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Passage through resonance of two coupled exciters
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A minimal model of two coupled exciters is considered to investigate passage through resonance of self-synchronizing sys-
tems. An averaging method for partially strongly damped systems [1] is used for asymptotic analysis. Stationary solutions
of the system is derived and compared with previous work [2]. The dependency of such solutions on damping and excitation
power is shown.
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1 Introduction

Application of several unbalanced exciters instead of one is a widely used design for vibratory machines [2]. It can be used to
distribute the excitation along the machine or decrease the load of the exciter’s bearing, if several low power exciters are used
instead of one powerful exciter. It also offers the possibility of coordinating rotors dynamics without kinematic connections
between them (self-synchronization), which can be utilized for generating required excitation forces with specific directions
in vibratory machines.
Prior research about self-synchronization [2] investigated only different types of synchronous solutions, their stability and
existence, while neglecting damping. Goal of this work is to analyze transient behavior of synchronizing systems with damping
analytically with the help of suitable averaging methods.

2 Investigated model

Fig. 1: Investigated model

The simplest model of two coupled exciters, where self-
synchronization can occur, is investigated, see Figure 1. It consists
of two unbalanced rotors of mass mi, moment of inertia Ji and ec-
centricity ei, where i = 1, 2 is the index describing the number
of rotors. They are driven in the same direction by induction en-
gines of limited power with a linearized torque characteristic given
as Tmot = Ui(ω

∗
i − φ̇i). The variable φi describes the motion of the

rotors, parameter Ui the slope of motor characteristic and ω∗
i the nom-

inal rotation speeds. Both rotors are mounted on a carrier of mass M ,
which is elastically suspended with a spring-damper element of stiff-
ness c and damping d in horizontal direction. The variable x describes
the motion of the carrier.
With the non-dimensional parameters

µi =
mi

M∗ , νi =
ei
e∗
, εsi =

1

1 + Ji/mie2i
, e∗ = (e1 + e2)/2, ui =

Uisi
kmie2i

, λi =
ω∗
i

k
,

ξ =
x

e∗
, k2 =

c

M∗ , 2σ =
d

kM∗ , M∗ =M +m1 +m2, τ = kt,

the equations of motion of the system read

ξ′′ + 2σξ′ + ξ =
2∑

i=1

µiνi(φ
′′
i sinφi + φ′2

i cosφi),

φ′′
i = ε

(
si
νi
ξ′′ sinφi + ui(λi − φ′

i)

)
= εfφi

, i = 1, 2.

The parameter ε is assumed to be small and the damping parameter σ is not small. The investigation is performed for a
system with two identical rotors with different nominal speeds, which means that parameters of both rotors are identical
except λ1 ̸= λ2.
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2 of 2 Section 5: Nonlinear oscillations

3 Asymptotic analysis

The averaging method, introduced in [1, 3], is used for the asymptotic analysis of partially strongly damped system. Using an
analogous procedure shown in [3], the motion of the carrier can be replaced by its forced solution and the differential equation
for ξ can be neglected in further analysis. Defining the new variables ωi = φ′

i, ψ = (φ1+φ2)/2, δ = φ2−φ1, p = ω1+ω2,
v = (ω2 − ω1)/

√
ε, the equations in standard form for a second order approximation with

√
ε as the small parameter are

derived:

dδ
dψ

=
2
√
εv

p
,

dv
dψ

=
2
√
ε(fφ2

− fφ1
)

p
,

dp
dψ

=
2ε(fφ2

+ fφ1
)

p
.

Averaging these equations, the sixth-order system can be reduced to a third-order system for the averaged variables δ̄, v̄ and p̄.

4 Results

Fig. 2: Stationary solutions of the averaged system for
different values of damping

System is analyzed for λ1 = 1.5 and λ2 = 1.7, which has the synchro-
nization frequency of λS = 1.6 according to [2]. Examining the differen-
tial equation of δ, it can be seen that all stationary solutions of the system
are synchronous solutions (v̄ = 0, i.e. ω̄1 = ω̄2 = ω̄), including capture
into resonance of both rotors. These solutions can be seen in Figure 2 for
different values of damping parameter σ. It depicts the stationary solu-
tions of the averaged system as a function of parameter u (u1 = u2 = u)
corresponding to the slope of motor characteristic. Both, capture into res-
onance at the vicinity of resonance frequency of the carrier (ω̄ = 1) and
synchronous solution at λS can be seen. Also shown in the same figure
is the existence condition u∗ ≈ 4.2, which is derived with the Poincaré
method without factoring in damping, see [2]. It states that synchronous
solution at λS is only possible, if the condition u < u∗ holds. It can be
seen that with smaller values of σ the top peak of the curve at λ ≈ λS is
closer to the result of Poincaré method, which is the expected result.
Lastly, two stationary solutions of the full and averaged systems are com-
pared. Figure 3 shows capture into resonance for u = 0.2 and the synchronous solution at λS for u = 2. Amplitude of the
carrier and rotor speeds are depicted. In both cases, the results of the full and averaged systems are in reasonable agreement.

Fig. 3: Comparison of the full (blue) and averaged (orange) systems for the parameter u = 0.2 (above) and u = 2 (below)

5 Conclusion

A model of two coupled exciters is investigated using an averaging method for partially strongly damped systems. Averaged
equations of second order approximation are analyzed. Furthermore, the results are compared to previous work and an
improved existence condition of synchronous solutions is derived, which considers damping in the system. Next, phase space
should be investigated to determine attraction domain of different stable solutions.
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