KIT | KIT-Bibliothek | Impressum | Datenschutz

Expand Dimensional of Seismic Data and Random Noise Attenuation Using Low-Rank Estimation

Mafakheri, Javad; Kahoo, Amin Roshandel; Anvari, Rasoul ; Mohammadi, Mokhtar; Radad, Mohammad; Monfared, Mehrdad Soleimani 1
1 Geophysikalisches Institut (GPI), Karlsruher Institut für Technologie (KIT)

Abstract:

Random noise attenuation in seismic data requires employing leading-edge methods to attain reliable denoised data. Efficient noise removal, effective signal preservation and recovery, reasonable processing time with a minimum signal distortion and seismic event deterioration are properties of a desired noise suppression algorithm. There are various noise attenuation methods available that more or less have these properties. We aim to obtain more effective denoised seismic data by assuming 3-D seismic data as a tensor in order three and increasing its dimension to 4-D seismic data by employing continuous wavelet transform (CWT). First, we map 3-D block seismic data to smaller blocks to estimate the low-rank component. The CWT of the tensor is calculated along the third dimension to extract the singular values and their related left/right vectors in the wavelet domain. Afterward, the effective low-rank component is extracted using optimized coefficients for each singular value. Thresholding is applied in the wavelet domain along the third dimension to calculate effective coefficients. Two synthetic and field data examples are considered for performance evaluation of the proposed method, and the results were compared with the competitive random noise suppression methods, such as the tensor optimum shrinkage singular value decomposition, the iterative block tensor singular value thresholding, and the block matching 4-D algorithms. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000146043
Veröffentlicht am 11.05.2022
Originalveröffentlichung
DOI: 10.1109/JSTARS.2022.3162763
Scopus
Zitationen: 23
Web of Science
Zitationen: 23
Dimensions
Zitationen: 23
Cover der Publikation
Zugehörige Institution(en) am KIT Geophysikalisches Institut (GPI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1939-1404, 2151-1535
KITopen-ID: 1000146043
Erschienen in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 15
Seiten 2773–2781
Vorab online veröffentlicht am 28.03.2022
Schlagwörter Continuous wavelet transform (CWT), low-rank matrix, optimal shrinkage, singular value decomposition, seismic random noise
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page