
Phase retrieval for arbitrary Fresnel-like linear
shift-invariant imaging systems suitable for
tomography
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Abstract: We present a generalization of the non-iterative phase retrieval in X-ray phase
contrast imaging applicable for an arbitrary linear shift-invariant (LSI) imaging system with a
non-negligible amount of free space propagation (termed as Fresnel-like). Our novel approach
poses no restrictions on the propagation distance between optical elements of the system. In
turn, the requirements are only demanded for the transfer function of the optical elements, which
should be approximable by second-order Taylor polynomials. Furthermore, we show that the
method can be conveniently used as an initial guess for iterative phase retrieval, resulting in
faster convergence. The proposed approach is tested on synthetic and experimentally measured
holograms obtained using a Bragg magnifier microscope – a representative of Fresnel-like LSI
imaging systems. Finally, the algorithm is applied to a whole micro-tomographic scan of a
biological specimen of a tardigrade, revealing morphological details at the spatial resolution of
300 nm – limiting resolution of the actual imaging system.
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1. Introduction

Phase retrieval is one of the most challenging topics in X-ray full-field phase-contrast tomographic
imaging. Historically, there are two possible imaging regimes depending on the Fresnel number
identified as the near-field and the far-field regimes. Both provide different scopes of application
based on the required field of view (FOV) and the spatial resolution [1]. We will now restrict our
considerations to the phase retrieval problem in the near-field regime. Many different approaches
to solving this problem have been proposed [2, 3]. All of them can be formally divided into two
groups - iterative methods and noniterative (one-step) methods.
The former methods were adapted from the phase retrieval methods in Coherent Diffractive

Imaging (far-field regime), where we iteratively perform forward and backward propagation while
applying constraints in the object and detector plane until the algorithm reaches the convergence
criteria. The advantages of the iterative retrieval are the quantitativeness of the results and
usually the best quality of reconstruction (assuming the support function is provided), which
comes at the expense of computational time. This can be an issue especially for the cases of
tomography or time-resolved tomography, where thousands of images need to be interpreted,
so that the reconstruction procedure (which usually needs to be parametrized first) becomes a
lengthy process.

The latter methods are usually based on one-step filtering in Fourier space, where the analytical
formulas for the particular filter depend on the assumptions made, e.g. homogenous object, pure
phase object, short propagation distances or various parameters of the optical elements. The
first advantage is the speed of reconstruction, which is usually below one minute for the phase
retrieval of whole tomographic set. Secondly, they can be used as a first guess for the iterative
algorithms, which then can converge faster to a high-quality reconstruction [4]. Third advantage
is that they are not dependent on the support function (in contrast to iterative methods), which
makes them a popular method for the cases where support function is not available (e.g. region
of interest tomography).
Most of the phase retrieval methods for in-line holography were developed for propagation-

based phase contrast imaging [5, 6], where one typically deals with the analytical form of
the Fresnel propagator and derives diverse one-step phase retrieval approaches. An excellent
comparison of the available non-iterative methods can be found in [2]. Other phase-contrast
imaging methods also cope with the phase problem, but using appropriately adjusted methods.
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Among these, a significant group are imaging methods using linear shift-invariant (LSI) imaging
systems, where the operator relating the input wavefield ΨIN (right behind the sample) and the
output wavefield ΨOUT (at the detector) exhibits LSI properties [1]. The relationship in Fourier
space can then be written as a simple multiplication by a propagator (also called transfer function)
H(f)

Ψ̃OUT (f) = Ψ̃IN (f)H(f), (1)

where ∼ denotes the 2D Fourier transform with respect to the spatial coordinates and f is
the coordinate vector in Fourier space. Unlike the case of propagation-based phase contrast,
we usually do not know the analytical formula for H(f) or the formula is very complicated.
Therefore, to solve the phase problem using a one-step method, the approximations need to be
introduced. One such approach is to linearize the propagator H(f) resulting in an elegant phase
reconstruction formulas [7]. This requires the Fresnel free space propagation term to be negligible
compared to the linear transfer function of the optical elements. Another approach assumes
slowly varying transfer functions while also taking into account the free space propagation term,
but it is applicable just for large generalized Fresnel numbers, i.e., short propagation distances [8].
Although both approaches proved their usefulness within the validity of their assumptions, they
fail to work for the cases of higher spatial resolutions or significant free space propagation
distances between the sample, optical elements and the detector.
A general solution to the phase retrieval problem for the case of an arbitrary LSI imaging

system was proposed in [9], with the assumptions made only about the sample. Specifically, a
slowly-varying phase and a weak absorption are assumed. However, the method requires acquiring
at least two images for two different states of the LSI imaging system to be able to solve the phase
problem for one tomographic projection.

In this article, we present a theoretical treatment for phase retrieval based on contrast transfer
function (CTF) approach (also called Born approximation [10]). It uses only single intensity
measurement per tomographic projection and at the same time, it relaxes the restrictions put on
the propagator of the whole setup, allowing us to treat the cases with an arbitrary amount of free
space propagation. Limiting assumptions are made just for the subpropagators corresponding to
the individual optical elements, which should exhibit specific smooth properties. The outline
of the article is the following. Section 2 describes the principle of the conventional CTF phase
retrieval approach. Section 3 introduces the novel theoretical formalism for phase retrieval,
which is, in turn, tested in Section 4 for the case of Bragg Magnifier imaging setup [11] on
both, synthetic and real-world experimental data. Finally, Section 5 presents the application of
the proposed method for phase retrieval of the complete tomographic set of images resulting
in successful 3D electron density mapping of small animal Tardigrade ("water bear"). This is
followed by the Conclusion, which summarizes the potential of the proposed method, especially
when applied to the case of X-ray imaging with Bragg Magnifier.

2. Overview of the conventional CTF

Imagine typical phase contrast imaging experiment as drawn in Fig. 1. The source of the X-rays
is producing coherent monochromatic radiation which hits the sample S, propagates through an
optical system and reaches the detector D. After normalization of the diffractogram by flat-field
correction, the exit wave (the wavefield right behind the sample) equals the transmission function
of the object T(x1, x2) given as:

T(x1, x2) = exp [−µ(x1, x2)] exp [iφ(x1, x2)] , (2)

where x1, x2 are the cartesian coordinates in the plane perpendicular to the optical axis z, µ(x1, x2)
is the projected absorption of the sample and φ(x1, x2) is the total phase shift caused by the
presence of the sample. Let us denote Ψ(x1, x2) the wavefield at the detector plane. Then, if the

                                                                       Vol. 9, No. 9 | 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4392 



Fig. 1. The sketch of the typical X-ray phase contrast imaging experiment. The produced
X-rays pass through the sample S modifying the wavefield, which is further propagated
through optical elements and reaches the detector D.

used optical system is LSI, we get

Ψ(x1, x2) = T(x1, x2) ⊗ h(x1, x2) = F−1
[
T̃( f1, f2)H( f1, f2)

]
, (3)

where ⊗ is the convolution, symbol ∼ denotes the Fourier transform, F−1 is the inverse Fourier
transform, h(x1, x2) is the point spread function of the optical system, f1, f2 are the reciprocal
coordinates dual to x1 and x2 and H( f1, f2) = h̃(x1, x2) is the transfer function (propagator) of
the optical system. The measurable quantity is the optical intensity given as

I(x1, x2) = |Ψ(x1, x2)|2 = Ψ(x1, x2)Ψ?(x1, x2). (4)

For simplicity, let us first deal with the 1D case, where we will use the real space coordinate x
and its dual coordinate f . Taking the Fourier transform of Eq. (3) yields

Ψ̃( f ) = H( f )
∫

T(x) exp (−2πi f x) dx. (5)

All the integrals’ boundaries in this section are (−∞,∞). Similarly from Eq. (3) we get

Ψ̃?( f ) = H?(− f )
∫

T?(x) exp (−2πi f x) dx. (6)

Now we take the Fourier transform of Eq. (4)

Ĩ( f ) = Ψ̃( f ) ⊗ Ψ̃?( f ) =
∫
Ψ̃(g)Ψ̃?( f − g)dg, (7)

and using Eq. (5) and Eq. (6) we obtain

Ĩ( f ) =
∬

T(x)T?(y) exp (−2πi f y)
{∫

H(g)H?(g − f ) exp [−2πig(x − y)] dg
}

︸                                                    ︷︷                                                    ︸
IH (x − y, f )

dxdy, (8)

where we denoted the quantity in the curly brackets as IH (x − y, f ). This is the crucial expression
that we will further analyze.
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If we take the propagator H( f ) to be the free space Fresnel propagator (no optical elements)
as HFr ( f ) = exp(−iπλz f 2) (z is the propagation distance), this results in IFr

H (x − y, f ) =
exp(iπλz f 2) δ(x − y + λz f ). Because of the delta function, Eq. (8) can be integrated over y to get

ĨFr ( f ) = exp(−iπλz f 2)
∫

T(x)T?(x + λz f ) exp (−2πi f x) dx (9)

or alternatively by shifting the x coordinate we arrive at

ĨFr ( f ) =
∫

T
(
x − λz

2
f
)

T?
(
x +

λz
2

f
)

exp (−2πi f x) dx. (10)

This expression was first derived by Guigay [12] and opened the possibilities to perform non-
iterative phase retrieval for special cases [6]. Specifically, if we assume pure phase object
(µ(x1, x2) = 0 in Eq. (2)) and further assume slowly varying phase, then we arrive at the
well-known expression for contrast transfer function

ĨFr ( f ) = δ( f ) + 2φ̃( f ) sin(πλz f 2). (11)

From this, for f , 0 the delta function disappears and one can extract the phase of the transmission
function as

φ(x) = F−1 ĨFr
exp( f )

2 sin(πλz f 2) + α( f )
, (12)

where α( f ) is the regularization parameter. The value of the DC component φ̃( f = 0) is lost,
which means, that our resulting phase φ(x)will not be scaled properly. This is not a problem when
one is interested only in contrast between different parts of the sample, which is often the case in
biological imaging. Nevertheless, this can be cured to yield also a quantitative reconstruction,
which will be described in Chapter 4.

3. Description of our new adapted method

Our goal now is to generalize the idea for a larger group of LSI imaging systems. First of all, most
of these systems contain parts where the wavefield is still subjected to free space propagation. For
example, if the system contains one optical element, the full propagator H( f ) can be expressed as
a multiplication of free space propagation from the sample to the optical element, the propagator
of the element itself and the free space propagation from the element to the detector. In the light
of this, we can express the full propagator H( f ) as

H( f ) = A( f ) exp(−iπλze f f 2), (13)

where ze f is the total effective propagation distance between all the optical elements and A( f ) is
the term perturbing the Fresnel propagator. Typically, A( f ) represents the transfer function of all
the involved optical elements.
In general, A( f ) is a complex function which can be decomposed to real functions as

A( f ) = |A( f )| exp [iϕ( f )] . (14)

Here we propose the following approximations:

|A( f )| ≈ A(0) (15)

ϕ( f ) ≈ ϕ(0) + ϕ′(0) f + 1
2
ϕ′′(0) f 2 (16)
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The physical meaning of the first statement is that we assume our imaging system will be equally
absorptive for all the relevant spatial frequencies. This can be true for many applications, where
the angular acceptance of the system is larger than the highest desired spatial frequency. The
second expression is the Taylor expansion with respect to the zeroth frequency of the system’s
phase shift truncated at the second order, which is a good approximation for many optical elements
with smooth phase-shifting properties. In the light of these assumptions, A( f ) in Eq. (13) can be
viewed as a slowly varying envelope perturbing the fast oscillating Fresnel propagator.

Applying Eqs. (13) - (16) to the definition of IH we obtain

IH (x − y, f ) = A2
0 exp

[
i
(
πλze f f 2 + ϕ′0 f − 1

2
ϕ′′0 f 2

)]
δ

(
x − y + λze f f −

ϕ′′0
2π

f
)

(17)

where we used A(0) ≡ A0, ϕ(0) ≡ ϕ0 and Eq. (8) reduces to Fresnel-like form (compare with Eq.
(10))

Ĩ( f ) = A2
0 exp(iϕ′0 f )

∫
T

(
x −

λze f
2

f +
ϕ′′0
4π

f
)

T?
(
x +

λze f
2

f −
ϕ′′0
4π

f
)

exp(−2πi f x)dx.

(18)
In the spirit of the previous chapter, if we assume pure phase object and slowly varying phase, i.e.,����φ (

x +
λze f

2
f −

ϕ′′0
4π

f
)
− φ

(
x −

λze f
2

f +
ϕ′′0
4π

f
)���� � 1, (19)

we arrive at the final form of the 1D version of contrast transfer function for an arbitrary LSI
imaging system, whose optical elements disturb the wavefield smoothly

Ĩ( f ) = A2
0 exp(iϕ′0 f )

{
δ( f ) + 2φ̃( f ) sin

[
π

(
λze f −

ϕ′′0
2π

)
f 2

]}
. (20)

Comparing with Eq. (11) we immediately see the role of individual parameters. First of all,
ϕ0 itself is not present at all, since the measured intensity is independent from the constant
phase term in the transfer function. The scaling parameter A0 is not important here, because it
cancels out after the flat-field correction. The slope of the phase ϕ′0 is present within the complex
exponential, which in its periodic nature provides an envelope for the rapidly oscillating term
in the curly brackets. Finally, ϕ′′0 slightly modifies the effective propagation distance and as a
consequence, moves the positions of the zero-crossings of the sine function.
Again, for f , 0 we obtain the 1D phase retrieval formula

φCTF (x) = F−1 Ĩexp( f )

2A2
0 exp(iϕ′0 f ) sin

[
π

(
λze f −

ϕ′′0
2π

)
f 2

]
+ α( f )

. (21)

Going back to 2D phase retrieval problem starts with replacing the real and reciprocal coordinates
in Eq. (8) with 2D vector coordinates and upgrading the approximations in Eqs. (15) and (16) to

|A(f)| ≈ A(0) ≡ A0 (22)

ϕ(f) ≈ ϕ(0) +
2∑

k=1
ϕ′0k fk +

1
2

2∑
k,l=1

ϕ′′0kl fk fl, (23)

where f = ( f1, f2) is the reciprocal space vector, ϕ′0k is the first derivative of phase with respect
to k-th reciprocal coordinate at the (0, 0) point and ϕ′′0kl is the second derivative with respect to

                                                                       Vol. 9, No. 9 | 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4395 



Measured
hologram
I(x1, x2)

CTF
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reconstruction

Eq. (28)

detection

boundary

initial guess

Fig. 2. Scheme of the 3D reconstruction procedure.

k-th and l-th coordinate at the same point. Analogously, we can derive the expression for the
contrast transfer function as

Ĩ(f) = A2
0 exp

(
i

2∑
k=1

ϕ′0k fk

) [
δ(f) + 2φ̃(f) sin

(
πλ

2∑
k=1

z(k)
e f

f 2
k −

1
2

2∑
k,l=1

ϕ′′0kl fk fl

)]
, (24)

where z(k)
e f

is the k-th effective propagation distance (in general, it may differ for individual
dimensions). This was achieved by the following approximation

|φ (x1 + ∆1, x2 + ∆2) − φ (x1 − ∆1, x2 − ∆2)| � 1, (25)

∆1 =
λz(1)

e f
f1

2
−
ϕ′′011 f1 + ϕ′′012 f2

4π
, (26)

∆2 =
λz(2)

e f
f2

2
−
ϕ′′022 f2 + ϕ′′021 f1

4π
. (27)

Finally the phase retrieval formula for the 2D case is

φCTF (x1, x2) = F−1 Ĩexp( f1, f2)

2A2
0 exp

(
i
∑2

k=1 ϕ
′
0k fk

)
sin

(
πλ

∑2
k=1 z(k)

e f
f 2
k
− 1

2
∑2

k,l=1 ϕ
′′
0kl fk fl

)
+ α( f1, f2)

.

(28)
This fast one-step reconstruction approach can be used separately for each tomographic projection
and followed by one of the inverse Radon transform approaches to get approximative 3D electron
density map of our object. Alternatively, one can improve the CTF reconstruction by feeding
it into the iterative phase-retrieval algorithm as the one we recently proposed [13]. Using CTF
reconstruction as the initial guess as well as extracting the object’s support out of it can then
significantly help to reduce the number of iterations required for the convergence of the iterative
algorithm. The scheme of the workflow is sketched in Fig. 2.

4. Test of the method

To perform the numerical tests of the proposed method, we used the optical setup of quasi-channel
cut Germanium-based Bragg magnifier [11]. The system consists of 4 crystals magnifying their
corresponding incident wavefields with magnification factors M1, M2, M3, M4, respectively and
modifying the incident wavefields by their transfer functions E1, E2, E3, E4, respectively. As
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Fig. 3. Test of the given method for simulated data. The first image (from the left) shows
the original phantom image, the second is the simulated hologram using Bragg Magnifier,
the third is the CTF reconstruction according to Eq. (28) and the fourth is the iterative
reconstruction with CTF reconstruction as the starting point. Lower left image shows the
horizontal central profile through the last two images and lower right image compares the
convergence of our new described method and our original shrink-wrap (SW) iterative
algorithm [13]. The peaks in the SW error correspond to the iterations where the support
function was recalculated. The error of the reconstruction is defined as the absolute difference
between phases obtained after two consecutive iterations [13].

shown in [14], the propagator of the whole setup can be expressed as

H(f) = E1E2E3E4︸      ︷︷      ︸
A(f)

exp
[
−iπλ

(
z(1)
e f

f 2
1 + z(2)

e f
f 2
2

)]
, (29)

where the exponential term contains all the free space propagators with the effective propagation
distances determined as

z(1)
e f
= zS1 +

z12

M1
+

z23

M1M2
+

z34

M1M2
+

z4D

M1M2
, (30)

z(2)
e f
= zS1 + z12 + z23 +

z34

M3
+

z4D

M3M4
, (31)

where the zS1, z12, z23, z34, z4D are respectively the distances between the sample and the first
crystal, the first and the second crystal, the second and the third crystal, the third and the fourth
crystal, the fourth crystal and the detector. Here, the first two crystals magnify the beam along the
first dimension (horizontal) and the other two crystals along the second dimension (vertical).

From Eq. (29) we can extract the factor A(f) defined in Eq. (13) and based on Eqs. (22) and (23)
determine the parameters A0, ϕ′0k and ϕ′′0kl needed for evaluation of the final CTF phase retrieval
expression in Eq. (28). A critical aspect of applying the CTF reconstruction formula is the
regularization term α( f1, f2) present in the denominator of our proposed filter. Its purpose lies in
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Fig. 4. Test of the given method for experimental data (revisited from [13]). The left image
is the measured hologram of the biological specimen (Tardigrade) using Bragg Magnifier,
the middle one is the CTF reconstruction according to Eq. (28) and the image on the right is
the iterative reconstruction with CTF reconstruction as the starting point. The meaning of
the lower images is the same as in the case of Fig. 3.

the division by the sine function, which leads to the noise amplification around its zero-crossings,
hence lowering the contrast for particular frequencies. For the case of conventional CTF, many
different strategies of curing this problem have been proposed by the proper choice of α( f1, f2)
function. The most common one is to choose two constant regularization values - one for low and
one for high frequencies, with the smooth transition between them [15]. A more sophisticated
way was also proposed, where the regularization term is chosen to be a nonzero constant just
around the zero-crossings leading to improved quantitativeness of the reconstruction [16, 17].
This method is also referred to as the quasi-particle (QP) method, and it is the one used in the
following tests.
As already mentioned at the end of the Chapter 2, CTF reconstructions are not quantitative

since we lose information about the DC component φ̃(0, 0). However, to use our modified CTF
approach as an initial guess for the iterative algorithm, it needs to be reasonably close to the
final solution of the phase φ(x1, x2) also in a quantitative manner. Otherwise, it will not speed up
the iterative refinement. The way to improve it is to perform a least squares fit for the unknown
parameter φ̃(0, 0), which will minimize the distance between the calculated intensity pattern
I(x1, x2) (from the current φ(x1, x2)) and the measured intensity pattern Iexp(x1, x2). From the
computational point of view, this takes only a few seconds on a PC using 1 CPU and usually, it is
enough to perform this fit for only one 2D projection and apply the φ̃(0, 0) value to the whole
tomographic dataset. Therefore, it does not slow down the whole process.
Fig. 3 shows the results of the application of the proposed method on the simulated data. A

phantom image (marked as ’Original phase map’) is first computationally propagated to the
detector through the Bragg Magnifier setup (’Simulated hologram’) with the effective propagation
distances z(1)

e f
= 513 mm and z(2)

e f
= 758 mm, photon energy E = 10.7 keV and the total

magnification factor due to the crystals M = M1M2 = M3M4 = 180 for both directions. Then
the CTF reconstruction is carried out (Fig. 3) yielding reasonable reconstruction even for such
a complicated object, bearing in mind that the result is obtained using just a single distance
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detector data. The lower left image also shows the horizontal slice through the middle of the
image showing the quantitativeness of the result. After performing additional ∼ 300 iterations of
the iterative algorithm, the phase reconstruction has converged to the object practically identical
to the original one (’CTF+iterative reconstruction’). On the other hand, when using the iterative
algorithm only, i.e., starting with a random object, using the whole image as an initial support
and employing the shrink-wrap (SW) algorithm as described in [13], the convergence is slower.
One usually needs thousands of iterations to achieve the same result as accomplished by CTF as
an initial guess, where the convergence occurs in hundreds of iterations (error plot).

Subsequently, we applied the method to the experimentally measured holograms of Tardigrade
(’water bear’), under the same experimental parameters as used for the simulation of the phantom
image above. Again, the measured hologram, the CTF reconstruction, and the iterative refinement
are shown in Fig. 4 (revisited from [13]). The lower left image shows the comparison of the
horizontal middle cut through the images obtained by the CTF reconstruction alone and the
iterative refinement. The lower right image demonstrates the superiority of our new proposed
method compared to the SW iterative algorithm.

5. Application to small animal tomography

To perform a proof of principle of our new method’s applicability to microtomography, we
picked Tardigrade Echiniscus, a model organism for microtomography imaging. Tardigrades are
attractive test target for X-ray imaging for several good reasons. Species Hypsibius dujardini is
one of the most frequently studied model organism of developmental biology in general [18].
Tardigrades are also transparent, which allows correlating data, which allows correlating data
obtained from complementary imaging modalities, e.g. well-known optical techniques. The size
of the species is in hundreds of micrometer range, thus suitable for microtomography. There
are several forms worth studying: mature living forms, tun states, and embryonal forms. For
X-ray imaging is the most convenient anhydrobiotic tun state - the state in which Tardigrade
survives extreme external conditions, including both low and high temperatures as well as high
levels of ionizing radiation [19]. In anhydrobiotic states, the amount of water is dramatically
reduced and DNA is protected using several intensely studied molecular mechanisms [20], such
as disaccharide trehalose substituting molecular structure of water clusters and dedicated proteins
studied for possible use in human medicine [21]. In tun state, the cell nuclei are condensed,
which makes them visible in hard X-ray without contrasting techniques. The number of cells and
their development from an embryo into an adult organism is thoroughly studied and described in
details for most popular Tardigrades.
Our experimental samples consisted of Tardigrade of genus Echiniscus, dried to the residual

water content below 5%. After applying the phase retrieval procedure described above to every
2D projection and performing filtered back-projection, we obtained 3D electron density model of
our sample. A central 2D slice and 3D rendering view are shown in Fig. 5. We have marked the
visible internal structures of the sample in the left part of the figure. The right part shows the 3D
electron density distribution. The resolution we achieved by this method is 300 nm determined
by the Fourier shell correlation method. [22].

6. Conclusion

We have designed an efficient single-measurement phase retrieval method applicable for X-ray
phase contrast tomography using linear shift-invariant optical elements with a smooth transfer
function. The power of the method is that it lifts restrictions on the free space propagation
distances between the sample, optical elements and the detector as well as it improves the
speed of the phase reconstruction while preserving the high quality of the reconstruction and
quantitativeness of the results. The latter is achieved by using the combination of the non-iterative
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Fig. 5. Left - a 2D slice of tardigrade acquired by the proposed method. Mouth, mouth
tube, pharyngeal bulb, esophagus, and midgut are all parts of the digestive system. Ganglia
and brain are parts of the neural system. Right - 3D model of Tardigrade. Various internal
structures are visible including those from the left figure. The yellow symmetric objects are
stylets, part of digestive system. Inside the whole organism, we can see fibers.

and iterative approaches, namely using our formalism for the one-step phase reconstruction based
on the modified contrast transfer function and the previously published iterative algorithm.
We have demonstrated the feasibility of the method for the case of the Bragg Magnifier

Microscope - an imaging modality that uses asymmetric Bragg reflection to magnify the X-
ray beam. The tests were performed first on noiseless synthetic phantom data and then on
experimentally measured data of the biological sample - microorganism Tardigrade. Both proved
the superiority of the combined method compared to the purely iterative algorithm.
Based on the proposed method, we have finally performed the reconstruction of all the

tomographic projections and obtained the 3D electron density map of the Tardigrade, where
the essential morphological features from other imaging modalities are visible. We achieved
full 3D resolution of 300 nm, which is the theoretical limit of the given experimental setup.
This algorithm extends the applicability of the Bragg Magnifier Microscope for 3D in-vivo
dose-efficient tomographic imaging of biological objects with submicron resolution.

Funding

7FP EU (REGPOT) "Fostering Excellence in Multiscale Cell Imaging" (CELIM); VVGS-PF-
2015-470.

Acknowledgments

We are grateful to the prof. Hartmut Greven (Universität Düsseldorf) for kindly providing us the
samples of Tardigrades Hypsibius Dujardini.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

                                                                       Vol. 9, No. 9 | 1 Sep 2018 | BIOMEDICAL OPTICS EXPRESS 4400 




