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Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects.
Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using
analytical and numerical methods. The far field of these dislocations is universal and classified by an
integer strength ν that quantifies its Burgers vector. We demonstrate that a rich variety of dislocation-core
structures can be realized even for the same strength ν. In particular, the magnetization at the core can be
either smooth or singular. We present a specific example with ν ¼ 1 for which the core is composed of a
chain of singular Bloch points. In general, screw dislocations carry a noninteger but finite skyrmion charge
so that they can be efficiently manipulated by spin currents and should contribute to the topological Hall
effect.
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Introduction.—The Dzyaloshinskii-Moriya interaction
(DMI) in cubic chiral magnets like MnSi, FeGe, or
Cu2OSeO3 favors helimagnetic long-range order in a large
region of the phase diagram [1–7]. A finite field H aligns
the helix axis and, in addition, tilts the magnetic moments
towards the field direction giving rise to a conical magnetic
helix, see Fig. 1(a). This helimagnetic ordering realizes a
one-dimensional periodic texture that shares many simi-
larities with other emerging lamellar structures found, e.g.,
in various soft matter systems [8–10].
In particular, in the limit of weak spin-orbit coupling

(SOC) the phase transition from the paramagnetic to the
helimagnetic phase at H ¼ 0 is a fluctuation-driven first-
order transition similar to the ones in certain cholesteric
liquid crystals or diblock copolymers [11–13]. The corre-
lation length above the critical temperature Tc possesses a
temperature dependence that is well described by weak
crystallization theory [14]. This indicates that the para-
magnetic regime just above Tc is characterized by strong
correlations that are maintained by the large density of
states of paramagnons [15]. It is still an important open
issue whether these pronounced magnetic correlations are
also at the origin of the non-Fermi liquid behavior observed
in MnSi and FeGe upon suppressing the critical temper-
ature towards zero with pressure [16–20].
In this context, the question arises as to whether this

intriguing paramagnetic-helimagnetic phase transition can
also be understood from the dual perspective as a defect-
mediated melting transition [21–23]. A prerequisite to
address this question is an understanding of the elementary
defects of helimagnetic order. It is well known that defects
of lamellar structures in general consist of disclinations and
dislocations, which are line defects in case the lamellae are

embedded in three-dimensional space [8]. For helimagnets,
such defects were discussed on a phenomenological level
by Kléman [24]. Recently, it was shown both theoretically
and experimentally that domain walls of helimagnetic order
might consist of an arrangement of disclinations and edge
dislocations [25–27] very similar to domain walls in
cholesteric liquid crystals [28]. Moreover, at helimagnetic
twist grain boundaries screw dislocations are expected to
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FIG. 1. (a) Conical magnetic helix with pitch λh and cone angle
θ0 enclosed by the magnetic moments and the direction of the
applied magnetic field H. (b) Helimagnetic order is characterized
by equidistant isosurfaces, the hallmark of lamellar order, where,
e.g., the x component of magnetization, nx, assumes a particular
value. (c)–(e) Example of a screw dislocation with strength ν ¼ 1
illustrated by different vertical cross sections. The core of this
specific example contains a chain of magnetic Bloch points.
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occur [8,29]. It was also demonstrated that the motion of
edge dislocations is an important relaxation process for
disordered helimagnets possibly accounting for the large
relaxation times observed experimentally [30–33].
However, there exist additional line excitations within the

conical helix phase that are distinct from dislocations and
disclinations. In particular, chiral magnets are famously
known to host skyrmions, i.e., topological two-dimensional
magnetic textures [34]. In bulk magnets, the skyrmion
textures extend along the third direction forming skyrmion
strings that either condense into a lattice or exist asmetastable
excitations of the field-polarized phase [7,35,36]; for a
recent review see Ref. [37]. It has been demonstrated in
Refs. [38,39] that such metastable skyrmion configurations
also persist within the conical helix phase upon decreasing
themagnetic field below thecritical fieldHc2. Such skyrmion
strings attract each other and can form clusters or even
networks [40–42]. Nevertheless, these skyrmion strings
within the conical helix phase possess an exponentially
decaying far field and, in contrast to dislocation lines, are
characterized by a vanishing Burgers vector. In addition, the
conical helix can also support localized large-amplitude
excitations like bound pairs of hedgehog defects, i.e.,
Bloch points [43] and even Hopfions [44].
In the present work, we theoretically investigate in detail

screw dislocations in cubic chiral magnets. The helimag-
netic order defines equally spaced isosurfaces where, e.g.,
the x component of the magnetization assumes the same
value, see Fig. 1(b). The deviation of isosurfaces from their
equilibrium configuration is described by the displacement
field u [45]. The integral along a loop enclosing a
dislocation line,

H
du ¼ b, is finite and given by the

Burgers vector b indicating that u is singular at the
dislocation core. For a screw dislocation, b ¼ λhνẑ is
aligned with the helix axis ẑ and its size is an integer
multiple of the helix pitch λh, where ν ∈ Znf0g character-
izes the strength of the screw dislocation (sdν).
Using analytical arguments and numerical simulations

we determine the micromagnetic structure of screw dis-
locations. In the limit of small SOC, when the influence of
magnetocrystalline anisotropies is negligible, we find that
they possess in the far field the expected universal form
of lamellar structures with a displacement vector u ¼
uzðx; yÞẑ where [8–10]

uzðx; yÞ ¼
λh
2π

νχ: ð1Þ

Here, χ is the polar angle of cylindrical real-space coor-
dinates ðρ; χ; zÞ. Moreover, we show that the magnetization
texture at the core of screw dislocations can either be
smooth or might contain Bloch points, which we illustrate
explicitly for screw dislocations with jνj ¼ 1.
Theory of cubic chiral magnets.—The magnetic energy

functional E ¼ R
drE of cubic chiral magnets possesses a

density that reads in leading order in SOC

E ¼ Að∂inÞ2 þDnð∇ × nÞ −Msμ0Hnz: ð2Þ

Here, n is a unit vector specifying the orientation of the
local magnetization and the magnetic field is applied in the
z direction, H ¼ Hẑ; A is the exchange constant, D > 0 is
the DMI assuming a right-handed chiral magnetic system,
Ms is the saturation magnetization and μ0 is the vacuum
permeability. Importantly, for zero field H ¼ 0 this density
is isotropic with respect to a combined rotation of spin and
real space. This rotational symmetry is explicitly broken by
magnetocrystalline anisotropies that are, however, weak in
the limit of small SOC and will be mostly neglected in the
following. We also neglect for simplicity the magnetic
dipolar interaction.
It is convenient to consider the representation of

n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ in terms of polar angle
θ and azimuthal angle ϕ. For large fields H > Hc2 ¼
D2=ð2Aμ0MsÞ the ground state of Eq. (2) is field polarized
with θ ¼ 0. The ground state for small fields 0 ≤ H < Hc2 is
the conical helix with a position dependent polar angle ϕ ¼
2πz=λh where the helix pitch λh ¼ 4πA=D, and the cone
angle θ ¼ θ0 with cos θ0 ¼ H=Hc2.
Far field of screw dislocations.—Performing an asymp-

totic analysis of the Euler-Lagrange equations of Eq. (2),
for details see the Supplemental Material [46], we find that
the conical helix supports screw dislocations with an
asymptotic behavior for large distances from their core
ρ → ∞,

θ ¼ θ0 þ
2νsin2θ0
1þ sin2θ0

λh
2πρ

sin

�
ðν − 1Þχ þ 2πz

λh

�
þOðρ−2Þ;

ð3Þ

ϕ ¼ 2π

λh
½zþ uzðx; yÞ� þOðρ−2Þ; ð4Þ

where uz is the universal displacement field of Eq. (1). The
dependence of ϕ indicates that the ðx; yÞ components of the
magnetization form a vortex within each plane perpendicular
to the applied field, i.e., for each value of z, and the winding
number is just given by the disclination strength ν. The
structure of the vortex changes from plane to plane as a
function of z due to the linear dependence of ϕ on z,
see Fig. 1.
The far-field configuration allows to determine the topo-

logical skyrmion charge for a screw dislocation within each
z plane, NtopðzÞ¼

R
dxdyρtop, where ρtop ¼ ð1=4πÞnð∂xn×

∂ynÞ. Note that, in contrast to skyrmions, here NtopðzÞ is not
an integer. At infinity ρ → ∞, themagnetizationn has a fixed
polar angle θ0 and encircles the ẑ axis ν times as a function of
real-space angle χ. Assuming that the magnetization texture
is smooth in a given z plane, we obtain for the charge

NtopðzÞ ¼
ν

2
ð1 − hÞ þ nðzÞ; ð5Þ
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with the reduced field h ¼ H=Hc2, and nðzÞ ∈ Z is an
integer that depends on the magnetization at the core of the
screw dislocation. As we will see below, in case that nðzÞ
varies with z the core is singular and contains Bloch points.
Plugging the asymptotics of Eqs. (3) and (4) into Eq. (2)

we obtain for the energy of a screw dislocation line per length

εsd ¼ εcoresd þ Að2πνÞ2 h
2ð1 − h2Þ
2 − h2

log
R

ρcore
; ð6Þ

where h ¼ H=Hc2. The length scale R specifies the exten-
sion of the system in radial direction, and ρcore is the linear
size of the dislocation core with the associated core energy
εcoresd . The far-field tail of the screw dislocation gives rise to a
contribution to the energy that in general diverges logarithmi-
cally with the radial system size R. This logarithmic con-
tribution vanishes at the transition H ¼ Hc2 to the field-
polarized phase because the dislocation ceases to be defined
when the cone angle vanishes, θ0 ¼ 0. Moreover, it also
vanishes in zero fieldH ¼ 0 due to the rotational symmetry
of Eq. (2). It is well known that lamellar structures emerging
in an isotropic environment are characterized by particularly
soft small-amplitude, i.e., phonon excitations that possess the
Landau-Peierls form [8]. In this case the contribution to the
energy from the far field of screw dislocations, which can be
captured in terms of a static phonon field, vanishes [8–10,67]
in agreement with Eq. (6). Technically, this is here due to a
cancellation of exchange andDMI energies. The prefactor of
the logarithmic contribution inEq. (6) remains finite however
at H ¼ 0 if magnetocrystalline anisotropies are taken into

account that explicitly break the continuous rotational
symmetry of the theory [46].
Core structure of screw dislocations.—Having estab-

lished the far field of screw dislocations we now turn to the
discussion of their core structures. We employ micromag-
netic simulations [46] in order to determine the core and its
energy. First, we focus on the case with strength ν ¼ −1, see
Fig. 2. The magnetization can here be continuously extrapo-
lated from the far field towards the core resulting in a smooth
texture. There exist two energetically degenerate configura-
tions at zero field where the core magnetization is either
aligned or antialignedwith the field, respectively, denoted by
sdþ−1 and sd−−1 in the following. In order to decrease DMI
energy, the core deforms elliptically such that it mimics a
small Bloch-domain wall with preferred chirality. In addi-
tion, we found that close to zero field the ellipse is further
deformed into a banana-shape structure, see cross sections in
Fig. 2, that leads to a periodicity of the core along the z axis
with an enhanced wavelength 2λh. For finite field H, the
configuration with the aligned core magnetization sdþ−1 is
energetically favored, see Fig. 3. The preciseH dependence
of the dislocation energy depends on the system size R but it
vanishes for H → Hc2.

FIG. 2. Core of the screw dislocation sdþ−1 with strength ν ¼ −1
obtained by micromagnetic simulations for H ¼ 0. The magnetic
moments represented by arrows form within a given z plane an
anti-vortex-like structure. The orange isosurface in the main
panel is defined by nz ¼ 1=2. The magnetization at the core is
preferentially pointing in ẑ direction; the configuration with
opposite core magnetization, sd−−1, is degenerate at H ¼ 0 (not
shown). Note that the periodicity of the core structure along z is
characterized by a wavelength 2λh.

FIG. 3. Energy per length of the various screw dislocation lines
shown in Figs. 2 and 4, as a function of H with a comparison to
the skyrmion string energy (gray lines) whose core magnetization
is aligned (Skþ) or antialigned (Sk−) with the field. The energies
were obtained by micromagnetic simulations for a cylinder-
shaped system with radius R ¼ 5λh. Dashed line shows the
logarithmic contribution of the far field in Eq. (6) assuming
ρcore ¼ λh=2 for illustration. The energy of dislocations sdþ−1 and
sdþ1 vanishes atHc2 where they can be identified as vortex lines of
the XY-order parameter. The energy of sdSk−1 merges at Hc2 with
that of the skyrmion string Sk−. Points A–D mark field values
where the corresponding configurations became unstable in
numerical simulations due to the lattice discreteness.
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There exists in fact a screw dislocation for each strength
νwhose energy vanishes atHc2. The phase transition atHc2
corresponds to a magnon condensation [68] that is in the
XY-universality class. Employing a standard Holstein-
Primakoff expansion around the field-polarized state n ¼
ẑþ ½ψe−i2πz=λhðx̂þ iŷÞ þ c:c:� þOðjψ j2Þ for H > 0 the
complex spin wave function ψ can be identified with the
corresponding XY-order parameter. When it condenses for
H ≲Hc2 with nonzero constant ψ , long-range conical order
emerges. The Uð1Þ symmetry of the complex wave
function ψ then also supports vortex line solutions given
by ψ ∼ e−iνχ with an amplitude vanishing at the core. The
size of the vortex core is determined by the correlation
length of the condensate, ξ ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H=Hc2

p
[69], and is

thus independent of z. This implies a cylindrical core of the
vortex line close to Hc2. Hence, these vortex lines can be
identified with a special type of screw dislocations of the
helimagnetic order that possess a smooth magnetization at
the core that is aligned with the applied field.
Let us consider the corresponding solution with strength

ν ¼ 1 denoted by sdþ1 in Fig. 4(a). Here, the vortex
structure of the ðx; yÞ components of magnetization in
the far field continuously alternate from a divergenceless to
a rotationless configuration as a function of z with a
topological charge Ntop ¼ 1

2
ð1 −H=Hc2Þ that is indepen-

dent of z. It is instructive to focus on the planes z ¼
1
2
ðm� 1

2
Þλh in Eq. (4) with m ∈ Z, where a divergenceless

configuration is realized. As the core is approached, the
magnetization smoothly rotates in a right-handed or left-
handed manner until it is aligned with the field at the center,

see lower panels in Fig. 4(a). Whereas the former texture is
favored by the DMI, the latter is disfavored. As a
consequence, the core, that is cylindrical close to Hc2,
becomes undulated along the z axis for smaller fields with a
contraction on the z planes housing the disfavored textures.
The energetic cost of the latter also leads to an increase of
the dislocation energy for decreasing H. In the simulations
we found that this particular screw dislocation structure
cannot be maintained for lowest magnetic fields. Instead, a
first order transition to a different structure occurs at point
B in Fig. 3, to which we turn next.
The energy cost of the disfavored configurations shown

in the lower right panel of Fig. 4(a) can be avoided by
switching the core magnetization within these planes. An
alternating core magnetization along the z axis is indeed
characteristic for the screw dislocation sdBp1 shown in
Fig. 4(b). At zero field, it realizes a Bloch-like meron
structure on the planes z ¼ 1

2
ðm� 1

2
Þλh that are both

favored by the DMI. These merons possess alternating
skyrmion charges Ntop ¼ � 1

2
that implies the presence of

Bloch points with alternating topological charges �1 [70]
positioned in the core on the intermediate planes z ¼
mλh=2 with m ∈ Z. This screw dislocation sdBp1 with a
chain of Bloch points at its core is the most stable
configuration for ν ¼ 1 close to zero field but it is
energetically more costly than the dislocations sd�−1 with
ν ¼ −1. It can be maintained for a large field range but it
becomes unstable in the simulations at point C in Fig. 3
where oppositely charged Bloch points annihilate before
reaching the critical field Hc2.

0

(a) (b) (c)

FIG. 4. Core of various screw dislocations with strength ν ¼ 1 obtained by micromagnetic simulations. Orange and blue isosurfaces
are, respectively, defined by nz ¼ 1=2 and nz ¼ −1=2 except in panel (a) where nz ¼ 1=2 and nz ¼ −1=4. (a) Dislocation sdþ1 with core
magnetization aligned with the field for H ¼ 0.21Hc2. (b) Dislocation sd

Bp
1 for H ¼ 0 with an alternating core magnetization separated

by Bloch points (yellow spheres) with alternating topological charges �1. (c) Dislocation sdSk−1 at H ¼ 0 with an antialigned core
magnetization; it smoothly connects to a skyrmion string configuration for H → Hc2.
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There exists a third screw dislocation with strength ν ¼ 1
that again possesses a smooth core texture without singu-
larities. Its core magnetization is either fully aligned or
antialigned with the applied field. Both configurations,
sdSkþ1 and sdSk−1 , respectively, are degenerate at zero field,
but the antialigned core is energetically favored at finite H,
see Fig. 3. In the simulations, the configuration with the
aligned core can only be stabilized for small field values up
to pointD. In order to elucidate the core structure, we focus
in Fig. 4(c) on sdSk−1 atH ¼ 0 and consider again the planes
z ¼ 1

2
ðm� 1

2
Þλh with a divergenceless configuration of the

magnetization in the far field. As the core is approached
within these planes, the magnetization smoothly rotates in a
Bloch-like fashion that is favored by the DMI. In half of
these planes it is sufficient to rotate themagnetization by π=2
but in the complementary planes a rotation by 3π=2 is
required in order to reach a uniformly magnetized core. The
topological charge within each plane is given by Ntop ¼
− 1

2
ð1þH=Hc2Þ. As the field increases, the in-plane texture

transforms from a meron withNtop ¼ − 1
2
to a skyrmion with

Ntop ¼ −1. In fact, as the critical fieldHc2 is approached this
screw dislocation smoothly converts into a skyrmion con-
figuration of the field-polarized state. The screw dislocation
sdSk1 close to Hc2 can thus be viewed as a bound state of a
skyrmion string with a vortex of the XY-order parameter ψ.
Outlook.—While we focused here on the most relevant

screw dislocations with smallest Burgers vector, i.e.,
jνj ¼ 1, the micromagnetic core structure for higher
strength jνj can be even richer, as will be shown elsewhere.
A number of techniques were recently developed that might
enable the experimental identification of screw disloca-
tions, including scalar [71] and vector [72,73] x-ray
tomography, as well as holographic vector field electron
tomography [74]. Screw dislocations are known to pro-
liferate and form regular arrays at twist grain boundaries
[8,29]. Interestingly, a multidomain state with twist grain
boundaries is naturally expected to occur in the cubic chiral
magnets after zero-field cooling [1,4,30], and, conse-
quently, this state is an ideal candidate for experimentally
spotting helimagnetic screw dislocations.
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