈ I ∪O

(7e)vj = 0,∀j ∈ O;vj,wj ∈ {0, 1},∀j ∈ I ∪O
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not-selected observations have a density of at least the minimum density of the selected 
observations. From 7a, it follows that d

�
(x) ≥ �min,∀x ∈ � . So any solution of SOP satisfies 

Inequality 5a with a small �.
Constraint 5b We now show that a solution of SOP also satisfies Constraint 5b. To this 

end, we make use of the following characteristic.

Characteristic 2  (Boundary Points) The set of boundary points are a superset of the sup-
port vectors of SVDD (Tax and Duin 2004).

So for Constraint 5b to hold, an optimum of SOP must contain boundary points of � . We 
show that a solution with boundary points is preferred over one without boundary points by 
the following theorem.

Theorem 2  The set of boundary points does not change when solving SOP iteratively.

Proof  Suppose that there exists a sample � which is not a local optimum of SOP. Then 
there is a boundary point xmin = argmin x∈�d�(x) , an observations xmax = argmax x∈�d�(x) 
and xp ∈ � . Let �p = �⧵{xp} and �max = �⧵{xmax} . If removing xp from � is an optimal 
choice, there must be no other observation that reduces the objective more than xp . Thus, 
the following specific case must hold:

For one, we conclude that xp = xmin is not feasible, because in this case the left hand side of 
Inequality 8 is strictly negative, and right hand side positive. Since boundary points have, 
per Definition 2, a density close to �min , they cannot be a candidate for removal.

Next, under two assumptions that (A1) the locations of the maximum and of the mini-
mum density are distant from each other, and that (A2) the kernel bandwidth is sufficiently 
small, we have k(xmax, xmin) → 0 , and k(xp, xmax) − k(xp, xmin) ≥ 1 ⇔ xp = xmax . So in this 
case, removing xmax is optimal. From this, it also follows that the minimum density does 
not change significantly when removing xmax . With Definition 2, it follows that also the set 
of boundary points does not change after removing xmax . 	�  ◻

Remark 3  Our proof hinges on two assumptions: (A1) A sufficiently large distance between 
xmax    and   xmin . This assumption is intuitive, since removing an observation with a den-
sity close to maxx∈� d�(x) improves Δfit more than removing one close to minx∈� d�(x) . 
Generally, the distance between xmax and xmin depends on the data distribution. However, 
we find that this is not a limitation in practice, see Sect. 5. (A2) A sufficiently small kernel 
bandwidth. This assumption is reasonable, because when selecting the kernel bandwidth, 
one strives to avoid underfitting, i.e., avoid kernels bandwidth that are too wide. This holds 
empirically as well, see Sect. 5.

Remark 4  Overfitting the kernel parameter of SVDD affects all sampling methods. When 
the kernel bandwidth is very small, removing any observations from a sample yields a 
decision boundary that is different from the one obtained with training on the full data set. 

(8)

Δ
�p

fit
≤ Δ

�max

fit

⇔ �max−k(xp, xmax)−(�min−k(xp, xmin))

≤ �max−k(xmax, xmax)−(�min−k(xmax, xmin))

⇔ k(xp, xmax)−k(xp, xmin) ≥ 1−k(xmax, xmin).
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For SOP an overfitted kernel bandwidth results in density values of approximately 1 for all 
observations with the Gaussian kernel, i.e., the density is already uniform. The objective 
function of SOP then is already minimal, with a value of 0. Thus, SOP does not remove 
any observation from the sample and retains the original decision boundary. In practice, 
one can rely on one of the many heuristics to choose a suitable kernel parameter to avoid 
overfitting, see for example our choice in Sect. 5.

SOP is appealing in theory. However, it is a mixed-integer problem with non-convex 
constraints, and it is hard to solve. Thus, solver runtimes quickly become prohibitive, even 
for relatively small problem instances. This contradicts the motivation for sampling. We 
therefore propose RAPID, a fast algorithm to search for a local optimum of SOP.

4.3 � A RAPID approximation

The idea of our approximation is to initialize � = � , which is a feasible solution to SOP, 
and remove observations from � iteratively as long as � remains feasible, see Algorithm 2. 
RAPID is a fast greedy algorithm, i.e., it may not produce the smallest sample with uni-
formity, cf. objective function of SOP. However, the proofs for SOP that sampling retains 
the decision boundary also hold for RAPID.

As input parameters RAPID  takes the data set � , the expected outlier percentage pout 
and a kernel function k. Line 1 is the pre-filtering. RAPID then iteratively selects the most 
dense observation xmax in the current sample � for removal (Line 3) and updates the den-
sities (Line 4). If � ⧵ {xmax} is infeasible, RAPID  terminates (Line 5–7). Line 6 checks 
whether there is an observation xi ∈ � that violates Constraint  7a. As required by SOP, 
RAPID does not remove boundary points. This is because xmax must not be a boundary 
point, as long as � is not uniform, i.e., Δ�

fit
> 0 . Thus, a solution of RAPID satisfies both 
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Constraint 5a and Constraint 5b. The return in Line 11 is the special case where a single 
observations remains in the sample. In this case uniformity is achieved with one observa-
tions, i.e., all observations are equal.

The overall time complexity of RAPID is in O(N2) , see Algorithm 1 and Algorithm 2 
for the step-wise time complexities. Further, RAPID is simple to implement with only a 
few lines of code. It is efficient, since each iteration (Line 3–7) requires only one pass over 
the data set to update the densities, compute the new xmax , �min and minimum inlier density 
for the termination criterion. One may further pre-compute the Gram matrix � for � to 
avoid redundant kernel function evaluations.

Remark 5  RAPID  does not require any hyperparameters in addition to the ones already 
required by SVDD. The two parameters are: a parametrized kernel function k and the out-
lier percentage pout . The outlier percentage pout is commonly estimated to calculate the 
C parameter of SVDD (Tax and Duin 2004). Since we guarantee that RAPID retains the 
decision boundary one would learn on the full data set, the kernel parametrization affects 
the sampling. However, due to the density rule, the parametrization only affects how many 
observations RAPID  removes from the sample. Yet RAPID  always retains the decision 
boundary. While the exact sampling always depends on the data set, the general intuition is 
that, with a higher kernel width, RAPID can remove more observations than with a more 
narrow one. In the extreme case of a very small kernel width, RAPID cannot remove any 
observations without violating the density rule, c.f. our discussion in Remark 4. Ultimately, 
given a novel data set, one must set the same parameters for SVDD with or without sam-
pling with RAPID. One commonly relies on one of the many heuristics to parametrize 
SVDD, see our discussion at the end of Sect. 2.

5 � Experiments

We now turn to an empirical evaluation of RAPID. Our evaluation consists of two parts. In 
the first part, we evaluate how well RAPID copes with different characteristics of the data, 
i.e., with the dimensionality, the number of observations, and the complexity of the data 
distribution, see Sect. 5.2. The second part is an evaluation on a large real-world bench-
mark for outlier detection. We have implemented RAPID as well as the competitors in an 
open-source framework written in Julia (Bezanson et al. 2017). Our implementation, data 
sets, raw results, and evaluation notebooks are publicly available.1

5.1 � Setup

We first introduce our experimental setup, including evaluation metrics, as well as the par-
ametrization of SVDD and its competitors. Recall that RAPID  does not have any exog-
enous parameter. One must only specify pout instead of the SVDD hyperparameter C, cf. 
Sect. 4.1.

Metrics Sampling methods trade classification quality for sample size, and one must 
evaluate this trade-off explicitly. We report the sample size |�| and sample ratio |�|∕|�| 
for each result. To evaluate the classification quality, we use the Matthews Correlation 

1  https://​www.​ipd.​kit.​edu/​ocs.

https://www.ipd.kit.edu/ocs
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Coefficient (MCC) on � . MCC is well-suited for imbalanced data and returns values in 
[−1, 1] ; higher values are better. SVDD returns a binary classification which is different 
from many other outlier-detection methods which produce score-based outputs (Aggarwal 
2015b). For such score-based outputs, one usually calculates ROC-AUC. ROC-AUC and 
MCC are statistically consistent with each other (Halimu et al. 2019), we report the val-
ues for other evaluation metrics (ROC-AUC, F1-score and Cohen’s kappa coefficient) in 
the appendix of this article. For a full analysis see our supplementary material. We report 
the averages over five runs on synthetic data and perform 5-fold cross-validation on real-
world data. For non-deterministic methods, we report average values over five repetitions. 
Our experiments ran on an AMD Ryzen Threadripper 2990WX with 64 virtual cores and 
128 GB RAM.

SVDD SVDD requires to set two hyperparameters: the Gaussian kernel parameter � and 
the trade-off parameter C. We tune � with Scott’s Rule  (Scott 2015) for real-world data. 
For high-dimensional synthetic data, however, we found that the Modified Mean Crite-
rion (Liao et al. 2018) is a better choice. The Modified Mean Criterion in these cases yields 
a higher kernel bandwidth. This allows sampling to remove more observations, c.f. Remark 
5. Because of pre-filtering we set C = 1 , cf. Sect. 4.1.

Competitors We compare our method against 8 competitors, see Table  1. The 
approaches from Qu et al. (2019) and Krawczyk et al. (2019) require to solve several hun-
dreds of SVDDs, resulting in prohibitive runtimes. We do not include them in our evalu-
ation. We initialize the exogenous parameters according to the guidelines in the original 
publications. In some cases, the recommendations do not lead to a useful sample, e.g., 
� = � . To ensure a fair comparison, we mitigate these issues by fine-tuning the parameter 
values through preliminary experiments.

Next, we compare two variants of each competitor: sampling on � as in their original 
version, and sampling on � , i.e., after applying our pre-filtering. The pre-filtering requires 
to specify the expected outlier percentage pout . In practice, one can rely on domain knowl-
edge or estimate it Achtert et al. (2010). To avoid any bias when over- or under-estimating 
the outlier percentage, we set it to the true percentage. Nevertheless, we have run addi-
tional experiments where we deliberately deviate from the true percentage. We found that 
deviating affects the performance of all sampling methods similarly. So, our conclusions do 
not depend on this variation, and we report the respective results only in the supplementary 
materials.1

We also evaluate against random baselines. Each baseline Randr returns a random subset 
with a specified sample ratio r. We report results for a range of sample ratios r ∈ [0.01, 1.0] 
to put the quality of competitors into perspective. When choosing the C parameter of 
SVDD for the random baseline, one must observe that outliers may be part of the selected 
sample. However, in experiments of ours, we have observed that C = 1 generally yields 
the most competitive baseline even if some outliers are part of the training data. Training 
a r = 1 baseline on the full data set is prohibitive for large data sets. So we only report the 
values for the smaller data sets.

5.2 � Evaluation of sample characteristics

The first part of our experiments validates different properties of RAPID and of its com-
petitors. Our intention is to give an intuition of how a sample is selected, and to explore 
under which conditions the sampling methods work well. The basis for our experiments 
are synthetic data sets with controlled characteristics. Specifically, we generate data from 
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Gaussian mixtures with varying number of mixture components, data dimensions, and 
number of observations, see Algorithm 3 for the data generation algorithm. We run these 
experiments to answer the following two questions.

Q1 How are observations in a sample distributed?
To get an intuition about the sample distribution, we run RAPID and the competitors on 

a bi-modal Gaussian mixture, see Fig. 4. The tendencies of the methods to select boundary 
points and inner points are clearly visible. For instance, BPS only selects a sparse set of 
boundary points; IESRSVDD only prunes high-density areas. As expected, RAPID selects 
both the boundary points and a uniformly distributed set of inner points. The decision 
boundary of RAPID matches the one obtained from the full data set perfectly. Only three 
competitors (DAEDS, IESRSVDD, and NDPSR) also result in an accurate decision bound-
ary. But all of them produce significantly larger sample sizes than RAPID.

Q2 To what extent do data characteristics influence a sample and the resulting classifi-
cation quality?

To explore this question, we individually vary the number of observations, the dimen-
sionality, and the number of the mixture components. In the following visualizations, an 
optimal sampling always yields a MCC of 1 in the upper row and very small sample sizes 
in the bottom row, i.e., altering any data characteristic does not influence the sampling. 
Some values for the competitors are missing since the sample has been empty.

Number of observations Ceteris paribus, increasing the number of observations should 
not have a significant impact on the observations selected. This expectation is reasonable, 
since increasing the data size does not change the underlying distribution and the true deci-
sion boundary. Figure 5a graphs the sample quality and sample size for the different meth-
ods. Many competitors (BPS, IESRSVDD, KFNCB, and DAEDS) do not scale well with 
more observations, i.e., the sample sizes increase significantly. BPS scales worst and only 
removes a tiny fraction of observations. Further, the sample quality drops significantly with 
more than 500 observations for some competitors (DBSRSVDD and HSR). RAPID on the 
other hand is robust with increasing data size, for both sample quality and sample size. The 
sample sizes returned are small, even for large data sets, and the resulting quality is always 
close to MCC = 1.0.

Dimensionality The expectation is that the sample quality does not deteriorate with 
increasing dimensionality. However, sample sizes may increase slightly. This is because 
determining a decision boundary of a high-dimensional manifold requires more observa-
tions than of a low-dimensional one. Figure  5b shows the sample quality and size. For 

Fig. 4   Sampling strategies applied to a synthetic Gaussian mixture with two components and N = 400 . The 
grey points are the original data set and the red/blue diamonds the selected observations. The original deci-
sion boundary is the grey line and the red/blue one is the boundary trained on the sample. |�| is the sample 
size and |FP| the number of misclassified inliers. We omit HSR since it returns � = � with recommended 
parameter values (Color figure online)
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some competitors (HSR, NDPSR, and KFNCBD), sample quality decreases with increas-
ing dimensionality. This indicates that they do not select observations in all regions. This 
in turn leads to misclassification. Even tuning exogenous parameter values does not miti-
gate these effects. As desired, RAPID returns a small sample in all cases, with high clas-
sification accuracy.

Number of Mixture Components Finally, we make the data set more difficult by increas-
ing the number of Gaussian mixture components. Like before, we expect sample sizes to 
increase slightly, since the generated manifolds are more difficult to classify. Figure  5c 
shows the sample quality and size. For HSR and DBSRSVDD, sampling quality fluctu-
ates significantly. NDPSR and DBSRSVDD do not prune any observation with only one 
component. We think that these effects are due to the sensitivity to the exogenous param-
eters of the various methods. This is, methods with fluctuating results would require dif-
ferent parameter values for data sets of different difficulties. However, the competitors do 
not come with a systematic way to choose parameter values to adapt to varying data set 
difficulty. RAPID in turn is very robust to changes in difficulty. As expected, the sample 
size increases only slightly with increasing difficulty. The classification accuracy is close to 
MCC = 1.0, even for high difficulties.

 In summary, our experiments on synthetic data reveal that many competitors are sensi-
tive to data size, dimensionality, and complexity. Different parameter values may mitigate 
the effects in a few cases, but selecting good values is difficult. RAPID on the other hand is 
very robust. It adapts well to different data characteristics and does not require any param-
eter tuning. 2

5.3 � Benchmark on real‑world data

Next, we turn to data sets with real distributions and more diverse data characteris-
tics. The basis for our experiments are 23 standard benchmark data sets for outlier 

(a) (b) (c)

Fig. 5   Evaluation on synthetic data with varying data size (N), dimensionality (M), and complexity (#Com-
ponents)

2  Because of limited space, we report median statistics, but results also hold for mean values and individual 
comparisons (ranks), see https://​www.​ipd.​kit.​edu/​ocs.

https://www.ipd.kit.edu/ocs
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detection (Campos et al. 2016). Campos et al. constructed this benchmark from classifica-
tion data where one of the classes is downsampled and labeled as outlier. The data sets 
have different sizes (80 to 49534 observations), dimensionality (3 to 1555 dimensions) and 
outlier ratios (0.2% to 75.38%, median 9.12%).3 Again, we structure our experiments along 
two questions.

Q3 How well do methods adapt to real-world data sets?
First, we compare RAPID  against competitors without any pre-processing. Figure  6 

plots the median sample ratio against the SVDD quality over all data sets.2 Good sampling 
methods return small sample ratios and yield high SVDD quality, i.e., they appear in the 
upper right corner of the plot. Rand is shown for different r ∈ [0.01, 1.0] . All of the com-
petitors in their original version, i.e., without pre-filtering, result in poor SVDD quality, 
much lower than the Rand baselines. The reason is that they expect all observations to be 
inliers. BPS with pre-filtering did not yield any solution for large data sets.

With our pre-filtering, SVDD qualities of competitors improve considerably, see Fig. 6 
and Table 2. Still, RAPID outperforms its competitors; none of them produces a sample 

Fig. 6   Median MCC and ratio 
of observations removed by 
sampling (1 - sample ratio = 
(N − |�|)∕|�| ) over real-world 
data2

Table 2   Median metrics over 
real-world data. 2

∗ Time for classification in seconds per 1000 observations
† Did not solve for large data sets

Runtimes Sample Qual-
ity

tsamp ttrain t∗
class

size ratio MCC

RAPID 0.01 0.02 0.00 18.0 0.04 0.14
BPS† 0.08 0.29 0.01 279.0 0.60 †

DAEDS 0.35 0.03 0.00 77.0 0.17 0.06
DBSRSVDD 0.01 0.02 0.00 35.0 0.09 0.08
FBPE 0.04 0.02 0.00 40.0 0.07 0.08
HSR 0.12 0.04 0.00 111.0 0.40 0.06
IESRSVDD 0.01 0.05 0.00 127.0 0.22 0.13
KFNCBD 0.27 0.03 0.00 80.0 0.18 0.04
NDPSR 0.04 0.04 0.00 87.0 0.23 0.14

3  Only the data set “Parkinson” has an outlier percentage higher than 40%.
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with higher SVDD quality or smaller sample size than RAPID. The methods closest to 
RAPID are IESRSVDD and NDPSR, with similar SVDD quality, but significantly larger 
sample sizes. On average, the sample selected by RAPID even yields the same quality as 
training a SVDD without sampling.4  Figure  7 in the Appendix of this article features a 
more detailed evaluation per data set.

Q4 What are the runtime benefits of sampling?
Next, we look at the impact of sampling on algorithm runtimes, see Table 2. We meas-

ure the execution runtimes of the sampling method ( tsamp ), of SVDD training on the sample 
( ttrain ), and of the classification ( tclass ). Overall, all methods have reasonable runtimes for 
sampling, with DAEDS being the slowest with 0.35s on average. However, RAPID is the 
fastest method overall Methods with runtimes similar to RAPID, such as DBSRSVDD, 
feature significantly lower SVDD quality. For the big data sets (ALOI and KDDCup99), 
RAPID, DBSRSVDD, FBPE, and HSR have a tsamp of around one minute or less, see Fig. 8 
and Table 3 in the Appendix of this article. RAPID achieves the highest classification qual-
ity nevertheless, even compared to the slower competitors. Compared to SVDD applied 
to large original data sets without sampling, RAPID reduces training times from over one 
hour to only a few seconds.4

Finally, we look at the statistical significance of our results. We perform a Friedman 
test with a pairwise comparison of the methods via a post-hoc Neményi test for three met-
rics: SVDD quality (MCC), sample ratio ( |�|∕|�| ) and algorithm runtime tsamp . The test 
on SVDD quality confirms that no other method is significantly better than RAPID. Yet 
RAPID  produces significantly smaller samples ( p < 0.01 for all competitors except for 
FBPE where p < 0.05 ). RAPID  also is significantly faster at sampling the data set than 
BPS, DAEDS, DBSRSVDD, KFNCBD, and NDPSR, the closest competitor in terms of 
quality ( p < 0.01 ). For more details see Figs. 9, 10 and 11 in the Appendix of the article.

 In summary, RAPID outperforms its competitors on real-world data as well. There is 
no other method with higher SVDD quality and similarly small sample sizes. RAPID scales 
very well to very large data sets and reduces overall runtimes by up to an order of 
magnitude. 

6 � Conclusions

SVDD does not scale well to large data sets due to long training runtimes. Therefore, work-
ing with a sample instead of the original data has received much attention in the litera-
ture. Various existing sampling approaches guess the support vectors of the original SVDD 
solution from data characteristics. These methods are difficult to calibrate because of unin-
tuitive exogenous parameters. They also tend to perform poorly regarding outlier detection. 
One reason is that including support vector candidates in the sample does not guarantee 
them to indeed become support vectors.

Our article addresses these issues. We formalize SVDD sample selection as an optimi-
zation problem, where constraints guarantee that SVDD indeed yields the correct decision 
boundaries. We achieve this by reducing SVDD to a density-based decision problem, which 
gives way to rigorous arguments why a sample indeed retains the decision boundary. To 

4  Based on data sets with non-prohibitive runtime, i.e., N < 25000 , see https://​www.​ipd.​kit.​edu/​ocs for 
details.

https://www.ipd.kit.edu/ocs
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solve this problem effectively, we propose a novel iterative algorithm RAPID. RAPID does 
not rely on any parameter tuning beyond the one already required by SVDD. It is efficient 
and consistently produces a small high-quality sample. Experiments show that the way we 
have framed sampling as an optimization problem improves substantially on existing meth-
ods with respect to runtimes, sample sizes, and classification accuracy.

Appendix

Figures 7, 8, 9, 10, 11, 12, 13, and 14. Table 3. 
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Fig. 7   MCC and ratio of observations removed by sampling (1 - sample ratio = (N − |�|)∕|�| ) for each 
real-world data set. Prefilt is the performance of an SVDD trained on the sample after pre-filtering, and the 
values are equivalent to the performance of the level-set classifier. Full is an SVDD trained on the full data 
set
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Fig. 8   Data set size and sampling 
time tsamp over real-world data

Fig. 9   Statistical significance 
p-values after a Friedman and 
post-hoc Neményi test for the 
resulting SVDD quality meas-
ured via MCC over real-world 
data

Fig. 10   Statistical significance 
p-values after a Friedman and 
post-hoc Neményi test for 
sampling ratio ( |�|∕|�| ) over 
real-world data
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Fig. 11   Statistical significance 
p-values after a Friedman and 
post-hoc Neményi test for the 
sampling time tsamp over real-
world data

Fig. 12   Median Cohen’s kappa 
coefficient and ratio of observa-
tions removed by sampling (1 
- sample ratio = (N − |�|)∕|�| ) 
over real-world data.

Fig. 13   Median F1-score and 
ratio of observations removed 
by sampling (1 - sample ratio = 
(N − |�|)∕|�| ) over real-world 
data
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Table 3   Metrics over two large real-world data sets

tsamp ttrain tclass
∗ ratio MCC

Data set Method

ALOI DAEDS 344.2817 3847.4930 13.1636 0.1844 0.0410
DBSRSVDD 55.0896 0.7726 0.9503 0.0106 0.0357
FBPE 21.1945 0.0198 0.4990 0.0010 0.0392
HSR 24.0747 0.0204 0.1129 0.0010 0.0306
IESRSVDD 134.3110 296.5463 8.7749 0.0777 0.0416
KFNCBD 247.4868 4607.4732 12.9629 0.1939 0.0412
NDPSR 92.1190 8.3500 2.5350 0.0250 0.0375
RAPID 45.8714 0.0184 0.0638 0.0005 0.0420

KDDCup99 DAEDS 309.7272 3865.6893 14.6692 0.1885 0.3501
DBSRSVDD 70.2679 0.1531 0.5541 0.0057 0.1966
FBPE 27.3335 0.0207 0.4622 0.0010 0.0826
HSR 34.2100 0.2661 0.5596 0.0069 0.2296
IESRSVDD 161.1876 3969.8312 17.6572 0.1913 0.4056
KFNCBD 256.9911 4591.3423 16.2102 0.1992 0.4025
NDPSR 90.1258 0.1127 0.4317 0.0050 0.2667
RAPID 58.3369 0.0229 0.1312 0.0013 0.4501

Fig. 14   Median ROC-AUC and 
ratio of observations removed 
by sampling (1 - sample ratio = 
(N − |�|)∕|�| ) over real-world 
data

https://www.ipd.kit.edu/ocs
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