KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges and limits of mechanical stability in 3D direct laser writing

Sedghamiz, Elaheh 1; Liu, Modan 1; Wenzel, Wolfgang 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Direct laser writing is an effective technique for fabrication of complex 3D polymer networks using ultrashort laser pulses. Practically, it remains a challenge to design and fabricate high performance materials with different functions that possess a combination of high strength, substantial ductility, and tailored functionality, in particular for small feature sizes. To date, it is difficult to obtain a time-resolved microscopic picture of the printing process in operando. To close this gap, we herewith present a molecular dynamics simulation approach to model direct laser writing and investigate the effect of writing condition and aspect ratio on the mechanical properties of the printed polymer network. We show that writing conditions provide a possibility to tune the mechanical properties and an optimum writing condition can be applied to fabricate structures with improved mechanical properties. We reveal that beyond the writing parameters, aspect ratio plays an important role to tune the stiffness of the printed structures.


Verlagsausgabe §
DOI: 10.5445/IR/1000145903
Veröffentlicht am 11.05.2022
Originalveröffentlichung
DOI: 10.1038/s41467-022-29749-9
Scopus
Zitationen: 21
Web of Science
Zitationen: 18
Dimensions
Zitationen: 22
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2022
Sprache Englisch
Identifikator ISSN: 2041-1723
KITopen-ID: 1000145903
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Nature Communications
Verlag Nature Research
Band 13
Seiten Art.-Nr.: 2115
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 19.04.2022
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page