KIT | KIT-Bibliothek | Impressum | Datenschutz

Scattering resonances in unbounded transmission problems with sign-changing coefficient

Carvalho, Camille; Moitier, Zoïs

Abstract:

It is well-known that classical optical cavities can exhibit localized phenomena associated to scattering resonances (using the Black Box Scattering Theory), leading to numerical instabilities in approximating the solution. Those localized phenomena concentrate at the inner boundary of the cavity and are called whispering gallery modes.
In this paper we investigate scattering resonances for unbounded transmission problems with sign-changing coefficient (corresponding to optical cavities with negative optical propertie(s), for example made of metamaterials). Due to the change of sign of optical properties, previous results cannot be applied directly, and interface phenomena at the metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We establish the existence of scattering resonances for arbitrary two-dimensional smooth metamaterial cavities. The proof relies on an asymptotic characterization of the resonances, and extending the Black Box Scattering Theory to problems with sign-changing coefficient. Our asymptotic analysis reveals that, depending on the metamaterial’s properties, scattering resonances situated closed to the real axis are associated to surface plasmons. ... mehr


Volltext §
DOI: 10.5445/IR/1000145792
Veröffentlicht am 04.05.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 04.2022
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000145792
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 32 S.
Serie CRC 1173 Preprint ; 2022/25
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Helmholtz Equation, scattering resonances, sign-changing coefficient, asymptotic expansions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page