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Abstract
A standard approach to accelerating shortest path algorithms on networks is the bidirectional
search, which explores the graph from the start and the destination, simultaneously. In practice
this strategy performs particularly well on scale-free real-world networks. Such networks typically
have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e.,
vertices with a common neighbor are likely to be connected themselves). These two properties can
be obtained by assuming an underlying hyperbolic geometry.

To explain the observed behavior of the bidirectional search, we analyze its running time on
hyperbolic random graphs and prove that it is Õ(n2−1/α + n1/(2α) + δmax) with high probability,
where α ∈ (1/2, 1) controls the power-law exponent of the degree distribution, and δmax is the
maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although
our analysis depends on the underlying geometry, the algorithm itself is oblivious to it.
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1 Introduction

One of the most fundamental graph problems consists of finding a shortest path between two
vertices in a network. Besides being of independent interest, many algorithms use shortest
path queries as a subroutine. On unweighted graphs, such queries can be answered in linear
time using a breadth-first search (BFS). Though this is optimal in the worst case, it is not
efficient enough when dealing with large networks or problems involving many shortest path
queries.

A way to heuristically improve the run time, is to use a bidirectional BFS [26]. It runs
two searches, simultaneously exploring the graph from the start and the destination. The
shortest path is found once the two search spaces touch. Being one of the standard heuristics,
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Homogeneous Heterogeneous

Independent
Edges

Bounded
Variance

m
1
2 +o(1) [10]

Unbounded
Variance

m
4−β

2 +o(1) [10]

Underlying
Geometry

Euclidean
Random Graphs

Θ(n) (Folklore)

Hyperbolic
Random Graphs

Õ(n2 β−2
β−1 + n

1
β−1 ) (This paper)

Table 1 Probabilistic bounds on the running time of the bidirectional BFS obtained by analyzing
different random graph models. The considered models (and associated results) are arranged by
the heterogeneity of the corresponding degree distributions of the graphs and the (in)dependence
of edges. Here, n and m denote the number of vertices and edges in the graph, respectively. The
parameter β ∈ (2, 3) denotes the power-law exponent of the degree distribution in the considered
heterogeneous networks.

the bidirectional BFS is widely used in practice (e.g., in route planning). On homogeneous
networks (where most vertices have similar degrees, like road networks) this typically leads
to a speedup factor of about two. However, on heterogeneous networks (having many
vertices of low degree and only few vertices of very high degree, like social networks or the
internet) experiments indicate that the bidirectional BFS yields an asymptotic running time
improvement [10].

Despite being such a fundamental heuristic, theory completely fails its main purpose of
predicting and explaining the observed behavior. The theoretical worst case running time
overshoots the observations by a lot. A more promising approach is the average-case analysis
by Borassi and Natale [10], which considers instances that are drawn from certain probability
distributions instead of assuming the worst case. Their results are summarized in the first
row of Table 1. The analysis covers a variety of random graph models. On the one hand
these include homogeneous networks where the degree distribution has bounded variance,
e.g. Erdős-Rényi random graphs. On the other hand, they also consider heterogeneous
networks where the variance of the degree distribution is unbounded, e.g. Chung-Lu random
graphs with power-law exponent β ∈ (2, 3). However, the results, again, do not match what
is observed in practice, as it predicts shorter running times on homogeneous networks than
on heterogeneous ones.

The fundamental obstacle that prevents the average-case analysis from producing con-
vincing explanations is that the considered random graph models are not realistic. They
assume that edges in the graph are independent of each other. However, real-world networks
typically exhibit locality, i.e., edges in an evolving network tend to form between vertices
that are already close in the network.

We resolve this discrepancy by modeling edge dependencies using geometry and extend
the comparison in Table 1 by adding the second row. Generally, geometric random graphs
are obtained by randomly distributing vertices in some metric space (e.g. the Euclidean
plane) and connecting any two vertices with a probability that depends on their distance. In
this framework, heterogeneous networks (i.e., networks on which the bidirectional BFS has
been observed to perform particularly well) can be obtained by using the hyperbolic plane as
the underlying geometry.

In this paper, we analyze the bidirectional BFS on random graph models with an
underlying geometry. We prove that, with high probability, the bidirectional BFS has a



Bläsius et al. 3

sublinear worst-case running time on the heterogeneous networks generated by the hyperbolic
random graph model. Additionally, it is not hard to see why there is no asymptotic speedup
on the homogeneous networks generated by the Euclidean random graph model. Both results
match previous empirical observations. Finally, we interpret these insights and discuss how
the heterogeneity of the degree distribution and an underlying geometry affect the running
time of the bidirectional breadth first search.

Related Work

The research on scale-free networks has gained a lot of attention for quite some time now.
Therefore, it is no surprise that the extensively studied problem of computing shortest paths
has also been considered in the context of such graphs [1, 23, 20]. However, the bidirectional
search that was introduced in 1969 [26] and that has since become one of the standard search
heuristics, has only recently been examined on scale-free networks. In fact, there are only
two theoretical explanations for the performance improvements obtained using this heuristic,
both using an average-case analysis that considers one or more random graph models [21, 10].

A model that yields a better representation of real-world networks than the ones considered
before, is the hyperbolic random graph model introduced by Krioukov et al. [19]. The
generated graphs feature a heterogeneous degree distribution, high clustering, and a small
diameter; properties that are often observed in real-world networks. These properties emerge
naturally from the hyperbolic geometry. Moreover, the model is conceptually simple, which
makes it accessible to mathematical analysis. For these reasons it has gained popularity in
different research areas and has been studied from different perspectives.

From the network-science perspective, the goal is to gather knowledge about real-world
networks. This is, for example, achieved by assuming that a real-world network has a hidden
underlying hyperbolic geometry, which can be revealed by embedding it into the hyperbolic
plane [2, 9].

From the mathematical perspective, the focus lies on studying structural properties. The
degree distribution and clustering [17], diameter [15, 22], component structure [8, 18], clique
size [6], and separation properties [5] have been studied successfully.

Additionally, there is the algorithmic perspective, which is the focus of this paper. Usually
algorithms are analyzed by proving worst-case running times. Though this is the strongest
possible performance guarantee, it is rather pessimistic as practical instances rarely resemble
worst-case instances. Techniques leading to a more realistic analysis include parameterized
or average-case complexity. The latter is based on the assumption that instances are drawn
from a certain probability distribution. For hyperbolic random graphs, the maximum clique,
as well as the minimum vertex cover can be computed in polynomial time [6, 3], and there are
several algorithmic results based on the fact that hyperbolic random graphs have sublinear
tree width [5]. Moreover, there is a compression algorithm that can store a hyperbolic random
graph using O(n) bits in expectation [12, 25]. Finally, a close approximation of the shortest
path between two vertices can be found using greedy routing, which visits only O(log logn)
vertices for most start–destination pairs [13]. The downside of most of these algorithms is
that they need to know the underlying geometry, i.e., the coordinates of each vertex, which
is a rather unrealistic assumption for real-world networks. In contrast to that, we analyze an
algorithm that is oblivious to the underlying geometry.
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Figure 1 Left: Points and several line segments in the native representation of the hyperbolic
plane. A disk of radius r is centered at p2. Right: Geometric shapes and their intersections. Sector
S has an angular width of ϕ.

Outline

After a brief introduction to hyperbolic random graphs in Section 2, we examine the
bidirectional BFS in Section 3. We start by briefly arguing why the bidirectional BFS gives
no asymptotic speedup over the standard BFS on Euclidean random graphs in Section 3.2.
Afterwards, in Section 3.3 we rigorously analyze the bidirectional BFS on hyperbolic random
graphs. Section 4 contains concentration bounds that were left out in Section 3 to improve
readability. In Section 5, we conclude by comparing our theoretical results to empirical data
and interpret them.

2 Preliminaries

Let G = (V,E) be an undirected and unweighted graph. We denote the number of vertices
and edges with n and m, respectively. The neighborhood of a vertex v ∈ V is N(v) = {w ∈
V | {v, w} ∈ E}. The degree of v is deg(v) = |N(v)|. We denote the maximum degree with
δmax. The soft O-notation Õ suppresses poly-logarithmic factors in n.

2.1 The Hyperbolic Plane
The major difference between hyperbolic and Euclidean geometry is the exponential expansion
of space. In the hyperbolic plane, a circle of radius r has area 2π(cosh(r)−1) and circumference
2π sinh(r), with cosh(x) = (ex + e−x)/2 and sinh(x) = (ex − e−x)/2, both growing as
ex/2± o(1). To identify points, we use polar coordinates with respect to a designated origin
O and a ray starting at O. A point p is uniquely determined by its radius r, which is the
distance to O, and the angle (or angular coordinate) ϕ between the reference ray and the line
through p and O. In illustrations, we use the native representation, obtained by interpreting
the hyperbolic coordinates as polar coordinates in the Euclidean plane; see Figure 1 (left).
Due to the exponential expansion, line segments bend towards the origin O. Let p1 = (r1, ϕ1)
and p2 = (r2, ϕ2) be two points. The angular distance between p1 and p2 is the angle between
the rays from the origin through p1 and p2. Formally, it is ∆(ϕ1, ϕ2) = π − |π − |ϕ1 − ϕ2||.
The hyperbolic distance dist(p1, p2) is given by

cosh(dist(p1, p2)) = cosh(r1) cosh(r2)− sinh(r1) sinh(r2) cos(∆(ϕ1, ϕ2)).
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Note how the angular coordinates make simple definitions cumbersome as angles are considered
modulo 2π, leading to a case distinction depending on where the reference ray lies. Whenever
possible, we implicitly assume that the reference ray was chosen such that we do not have
to compute modulo 2π. Thus, the above angular distance between p1 and p2 simplifies
to |ϕ1−ϕ2|. A third point p = (r, ϕ) lies between p1 and p2 if ∆(ϕ,ϕ1)+∆(ϕ,ϕ2) = ∆(ϕ1, ϕ2).

Throughout the paper, we regularly use different geometric shapes that are mostly based
on disks centered at the origin O, as can be seen in Figure 1 (right). With Dr(p) we denote
the disk of radius r around a point p, i.e., the set of points that have distance r to p. For
disks, that are centered in the origin O, we simplify the notation and set Dr := Dr(O). The
restriction of a disk Dr to all points with angular coordinates in a certain interval is called
sector, which we usually denote with the letter S. Its angular width is the length of this
interval. For an arbitrary set of points A, we use A|r2

r1
to denote the restriction of A to points

with radii in [r1, r2], i.e., A|r2
r1

= A ∩ (Dr2 \Dr1).

2.2 Hyperbolic Random Graphs
A hyperbolic random graph is generated by drawing n points uniformly at random in a disk
of the hyperbolic plane and connecting pairs of points whose distance is below a threshold.
More precisely, the model depends on two parameters C and α that are assumed to be
constants. The generated graphs have a power-law degree distribution with power-law
exponent β = 2α+ 1 and a constant average degree depending on C. The parameter α is
assumed to be in the range (1/2, 1), yielding power-law exponents β ∈ (2, 3). Exponents
outside of this range are atypical for hyperbolic random graphs. For β < 2 the average
degree of the generated networks diverges, while for β > 3 the graphs decompose into small
components (of size sublinear in n) and the variance of the degree distribution is no longer
unbounded. In contrast, it is unbounded for β ∈ (2, 3), resulting in very heterogeneous
degree distributions. Moreover, in this range the obtained networks have a giant component
of size Ω(n) [7], and all other components have at most polylogarithmic size with high
probability [15, Corollary 13]. Note that a bidirectional BFS could completely explore a
non-giant component in Õ(1) time and either return the shortest path (if both vertices are
in the same non-giant component) or conclude that the vertices are in different components.
Therefore, we only consider the case when the two considered vertices are both in the giant
component in the remainder of the paper.

When generating a hyperbolic random graph, the n points are sampled within the disk
DR of radius R = 2 logn+ C. For each vertex, the angular coordinate is drawn uniformly
from [0, 2π]. Its radius r is sampled according to the probability density function f(r), which
can then be used to define the joint distribution of angles and radii f(r, ϕ). They are given
by

f(r) = α sinh(αr)
cosh(αR)− 1 = Θ(e−α(R−r)) and f(r, ϕ) = 1

2πf(r) (1)

for r ∈ [0, R]. For r > R, f(r) = f(r, ϕ) = 0. Two vertices are connected by an edge if and
only if their hyperbolic distance is at most R. The above probability distribution is a natural
choice as the probability for a vertex ending up in a certain region is proportional to its area
(at least for α = 1). Note that the exponential growth in r reflects the fact that the area of a
disk grows exponentially with the radius. It follows that a hyperbolic random graph has few
vertices with high degree close to the center of the disk and many vertices with low degree
near its boundary. The following lemma is common knowledge; for the sake of completeness
we give a short proof.
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I Lemma 1. Let G be a hyperbolic random graph. Furthermore, let v1, v2 be two vertices with
radii r1 ≤ r2 ≤ R, respectively, and with the same angular coordinate. Then N(v2) ⊆ N(v1).

Proof. Let w ∈ N(v2), i.e., dist(v2, w) ≤ R. Now consider the triangle v2Ow, which is
completely contained in the disk of radius R around w (since dist(v2, w) ≤ R and r(w) ≤ R).
Since disks are convex and v1 lies on the line from O to v2, it is part of the triangle and
therefore also contained in this disk. Consequently, dist(v1, w) ≤ R and thus w ∈ N(v1). J

Given two vertices with fixed radii r1 and r2, their hyperbolic distance grows with increas-
ing angular distance. The maximum angular distance such that they are still adjacent [17,
Lemma 3.1] is

θ(r1, r2) = arccos
(

cosh(r1) cosh(r2)− cosh(R)
sinh(r1) sinh(r2)

)
= 2e

R−r1−r2
2 (1 + Θ(eR−r1−r2)), (2)

assuming r2 ≥ R − r1. Otherwise, we have r1 + r2 < R, meaning two vertices with these
radii are adjacent, independent of their angular distance.

The probability that a sampled vertex falls into a given subset A ⊆ DR of the disk is
given by its probability measure µ(A) =

∫∫
A
f(r, ϕ) dϕdr, which can be thought of as the

area of A. There are two types of regions we encounter regularly: disks Dr with radius r
centered at the origin and disks DR(r, ϕ) of radius R centered at a point (r, ϕ). Note that
the measure of DR(r, ϕ) gives the probability that a random vertex lies in the neighborhood
of a vertex with position (r, ϕ). Gugelmann et al. [17, Lemma 3.2] showed that

µ(Dr) = e−α(R−r)(1 + o(1)), and (3)

µ(DR(r, ϕ)) = Θ(e−r/2). (4)

For a given region A ⊆ DR of the disk, let X1, . . . , Xn be random variables with Xi = 1
if vertex i lies in A and Xi = 0 otherwise. Then X =

∑n
i=1Xi is the number of vertices

lying in A. By the linearity of expectation, we obtain that the expected number of vertices
in A is E[X] =

∑n
i=1 E[Xi] = nµ(A).

Often, determining the expected value of a random variable is not sufficient to obtain
meaningful statements. Therefore, we additionally classify events depending on how likely
they are to occur. We say that an event holds with high probability, if it occurs with probability
1−O(1/n). Moreover, we say that an event holds asymptotically almost surely if it occurs
with probability 1− o(1).

To show that certain random variables are concentrated around their expectation (i.e.,
with high probability the outcome does not deviate much from the expected value) we
regularly use the following Chernoff-Hoeffding bound.

I Theorem 2 (Chernoff Bound [14, Theorem 1.1]). Let X1, . . . , Xn be independent random
variables with Xi ∈ {0, 1} and let X be their sum. Then,

Pr[X > t] ≤ 2−t for t > 2eE[X] and

Pr[X < (1− ε)E[X]] ≤ e−ε
2/2·E[X] for ε ∈ (0, 1).

Usually, it suffices to show that a random variable does not exceed a certain upper bound
or drop below a lower bound with high probability. The following corollaries show that
sufficiently large upper and lower bounds on the expected value suffice to obtain concentration.
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I Corollary 3. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and let X
be their sum. Further, let f(n) = Ω(log(n)) be such that E[X] ≤ f(n) and let c be a constant.
Then, X = O(f(n)) holds with probability 1−O(n−c).

Proof. We prove the statement by showing that the probability for the complementary
event (i.e., X is more than a constant factor larger than f(n)) is O(n−c) for any c. Since
E[X] ≤ f(n), we can choose a constant c1 sufficiently large such that c1f(n) > 2eE[X]. Thus,
by Theorem 2 it holds that

Pr[X > c1f(n)] ≤ 2−c1f(n).

Moreover, we have f(n) = Ω(logn). Consequently, there exists another constant c2 such that
f(n) ≥ c2 logn for sufficiently large n. We obtain

Pr[X > c1f(n)] ≤ 2−c1c2 logn ≤ n−c1c2

for n sufficiently large. Finally, we can chose c1 such that c1 > c/c2, which yields the
claim. J

I Corollary 4. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and let X
be their sum. Further, let f(n) = ω(logn) be such that f(n) ≤ E[X] and let c be a constant.
Then, X ∈ Ω(f(n)) holds with probability 1−O(n−c).

Proof. Analogous to the proof of Corollary 3 we prove the statement by showing that the
probability for the complementary event (i.e., X is more than a constant factor smaller than
f(n)) is O(n−c) for any c. Let ε be a constant with ε ∈ (0, 1). The following inequalities
are obtained by first using the fact that f(n) ≤ E[X], applying the second statement of
Theorem 2, again applying f(n) ≤ E[X], and finally using f(n) ∈ ω(logn):

Pr[X < (1− ε)f(n)] ≤ Pr[X < (1− ε)E[X]]

≤ e−ε
2/2·E[X]

≤ e−ε
2/2·f(n)

= e−ε
2/2·ω(logn)

= n−ω(1).

J

Finally, the following lemma shows that statements about the neighborhood of a vertex
with fixed angular coordinate can be extended to hold for arbitrary angular coordinates,
with a small penalty in certainty.

I Lemma 5. Let G be a hyperbolic random graph, let Xw ≥ 0 for w ∈ V be random variables,
and let X(D) =

∑
w∈DXw for D ⊆ DR. Further, let DR(r) be the set of disks of radius R

with center at radius r. If for each D ∈DR(r) it holds that Pr[X(D) ≤ f(n)] ≥ 1− p, then
Pr[∀D ∈DR(r) : X(D) ≤ 2f(n)] ≥ 1−O(np).

Proof. Let D′ ∈DR(r) be a disk with radius R centered at radius r and arbitrary angular
coordinate. To bound X(D′), we cover the disk DR with a circular sequence of n′ disks
D1, . . . , Dn′ , such that D′ is completely contained in two consecutive disks (when constrained
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Di+1

Di

Di+2

Di+3

Di+4

DrDR

D′

P ′

Pi

Pi+1

P

Figure 2 Visualization of the proof of Lemma 5. When constrained to the disk DR, the disk D′
(bold) with center P ′ at radius r is completely contained in two consecutive disks Di and Di+1 (red
region). Point Pi is between P and P ′.

to the whole disk DR). That is, there exists an i ∈ {1, . . . , n′} such that D′ ⊆ Di ∪Di+1.
Since Xw ≥ 0 for all w ∈ V , it then holds that

X(D′) =
∑
w∈D′

Xw ≤
∑

Di∪Di+1

Xw ≤
∑
w∈Di

Xw +
∑

w∈Di+1

Xw = X(Di) +X(Di+1).

Since Pr[X(D) ≤ f(n)] ≥ 1 − p holds for each D ∈ DR(r), we can apply the union
bound to conclude that X(Di) ≤ f(n) holds for all i ∈ {0, . . . , n′} with probability 1− n′p.
Consequently, X(D′) ≤ 2f(n) with probability 1− n′p.

To complete the proof, it remains to show that there exists such a sequence D1, . . . , Dn′

with n′ ∈ O(n). See Figure 2 for an illustration of how the sequence is constructed. All
disks Di for i ∈ {1, . . . , n′} have their center at radius r. The center of the first disk is
placed at angular coordinate 0 and each subsequent disk is placed at an angular distance of
2θ(r,R) (see Equation (2)) to its predecessor until the whole disk is covered. Note that, as a
consequence, the boundaries of two consecutive disks intersect at the boundary of the whole
disk DR.

Let P ′ be the center of D′. To see that D′ is contained in two consecutive disks Di and
Di+1 (when constrained to the whole disk DR), first note that there exists an i ∈ {1, . . . , n′}
such that P ′ is between the centers Pi and Pi+1 of two consecutive disks Di and Di+1. We
show that any point P ∈ D′ is contained in Di ∪Di+1. Clearly, Di ∪Di+1 contains all points
between Pi and Pi+1 (blue region in Figure 2). For the case where P does not lie between
Pi and Pi+1, assume without loss of generality, that Pi is between P and P ′, as depicted in
Figure 2. Since dist(P, P ′) ≤ R and since P ′ and Pi have the same radius but Pi is between
P and P ′, it follows that dist(P, Pi) ≤ R, and thus P ∈ Di. Finally, it remains to show that
n′ = O(n) disks are sufficient to cover the whole disk DR. Since two consecutive disks are
placed at an angular distance of 2θ(r,R), we need n′ = 2π/(2θ(r,R)) = O(1/θ(r,R)) disks.
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s

t

DR

DR|ρ0

Figure 3 Visualization of the two phases of each BFS in a hyperbolic random graph. Vertices
that are visited during the first phase are red. The red edges denote the first encounter of a vertex
in the inner disk DR|ρ0 (green region). This corresponds to the first step in the second phase. The
last step then leads to a common neighbor via the blue edges.

Since θ(r,R) ≥ θ(R,R), it follows that n′ = O(1/θ(R,R)) = O(eR/2) due to Equation (2).
Substituting R = 2 log(n) + C then yields the claim. J

3 Bidirectional Breadth-First Search

In this section, we analyze the running time of the bidirectional BFS and obtain an upper
bound on the maximum running time over all possible start–destination pairs. Our results
are summarized in the following main theorem.

I Theorem 6. Let G be a hyperbolic random graph. With high probability the shortest path
between any two vertices in G can be computed in Õ(n2−1/α + n1/(2α) + δmax) time.

We note that this bound on the running time also holds in expectation. Our bound fails
with probability O(1/n), in which case the worst-case running time is still bounded by the
size of the hyperbolic random graph, which is O(n). Consequently, this case contributes O(1)
to the expectation, which is dominated by the above bound.

To prove Theorem 6, we make use of the hyperbolic geometry in the following way; see
Figure 3. As long as the two searches visit only low-degree vertices, all explored vertices lie
within a small region, i.e., the searches operate locally. Once the searches visit high-degree
vertices closer to the center of the hyperbolic disk (green area in Figure 3), it takes only
few steps to complete the search, as hyperbolic random graphs have a densely connected
core. Thus, we split our analysis in two phases: a first phase in which both searches advance
towards the center and a second phase in which both searches meet in the center. Note that
this strategy assumes that we know the coordinates of the vertices as we would like to stop a
search once it reached the center. To resolve this issue, we first show in Section 3.1 that there
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exists an alternation strategy that is oblivious to the geometry but performs not much worse
than any other alternation strategy. We note that this result is independent of hyperbolic
random graphs and thus interesting in its own right. Afterwards, in Section 3.2 we examine
the performance of the bidirectional BFS on Euclidean random graphs, before focusing on
hyperbolic random graphs in Section 3.3.

3.1 Bidirectional Search and Alternation Strategies
In an unweighted and undirected graph G = (V,E), a BFS finds the shortest path between
two vertices s, t ∈ V by starting at s and exploring the graph in levels, where the ith level
Lsi contains the vertices with distance i to s. More formally, the BFS starts with the set
Ls0 = {s} on level 0. Assuming the levels Ls0, . . . , Lsi have been computed already, one obtains
the next level Lsi+1 as the set of neighbors of vertices in level Lsi that are not contained in
earlier levels. Computing Lsi+1 from Lsi is called an exploration step, obtained by exploring
the edges between vertices in Lsi and Lsi+1.

The bidirectional BFS runs two BFSs simultaneously. The forward search starts at s and
the backward search starts at t. The shortest path between the two vertices can then be
obtained, once the search spaces of the forward and backward search touch. Since the two
searches cannot actually be run simultaneously, they alternate depending on their progress.
When exactly the two searches alternate is determined by the alternation strategy. Note that
we only swap after full exploration steps, i.e., we never explore only half of level i of one
search before continuing with the other. This has the advantage that we can be certain to
know the shortest path once a vertex is found by both searches.

In the following we define the greedy alternation strategy as introduced by Borassi and
Natale [10] and show that it is not much worse than any other alternation strategy. Assume the
latest levels of the forward and backward searches are Lsi and Ltj , respectively. Then the next
exploration step of the forward search would cost time proportional to csi :=

∑
v∈Ls

i
deg(v),

while the cost for the backward search is ctj :=
∑
v∈Lt

j
deg(v). The greedy alternation strategy

then greedily continues with the search that causes the fewer cost in the next exploration step,
i.e., it continues with the forward search if csi ≤ ctj and with the backward search otherwise.

I Theorem 7. Let G be a graph with diameter d. If there exists an alternation strategy
such that the bidirectional BFS explores f(n) edges, then the bidirectional BFS with greedy
alternation strategy explores at most d · f(n) edges.

Proof. Let A be the alternation strategy that explores only f(n) edges. First note that
the number of explored edges only depends on the number of levels explored by the two
different searches and not on the actual order in which they are explored. Thus, if the greedy
alternation strategy is different from A, we can assume without loss of generality that the
greedy strategy performed more exploration steps in the forward search and fewer in the
backward search compared to A. Let cs and ct be the number of edges explored by the
forward and backward search, respectively, when using the greedy strategy. Moreover, let j
be the last level of the backward search (which is actually not explored) and, accordingly,
let ctj be the number of edges the next step in the backward search would have explored.
Then ct + ctj ≤ f(n) as, when using A, the backward search still explores level j. Moreover,
the forward search with the greedy strategy explores at most ct + ctj (and therefore at
most f(n)) edges in each step, as exploring the backward search would be cheaper otherwise.
Consequently, each step in the forward and backward search costs at most f(n). As there
are at most d steps in total, we obtain the claimed bound. J



Bläsius et al. 11

3.2 Bidirectional Search in Euclidean Random Graphs

Euclidean random graphs, commonly known as random geometric graphs, are generated by
distributing n vertices uniformly at random in the unit square [0, 1]2 and connecting any two
vertices if the Euclidean distance between them is at most some threshold R ∈ R [24]. One
can imagine, that each vertex is equipped with a disk of radius R and an edge is added to all
other vertices that lie in this disk. The threshold R affects the properties of the generated
network and in order to obtain graphs with a giant component of linear size (as is the case for
hyperbolic random graphs), R has to be chosen from the so called supercritical regime [24]. In
contrast to hyperbolic random graphs, the uniform sampling of the vertices in the Euclidean
space leads to a distribution where the number of vertices falling into each disk is roughly
the same, which in turn leads to a homogeneous degree distribution.

We examine how a BFS explores such a graph, by considering the region of the plane
containing the vertices visited after several exploration steps. For Euclidean random graphs
with R chosen from the supercritical regime it was shown that for two vertices at graph
theoretic distance d, it holds that R · d is at most a constant factor larger than the Euclidean
distance between them, if d is super-logarithmic [16]. Additionally, it is easy to see that
the Euclidean distance between them can be at most R · d. Therefore, we can assume that
after k (sufficiently many) steps the region in the plane that contains the visited vertices
resembles a disk of radius proportional to k. Since the area of a disk with radius r grows as
πr2, the expected number of explored vertices is in Θ(nk2) (since the vertices are distributed
uniformly).

In this scenario it is easy to see that the performance of a bidirectional BFS improves by
a constant factor, compared to a standard BFS. Let s and t be two vertices with (sufficiently
large) graph theoretic distance d from each other. Then, the expected number of vertices
explored by a standard BFS from s to t is Θ(nd2). If we run two searches instead (one
starting at s, the other at t), then the expected explored search space is minimized when the
two BFSs touch after half as many steps, exploring two disks of half the radius. (Note that
this holds independent of the chosen alternation strategy.) In that case the expected number
of explored vertices is proportional to 2nπ(d/2)2 which is again Θ(nd2), indicating that the
bidirectional variant yields no asymptotic speedup over the standard BFS.

In the remainder of this paper we focus on the performance of the bidirectional BFS
on hyperbolic random graphs. In contrast to Euclidean random graphs, they feature a
heterogeneous degree distribution, leading to significant differences in the performance of the
bidirectional BFS.

3.3 Bidirectional Search in Hyperbolic Random Graphs

To analyze the size of the search space of the bidirectional BFS in hyperbolic random graphs,
we separate the whole disk DR into two parts. One is the inner disk DR|ρ0 centered at the
origin. Its radius ρ is chosen in such a way that any two vertices in DR|ρ0 have a common
neighbor with high probability. The second part is the outer band DR|Rρ , the remainder
of the whole disk. A single BFS now explores the graph in two phases. In the first phase,
the BFS explores vertices in the outer band. The phase ends, when the next vertex to be
encountered lies in the inner disk. Once both BFSs completed the first phase, they only need
at most two more steps for their search spaces to share a vertex. One step to encounter the
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vertex1 in the inner disk and another step to meet at their common neighbor that any two
vertices in the inner disk have with high probability; see Figure 3.

Note that this scenario describes the worst case. Depending on the positions of the two
considered vertices the two searches may touch earlier, e.g., when both vertices are close to
each other in the outer band or when at least one of them is already contained in the inner
disk. However, since we want to determine an upper bound on the running time, we consider
the case where both vertices lie in the outer band and the two searches touch in the inner
disk. In the remainder of the paper we only consider how one of the two searches explores
the graph. The obtained bounds also hold for the other search, meaning the total search
space increases only by a constant factor when considering both searches instead of only one.

For our analysis we assume an alternation strategy in which each search stops once
it explored one additional level after finding the first vertex in the inner disk DR|ρ0. Of
course, this cannot be implemented without knowing the underlying geometry of the network.
However, by Theorem 7 the search space explored using the greedy alternation strategy
is only a poly-logarithmic factor larger, as the diameter of hyperbolic random graphs is
poly-logarithmic with high probability [15]2. The following lemma shows for which choice
of ρ the above sketched strategy works.

I Lemma 8. Let G be a hyperbolic random graph. With high probability, G contains a vertex
that is adjacent to every other vertex in DR|ρ0, for ρ = 1

α (logn− log logn).

Proof. Assume v is a vertex with radius at most R− ρ. Note that the distance between two
points is upper bounded by the sum of their radii. Thus, every vertex in DR|ρ0 has distance at
most R to v, and is therefore adjacent to v. Hence, to prove the claim, it suffices to show the
existence of this vertex v with radius at most R−ρ. As described in Section 2, the probability
for a single vertex to have radius at most R− ρ is given by the measure µ(DR|R−ρ0 ). Using
Equation (3) we obtain

µ(DR|R−ρ0 ) = e−αρ(1 + o(1)) = logn
n

(1 + o(1)).

Thus, the probability that none of the n vertices lies in DR|R−ρ0 is given by (1−µ(DR|R−ρ0 ))n.
That is,

Pr[{v ∈ DR|R−ρ0 } = ∅] =
(

1− logn
n

(1 + o(1))
)n

.

Since (1− x) ≤ e−x for all x ∈ R, this term can be bounded by

Pr[{v ∈ DR|R−ρ0 } = ∅] ≤ e−
log(n)
n (1+o(1))·n = e− log(n)(1+o(1)) = n−(1+o(1)) = O(1/n).

Hence, there is at least one vertex with radius at most R− ρ with high probability. J

In the following, we first bound the search space explored in the first phase, i.e., before
we enter the inner disk DR|ρ0. Afterwards we bound the search space explored in the second
phase, which consists of two exploration steps. The first one to enter DR|ρ0 and the second
one to find a common neighbor, which exists due to Lemma 8.

1 Note that this vertex has a degree of Ω̃(n1−1/(2α)) with high probability. Consequently, a non-giant
component of size Õ(1) is detected (at the latest) before exploring this vertex (see Section 2).

2 We note that there is a tighter bound of O(log(n)) on the diameter of hyperbolic random graphs, which
holds asymptotically almost surely [22].
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Figure 4 Left: The sector S (red) of angular width ϕ contains the search space of a BFS starting
at v, in the outer band DR|Rρ . The vertices v1 and v2 are at maximum angular distance to still be
adjacent. Right: Neighbor w of vertex v is in S (red) or a neighbor of c1 or c2 (blue).

3.3.1 Search Space in the First Phase
To bound the size of the search space in the outer band, we make use of the geometry in
the following way. For two vertices in the outer band to be adjacent, their angular distance
has to be small. Moreover, the number of exploration steps is bounded by the diameter of
the graph. Thus, the maximum angular distance between vertices visited in the first phase
cannot be too large. Note that the following lemma restricts the search to a sublinear portion
of the disk, which we later use to show that also the number of explored edges is sublinear.

I Lemma 9. With high probability, all vertices that a BFS on a hyperbolic random graph
explores before finding a vertex with radius at most ρ = 1

α (logn− log logn) lie within a sector
of angular width Õ(n−(1/α−1)).

Proof. For an illustration of the proof see Figure 4 (left). Recall from Section 2 that
θ(r1, r2) denotes the maximum angular distance between two vertices of radii r1 and r2
such that they are still adjacent. Since r1 and r2 only appear as negative exponents in the
expression for θ(r1, r2) (see Equation (2)), this angle increases with decreasing radii. Thus,
θ(r1, r2) ≤ θ(ρ, ρ) holds for all vertices in the outer band DR|Rρ .

Now assume we start a BFS at a vertex v ∈ DR|Rρ and perform d exploration steps
without leaving the outer band DR|Rρ . Then no explored vertex has angular distance more
than dθ(ρ, ρ) from v. Thus, the whole search space lies within a disk sector of angular width
2dθ(ρ, ρ). The number of steps d is at most poly-logarithmic as the diameter of a hyperbolic
random graph is poly-logarithmic with high probability [15]. Using Equation (2) for θ(ρ, ρ),
we obtain

θ(ρ, ρ) = 2e
R−2ρ

2 (1 + Θ(eR−2ρ))

= 2eC/2n1−1/α log(n)1/α(1 + Θ((logn/n1−α)2/α))

= O(n−(1/α−1) log(n)1/α),

which proves the claimed bound. J

Note that the expected number of vertices in a sector S of angular width ϕ is linear in nϕ
due to the fact that the angular coordinate of each vertex is chosen uniformly at random.
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Thus, Lemma 9 already shows that the expected number of vertices visited in the first
phase of the BFS is Õ(n2−1/α), which is sublinear in n. It is also not hard to see that this
bound holds with high probability (see Corollary 3). To also bound the number of explored
edges, we sum the degrees of vertices in S. It is not surprising that this yields the same
asymptotic bound in expectation, as the expected average degree in a hyperbolic random
graph is constant. However, to obtain meaningful results, we need a bound that holds with
high probability. Though we can use techniques similar to those that have been used to show
that the average degree of the whole graph is constant with high probability [11, 17], the
situation is complicated by the restriction to a sublinear portion of the disk. Nonetheless, we
obtain the following theorem.

I Theorem 10. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+n1/(2α)+δmax) with high probability if ϕ = Ω(log(n)2/n1/2).

We note that δmax has to be included here, as the theorem states a bound for every
sector, and thus in particular for sectors containing the vertex of maximum degree. Recall,
that δmax = Õ(n1/(2α)) holds almost surely [17]. Moreover, we note that the condition
ϕ = Ω(log(n)2/n1/2) is crucial for our proof, i.e., the angular width of the sector has to be
sufficiently large for the concentration bound to hold. We note that, depending on α, the
angular width determined in Lemma 9 may be smaller than this lower bound. However, if
this is the case, we can choose ϕ = Õ(n−1/2) as an upper bound for the angular width of the
sector and obtain Õ(ϕn) = Õ(n1/2) = Õ(n1/(2α)) for α ∈ (1/2, 1). Consequently, the bound
holds for the previously determined angular width Õ(n−(1/α−1)) for all α ∈ (1/2, 1).

As the proof for Theorem 10 is rather technical, we defer it to Section 4. Together with
Lemma 9, we obtain the following corollary. Note that since α ∈ (1/2, 1), this shows that the
running time spend in the first phase (not accounting for the maximum degree) is sublinear
in n with high probability.

I Corollary 11. On a hyperbolic random graph, the first phase of the bidirectional search
explores with high probability only Õ(n2−1/α + n1/(2α) + δmax) many edges.

3.3.2 Search Space in the Second Phase
The first phase of the BFS is completed when the next vertex to be encountered lies in
the inner disk. Thus, the second phase consists of only two exploration steps. One step to
encounter the vertex in the inner disk and another step to meet the other search. Thus, to
bound the running time of the second phase, we have to bound the number of edges explored
in these two exploration steps. To do this, let V1 be the set of vertices encountered in the first
phase. Recall that all these vertices lie within a sector S of angular width ϕ = Õ(n−(1/α−1))
(Lemma 9). The number of explored edges in the second phase is then bounded by the sum of
degrees of all neighbors N(V1) of vertices in V1. To bound this sum, we divide the neighbors
of V1 into two categories: N(V1) ∩ S and N(V1) \ S. Note that we already bounded the sum
of degrees of vertices in S for the first phase (see Theorem 10), which clearly also bounds this
sum for N(V1) ∩ S. Thus, it remains to bound the sum of degrees of vertices in N(V1) \ S.

To bound this sum, we introduce two hypothetical vertices (i.e., vertices with specific
positions that are not actually part of the graph) c1 and c2 such that every vertex in N(V1)\S
is a neighbor of c1 or c2. Then it remains to bound the sum of degrees of neighbors of
these two vertices. To define c1 and c2, recall that the first phase was restricted to points in
the sector S that have a radius greater than ρ, i.e., all vertices in V1 lie within S|Rρ . The
hypothetical vertices c1 and c2 are basically positioned at the corners of this region, i.e.,
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they both have radius ρ, and they assume the maximum and minimum angular coordinate
within S, respectively. Figure 4 (right) shows these positions. We obtain the following.

I Lemma 12. Let G be a hyperbolic random graph, let S be a sector, and let v ∈ S|Rρ be
a vertex. Then, every neighbor of v lies in S or is a neighbor of one of the hypothetical
vertices c1 or c2.

Proof. Let v = (r, ϕ) ∈ S|Rρ and w ∈ N(v) \ S. Without loss of generality, assume that c1
lies between v and w, as is depicted in Figure 4 (right). Now consider the point v′ = (ρ, ϕ)
obtained by moving v to the same radius as c1. According to Lemma 1 we have N(v) ⊆ N(v′).
In particular, it holds that w ∈ N(v′) and therefore dist(v′, w) ≤ R. Since v′ and c1 have
the same radial coordinate and c1 is between v′ and w, it follows that dist(c1, w) ≤ R. J

By the above argument, it remains to sum the degrees of neighbors of c1 and c2. In
the following, we show that the degrees of the neighbors of a vertex with radius r sum
to Θ(ne−(α−1/2)r) in expectation. We note that, for large values of r, i.e., for a vertex lying
close to the boundary of the disk, this term is surprisingly large. This is due to the fact that,
although vertices near the center of the disk are rather unlikely to exist in the first place,
their degree would be sufficiently large such that they dominate the expected degree sum.

I Lemma 13. Let G be a hyperbolic random graph. The degrees of the neighbors of a vertex v
sum to Θ(ne−(α−1/2)r(v)) in expectation.

Proof. Let Zv be the sum of the degrees of the neighbors of v, which is a random variable
that depends on the positions of all vertices in the graph. Formally, we can express Zv by
assigning each vertex w ∈ V \ {v} two random variables Xw and Yw. The first is an indicator
random variable with Xw = 1 if w is a neighbor of v and Xw = 0 otherwise. Additionally,
the random variable Yw denotes the degree of w. The sum of the degrees of the neighbors
of v can then be written as

Zv =
∑

w∈V \{v}

Xw · Yw.

The expected value of Zv is given by

E[Zv] = E

 ∑
w∈V \{v}

Xw · Yw

 =
∑

w∈V \{v}

E [Xw · Yw] ,

where the second equality holds due to the linearity of expectation. To compute the expected
value of Xw · Yw we can apply the law of total expectation and obtain

E[Zv] =
∑

w∈V \{v}

∑
x∈{0,1}

E[Xw · Yw | Xw = x] · Pr[Xw = x].

Clearly, the case where Xw = 0 does not contribute anything to the sum, which can thus be
simplified as

E[Zv] =
∑

w∈V \{v}

E[Yw | Xw = 1] · Pr[Xw = 1].

Recall that Xw = 1 denotes the event where w is a neighbor of v. That is,

Pr[Xw = 1] = Pr[w ∈ N(v)] = Pr[w ∈ DR(v)] = µ(DR(v)).
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Moreover, recall that Yw denotes the random variable representing the degree of w. Con-
sequently, we can now write E[Zv] as

E[Zv] =
∑

w∈V \{v}

µ(DR(v)) · E[Yw | w ∈ DR(v)]

= (n− 1) · µ(DR(v)) · E[deg(w) | w ∈ DR(v)]. (5)

We continue by computing the expected degree of a vertex w conditioned on the fact that it is
contained in DR(v). To this end, we first consider the expected value without the condition,
analogous to how it was done previously [17] (see the proof of Theorem 2.3), and afterwards
explain how to incorporate the condition. The expected degree of a vertex w with fixed
radius r is given by

E[deg(w) | r(w) = r] = (n− 1)µ(DR(w)).

To obtain the expected degree of w without fixing its radius (or angle for that matter) we
then integrate E[deg(w) | r(w) = r ∧ϕ(w) = ϕ] · f(r, ϕ) (note the joint distribution) over the
whole disk. That is,

E[deg(w)] =
∫∫

DR

E[deg(w) | r(w) = r ∧ ϕ(w) = ϕ] · f(r, ϕ) dϕdr

=
∫∫

DR

E[deg(w) | r(w) = r] · f(r, ϕ) dϕdr,

where the second step follows from the fact that the expected degree of a vertex is independent
of its angular coordinate.

It remains to include the condition on the fact that w cannot be anywhere in the whole
disk but lies in DR(v) instead. First, we have to accommodate for the fact that if w is a
neighbor of v, then conversely v is also a neighbor of w. Consequently, we know that w has at
least one neighbor, which we reflect in the expected value by introducing the condition on the
position p(v) of v. Moreover, in general the conditional expectation of a random variable X
conditioned on an event A (with Pr[A] > 0) is given by E[X | A] =

∫∞
−∞ xfX|A(x) dx,

where fX|A is defined as

fX|A(x) =


fX(x)
Pr[A] , x ∈ A,
0, x /∈ A.

Therefore, the above expression for the expected degree of w can be adjusted to include the
condition as

E[deg(w) | w ∈ DR(v)] =
∫∫

DR(v)
E[deg(w) | r(w) = r ∧ p(v) = (r, ϕ)]

· f(r, ϕ)
Pr[w ∈ DR(v)] dϕdr.

Note that the probability Pr[w ∈ DR(v)] in the denominator is, again, the measure of the
disk of radius R centered at v. Substituting this expression in Equation (5) for the expected
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Figure 5 Situation in the proof of Lemma 13. Vertex w is a neighbor of v. To integrate
DR(v) ∩DR, we split the region into two parts: DR(v)|R−r(v)

0 = DR−r(v) (blue) and DR(v)|RR−r(v)
(red).

sum E[Zv] of the degrees of the neighbors of v, we get

E[Zv] = (n− 1) · µ(DR(v)) · E[deg(w) | w ∈ DR(v)]
= (n− 1) · µ(DR(v))·

·
∫∫

DR(v)
E[deg(w) | r(w) = r ∧ p(v) = (r, ϕ)] f(r, ϕ)

µ(DR(v)) dϕdr

= (n− 1) ·
∫∫

DR(v)
E[deg(w) | r(w) = r ∧ p(v) = (r, ϕ)] · f(r, ϕ) dϕdr.

To compute the integral, we determine the expected degree of w conditioned on the fact that
r(w) = r and on the position of v, which is a neighbor of w deterministically. Therefore, we
obtain the expected degree by adding 1 (for v) to the expected number of vertices among
the remaining V \ {v, w} that are sampled into DR(w) and obtain

E[deg(v) | r(w) = r ∧ p(v) = (r, ϕ)] = 1 + (n− 2)µ(DR(w)),

which is 1 + Θ(ne−r/2) due to Equation (4). Note that Θ(ne−r/2) is Ω(1) for all r ∈ [0, R],
allowing us to further simplify the expected value to

E[deg(v) | r(w) = r ∧ p(v) = (r, ϕ)] = Θ(ne−r/2).

Moreover, recall that f(r, ϕ) = 0 for r > R and that it can otherwise be bounded by
f(r, ϕ) = Θ(e−α(R−r)) (see Equation (1)). We obtain

E[Zv] = Θ
(

(n− 1) ·
∫∫

DR(v)∩DR
ne−r/2 · e−α(R−r) dϕdr

)

= Θ
(
n2e−αR ·

∫∫
DR(v)∩DR

e(α−1/2)r dϕdr
)
.

We can now split the integral into two parts: one containing the disk DR(v)|R−r(v)
0 = DR−r(v)

and the other containing the remainder of DR(v) ∩DR, which is given by DR(v)|RR−r(v) (see



18 Shortest Paths in Networks with Underlying Hyperbolic Geometry

Figure 5). For the second part we can use Equation (2) to bound the angle θ(r(v), r) up to
which we need to integrate depending on r. As a result, we get

E[Zv] = Θ
(
n2e−αR ·

(∫ R−r(v)

0

∫ 2π

0
e(α−1/2)r dϕdr

+
∫ R

R−r(v)

∫ θ(r(v),r)

0
e(α−1/2)r dϕdr

))
.

Regarding the first part of the sum, note that evaluating the inner integral only contributes
a constant factor that can be dropped due the Θ-notation. Computing the outer integral
then yields Θ(e(α−1/2)(R−r(v))). For the second part of the sum we, again, first evaluate the
inner integral and substitute θ(r(v), r) = Θ(e(R−r(v)−r)/2) (see Equation (2)). We obtain

E[Zv] = Θ

n2e−αR ·

(
e(α−1/2)(R−r(v)) + e(R−r(v))/2

∫ R

R−r(v)
e−(1−α)r dr

) .

The last integral evaluates to O(e−(1−α)(R−r(v))), which multiplied by the factor e(R−r(v))/2

yields asymptotically the same expression as the first summand and we get

E[Zv] = Θ
(
n2e−(α−1/2)r(v) · e−R/2

)
.

Finally, we can substitute R = 2 log(n) + C in order to obtain the claimed bound of
E[Zv] = Θ(ne−(α−1/2)r(v)). J

For c1 and c2, which both have radius ρ, the degrees of their neighbors thus sum
to Õ(n1/(2α)) in expectation. However, to actually prove Theorem 6, we need a bound that
holds with high probability for all possible angular coordinates of c1 and c2. As with the
sum of the degrees in a sector, we prove a slightly weaker bound that matches the one in
Theorem 6 and holds with high probability. We obtain the following lemma.

I Lemma 14. Let G be a hyperbolic random graph and let v be a hypothetical vertex with
radius ρ = 1/α(logn− log logn) and arbitrary angular coordinate. The degrees of neighbors
of v sum to Õ(n2−1/α + n1/(2α) + δmax) with high probability.

Again, the proof is rather technical and thus deferred to Section 4. Together with the
bounds on the sum of degrees in a sector of width ϕ = Õ(n−(1/α−1)) (Theorem 10), we
obtain the following corollary, which concludes the proof of Theorem 6.

I Corollary 15. On a hyperbolic random graph, the second phase of the bidirectional search
explores with high probability only Õ(n2−1/α + n1/(2α) + δmax) many edges.

4 Concentration Bounds for the Sum of Vertex Degrees

Here we prove the concentration bounds that were announced in the previous section. For
the first phase, we already know that the search space is contained within a sector S of
sublinear width (Lemma 9). Thus, the running time in the first phase is bounded by the
sum of vertex degrees in this sector. Moreover, all edges explored in the second phase also
lie within the same sector S or are incident to neighbors of the two hypothetical vertices c1
and c2 (Lemma 12). Thus, the running time of the second phase is bounded by the sum of
vertex degrees in S and in the neighborhood of c1 and c2.
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In both cases, we have to bound the sum of vertex degrees in certain areas of the disk,
which can be done as follows. For each degree, we want to compute the number of vertices
of this degree in the considered area and multiply it with the degree. As all vertices with a
certain degree have roughly the same radius, we can separate the disk into small bands, one
for each degree. Then summing over all degrees comes down to summing over all bands and
multiplying the number of vertices in this band with the corresponding degree. If we can
prove that each of these values is highly concentrated (i.e., holds with probability 1−O(n−2)),
we obtain that the sum is concentrated as well (using the union bound). Unfortunately, this
fails in two situations. For small radii, the number of vertices within the corresponding band
(i.e., the number of high degree vertices) is too small to be concentrated. Moreover, for large
radii the degree is too small to be concentrated around its expected value.

To overcome this issue, we partition the disk DR into three parts. An inner part DR|ρI(ϕ)
0 ,

containing all points of radius at most ρI(ϕ), an outer part DR|RρO , containing all points
of radius at least ρO, and a central part DR|ρOρI(ϕ), containing all points in between. We
choose ρI(ϕ) such that the number of vertices with maximum degree in a sector part S|ρOρI(ϕ)
of angular width ϕ is Ω(logn), which ensures that for each vertex degree, the number of
vertices with this degree is concentrated. Moreover, we choose ρO in such a way that the
vertex degrees in S|ρOρI(ϕ) are sufficiently concentrated. To achieve this, we set

ρI(ϕ) = R− 1
α

(
log(ϕ/(2π)) + logn− log logn

)
and ρO = R− (2 + ε) log log(n),

for any constant ε ∈ (0, 1), and show concentration for the sum of the degrees in a sector
and in the neighborhood of a vertex with radius ρ, separately for the three parts of the disk.

4.1 The Inner Part of the Disk
The inner part DR|ρI(ϕ)

0 contains vertices of high degree. It is not hard to see that there are
only logarithmically many vertices with radius at most ρI(ϕ).

I Lemma 16. Let G be a hyperbolic random graph, let ϕ ∈ [0, 2π] be an angle, and let ξ > 0
be a constant. A sector S|ρI(ϕ)

0 of angular width ξϕ ∈ [0, 2π] contains O(log(n)) vertices,
with probability 1−O(n−c) for any constant c.

Proof. By Equation (3) the expected number of vertices in the disk DR|ρI(ϕ)
0 is given by

E[|{v ∈ DR|ρI(ϕ)
0 }|] = ne−α(R−ρI(ϕ))(1 + o(1)).

Since the angular coordinates of the vertices are distributed uniformly in [0, 2π], the expected
number of vertices in a sector portion S|ρI(ϕ)

0 of angular width ξϕ is

E[|{v ∈ S|ρI(ϕ)
0 }|] = ξϕ

2πne
−α(R−ρI(ϕ))(1 + o(1))

= ξϕ

2πne
−(log(ϕ/2π)+logn−log logn)(1 + o(1))

= ξ log(n)(1 + o(1)).

Since ξ > 0 is constant, this bound is in Ω(logn) and we can apply Corollary 3 to conclude
that |{v ∈ S|ρI(ϕ)

0 }| = O(log(n)) holds with probability 1−O(n−c) for any constant c. J

Note that, if ϕ ∈ Ω(1/n), we can choose at most O(n) sectors of width 2ϕ such that any
sector of width ϕ lies completely in one of them. Thus, the probability that there exists a
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sector portion S|ρI(ϕ)
0 where the number of vertices is super-logarithmic, is bounded by the

probability that it is too large in at least one of these O(n) sectors (of twice the width). By
choosing ξ = 2, we can apply Lemma 16 to conclude that a single sector S|ρI(ϕ)

0 of twice the
angular width contains at most O(log(n)) vertices with probability 1−O(n−2). Applying
the union bound and incorporating the fact that the maximum degree in the graph is δmax
we can bound the number of edges in every such sector portion and obtain the following
corollary.

I Corollary 17. Let G be a hyperbolic random graph. For every sector S of angular width
ϕ ∈ Ω(1/n), the degrees of the vertices in S|ρI(ϕ)

0 sum to Õ(δmax) with high probability.

Note that, in particular the statement holds for the previously determined angle ϕ =
Õ(n−(1/α−1)) for α ∈ (1/2, 1). Additionally, by setting ϕ = 2π, we can use Lemma 16 to
bound the sum of the degrees of the high degree vertices in the neighborhood of a vertex
with radius ρ.

I Corollary 18. Let G be a hyperbolic random graph. For every vertex v of radius ρ, the
degrees of the neighbors of v in DR|ρI(2π)

0 sum to Õ(δmax) with high probability.

4.2 The Central Part of the Disk
For each possible vertex degree k, we want to compute the number of vertices with this
degree in the central part DR|ρOρI(ϕ). First note, that by Equation (4) a vertex with fixed
radius has expected degree Θ(k) if this radius is 2 log(n/k). Motivated by this, we define
rk = 2 log(n/k). To bound the sum of degrees in the central part DR|ρOρI(ϕ), we use that
vertices with radius significantly larger than rk also have a smaller degree. To this end, we
first prove that a vertex with degree k can actually not have a radius much larger than rk.
This has the advantage, that we can bound the number of degree-k vertices by bounding the
number of vertices with these radii.

I Lemma 19. Let G be a hyperbolic random graph. Then, for every constant c > 0, there
exist constants κ, τ > 0, such that all vertices with degree at least k ≥ κ logn have radius at
most rk + τ with probability 1−O(n−c).

Proof. To prove this lemma, it suffices to show that there exist constants κ, τ > 0, such
that the probability of a vertex with radius greater than rk + τ having degree at least k,
i.e. Pr[∃v ∈ V : deg(v) ≥ k ∧ r(v) ≥ rk + τ ], is small. To obtain the following sequence of
inequalities, we first use the union bound, then apply the definition of conditional probabilities,
and finally use Lemma 1.

Pr[∃v ∈ V : deg(v) ≥ k ∧ r(v) ≥ rk + τ ] ≤ n · Pr[deg(v) ≥ k ∧ r(v) ≥ rk + τ ]
≤ n · Pr[deg(v) ≥ k | r(v) ≥ rk + τ ]
≤ n · Pr[deg(v) ≥ k | r(v) = rk + τ ].

To prove the statement of the lemma, it remains to show that Pr[deg(v) ≥ k | r(v) = rk + τ ]
is sufficiently small, i.e., in O(n−(c+1)).

Recall that, by Equation (4), the expected degree of a vertex with radius r is in Θ(ne−r/2).
For a vertex v with radius rk + τ we obtain ne−(rk+τ)/2 = e−τ/2k. It follows that there exists
a constant c′ > 0, such that E[deg(v)] ≤ c′e−τ/2k. By choosing τ large enough we can ensure
that k ≥ 2eE[deg(v)], allowing us to apply the Chernoff-Hoeffding bound in Theorem 2. We
obtain Pr[deg(v) ≥ k] ≤ 2−k. Finally, since k ≥ κ logn, we can choose κ such that this
probability is bounded by O(n−(c+1)). J
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We are now ready to bound the number of vertices in a sector that have degree at least k.
As mentioned earlier, this bound only works for large k as the degree is not sufficiently
concentrated otherwise. Moreover, the degree cannot be too large, as otherwise the number
of vertices of this degree is not concentrated. The upper bound on k in the following lemma
directly corresponds to our choice for ρI(ϕ). Additionally, ρO is chosen such that the degrees
of vertices with radii smaller than ρO meets the lower bound on k, i.e., the lemma holds for
the central part S|ρOρI(ϕ).

I Lemma 20. Let G be a hyperbolic random graph and let S be a sector of angular width ϕ.
If k = ω(logn) and k = O((ϕn/ logn)1/(2α)), then the number of vertices in S with degree at
least k is in O(ϕnk−2α) with probability 1−O(n−c) for any constant c > 0.

Proof. By Lemma 19 we know that, for any constant c′ > 0, there are constants κ, τ > 0
such that all vertices of degree at least k ≥ κ logn have radius at most rk+τ , with probability
1 − O(n−c′). Since k = ω(logn) we have k ≥ κ logn for large enough n and obtain that,
with the same probability, all vertices of degree at least k that are in S are in S|rk+τ

0 . Since
the angular width of S is ϕ and since the angular coordinates of the vertices are distributed
uniformly, the expected number of vertices in S|rk+τ

0 is given by ϕ/(2π) · nµ(DR|rk+τ
0 ). Now

we can apply Equation (3), which states that a disk of radius rk + τ centered at the origin
has measure e−α(R−(rk+τ))(1 + o(1)) and obtain

E[|{v ∈ S|rk+τ
0 }|] = ϕ

2πnµ(DR|rk+τ
0 )

= ϕ

2πne
−α(R−(rk+τ))(1 + o(1))

= ϕ

2πne
−2α log k−α(C−τ)(1 + o(1))

= Θ(ϕnk−2α).

Note that k = O((ϕn/ logn)1/(2α)) (which is a precondition of this lemma) implies that
ϕnk−2α = Ω(logn). Thus, we can apply the Chernoff-Hoeffding bound in Corollary 3 to
conclude that |{v ∈ S|rk+τ

0 }| = O(ϕnk−2α) holds with probability 1 − O(n−c) for any
constant c > 0. J

Using these results, we can now bound the size of the search space in the central
part S|ρOρI(ϕ) of our sector S, yielding the following lemma. (We note that the lower bound
on ϕ that is a requirement of the following lemma, is weaker than the one we need for
Theorem 10.)

I Lemma 21. Let G be a hyperbolic random graph. For every sector S of angular width ϕ ∈
Ω(log(n)2α+1/n), the degrees of the vertices in S|ρOρI(ϕ) sum to O(ϕn) with high probability.

Proof. First note that, analogous to the argumentation about sectors in the inner part of
the disk, we can choose at most O(n) sectors of width 2ϕ such that any sector of width ϕ lies
completely in one of them. Thus, the probability that there exists a sector where the sum of
the vertex degrees in the central part of the disk is too large, is bounded by the probability
that it is too large in at least one of these O(n) sectors (of twice the width). In the following,
we show for a single sector S of angular width ϕ′ = 2ϕ that the probability that the sum is
too large is O(n−2). The union bound then yields the claim, that the bound holds for every
sector of angular width ϕ.

To sum the degrees of all vertices in S, think of a vertex v of degree deg(v) as a rectangle
of height 1 and width deg(v). For a small graph, Figure 6 shows all such rectangles stacked
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Figure 6 Visualization of how the sum over the degrees can be turned into an integral (left). The
same visualization but only the degrees of vertices with degree at least 3 are summed up (right).

on top of each other, sorted by their degree. Note that the sum of degrees is equal to
the area under the function g(x) = |V Sx | where V Sx = {v ∈ S | deg(v) ≥ x} is the set
of vertices in S that have degree at least x. Also note that the above considerations do
not take into account that we sum only the degrees of vertices in the central part S|ρOρI(ϕ′)
of S. To resolve this, let kmin and kmax be the minimum and maximum degree of vertices
in S|ρOρI(ϕ′), respectively. One can see in Figure 6 that summing only those degrees that are
larger than kmin is equivalent to integrating over |V Smax(kmin,x)| instead of |V Sx |. Thus, we can
compute the sum of all degrees as∑

v∈S|ρO
ρI (ϕ′)

deg(v) ≤
∑
v∈S,

kmin≤deg(v)≤kmax

deg(v)

=
∫ kmax

0
|V Smax(kmin,x)|dx

= kmin|V Skmin
|+
∫ kmax

kmin

|V Sx |dx.

To compute this integral, we first calculate the minimum and maximum degrees kmin
and kmax. Afterwards, we apply Lemma 20 to bound |V Sx |. For the minimum degree kmin,
assume that vertex v has radius ρO = R− (2 + ε) log log(n) for any constant ε ∈ (0, 1). Using
Equation (4) the expected degree of v is

E[deg(v)] = Θ(ne−R/2+(1+ε/2) log log(n)) = Θ(log(n)1+ε/2).

Since ε > 0, this bound is ω(logn), allowing us to apply the Chernoff-Hoeffding bounds in
Corollaries 3 and 4 to conclude that deg(v) = Θ(log(n)1+ε/2) with high probability. Note that
this only holds under the assumption that v has radius exactly ρO. However, by Lemma 1 all
vertices with smaller radius have larger expected degree. Therefore, Θ(log(n)1+ε/2) is a lower
bound on the expected degrees of all such vertices, allowing us to apply Corollary 4 together
with a union bound, to conclude that, with high probability, no vertex with smaller radius
has smaller degree. Thus, with high probability, the minimum degree in S|ρOρI(ϕ′) is kmin =
Θ(log(n)1+ε/2). Analogously, the bound on the maximum degree kmax of a vertex in S|ρOρI(ϕ′)
can be obtained as follows. Let v be a vertex with radius ρI(ϕ′) = R − 1/α(log(ϕ′/2π) +
logn−log logn). The expected degree of v is E[deg(v)] = Θ((ϕ′n/ logn)1/(2α)) (Equation (4)).
Since ϕ′ = 2ϕ ∈ Ω(log(n)2α+1/n), which is a precondition of this lemma, we can conclude
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ρ

R v

DR−ρ

DR(v)

DR(v)|rk+τ
R−ρ

rk + τ

Figure 7 Determining the sum of degrees of the neighbors of vertex v that are all contained
in DR(v). To compute the measure of DR(v)|rk+τ

0 we divide it into two regions DR(v)|R−ρ0 = DR−ρ
(blue) and DR(v)|rk+τ

R−ρ (red).

that this bound on the expected degree of v is Ω(logn), allowing us to apply Corollary 3
to conclude that E[deg(v)] = O((ϕn/ logn)1/(2α)) holds with high probability. Again, this
only holds under the assumption that v has radius exactly ρI(ϕ′). However, by Lemma 1 all
vertices with larger radius have smaller expected degree. Therefore, O((ϕn/ logn)1/(2α)) is a
valid upper bound on all their expected degrees, allowing us to apply Corollary 3 together
with a union bound, to conclude that no vertex with larger radius has larger degree. Thus,
the maximum degree in S|ρOρI(ϕ′) is kmax = O((ϕn/ logn)1/(2α)) with high probability.

Using Lemma 20 we obtain |V Sx | = O(ϕnx−2α) with probability 1 − O(n−c) for any
constant c > 0. Note that the requirements x = ω(logn) and x = O((ϕn/ logn)1/(2α)) in
Lemma 20 are satisfied as kmin ≤ x ≤ kmax. By choosing c = 2 and applying the union
bound over all degrees, we can conclude that, with high probability∑

v∈S|ρO
ρI (ϕ′)

deg(v) = O(ϕnk−(2α−1)
min ) +O(ϕn ·

∫ kmax

kmin

x−2α dx)

= O(ϕnk−(2α−1)
min ) +O(ϕn · k−(2α−1)

min (1− (kmin/kmax)2α−1)).

As kmin ≤ kmax, this can be further simplified to O(ϕnk−(2α−1)
min ), which is O(ϕn) since

kmin = ω(logn). J

It remains to bound the sum of the degrees of vertices in the central part of the
disk DR|ρOρI(2π) that lie in the neighborhood of a vertex v with radius ρ, i.e., vertices lying
in DR(v). Similar to the bounds for a sector S, we bound the sum of degrees in DR(v) by
bounding the number of vertices with a fixed degree k for every possible value of k. If all
these bounds hold with probability 1−O(n−3), then the union bound shows that the sum is
concentrated with probability 1−O(n−2). To obtain a bound that holds for every possible
angular coordinate of v (as claimed in Section 3.3.2), we apply Lemma 5. There, we choose
the random variables Xw to represent the degrees of the vertices. Our bound on the sum
that holds with probability 1−O(n−2) at a fixed angular coordinate, can then be translated
to the same asymptotic bound that holds with probability 1 − O(n−1) at every possible
angular coordinate.

For a fixed degree k = ω(logn), all vertices with degree at least k have radius at most
rk+τ with high probability due to Lemma 19, where rk = 2 log(n/k) and τ is constant. Thus,
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all vertices of degree at least k in DR(v) lie in DR(v)|rk+τ
0 , with high probability. In analogy

to Lemma 20, we obtain the following bound on the number of vertices in DR(v)|rk+τ
0 .

I Lemma 22. Let G be a hyperbolic random graph and let v be a vertex with radius
ρ = 1/α(logn− log logn). If k = ω(logn), the number of neighbors of v with degree at least k
is

|{w ∈ N(v) | deg(w) ≥ k}| = O(n1−1/(2α) log(n)1/(2α)k−(2α−1) + logn)

with probability 1−O(n−c) for any constant c > 0.

Proof. Since k = ω(logn), we can apply Lemma 19 stating that all vertices of degree at
least k in DR(v) lie within DR(v)|rk+τ

0 with high probability. To bound the number of
neighbors of v with degree at least k we first compute the measure µ(DR(v)|rk+τ

0 ). To do
this, we separate DR(v)|rk+τ

0 into the disk DR(v)|R−ρ0 = DR−ρ and DR(v)|rk+τ
R−ρ ; see Figure 7.

Due to Equation (3), we have µ(DR−ρ) = O(e−α(R−(R−ρ))) = O(logn/n), which is already
an upper bound on µ(DR(v)|rk+τ

0 ) for the case where rk + τ ≤ R− ρ. When rk + τ > R− ρ,
we need to add the measure of DR(v)|rk+τ

R−ρ , which is given by

µ(DR(v)|rk+τ
R−ρ ) =

∫ rk+τ

R−ρ
2
∫ θ(ρ,r)

0
f(r, φ) dφdr = O

(∫ rk+τ

R−ρ
θ(ρ, r)f(r) dr

)

Since we consider r ∈ [R− ρ, rk + τ ] in the integral, we have r ≥ R− ρ, allowing us to apply
Equation (2) to conclude that θ(ρ, r) = O(e(R−ρ−r)/2). Furthermore, we can substitute the
probability density f(r) = O(e−α(R−r)) (Equation (1)) to obtain

µ(DR(v)|rk+τ
R−ρ ) = O

(∫ rk+τ

R−ρ
e(R−ρ−r)/2 · e−α(R−r) dr

)

= O
(
e(R−ρ)/2 · e−αR ·

∫ rk+τ

R−ρ
e(α−1/2)r dr

)

= O
(
e−(α−1/2)R · e−ρ/2 ·

[
e(α−1/2)(rk+τ) − e(α−1/2)(R−ρ)

])
.

Dropping the negative term in the brackets and substituting R = 2 logn+C, ρ = 1/α(logn−
log logn), and rk = 2 log(n/k), we obtain

µ(DR(v)|rk+τ
R−ρ ) = O

(
e−(α−1/2)R · e−ρ/2 · e(α−1/2)(rk+τ)

)
= O

(
n−(2α−1) · n−1/(2α) log(n)1/(2α) · n2α−1 · k−(2α−1)

)
= O

(
(log(n)/n)1/(2α) · k−(2α−1)

)
.

The expected number of vertices in DR(v)|rk+τ
0 is now obtained by reversing the previous

split and adding the measures of DR−ρ and DR(v)|rk+τ
R−ρ , which yields

E[|{v ∈ DR(v)|rk+τ
0 }|] = n ·

(
µ(DR−ρ) + µ(DR(v)|rk+τ

R−ρ )
)

= O(logn+ n1−1/(2α) log(n)1/(2α)k−(2α−1))

and it remains to show that this bound holds with large enough probability. Clearly, this
bound is at least logarithmic. Thus, we can apply Corollary 3 to conclude that it holds with
probability 1−O(n−c) for any constant c. J
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With this, we are now ready to bound the sum of the degrees of the vertices in the central
part of the disk that are in the neighborhood of a vertex with radius ρ. The proof of the
following lemma is analogous to the one of Lemma 21.

I Lemma 23. Let G be a hyperbolic random graph and let v be a hypothetical vertex with
radius ρ = 1/α(logn− log logn) and arbitrary angular coordinate. The degrees of neighbors
of v in DR|ρOρI(2π) sum to Õ(n1/(2α)) with high probability.

Proof. Recall that DR(v) is the disk containing all neighbors of v. To bound the sum of
the degrees of the vertices in DR(v)|ρOρI(2π), we use basically the same proof as in Lemma 21
except we use Lemma 22 instead of Lemma 20. Thus,

∑
w∈DR(v)|ρO

ρI (2π)

deg(w) ≤ kmin|V DR(v)
kmin

|+
∫ kmax

kmin

|V DR(v)
x |dx,

where V DR(v)
x is the set of vertices of degree at least x in DR(v) and kmin and kmax are the

maximum and minimum degree in DR(v)|ρOρI(2π), respectively.
We start with computing kmin and kmax. Using Equation (4) and Corollaries 3 and 4,

we obtain that a vertex of radius ρO = R − (2 + ε) log logn, for any ε ∈ (0, 1), has degree
kmin = Θ((logn)1+ε/2) with high probability. Moreover, by the same argumentation as
in the proof of Lemma 21 no vertex with smaller radius has smaller degree, with high
probability. Additionally, a vertex with radius ρI(2π) = R− 1/α(logn− log logn) has degree
kmax = O((n/ logn)1/(2α)) and no vertex with larger radius has larger degree, with high
probability. It follows that we can use the bound shown in Lemma 22 for |V DR(v)

x |. Thus,
we obtain∑

w∈DR(v)|ρO
ρI (2π)

deg(w) = Õ
(
kmin · n1−1/(2α)k

−(2α−1)
min

)
+ Õ

(
n1−1/(2α)

∫ kmax

kmin

x−(2α−1) dx
)
.

Replacing kmin and simplifying the first term in the sum yields Õ(n1−1/(2α)), which is smaller
than the claimed bound. For the second term, we obtain

Õ

(
n1−1/(2α)

∫ kmax

kmin

x−(2α−1) dx
)

= Õ
(
n1−1/(2α)

[
k2−2α

max − k2−2α
min

])
.

Dropping the negative term and replacing kmax = Õ(n1/(2α)), we obtain Õ(n1−1/(2α)+1/α−1) =
Õ(n1/(2α)). J

4.3 The Outer Part of the Disk
At this point we have bounded the sum of the degrees of the vertices with radius at most
ρO = R− (2 + ε) log logn (for any constant ε ∈ (0, 1)) that lie in a sector of angular width
ϕ ∈ Ω(log(n)2α+1/n) or in the neighborhood of a vertex with radius ρ. It remains to bound
the sums when considering vertices with radii larger than ρO.

To bound the sum of the vertex degrees in the outer part of a sector S|RρO , we start by
computing the expected value.

I Lemma 24. Let G be a hyperbolic random graph. For a sector S of angular width ϕ, the
degrees of vertices in S|RρO sum to Θ(ϕn) in expectation.
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Proof. Let deg(v) be the random variable describing the degree of a vertex v. Moreover,
let Xv be the indicator variable that is 1 if v ∈ S|RρO and 0 otherwise. Then the expected
sum of the degrees of vertices in S|RρO is given by

E

∑
v∈V

Xv · deg(v)

 =
∑
v∈V

E[Xv · deg(v)] = n · Pr[v ∈ S|RρO ] · E[deg(v) | v ∈ S|RρO ].

Note that Pr[v ∈ S|RρO ] is simply the measure µ(S|RρO). As the angular coordinate is
uniformly distributed, the whole sector S has measure Θ(ϕ). Moreover, the region of the
disk containing the points with constant distance to the boundary has constant measure.
Thus, the measure of S|RρO is also in Θ(ϕ). For the sake of completeness, the measure of S|RρO
can be formally computed as

µ(S|RρO ) = µ(S \ S|ρO0 )

= ϕ

2π (1− µ(DρO ))

= ϕ

2π (1− e−α(R−ρO)(1 + o(1)))

= ϕ

2π (1−O((logn)−α(2+ε)))

= Θ(ϕ).

It remains to determine E[deg(v) | v ∈ S|RρO ], which can be done as follows.

E[deg(v) | v ∈ S|RρO ] =
∫∫

S|RρO

E[deg(v) | r(v) = r] f(r, φ)
µ(S|RρO ) dφdr

= 1
µ(S|RρO ) ·

∫ R

ρO

∫ ϕ

0
E[deg(v) | r(v) = r]f(r, φ) dφ dr

= Θ(1) ·
∫ R

ρO

E[deg(v) | r(v) = r]f(r) dr

= Θ(1) · n · e−αR
∫ R

ρO

e(α−1/2)r dr

= Θ(1) · n · e−αR
[
e(α−1/2)R − e(α−1/2)ρO

]
= Θ(1) · n · e−R/2

[
1− e−(α−1/2)(R−ρO)

]
Note that the part in brackets is bounded by a constant. Moreover, as R = 2 logn + C,
n · e−R/2 is constant as well. Thus, E[deg(v) | v ∈ S|RρO ] is in Θ(1). It follows that the
expected sum of the degrees is Θ(ϕn). J

Unfortunately, the sum of the vertex degrees in S|RρO is not concentrated sufficiently well
around its expectation to conclude that this bound also holds with high probability. The
problem lies with the high-degree vertices in the graph, which can be adjacent to none or all
vertices in S|RρO depending on their positions. That is, small perturbations of the position of
a single high-degree vertex can change the sum by too much. To overcome this issue, we
consider the impact of high-degree vertices separately. To this end, we partition the edge set
that contributes to the degrees of the vertices in S|RρO into two sets EI and EO, denoting
the inner edges where the other endpoint is in DR|ρO0 and the outer edges where the other
endpoint is in DR|RρO . The sum of the degrees of the vertices in S|RρO can then be bounded
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by taking the number of inner edges and adding them to twice the number of outer edges.
That is,∑

v∈S|RρO

deg(v) ≤ |EI |+ 2|EO|.

Since EI denotes all edges with one endpoint in S|RρO and the other in the inner or central
part of the disk, we can obtain an upper bound on the first summand by summing the
degrees of the vertices in DR|ρO0 that are adjacent to any vertex in S|RρO . Since ρ ≤ ρO,
we have S|RρO ⊆ S|

R
ρ , allowing us to apply Lemma 12 to conclude that all such vertices are

contained in S or are neighbors of the two hypothetical corner vertices c1 and c2, which both
have radius ρ. Thus, |EI | can be bounded by the sum of the degrees of vertices in a sector
and in the neighborhood of a vertex with radius ρ, but constrained to vertices in the inner
and central parts of the disk. Corresponding bounds that hold with high probability have
been determined above. For the sector we obtain an upper bound of Õ(δmax) for the inner
part (Corollary 17) and O(ϕn) for the central part (Lemma 21). For the neighborhood of a
vertex with radius ρ we have Õ(δmax) for the inner part (Corollary 18) and Õ(n1/(2α)) for
the central part (Lemma 23). Taking them together, we obtain the following corollary.

I Corollary 25. Let G be a hyperbolic random graph. For every sector S of angular width
ϕ ∈ Ω(log(n)2α+1/n), the number of edges with one endpoint in S|RρO and the other in DR|ρO0
is in Õ(ϕn+ n1/(2α) + δmax), with high probability.

To obtain an upper bound on the second part of the above sum, we aim to apply a method
of typical bounded differences based on the fact that changing the position of a single vertex
has typically only little impact on the number of outer edges. The idea is as follows. We
consider |EO| as a function that only depends on the positions P1, . . . , Pn of the vertices
in the graph and we ask ourselves: How much can |EO| change, if we alter the position
of a single vertex i? Clearly, this change can be large in the worst case. Assume that we
move i from outside DR|RρO into S|RρO . Then, i does not contribute anything to |EO| before
the move and the increase in |EO| depends on the number of outer edges that are incident
to i after the move, which can be n− 1 in the worst case. However, it is very unlikely that
a vertex in S|RρO has this many neighbors that lie in the outer part of the disk. In fact,
its degree is typically much smaller. To formalize this, we represent the typical case using
an event A, denoting that the degree of such a vertex is at most a constant factor larger
than the expected degree of a vertex with radius ρO = R− (2 + ε) log logn for any constant
ε ∈ (0, 1). More precisely, A denotes the event in which all disks of radius R with center
in DR|RρO contain at most O(log(n)1+ε/2) vertices. In this case, moving a vertex i in the
same way as before leads to a much smaller increase in the number of outer edges. Assuming
that A holds before the move, there are at most O(log(n)1+ε/2) outer edges incident to i
after the move, which corresponds to the increase of |EO|. The following lemma defines the
event A formally and shows that it holds with high probability.

I Lemma 26. Let G be a hyperbolic random graph and let ρO = R− (2 + ε) log log(n) for
any constant ε ∈ (0, 1). Then, all disks D with radius R and center in DR|RρO contain at
most |{v ∈ D}| = O(log(n)1+ε/2) vertices, with probability 1−O(n−c) for any constant c.

Proof. Let D be a disk of radius R and center P ∈ DR|RρO . By Lemma 1, a valid upper
bound on the expected number of vertices in D can be obtained by considering the disk D′
at center P ′ instead, which has the same angular coordinate as P and radius ρO. Thus, using
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Lemma (4) we get

E[|{v ∈ D}|] ≤ E[|{v ∈ D′}|] = O(ne−ρO/2) = O(log(n)1+ε/2).

Moreover, since ε > 0, this bound is ω(logn) and we can apply Corollary 3 to conclude
that |{v ∈ D}| ∈ O(log(n)1+ε/2) holds with probability 1−O(n−c′) for any constant c′. To
obtain a bound that holds for every possible angular coordinate for P , we apply Lemma 2,
which allows us to translate our bound that holds for any given disk D with probability
1−O(n−c′) to the same asymptotic bound that holds with probability 1−O(n−c′+1) for all
possible angular coordinates. Choosing c′ = c+ 1 then yields the claim. J

So while moving a single vertex leads to a large change in the number of outer edges |EO|
in the worst case, we observe only small changes in the typical case A. Formally, we say that
a function f : Ωn → R satisfies the typical bounded differences condition with respect to an
event A ⊆ Ωn if for all i ∈ {1, . . . , n} there exist ∆A

i ≤ ∆i such that

|f(x)− f(x′)| ≤

∆A
i , if x ∈ A,

∆i, otherwise,

for all x,x′ ∈ Ωn that differ only in the ith component.

I Theorem 27 (Method of Typical Bounded Differences, [27, Theorem 23]). Let X1, . . . , Xn ∈ Ω
be independent random variables and let A ⊆ Ωn be an event. Furthermore, let f : Ωn → R be
a function that satisfies the typical bounded differences condition with respect to A and with
parameters ∆A

i ≤ ∆i for i ∈ {1, . . . , n}. Then for all ε1, . . . , εn ∈ (0, 1] there exists an event B
satisfying B̄ ⊆ A and Pr[B] ≤ Pr[Ā] ·

∑
i 1/εi, such that for ∆ =

∑
i(∆A

i + εi(∆i −∆A
i ))2

and t ≥ 0 it holds that

Pr[f > E[f ] + t ∧ B̄] ≤ e−t
2/(2∆).

Intuitively, the choice of the values for εi has two effects. On the one hand, choosing εi
small allows us to compensate for a potentially large worst-case change ∆i. On the other
hand, this also increases the bound on the probability of the event B that represents the
atypical case. However, in that case one can still obtain meaningful bounds if the typical
event A occurs with high enough probability. In the following, we show that an upper bound
on the expected value E[f ] is sufficient to apply the method of typical bounded differences,
before applying it to bound the number of outer edges in a sector.

I Corollary 28. Let X1, . . . , Xn ∈ Ω be independent random variables and let A ⊆ Ωn be an
event. Furthermore, let f : Ωn → R be a function that satisfies the typical bounded differences
condition with respect to A and with parameters ∆A

i ≤ ∆i for i ∈ {1, . . . , n} and let g(n) be
an upper bound on E[f ]. Then for all ε1, . . . , εn ∈ (0, 1], ∆ =

∑
i(∆A

i + εi(∆i −∆A
i ))2, and

c ≥ 1 it holds that

Pr[f > cg(n)] ≤ e−((c−1)g(n))2/(2∆) + Pr[Ā]
∑
i

1/εi.

3 We state a slightly simplified version in order to facilitate understandability. The original theorem
allows for the random variables X1, . . . , Xn to be defined in different sample spaces.
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Proof. Let h(n) ≥ 0 be a function with f ′ = f +h(n) such that E[f ′] = g(n). Note that h(n)
exists since g(n) ≥ E[f ]. As a consequence, we have f ≤ f ′ for all outcomes of X1, . . . , Xn

and it holds that

|f ′(x)− f ′(x′)| = |f(x) + h(n)− f(x′)− h(n)| = |f(x)− f(x′)|,

for all x,x′ ∈ Ωn. Consequently, f ′ satisfies the typical bounded differences condition with
respect to A with the same parameters ∆A

i ≤ ∆i as f . Since f ≤ f ′ it holds that

Pr[f > cg(n)] ≤ Pr[f ′ > cg(n)] = Pr[f ′ > cE[f ′]].

By choosing t = (c− 1)E[f ′] this can be written as

Pr[f ′ > cE[f ′]] = Pr[f ′ > E[f ′] + t].

Theorem 27 now guarantees the existence of an event B with Pr[B] ≤ Pr[Ā] ·
∑
i 1/εi and

B̄ ⊆ A, such that Pr[f ′ > E[f ′] + t ∧ B̄] ≤ e−t2/(2∆). To bound Pr[f ′ > E[f ′] + t] we apply
the law of total probability and consider the events B and B̄ separately

Pr[f ′ > E[f ′] + t] = Pr[f ′ > E[f ′] + t | B̄] · Pr[B̄] + Pr[f ′ > E[f ′] + t | B] · Pr[B].

The first part of the sum can be simplified using the definition of conditional probabilities.
Moreover, it holds that Pr[f ′ > E[f ′] + t | B] ≤ 1. Thus, we can bound the above term by

Pr[f ′ > E[f ′] + t] ≤ Pr[f ′ > E[f ′] + t ∧ B̄] + Pr[B].

Both remaining summands can now be bounded using the upper bounds that we previously
obtained by applying Theorem 27, i.e., Pr[f ′ > E[f ′] + t ∧ B̄] ≤ e−t

2/(2∆) and Pr[B] ≤
Pr[Ā] ·

∑
i 1/εi. Thus,

Pr[f ′ > E[f ′] + t] ≤ e−t
2/(2∆) + Pr[Ā] ·

∑
i

1/εi.

Finally, since t was chosen as t = (c− 1)E[f ′] and since E[f ′] = g(n), we obtain the claimed
bound. J

We are now ready to bound the number |EO| of outer edges, i.e, edges that are incident
to vertices in a sector S|RρO and have their other endpoint in DR|RρO .

I Lemma 29. Let G be a hyperbolic random graph. For every sector S of angular width
ϕ ∈ Ω(log(n)2/n1/2), the number of edges with one endpoint in S|RρO and the other in DR|RρO
is in O(ϕn), with high probability.

Proof. First note that, analogous to the proof of Lemma 21, we can cover the disk with O(n)
sectors of angular width 2ϕ such that any sector of angular width ϕ lies completely in one of
them. In the following, we show that the claimed bound holds with probability O(n−2) for a
single sector S of twice the width.4 Applying union bound then yields the claim.

We consider |EO|, the number of edges with one endpoint in S|RρO and the other in
DR|RρO , as a function hat only depends on the positions P1, . . . , Pn of the vertices in the
graph. To show that |EO| does not exceed an upper bound with high probability, we aim to
apply the method of typical bounded differences (Corollary 28). We represent the typical

4 We note that this factor of 2 vanishes in the asymptotics throughout the proof.
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case with an event A, denoting that all disks D of radius R and center in DR|RρO contain at
most O(log(n)1+ε/2) vertices for any constant ε ∈ (0, 1). In order to determine the parameters
∆A
i ≤ ∆i for i ∈ {1, . . . , n} with which |EO| fulfills the typical bounded differences condition

with respect to A, we have to bound the maximum change in |EO| obtained by moving a
single vertex. As argued before, this change is at most ∆i = n− 1 for all i ∈ {1, . . . , n} in the
worst case. To bound the ∆A

i , we start with a configuration of vertex coordinates in which
the event A holds. In this case, it is easy to see that moving a single vertex i changes |EO|
by at most ∆A

i = O(log(n)1+ε/2) for all i ∈ {1, . . . , n}, since the degree of i is at most this
large after the move and so is the number of outer edges it contributes to |EO|.

We are now ready to apply the method of typical bounded differences (Corollary 28). For
an upper bound g(n) on |EO|, any constant c > 1, and all ε1, . . . , εn ∈ (0, 1] it states that

Pr[|EO| > cg(n)] ≤ e−((c−1)g(n))2/(2∆) + Pr[Ā]
∑
i

1/εi,

where ∆ =
∑
i(∆A

i + εi(∆i −∆A
i ))2. First note that a valid upper bound on the expected

number of outer edges incident to vertices in S|RρO is given by the expected sum of the
degrees of these vertices. Thus, by Lemma 24 we can choose g(n) = Θ(ϕn). Moreover, by
choosing εi = 1/n for all i ∈ {1, . . . , n} and since ∆i = n− 1 and ∆A

i = O(log(n)1+ε/2) for
all i ∈ {1, . . . , n}, we can compute ∆ as

∆ =
∑
i

(∆A
i + εi(∆i −∆A

i ))2

= O
(
n ·
(

log(n)1+ε/2 + 1/n(n− log(n)1+ε/2)
)2
)

= O
(
n ·
(

log(n)1+ε/2 + (1− o(1))
)2
)

= O
(
n · log(n)2+ε

)
Consequently, the above probability can be bounded by

Pr[|EO| > cg(n)] ≤ exp

−Θ
(

(ϕn)2

n log(n)2+ε

)+ Pr[Ā] · n2

≤ exp

−Θ
(

ϕ2n

log(n)2+ε

)+ Pr[Ā] · n2.

Since ϕ ∈ Ω(log(n)2/n1/2) is a precondition of this lemma and since ε < 1, we can conclude
that the fraction is ω(logn), which means that the first summand is O(n−c′) for any
constant c′. Moreover, by Lemma 26 event A holds with probability 1 − O(n−c′) for any
constant c′. Choosing c′ = 3 then yields the claim. J

4.4 The Complete Disk
Having obtained the required bounds for the inner, central, and outer parts of the disk, we
can now combine them to bound the sum of the degrees in a sector and in the neighborhoods
of the hypothetical corner vertices. We start with Theorem 10, which bounds the sum of
degrees in a sector. To improve readability, we restate the theorem here.

I Theorem 10. Let G be a hyperbolic random graph. The degrees of vertices in every sector
of angular width ϕ sum to Õ(ϕn+n1/(2α)+δmax) with high probability if ϕ = Ω(log(n)2/n1/2).
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Figure 8 Left: The exponent of our theoretical bound depending on α. Right: The corresponding
empirically measured search spaces. The data was obtained by generating 20 hyperbolic random
graphs with average degree roughly 8 for each shown α and each n ∈ {100k, 200k, 300k}. For each
graph we sampled 300k start–destination pairs and report the maximum number of edges explored
in one search. The numbers are normalized with the total number of edges m of the graph such that
x is plotted for a search space of size mx.

Proof. For the inner and central parts of every sector the sum of the vertex degrees is
bounded by Õ(ϕn + δmax) with high probability due to Corollary 17 and Lemma 21. As
argued above, the sum of the degrees of the remaining vertices, i.e., vertices with radius at
least ρO, can be bounded by counting the number of inner edges and adding twice the number
of outer edges. Since ϕ ∈ Ω(log(n)2/n1/2), we can apply Corollary 25 and Corollary 29
to conclude that the corresponding sum is bounded by Õ(ϕn+ n1/(2α) + δmax), with high
probability. J

Lastly, it remains to bound the sum of the degrees of the neighbors of the hypothetical
corner vertices that were used to bound the size of the search space in the second phase.
Again, for the sake of readability, we restate the corresponding lemma here.

I Lemma 14. Let G be a hyperbolic random graph and let v be a hypothetical vertex with
radius ρ = 1/α(logn− log logn) and arbitrary angular coordinate. The degrees of neighbors
of v sum to Õ(n2−1/α + n1/(2α) + δmax) with high probability.

Proof. For the inner and central parts of the neighborhood of a vertex with radius ρ and
arbitrary angular coordinate the sum of the degrees is bounded by Õ(δmax + n1/(2α)) with
high probability, due to Corollary 18 and Lemma 23. For the sum of the degrees in the
outer part of the disk, note that all neighbors of radius at least ρ have angular distance
at most ϕ = O(n−(1/α−1)); see Section 3.3.1. Thus, we can use Theorem 10 to conclude
that claimed bound holds for the sum of their degrees. Note that if ϕ is too small to meet
the requirements of Theorem 10, we can choose ϕ = Õ(n−1/2) as a valid upper bound to
conclude that the sum of degrees in the outer part of the neighborhood is in Õ(n1/2), which
is Õ(n1/(2α)) for α ∈ (1/2, 1). J

5 Conclusion

In the following, we briefly discuss why we think that the bound Õ(n2−1/α + n1/(2α) + δmax)
is rather tight; see Figure 8 (left) for a plot of the exponents. Clearly, the maximum degree
of the graph is a lower bound, i.e., we cannot improve the δmax. As δmax = Θ̃(n1/(2α)) holds
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almost surely [17], we also cannot improve below Õ(n1/(2α)). For the term n2−1/α we do
not have a lower bound. Thus, the blue region in Figure 8 (left) is the only part where our
bound can potentially be improved. However, by only making a single step from a vertex
with radius ρ = 1/α(logn− log logn), we can already reach vertices with angular distance
Θ(n−(1/α−1)). Thus, it seems likely, that there exists a start–destination pair such that
all vertices within a sector of this angular width are actually explored. As such a sector
contains Θ(n2−1/α) vertices, our bound seems rather tight (at least asymptotically and up to
poly-logarithmic factors). For a comparison of our theoretical bound with actual search-space
sizes in hyperbolic random graphs; see Figure 8.

Finally, in order to put our results into perspective, we discuss the following question:
How does a heterogeneous degree distribution impact the exponent in the running time of the
bidirectional BFS? First, considering networks with no underlying geometry, the exponent
is 1/2 for homogeneous networks and (4− β)/2 = 3/2− α for heterogeneous networks with
power-law exponent β [10]. That is, when increasing the heterogeneity by letting α go
from 1 to 1/2, the exponent increases from 1/2 to 1. This can be explained by the fact that
a heterogeneous degree distribution leads to high-degree vertices, which leads to a higher
running time when they are explored.

On hyperbolic random graphs, we get the same effect. The 1/(2α)-part of the exponent
(the red function in Figure 8) is very similar to the above 3/2 − α. However, due to the
underlying geometry, the heterogeneity has another effect, expressed by the 2 − 1/α-part
of the exponent (the green function in Figure 8). This can be explained as follows. The
underlying geometry constrains the parts of the graph that a vertex can connect to. As a
result, the search space cannot expand sufficiently fast on homogeneous networks and we
only get a constant speedup, i.e., the exponent is 1. However, increasing the heterogeneity
leads to high degree vertices, which accelerate the expansion of the search spaces, leading to
a lower exponent.

In conclusion, we can say that heterogeneity has two effects on the bidirectional BFS:
1. More heterogeneity leads to higher running times as exploring high degree-vertices is

costly.
2. More heterogeneity leads to lower running times as high degree-vertices let the search

spaces expand quickly.
For networks without underlying geometry, the second effect is irrelevant, as the search space
always expands quickly due to the independence of edges. Thus, the running time is better
the more homogeneous the network. For networks with underlying geometry, both effects
play an important role leading to the v-shape in Figure 8. For high heterogeneity (α < 0.75),
the cost of exploring high degree vertices dominates, leading to the exponent 1/(2α). For
lower heterogeneity (α > 0.75), the slower expanding search space due to the underlying
geometry dominates, leading to the exponent 2− 1/α.
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