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ABSTRACT
Despite the incredible progress of experimental techniques, protein structure determination still remains a challenging task. Due to the rapid
improvements of computer technology, simulations are often used to complement or interpret experimental data, particularly for sparse
or low-resolution data. Many such in silico methods allow us to obtain highly accurate models of a protein structure either de novo or via
refinement of a physical model with experimental restraints. One crucial question is how to select a representative member or ensemble out of
the vast number of computationally generated structures. Here, we introduce such a method. As a representative task, we add co-evolutionary
contact pairs as distance restraints to a physical force field and want to select a good characterization of the resulting native-like ensemble. To
generate large ensembles, we run replica-exchange molecular dynamics (REMD) on five mid-sized test proteins and over a wide temperature
range. High temperatures allow overcoming energetic barriers while low temperatures perform local searches of native-like conformations.
The integrated bias is based on co-evolutionary contact pairs derived from a deep residual neural network to guide the simulation toward
native-like conformations. We shortly compare and discuss the achieved model precision of contact-guided REMD for mid-sized proteins.
Finally, we discuss four robust ensemble-selection algorithms in great detail, which are capable to extract the representative structure models
with a high certainty. To assess the performance of the selection algorithms, we exemplarily mimic a “blind scenario,” i.e., where the target
structure is unknown, and select a representative structural ensemble of native-like folds.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0082444

I. INTRODUCTION

Proteins are the key biomolecular players in cells and organize
life at the nanoscale. They are involved in virtually all significant
biomolecular tasks be it the regulation of genes, conformational
transitions, energy regulation in the cell, signaling, enzymatic func-
tion, structural stability, or protein synthesis. To gain any detailed
understanding of protein function, the knowledge of the respec-
tive 3D structure is typically required. The majority of proteins
have a classical structure–function relation, where one native fold is
representative for its biological function. One interesting exception
are so-called intrinsically disordered proteins (IDPs). Such proteins
are more flexible in nature and have a set of different structure
ensembles, separated by low-energy barriers, instead of one sta-
ble and characteristic native fold. This heterogeneity as well as fast

transitions between structure ensembles during interactions makes
studies of IDPs and their functional interpretation much more
difficult.1,2

Historically, experimental techniques, such as x-ray diffrac-
tion and nuclear magnetic resonance (NMR), have been used for
high-resolution structure determination, but recently, in particular,
cryogenic electron microscopy (cryo-EM) has achieved spectacular
successes.3,4 Other experimental methods, such as Förster resonance
energy transfer (FRET) or small-angle x-ray scattering (SAXS), do
not directly provide high-resolution structures. In contrast, the
measured data contain ambiguous structure information at lower
spatial resolution and must be interpreted carefully to deduce a
target structure. In such cases, the integration of computational
techniques can complement experimental data sufficiently to also
provide high-resolution structures.
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In particular, molecular dynamics (MD) has had tremendous
success complementing or refining experimental data,5–8 which by
itself would be insufficient for full biomolecular structural char-
acterization. Furthermore, MD has provided valuable insight into
biomolecular folding and function by itself.9–11 Although computa-
tional costly, it was shown that it is even possible to fold proteins
de novo on the ms timescale on specialized supercomputers, such as
Anton.12,13

In short, MD relies on time-integration of a physics-based force
field, thus offering time-resolved insight into biomolecular dynamics
akin to a virtual microscope with atomic resolution. A key chal-
lenge of MD lies in overcoming local barriers, as proteins can get
trapped in local minima during the simulation, which can be tackled
by advanced sampling methods.14–16 One popular solution to this
problem is given by replica-exchange molecular dynamics (REMD),
where one runs copies of the simulated system at a range of temper-
atures in parallel and allows each replica to switch places with other
replicas at adjacent temperatures.17–20 Such exchanges between
temperature levels lead to trajectory jumps and disrupt simulating
the correct system dynamics at a fixed temperature but still maintain
a thermodynamically correct description of the system.

In this study, we want to address the following two main
objectives:

(1) We aim to investigate the achievable model precision of
REMD applied on medium-sized proteins between 39 and 92
residues. As our simulation protocol, we use contact-guided
replica-exchange simulations and add an energetic bias in
the form of distance restraints by a sigmoid potential.21

In general, distance restraints can be taken from any source
in order to guide the REMD simulation toward specific
conformations. It is possible to use, e.g., (sparse) NMR
data22 or contact maps from co-evolutionary analysis meth-
ods, such as direct coupling analysis (DCA).23–25 In our
case, we use contact maps derived from the neural network
ResTriplet.26 In addition, we want to test the limits of a
physical force fields acting on such large systems during the
contact-guided REMD protocol. Our previously performed
study focused on small proteins up to a size of up to 35
residues.21 Furthermore, it was shown that folding of similar
large protein targets is possible with REMD when using
a specialized, residue-specific force field within 2 μs-long
trajectories.27

(2) REMD as an enhanced sampling method can generate large
amounts of structural ensembles. With this in mind, our
second objective is to find a robust solution for ensem-
ble selection. As we require a stable metric to validate our
protocols, we aim at reproducing the native state from the
selected ensemble. We test four different ensemble-selection
algorithm chains and compare their performance in great
detail. Ensemble-selection methods are very task-orientated
and are often applied during protein refinement, such as in
the CASP11 competition.28 In this case, Feig et al. performed
initial MD simulations and obtained a refined structure by
averaging an ensemble of previously scored and filtered
trajectory snapshots.

In Sec. II, we briefly summarize all relevant methods required
for our work. We introduce the five simulated protein systems and

give an overview of their characteristics. Furthermore, we explain the
generation of our initial starting structures for our contact-guided
REMD simulations. Finally, we state the setup conditions, such as
REMD temperature distribution and bias contact enrichment. We
also give an overview of the used software and hardware for our
production runs.

In Sec. III, we give a brief overview of the achieved accuracy
of the REMD simulations and continue with a detailed explanation
of our applied method to select representative ensembles. After-
ward, we have an in-depth discussion and evaluation of the observed
performance and state the pros and cons of our four investigated
algorithm chain pipelines.

Finally, in Sec. IV, we conclude our findings and recap the most
important points of our study. Here, we focus primarily on the dis-
cussed ensemble selection algorithms and give a brief overview of
their selection criteria, performance ratings, and use-case related
aspects.

II. METHODS
A. Simulated systems

We selected five mid-sized monomeric proteins of varying
complexity for our study, which span a variety of different folds.
The proteins have lengths between 39 and 92 residues. The first test
protein is the lambda repressor [protein data bank (PDB) id:
1LMB29] with a folding time in the order of 49 μs. We simulated only
the second dimer chain whose structure is composed of six α-helices
in different orientations and has a length of 92 residues. Our second
test protein is the albumin-binding domain (PDB id: 1PRB30) with
a length of 53 residues and an extremely short folding time of ∼3.9
μs. The structure consists of three α-helices that are orientated as
a helical bundle. We were also interested in simulations using only
small parts of an entire protein. Furthermore, we wanted to investi-
gate systems that are purely β-sheets and selected, therefore, the WW
domain of human Pip1 Fip mutant (PDB id: 2F2131). This domain
has a reported folding time of ∼21 μs. It is also the shortest test
structure with a length of 39 residues. Our test system with a mixed
structure of α-helices and β-sheets is given by the N-terminal of L9
protein (PDB id: 2HBA32). It has a length of 52 residues with a fold-
ing time of 29 μs. Finally, we investigated simulations with the BBL
protein (PDB id: 2WXC33) with a length of 47 residues consisting of
α-helices with a folding time of 49 μs. Table I gives a brief overview
of the discussed protein systems, whereas Fig. 1 shows their tertiary
structures. Reported protein folding times were obtained as average
lifetime in the unfolded state observed in MD simulations.11

B. Generation of starting structures
To minimize the correlation between the initial starting struc-

ture and the achievable models with contact-guided REMD,21 we
decided to use a wide ensemble of starting conformations. For
this purpose, we generated 5000 decoys for each studied protein
using PyRosetta.35 We started the decoy creation from the protein
sequence and used a folding algorithm, which applies fragment
insertion of 3mer and 9mer fragments to speed up the process. Frag-
ment files were generated using the Robetta fragment server36 while
excluding homologues. Afterward, we calculated Cα distance matri-
ces of the 5000 decoys and clustered them using KMEANS with
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TABLE I. Overview of the simulated systems. The left side of the table contains structure-related information. The right side
lists the number of used bias contacts during contact-guided REMD and the corresponding true-positive rate (TPR).

Name/description PDB id
Folding

time (μs) Length
Bias

contacts
Bias TPR

(%)

Lambda repressor 1LMB 49 92 70 87
Albumin-binding domain 1PRB 3.9 53 40 82
WW domain of human Pin1 Fip mutant 2F21 21 39 30 96
N-terminal of L9 protein (NTL9) 2HBA 29 52 40 95
BBL 2WXC 49 47 35 91

72 cluster centers. Finally, we selected one decoy from each cluster
with the lowest Rosetta score (“ref2015” score37) as unique starting
structures for each individual replica. The selected structures were
assigned according to their Rosetta score ranking during the REMD
system setups. Appendix C (Tables 1 and 2) of the supplementary
material give an overview of the initial decoy accuracy prior to the
REMD simulations for all replicas.

C. Setup of contact-guided REMD simulations
All MD simulations of this study were performed with GROMACS

2020.38,39 We used the AMBER99SB-ILDN force field40 and the

FIG. 1. Tertiary structures of simulated proteins. (a) Lambda repressor (1LMB).
(b) Albumin-binding domain (1PRB). (c) WW domain of human Pin1 Fip mutant
(2F21). (d) N-terminal of L9 protein (2HBA). (e) BBL (2WXC). Structures are
visualized with PyMOL.34

TIP3P explicit-solvent model.41 The system setups were achieved
with pyrexMD,42 a self-developed Python package that provides
a Jupyter-Notebooks based environment to design, run, and ana-
lyze MD projects from the beginning to end. It automates many
system-specific and arduous tasks during the REMD setup and
eliminates possible application errors, such as mismatching system
sizes across replicas and incorrect mapping of bias contacts. Dur-
ing the setup process, each replica was equilibrated shortly for
200 ps in NVT and NPT simulations at their respective temper-
ature. Prior to the production run, we added ∼3/4 L (L: protein
sequence length) bias contacts to guide the REMD simulations
toward native-like conformations by applying a sigmoid potential.21

Used bias contacts were predicted with ResTriplet.26 Table I gives
an overview of the simulated systems, including the number
of used bias contacts and the corresponding true-positive rates.
A detailed list with the used bias contacts can be taken from
Appendix C (Table 3) of the supplementary material. Appendix D
(Figs. S1–S5) of the supplementary material shows the contact maps
of the proteins, visualizing both native contacts and included bias
contacts.

All REMD simulations were performed on the JUWELS43 com-
puter cluster. We used standard compute nodes each consisting of
2× Intel Xeon Platinum 8168 CPU (2× 24 cores, 2.7 GHz) and 96
GB DDR4 memory with 2666 MHz. The .mdp file options of the
REMD simulations can be taken from Appendix A of the of the
supplementary material. Each REMD simulation comprised a sim-
ulated time of 500 ns with a time step of 2 fs and 72 replicas. The
used REMD temperature distribution21 (see Appendix B of the sup-
plementary material) assigned temperatures from 280 K at replica 1
to ∼445 K at replica 72.

III. RESULTS AND DISCUSSION
A. Achieved model accuracy

RMSD-based structure comparison strongly correlates with the
largest displacement between two models where a few misplaced
residues can result in disproportionally large RMSD values. For this
reason, we focus on another metric called the global distance test
(GDT44–46). After fitting the model to a target structure, pairwise Cα
distances of the same residue are measured. These distances are used
to calculate percentage values Px based on different cutoff thresh-
olds. Finally, a score to estimate the global structure similarity is
calculated. The most common score is the total score (TS), which
is defined as
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TABLE II. Best achieved model accuracy during contact-guided REMD for the lowest-
temperature replica. The protein’s PDB id, the occurring secondary structure (ss)
motifs, the system size (approx. atom count), the global distance test total score (GDT
TS), and the backbone root-mean-square-deviation (RMSD) relative to the known
protein structure are listed.

PDB id ss motifs System size GDT TS RMSD (Å)

1LMB α 54 × 103 97 1.0
1PRB α 47 × 103 78 1.9
2F21 β 36 × 103 89 1.8
2HBA α, β 41 × 103 88 1.8
2WXC α 34 × 103 81 1.9

GDTTS =
1
4
(P1 + P2 + P4 + P8) ∈ [0, 100], (1)

where Px denotes the percentage of residues with displacements
below a distance cutoff of x Å.

The best results were achieved for the largest test system. The
lowest-temperature replica of the 1LMB REMD simulation showed
backbone RMSDs of ∼1.0 Å after 250 ns simulated time, as shown
in Fig. S6. Accordingly, GDT values higher than 90 were achieved,
peaking with a value of 97 during the REMD trajectory. Table II
summarizes the best achieved model accuracy, i.e., the backbone
RMSD and global distance test total score (GDT TS) with regard
to the known target structure, during the 500 ns long REMD
simulations for all five test systems. The complete RMSD and GDT
time evolution of the lowest-temperature replica can be looked up in
Appendix D (Figs. S6–S10) of the supplementary material.

FIG. 2. Flowchart showing all steps of the investigated ensemble selection algo-
rithm chains. Each stage is visualized in a different color: (I) data generation (gray),
(II) pre-selection of structures (red), (III) ensemble selection algorithms (yellow),
and (IV) comparison and evaluation (green) of the algorithm chains.

B. Ensemble selection algorithm chains
Our primary goal of this study was to find a method to reliably

select a structure ensemble representing high GDT structures. We
investigated four algorithm chains in great detail, which are able to
achieve this goal with high certainty. Figure 2 shows an overview of
all performed tasks in form of a flowchart. Starting with the entire
REMD trajectory of the lowest-temperature replica, the first impor-
tant step is to reduce the dataset by pre-selecting structures using
a meaningful quantity. Our dataset was generated via application of
contact-guided REMD. Therefore, we opted to use QBias, the fraction
of realized bias contacts in a structural model, as our metric to filter
the generated structures. QBias does not differentiate between true-
positive or false-positive contacts; hence, QBias = 1 might not always
be structurally possible. As shown in Figs. 3(a) and S11(a)–S14(a),
the fraction of realized bias contacts is positive correlated with the
GDT scores. The only exception was observed for 2F21 [cf. Fig.
S13(a)].

We decided to reduce the total frame count from 50 000 down
to 2000 by pre-selecting structures with the highest QBias values.
These selections are visualized by blue dots in Figs. 3 and S12–S14.
Next, we calculated the Cα distance matrices of the 2000 selected

FIG. 3. (a) Scatter plot showing the relation between QBias (fraction of realized
bias contacts) and GDT TS (global distance test total score) for the 2HBA REMD
simulation. Gray and blue colored dots represent the entire REMD trajectory com-
posed of 50 000 structures. Blue dots highlight the 2000 structures with the highest
QBias values, which were pre-selected for the ensemble selection. (b) Scatter plot
displaying the correlation between the Rosetta score and GDT TS of the 2000
pre-selected structures. The mean score μ (red dashed line) and μ ± 2σ (red solid
lines) are also shown, which were used as thresholds to filter outliers during the
cluster score calculations.
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structures, which we used as input for the dimension reduction of
the four possible pipelines during the selection algorithm (yellow
section in Fig. 2).

We investigated two different methods for dimension reduc-
tion: T-distributed stochastic neighbor embedding (TSNE47) and
multidimensional scaling (MDS48). Both methods produce 2D rep-
resentations (cf. Figs. 4 and 5) of the used distance matrices, where
local adjacent points represent structures of high similarity. TSNE
can visualize small structural differences better by creating many
separated point clusters due to the t-distributed push–pull moves of
samples during the algorithm. In other words, this algorithm aims
to separate different structures from each other. MDS, on the other
hand, visualizes structural differences better. That is because the dis-
tance between MDS points is always proportional to the difference
of the corresponding distance matrices. The dimension reduction is
of great importance for our selection method and fulfills two pur-
poses. First, it enables the creation of readable 2D plots not only
to compare structures but also to evaluate the performance of an
entire ensemble selection algorithm chain. Second, the dimension
reduction also eliminates a huge amount of randomness that could
occur during the following clustering step. This makes the algo-
rithm chains generally more robust and produces very similar results
across independent executions.

We also investigated two different data clustering methods:
KMEANS49 and DBSCAN50,51 (density-based spatial clustering of
applications with noise). KMEANS is one of the most-basic clus-
tering algorithms and has two important parameter specifications,
namely, the number of clusters k and the number of runs with inde-
pendant inizializations ninit. In each run, initial cluster centers are
randomly chosen from the dataset and data points are assigned to
the nearest cluster center. Next, cluster centers are shifted to the
mean of all points belonging to a cluster and previous steps are
repeated until convergence where no further changes occur. After
ninit independent runs, KMEANS selects the best result based on the
smallest sum of cluster variances. Due to the random selection of
initial cluster centers, this clustering method has a certain degree of
randomness attached. As previously mentioned, this random aspect
can be reduced by previously performing a dimension reduction.
The second clustering method, DBSCAN, is density-based and dis-
tinguishes between cluster points and noise. This clustering method
also requires two important parameter specifications, i.e., ε and
minpts. ε describes the maximum distance between two samples,
which are considered in the neighborhood. minpts specifies how
many data points within ε around sample X are required to con-
sider X as a core sample and part of a cluster. If a core sample is
identified, the cluster grows by including points within the ε neigh-
borhood, which can also be core points or just simply reachable
neighbors. Finally, all points that are not within the neighborhood
of core points are considered noise. Due to this density-based proce-
dure, each clustering result is identical for two individual runs using
the same parameters. For comparison reasons, we decided to keep
the total cluster count fixed for each clustering method, namely, 30
clusters for KMEANS and 21 clusters for DBSCAN.

After the clustering process is over, the next step is given by the
cluster selection. In our case, we intend to select native-like struc-
ture ensembles. For this purpose, we calculated Rosetta scores37 and
mapped them to the individual TSNE or MDS representations. We

FIG. 4. TSNE representation of selected 1LMB structures with highlighted
KMEANS cluster centers (k = 30: black squares, k = 10: red squares). (a) Relation
with global distance test total scores (GDT TS). (b) Relation with Rosetta scores.
(c) Relation with KMEANS cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 29: worst).
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FIG. 5. MDS representation of selected 1LMB structures with highlighted KMEANS
cluster centers (k = 30: black squares, k = 10: red squares). (a) Relation with
global distance test total scores (GDT TS). (b) Relation with Rosetta scores. (c)
Relation with KMEANS cluster mapping. Cluster indices are ranked by average
cluster accuracy (0: best, 29: worst).

then identify four clusters with the lowest mean scores and pick
them in increasing order. The general idea is that the 2D repre-
sentation in addition to the Rosetta scores can be viewed as an
energy landscape of protein structures. In order to select native-like
structures, we, therefore, want to select the deepest valleys of the
landscape and choose the structure ensembles by picking the low-
scoring clusters. However, note that the Rosetta score by itself does
not always discriminate native from native-like or even non-native
folds sufficiently. As exemplified in Fig. 3(b), structures with low
Rosetta scores are observed for structures with GDT scores primarily
between 70 and 90 but also between 40 and 50. Nevertheless, the
counts clearly indicate that low Rosetta scores have a higher proba-
bility to represent high GDT structures. Based on this observation,
we can identify such structures out of the clusters only after taking
their respective Rosetta score statistics into account, which favors
our target ensembles with slightly lower mean scores. Finally, the
comparison and evaluation regarding the performance of the four
presented algorithm chains can be achieved by looking at the cluster
accuracy statistics. Analogously to the cluster scoring with the mean
Rosetta scores, we assigned each cluster their corresponding mean
GDT value. We labeled all clusters based on their GDT ranking
with indices 0–29 (0: best, 29: worst) for KMEANS or 0–20 (0: best,
19: worst, 20: noise) for DBSCAN. This allows an easier interpre-
tation of the selected cluster during the discussion. Note that the
calculation of GDT scores as well as the ranking of cluster labels is
only possible because we used test systems where the native struc-
ture is already known. This information is only used for evaluation
purposes and is not required to select the structure ensembles them-
selves. Furthermore, each time cluster labels are mentioned, they
have been already sorted according to their accuracy. Tables III and
IV give a performance overview by listing the selected clusters of
each algorithm chain using KMEANS or DBSCAN, respectively. In
addition, the tables state a performance rating, which indicates the
importance of selected clusters. The rating is given by the weighted
sum of selected clusters. However, meaningful weights are only
assigned to clusters with labels 0–3 representing the highest GDT
ensembles. Mathematically, this is provided by

rating =∑
i

wi(cluster), (2)

with the weights w0 = 4, w1 = 3, w2 = 2, w3 = 1, and wi>3 = 0.

TABLE III. Performance of algorithm chains with KMEANS clustering. Selection order
of clusters is based on mean Rosetta scores, while cluster labels are ranked by accu-
racy (mean GDT scores, 0: best cluster). Rating is calculated according to Eq. (2) and
indicates the importance of selected clusters by weighing only clusters 0–3.

TSNE→ KMEANS MDS→ KMEANS

Protein Selected clusters Rating Selected clusters Rating

1LMB 1-0-6-2 9/10 2-0-1-6 9/10
1PRB 2-0-1-3 10/10 0-2-1-10 9/10
2F21 1-0-2-3 10/10 1-0-3-2 10/10
2HBA 3-2-0-1 10/10 0-1-7-8 7/10
2WXC 5-0-2-1 9/10 1-10-0-2 9/10
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TABLE IV. Performance of algorithm chains with DBSCAN clustering. Selection order
of clusters is based on mean Rosetta scores, while cluster labels are ranked by accu-
racy (mean GDT scores, 0: best cluster). Rating is calculated according to Eq. (2) and
indicates the importance of selected clusters by weighing only clusters 0–3.

TSNE→ DBSCAN MDS→ DBSCAN

Protein Selected clusters Rating Selected clusters Rating

1LMB 1-0-2-4 9/10 2-0-3-1 10/10
1PRB 1-0-2-14 9/10 2-0-1-12 9/10
2F21 0-1-6-2 9/10 0-1-8-2 9/10
2HBA 3-0-1-7 8/10 1-4-0-3 8/10
2WXC 1-0-3-9 8/10 2-3-0-1 10/10

In general, all compared algorithm chains yielded very good
results regarding ensemble selections. Note that it was always pos-
sible to select the two highest GDT ensembles (labels 0 and 1) and
in some cases even up to the four highest GDT ensembles. Algo-
rithms using TSNE for dimension reduction were exceptional stable
and produced ratings with 9/10 or higher for TNSE→KMEANS and
8/10 or higher for TNSE→ DBSCAN. The direct rating comparison
slightly favors the TNSE → KMEANS algorithm. In addition, this
procedure is very straightforward and does not require any case-
specific parameter tuning, as compared to the TSNE → DBSCAN
pipeline. The selected ensembles resulting from algorithms using
MDS are promising as well. MDS → KMEANS tends to produce
ratings with ∼9/10. However, the test case with 2HBA yielded a
rating of only 7/10. MDS → DBSCAN pipelines produced ratings
between 8/10 and 10/10. Additional information regarding selected
clusters and the corresponding cluster accuracy can be looked up in
Appendix C (Tables 4 and 5) of the supplementary material.

C. Discussion and evaluation
In this section, we want to focus on specific aspects, which

should be considered when evaluating the performance of differ-
ent ensemble-selection algorithms. One example is given by the
mapping correlations between GDT scores, Rosetta scores, and
selected cluster ensembles. These relations are illustrated in Fig. 4.
Figure 4(a) displays color-coded GDT scores mapped to the TSNE
representation of the 2000 pre-selected 1LMB structures. It con-
tains all the important information regarding structure accuracy,
which is only accessible if the target structure is already known.
Therefore, it can be viewed as the “ground truth” in terms of the
similarity of the individual structures compared to the native fold.
Figure 4(b), on the other hand, shows the Rosetta score mapping
instead. This information is always accessible and a high simi-
larity between Figs. 4(a) and 4(b) means that the Rosetta score
mapping is accurate and can be used to deduce good structure
ensembles. Note that GDT scores and Rosetta scores have inverse
scaling, i.e., good structures have high GDT scores and statisti-
cally low Rosetta scores. However, as previously mentioned, low
Rosetta scores do not always indicate high GDT values. As exem-
plified in Figs. 3(b) and S12(b)–S14(b), low Rosetta scores can
correspond to both high and low GDT structures. Finally, Fig. 3(c)
shows the final cluster mapping. Depicted cluster labels are sorted
by accuracy, where cluster 0 has the highest mean GDT scores
and represents the best ensemble. By comparing Figs. 3(a)–3(c), it

is possible to get an overview, where the four selected ensembles
(cf. Tables III and IV) are located within the Rosetta score landscape
and how good each selection algorithm performs.

When comparing similar figures for each individual test pro-
tein, we can clearly see that 1LMB, which is the largest test protein
with a length of 92 residues, has a very accurate Rosetta score land-
scape. Figures 4(a) and 4(b) look almost identical. The same is
obviously true for the MDS variant shown in Fig. 5(a) due to the
fixed structure-to-score mappings, whereas the locations on the 2D
representations differ. When comparing Fig. 4 with Fig. 5, we can
observe the main difference between TSNE and MDS representa-
tions. TSNE plots tend to have more distinct sample groups, which
result from the t-distributed push–pull projection. In both represen-
tations, highly similar structures are located very close to each other.
However, in TSNE, the distance information is not conserved to the
same degree as for MDS. This means that both GDT and Rosetta
score landscapes are much easier to understand for MDS, as com-
pared to TSNE. For example, Fig. 5(a) has exactly one distinct local
minimum (left centered region), whereas Fig. 4(a) has multiple local
minima spread around. This feature can be utilized to guess bad
ensemble selections for algorithms using MDS. For example, if three
out of four clusters are close to each other but one is far away during
MDS→ KMEANS, the one isolated cluster has a high probability to
be a bad choice due to inaccurate Rosetta score mappings. Although
TSNE does not have such a reliable way to tell false-positives, there
exists a workaround. As shown in Fig. 4, KMEANS cluster cen-
ters for k = 30 and k = 10 are shown additionally as black and red
squares, respectively. By clustering all samples with a high and low
number of cluster centers, we can probe the associated cluster scores
on different scales. In another step, we can check for the lowest scor-
ing k = 10 cluster center and identify the three nearest k = 30 cluster
centers. In our case, this information was always sufficient and could
be used as some sort of confidence boost, when selecting the four
final structure ensembles. Most of the time, at least two of the three
nearest k = 30 clusters had cluster labels smaller than 3 and were part
of the best selections based on their associated GDT accuracy.

Another important aspect of the evaluation is given by the
robustness of each investigated algorithm chain. In general, using
TSNE for dimension reduction makes the ensemble selection very
robust. Individual executions of either KMEANS or DBSCAN on a
TSNE representation tend to lead to very similar results. MDS, on
the other hand, introduces a certain amount of stochasticity when
combined with KMEANS clustering. The distance conservation typ-
ically leads to an accumulation of structures into few but dense
groups without enough distance between each other to indicate a
clear separation of structures. In some extreme cases, structures can
even accumulate mainly into a single stack, e.g., as shown for 2F21
in Fig. S22 or 2WXC in Fig. S30. When applying KMEANS on
such a 2D representation, independent runs can generate slightly
varying results due to the initial random assignment of cluster cen-
ters. This results in minor movement of cluster borders and can
lead to variations of the final ensemble selections. The variations
can also be observed with different KMEANS initialization methods
(e.g., random or Forgy52), since it primarily depends on the density
of data points. Over many independent runs, we observed changes
of ±1 for individual ratings according to Eq. (2). This means that
the average rating, which is calculated across all test cases, stays
approximately constant.
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Comparing the last possible algorithm chain, one negative
aspect stands out for the pipeline MDS → DBSCAN. The density-
based clustering method is highly dependent on the 2D repre-
sentation, which is applied beforehand. As previously mentioned,
DBSCAN requires the specification of the two parameters ε and
minpts. Note that both parameters have a correlation with dis-
tance, whereas ε is clearly dominating and, therefore, the most
important parameter to choose. MDS representations, such as
Fig. S22 for 2F21 or Fig. S30 for 2WXC, can produce unreliable
results and will require case-specific parameter choices. However,
because we forced a fixed cluster count of 21 for algorithms using
DBSCAN, we were still able to achieve good results comparable
to the other investigated alternatives. The biggest difference com-
pared to other pipelines is that MDS → DBSCAN manages to
select very small ensembles with extremely high structure accuracy.
For example, the final selection for 1LMB contained an ensem-
ble with only five structures and a maximum GDT of 94.64, or
2HBA resulted in an ensemble with eight structures and a maximum
GDT of 85.71.

IV. CONCLUSION
One of our goals was to test the limitations of contact-guided

REMD when applied on medium-sized proteins. Overall, we can
deduce that this method is capable of achieving relatively good struc-
ture refinement for proteins up to the tested size of ∼90 residues. We
were able to observe GDT values above 80 in all of our 500 ns long
simulations. For 2F21 and 2HBA, we achieved GDTs of nearly 90,
whereas 1LMB reached an outstanding GDT score of 97 after only
250 ns. The observed performance and best-achieved model pre-
cision was more dependent on the true-positive rate of the bias
contacts as compared to the secondary structure motifs or size of
the protein. Proteins that mainly consist of α-helices are showing
great results even after very short REMD simulations. Larger pro-
teins and a high ratio of β-sheet motifs with respect to the total
protein size generally require longer trajectories before showing
good results. In such cases, longer REMD trajectories above 1 μs
might be required to achieve better results due to additional replica
turnarounds.

Our primary goal was to find a robust solution for ensem-
ble selection. Here, we validated our selection method by trying
to reproduce the native state mimicking a “blind scenario” with
unknown target structure. In general, such a task is very challeng-
ing. There exist many different measurements or scoring formulas,
which can be used to assess the quality of a protein structure.
However, each on their own is not sufficient enough to guaran-
tee outstanding structure selections. This was exemplarily shown
by the correlations between observed Rosetta and GDT scores for
our five test systems. Nevertheless, we showed that it is possi-
ble to reliably obtain our wanted protein ensemble by executing
specific algorithm chains. We investigated a total of four differ-
ent algorithm chains in great detail and objectively compared their
performance.

Starting with the structures taken from the simulation, each
chain requires a pre-selection of trajectory frames to reduce the
frame count to a manageable amount. Here, structural data were
generated using contact-guided REMD. We showed that, in this
case, the fraction of realized bias contacts, QBias, is a suitable quantity
to reduce the frame count due to the primarily positive correlation
with GDT scores. The next step of the algorithm chain performs
a dimension reduction of the pre-selected structures and their Cα
distance matrices. The main intentions are to improve the overall
robustness of the algorithm chain by minimizing or even completely
negating randomness from the following clustering step. In addi-
tion, it enables a readable 2D representation of structures, which
can be extended via Rosetta and GDT score mappings to compare
the algorithm performance. Here, we compared two variants
of dimension-reduction, namely, t-distributed stochastic neighbor
embedding (TSNE) and multidimensional scaling (MDS). The next
step involved the clustering of the 2D representations into structure
ensembles using either KMEANS or DBSCAN algorithms. The four
possible pipelines were

(1) TSNE→ KMEANS,
(2) MDS→ KMEANS,
(3) TSNE→ DBSCAN,
(4) MDS→ DBSCAN.

TABLE V. Comparison overview of the four investigated algorithm chains. Clusters were selected by calculating mean Rosetta scores and picking the four lowest-scoring clusters.
The total cluster count varies based on the used clustering method (KMEANS or DBSCAN). Average rating was calculated using Eq. (2) and normalized across all five test
proteins.

Algorithm Cluster selection Average rating Positive features Negative features

TSNE→ KMEANS Top 4/30 9.6/10 Straightforward/no
parameter tuning

Selection can include noise
data

MDS→ KMEANS Top 4/30 8.8/10 Distance preservation
allows to guess
false-positives

Dense sample regions
increase randomness of
cluster borders

TSNE→ DBSCAN Top 4/21 8.6/10 Reduced noise Slightly parameter
dependent

MDS→ DBSCAN Top 4/21 9.2/10 Possible to identify small
ensembles with extremely
high structure accuracy

DBSCAN parameters
correlate with distance, i.e.,
heavily depend on
case-specific MDS
representation
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After calculating mean Rosetta scores for each cluster, we
selected the four clusters with the lowest means as our final picks.
Note that, while REMD leads to thermodynamically correct ensem-
bles, our clustering does not maintain this property. Because we
used proteins with known native structures, we were able to evaluate
the performance of each algorithm chain by comparing the selected
ensembles with the corresponding cluster accuracy. For this pur-
pose, we introduced a numerical rating allowing us to easily compare
the performance by weighing only the four ensembles corresponding
to the most-refined structures. We also discussed the pros and cons
of each algorithm chain in great detail and summarized them in
Table V.

Overall, we showed that the presented algorithmic work-
flows performed very well in all test cases. Most notably, we were
always able to obtain the two most native-like structure ensembles
(i.e., clusters with label 0 and 1). However, it is still not possible
to perfectly rank the selected ensembles based on accuracy if the
target structure is truly unknown. The final ensemble selections
primarily depend on the accuracy on the underlying energy func-
tion. As shown for four of our five test proteins, Rosetta scores are
not accurate enough to reliably distinguish between low and high
GDT conformations. Still, it is possible to apply small tricks to dis-
tinguish between particular good and bad picks. For instance, it is
possible to use the distance preservation of MDS to eliminate bad
picks, if, e.g., one of the selections is located far away from the others.
Another example was given by performing two separate KMEANS
clustering with k = 10 and k = 30. By changing the number of clus-
ter centers k, comparing the individual distances of cluster centers
and their energy rankings, one can deduce the real accuracy ranking
in some cases.

Although we exemplarily aimed here for native-like ensemble
selections, the key aspects of our methodology should be applicable
to other ensemble-selection objectives as well. This would require
an alteration of only two steps, namely, the pre-selection (here: filter
structures by QBias) and the scoring function during the final ensem-
ble selection (here: mean Rosetta scores of clusters). By doing so,
one should achieve similar results for other ensemble targets. For
example, the application of an energy function that favors β-sheets
could detect and select structure ensembles with high amounts
of β-sheets.

SUPPLEMENTARY MATERIAL

See the supplementary material for Appendixes A–D for a
sample .mdp file of the REMD simulations, the used REMD temper-
ature distribution,21 as well as various additional tables and figures
related to this work.
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