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The prosperity and lifestyle of our society are very much governed by achievements in 
condensed matter physics, chemistry and materials science, because new products 
for sectors such as energy, the environment, health, mobility and information 
technology (IT) rely largely on improved or even new materials. Examples include 
solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. 
The enormous amount of research data produced every day in these �elds represents 
a gold mine of the twenty-�rst century. This gold mine is, however, of little value if 
these data are not comprehensively characterized and made available. How can we 
re�ne this feedstock; that is, turn data into knowledge and value? For this, a FAIR 
(�ndable, accessible, interoperable and reusable) data infrastructure is a must. Only 
then can data be readily shared and explored using data analytics and arti�cial 
intelligence (AI) methods. Making data '�ndable and AI ready' (a forward-looking 
interpretation of the acronym) will change the way in which science is carried out 
today. In this Perspective, we discuss how we can prepare to make this happen for the 
�eld of materials science.

The number of possible materials is practically infinite. But even for 
the so-far known materials, our knowledge about their properties and 
their synthesis is very shallow. There is no doubt that forms of con-
densed matter exist, or can be created, that show better, or even new, 
properties and functions than the materials that are known and used 
today. How can we find them? High-throughput screening of materi-
als — experimentally or theoretically — collects important information. 
These results will boost new discoveries, but the immensity of possible 
materials cannot be covered by such explicit searches. Moreover, in 
current purpose-focused research, only a small fraction of the data 
produced in the studies is published, and many data are not fully char-
acterized. Furthermore, the metadata (the information that explains 
and characterizes the measured or calculated data), ontologies (the 
relationships in metadata) and workflows of different research groups 
cannot be easily reconciled. Thus, most research data are neither find-
able nor interoperable.

A FAIR data infrastructure will foster the exchange of scientific infor-
mation. The meaning of the acronym—that data should be findable, 
accessible, interoperable and reusable—is explained in the original 
publication by Wilkinson et al.1 and elaborated on, for example, at the 
GO FAIR web pages (https://go-fair.org/fair-principles/). The crucial and 
very laborious first step towards the FAIRification of data concerns the 
need to comprehensively describe data by metadata; that is, to charac-
terize data fully and unambiguously so that the research is reproduc-
ible. Then scientists, engineers and others can also combine data and 

metadata from different studies and use them in different contexts. 
This will open synergies between materials science subdomains and 
facilitate inter-institute and cross-discipline research. It will also enable 
data to be used for deeper analyses and for training AI models. Clearly, 
a FAIR data infrastructure will also show data provenance.

The US Materials Genome Initiative (MGI, https://mgi.gov/) was 
announced in 2011 for “discovering, manufacturing, and deploying 
advanced materials twice as fast and at a fraction of the cost com-
pared to traditional methods.” It markedly boosted collaborations 
and high-throughput experiments and computations. FAIRmat (https://
FAIRmat-NFDI.eu/) develops the original MGI concept further by imple-
menting a FAIR data infrastructure for condensed-matter physics and 
the chemical physics of solids. It is a consortium of the German National 
Research Data Infrastructure programme (https://nfdi.de). FAIRmat 
interweaves data and tools from and for materials synthesis, experi-
ments, theory and computation, and makes all data available to the 
whole materials science community and beyond. In this endeavour, 
it unites researchers from condensed matter physics, the chemical 
physics of solids and computer science and IT experts.

Materials science is strongly affected by all the four Vs (4V) of big 
data: volume (the amount of data), variety (the heterogeneity of form 
and meaning of data), velocity (the rate at which data may change 
or new data arrive) and veracity (the uncertainty of data quality). 
The various experimental and theoretical examples provided below will 
illustrate these different aspects. In general, a FAIR data infrastructure 
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requires an in-depth description of how the data have been obtained, 
addressing metadata, ontologies and workflows. Obviously, only the 
experts (those creating the samples or computer codes and perform-
ing measurements or calculations that is, producing the data) have the 
insight and knowledge to provide this critical information.

The topic of this Perspective, as outlined above, includes the request 
for a notable change in scientific culture. Thinking beyond our present 
research focus on effect, phenomenon or application requires us to 
accept publishing ‘clean data’—that is, well-characterized and clearly 
annotated data—represents a value of similar importance to a standard 
publication, or even higher. This concept carries analogies to Tycho 
Brahe, who created the data that enabled Johannes Kepler to find his 
equations and finally led Newton to formulate his theory of gravitation.

Eventually, after having installed an efficient, FAIR research data 
infrastructure, hosting all data from synthesis, experimental and theo-
retical studies for a wide range of materials, we also need to pave the 
way for carrying out new research. Our scientific vision is to build maps 
of material properties that will guide us in designing and finding new 
materials for a desired function. This concept follows the spirit of the 
creation of the periodic table of elements; organizing the roughly 60 
atoms known at the time enabled Mendeleev to predict the existence 
and properties of yet-to-be discovered elements.

In the following, we will describe the state of the art, highlight the 
challenges and put forward FAIRmat’s envisaged solutions.

Data-centric materials science
Science is and always has been based on data, but the term ‘data-centric’ 
indicates a radical shift in how information is handled and research is 
performed. It refers to extensive data collections, digital repositories 
and new concepts and methods of data analytics. It also implies that 
we complement traditional purpose-oriented research by using data 
from other studies.

Some progress in this direction has been made in recent years in 
terms of collecting data from the many research groups across the 
planet (all the data, not just what is published in research manuscripts) 
and making the data FAIR1,2. This should be good scientific practice 
in any case3,4. Since 1965, data repositories in materials science have 
moved towards digitization. A comprehensive list can be found in ref. 5 . 
Among them, the NOMAD (Novel Materials Discovery) Laboratory 
(a database for computational materials science; online since 2014, 
https://nomad-lab.eu/) is unique as it accepts data from practically all 
computational materials science codes. As it provides the blueprint for 
FAIRmat, we will summarize its basic concept (for details, see refs. 4,6). 
A key guideline of NOMAD (and FAIRmat) is to help scientists and stu-
dents to upload and download data in the easiest way. In simple terms, 
data stored at NOMAD are treated analogously to publications at a 
journal archive, such as https://arxiv.org/. Unlike journal archives, an 
embargo period can be used for collaborations with selected colleagues 
or may even be crucial for collaborations with industry. At the time of 
writing (August 2021), NOMAD contains results from more than 100 
million open-access calculations. These are from individual research-
ers all over the world and include entries from other computational 
materials databases, such as AFLOW (http://aflow.org), the Materials 
Project (https://materialsproject.org) and OQMD (the Open Quantum 
Materials Database, http://oqmd.org). NOMAD converts the data into 
a common form and provides an easy materials view presentation by 
means of the NOMAD Encyclopedia (https://nomad-lab.eu/encyclo-
pedia). This allows users to see, compare, explore and understand 
computed materials data. Furthermore, the NOMAD Artificial Intel-
ligence Toolkit (https://nomad-lab.eu/AIToolkit) offers tools for data 
analytics and predictions.

The overall challenges of FAIRmat are sketched in Fig. 1: besides 
organizing and — equally importantly — convincing the community (top 
left), a critical task concerns the development of metadata standards 

and ontologies (top right). At present, in materials science, such stand-
ards are either totally missing or incomplete. Numerous attempts 
from standards organizations, such as the International Standards 
Organization (https://iso.org/), to provide controlled vocabularies, 
standards for data formats and data handling, have so far failed to 
reach community-wide adoption.

FAIRmat has already started to establish metadata and dictionaries 
for digital translations of the vocabulary used in different domains. 
The next step concerns the description of relations between them, 
hence, the development of ontologies. They will become particularly 
important when involved workflows are needed. The NOMAD Meta Info7

(https://nomad-lab.eu/metainfo) stores descriptive and structured 
information about materials science data and some interdependencies. 
Thus, it represents an ontology precursor. There are a lot of discussions 
regarding ontology within the community; see, for example, refs. 7–9

and the metadata and ontology activities at NIST (https://data.nist.
gov/od/dm/nerdm/) and the Materials Ontologies RDA Task Group 
(https://rd-alliance.org). This also concerns collaborations of FAIRmat 
with EMMC (https://emmc.info), OPTIMADE9 (https://optimade.org) 
and NIST (https://data.nist.gov/).

As illustrated in Fig. 1, data-centric materials science requires a 
complex infrastructure (bottom right). Established standards for 
data models in materials science will be considered; for example, CIF 
(Crystallographic Information Framework, https://iucr.org/resources/
cif), CSMD (Core Scientific Metadata Model, http://icatproject-contrib.
github.io/CSMD) and NeXus (https://nexusformat.org/). Last but not 
least, acceptance by researchers requires that the infrastructure also 
offer support and efficient tools for data processing and analysis (Fig. 1, 
bottom left).

Other research fields are facing different yet analogous challenges. 
International contacts, coordination and collaborations of the various 
fields are promoted by the GO FAIR initiative (https://go-fair.org/), the 
Research Data Alliance (RDA, https://rd-alliance.org/), the association 
FAIR-DI (https://fair-di.eu), CODATA (https://codata.org/) and others. 
A recent publication10 by Wittenburg et al. on ‘FAIR practices in Europe’ 
describes the situation in the areas of humanities, environmental sci-
ences and natural sciences. Although basic concepts and IT tasks are 
being discussed, true collaborations and reaching the final goal of 
growing together still need time.

Preparing the research of tomorrow
Putting what is outlined above into practice is a rocky road. To motivate 
the community to join a culture of extensive data sharing, FAIRmat’s 
policy is to lead by example. Two issues are obviously important to 
speed up the process and trigger active support: (1) successful, living 
examples of daily data-centric research11 to demonstrate what and how 
things work; and (2) outreach to the wider community, including the 
education of future scientists and engineers.

To cope with the first point, FAIRmat will demonstrate its approach 
with specific examples from diverse research fields, including battery 
research, heterogeneous catalysis, optoelectronics, magnetism and 
spintronics, multifunctional materials and biophysics. In all of this, 
FAIRmat will demonstrate the synergistic interplay of materials synthe-
sis, sample preparation and experiments, as well as theory and compu-
tation, and provide a much more comprehensive picture than the single 
subcommunities can achieve. As such, FAIRmat will bring together not 
only data and tools but, most notably, also people, who will learn each 
other’s ‘language’. In fact, the necessary width of competences goes 
along with a diversity in the nomenclature, which can hamper commu-
nication as well as the definition of metadata and ontologies. Likewise, 
electronic lab notebooks (ELNs) must be standardized to allow seamless 
integration of data into automatic workflows. Dedicated data-analysis 
and AI tools will be developed and demonstrated that help to identify 
the key descriptive physicochemical parameters12–15. This will allow for 



predictions that go beyond the immediately studied systems and will 
show trends and enable the identification of materials with statistically 
exceptional properties16. Combining data from different repositories 
opens further opportunities.

Let us exemplify with two emerging classes of materials that the 
exploitation of an efficient data infrastructure will be not only help-
ful but simply mandatory for the digitization of materials research17. 
These examples are high-entropy alloys (HEAs) and metal–organic 
frameworks (MOFs). For these classes, the sheer number of possible 
materials is so large that conventional approaches will never be able 
to unleash even a small part of their full potential. For HEAs, a number 
of 109 possible composite materials with distinctly different proper-
ties has been estimated18, with many of them showing, for example, 
mechanical properties that exceed by far those of conventional alloys. 
This huge space of materials further contains HEA oxides with interest-
ing properties in catalysis and energy storage. In the case of MOFs, the 
situation is even more pronounced. As a result of the huge diversity of 
MOF building blocks, inorganic clusters and multitopic molecules, 
the number of compounds is unlimited. Even if one limits the building 
block weight to that of fullerene (C60), synthesizing only one replica of 
each compound would already need more atoms than are available 
on planet Earth. Using AI to analyse the huge amount of experimental 
information (data for about 100,000 MOFs are stored in databases19), 
we will be able to identify or predict MOFs with particular properties 
dictated by conceived applications20; for example, in optoelectronics21, 
biomedicine or catalysis22.

Turning to the second point—to foster awareness of the importance 
of FAIR scientific data management and stewardship1—FAIRmat will 
reach out to current students of physics, chemistry, materials science 
and engineering. We aim to educate a new generation of interdiscipli-
nary researchers, offering classes and lab courses, and to introduce new 
curricula. A necessary requirement is to convince teachers, professors 
and other decision makers. The FAIRmat consortium will initiate and 
organize focused, crosscutting workshops together with, for example, 
colleagues from chemistry and biochemistry, astroparticle and elemen-
tary particle physics, mathematics and engineering. Some topics may 
be general, such as ontologies or data infrastructure, whereas others 
will be more specific, including particular experimental techniques 
or specific simulation methods. Hands-on training, schools and hack-
athons, as well as the usual online tutorials, will be part of our portfolio. 
Listening to the needs of small communities or groups will make sure 
that no one is left behind.

Although industry is very interested in the availability of data, the 
materials encyclopedia and the AI tools, most investigators hesitate 
to contribute their own data. Understandably, a company can survive 
only if they create products that are better or cheaper than those of 
their competitors. FAIRmat accepts these worries, for example, by 

allowing for an embargo of uploaded data (see above). The NOMAD 
Oasis (see also below), which is a key element of the federated FAIRmat 
infrastructure, can also be operated behind industrial firewalls as a 
stand-alone server with full functionality.

Science is an international, open activity. So, clearly, all the concepts 
and plans are and will be discussed, coordinated and implemented 
together with our colleagues worldwide. In fact, the first FAIR-DI Con-
ference on a FAIR Data Infrastructure for Materials Genomics had 539 
participants from all over the world (https://th.fhi-berlin.mpg.de/
meetings/fairdi2020/).

Let us end this section by noting that individual researchers already 
profit from the data infrastructure, even though we are at an early 
stage in progressing towards the next level of research. For example, 
countless CPU hours are being saved because computational results 
are well documented and accessible and do not need to be repeated. 
Consequently, human time is saved as well and scientists can concen-
trate on new studies. Students learn faster as they can access extensive 
reference data. Error or uncertainty estimates are possible and more 
robust when using well-documented databases. Further results not 
documented in publications are available in the uploaded data. Studies 
that were designed for a specific target can now be used for a different 
topic (repurposing). After receiving a digital object identifier (DOI), 
uploaded data become citable. This also applies to analytics tools. 
Although the full potential of FAIRmat will require a larger community 
to realize and join, the spirit of findable and AI-ready research data has 
already attracted substantial attention.

FAIR data infrastructure for materials science
FAIRmat will build a federated infrastructure of many domain-specific 
data-repository solutions: as few as possible but as many as are needed. 
In NOMAD6, such individual repositories are called ‘oases’ and support 
the different users’ local, domain-specific, individual needs to acquire, 
manage and analyse their data. An oasis is a stand-alone service typi-
cally connected to a central server, called the portal, but can also be 
run independently. As such, it is being tested at present as a building 
block of FAIRmat’s federated data infrastructure.

All participating groups or institutions will manage their data using 
the FAIRmat frame, a common compute, management and storage con-
cept, with a central metadata repository. To enable 4V data processes, 
‘federated data with centralized metadata’ will be the general principle. 
Selected data may also be stored centrally, if it is functionally beneficial 
for users or increases the availability of high-value datasets (see Fig. 2).

The portal will be the gateway for users to access all materials sci-
ence data. Although popular search engines such as Google search for 
phrases in generic and mostly text-based properties (domain agnostic), 
we need to search for precise criteria in materials-science-specific 
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Fig. 1 | Challenges addressed by the FAIRmat initiative. This schematic summarizes the four main categories of challenge faced in implementing FAIRmat.



metadata with their individual scientific notations and semantics. 
Thus, FAIRmat searches are domain-aware.

We will implement a common schema for all FAIRmat metadata and 
data. However, the data properties that are available for a given type 
of data differ from method to method and from domain to domain. 
There will be subsets of common properties for each subdomain, and 
these subsets form a hierarchy. For example, experiments and syn-
thesis share a common notion of material, measurement or sample. 
This includes tagging samples with RFID (radio-frequency identifi-
cation) or QR (quick response) code labels that are linked to every 
dataset acquired from them. On top of this hierarchy, and even outside 
the materials science domain, we will always have Dublin Core-style 
(https://dublincore.org/) metadata about who, where and when.

This bottom-up harmonizing of metadata from different subdomains 
requires the development of data converters and a shared data schema. 
This will provide more flexibility when connecting many laboratories 
and new subdomains than top-down forced adoption of a new data 
format.

This hierarchy of common properties will also form the basis for 
exploring all materials science data. Similar to an online shop that allows 
customers to browse different categories of product, with varying cri-
teria depending on the type of product, the central user interface will 
allow one to browse different subdomains of materials science on the 
basis of varying availabilities of data properties. On top of this, one may 
specify general properties, such as a material’s chemical composition 
and a scientific method. Then, more criteria will be made available. 
In this way we will design a common encyclopedia that supports the 
specific needs of the various materials science subdomains but will 
also provide more general information to non-experts.

Offering convenient tools for data analysis is an overall goal of FAIR-
mat. An example is the NOMAD Artificial Intelligence Toolkit (https://
nomad-lab.eu/AIToolkit). At present, it provides several Jupyter Note-
books, some of them associated with a publication. It is recommended 
that researchers publish their AI analysis as well or modify or advance 
existing notebooks for their studies. Uploaded notebooks can obtain 
a DOI so that they are citable. As some data files will be huge, and may 
be distributed across several servers and cities, the analysis software 
will use the centralized metadata and extract the needed information 
from the (huge) data files. For the latter, we will bring the software to 
the data, avoiding the transfer of large files.

Other critical issues are long-term and 24/7 data availability 
(especially in a federated network), safety and security (especially 

when dealing with published versus unpublished data), data lifecy-
cle (for example, from raw instrument readings to fully analysed and 
published datasets), linking data between domains, annotating data 
with a common user identity (for example, through ORCID; https://
orcid.org) and more.

FAIR, reproducible synthesis
Synthesizing materials with well-defined properties in a reproducible 
fashion is of utmost importance to materials science. Unfortunately, 
this desire is not always fulfilled because it requires control of a large 
number of experimental details, and the full entirety of the relevant 
parameters is typically not known. The concept of data-centric science 
and the development of AI tools promise to model synthesis more 
reliably and to identify the relevant set of descriptive parameters and 
their mutual interdependencies, or at least their correlations. Linking 
synthesis data to data from experimental materials science and theory 
using common metadata schemas and ontologies will create a new 
level of the science of materials synthesis.

Publicly accessible databases such as Landolt-Börnstein/Springer 
Materials (https://materials.springer.com) and the Inorganic Crystal 
Structure Database (https://icsd.products.fiz-karlsruhe.de) contain 
huge numbers of entries on the properties of crystalline materials but 
they lack information on their synthesis. Recently, work on the basis 
of machine-learning and natural-language-processing techniques 
has started to codify materials synthesis conditions and parameters 
that are published in journal articles23. The auto-generated open-source 
dataset at Berkeley (https://ceder.berkeley.edu/text-mined-synthesis) 
consisted of 19,744 chemical reactions retrieved from 53,538 solid-state 
synthesis paragraphs by March 2021. However, typically, this informa-
tion is incomplete, and published information is biased towards reports 
of successful studies, omitting failed attempts.

This unsatisfactory situation is rooted in the complexity of the syn-
thesis processes, including elaborate workflows and a large diversity 
of instruments for characterization. In the realm of FAIRmat, we follow 
the relevant phase transformations that occur during synthesis from 
the melt, from the gas phase, from solid phases and from solution. 
Synthesis by assembly complements these classical approaches. The 
nature of the assembly method is very different, as collective behav-
iour gives rise to new properties, such as the formation of aggregates 
or self-assembly. Figure 3 depicts the variety of crystal growth meth-
ods. Even though Czochralski, Bridgman, metal flux growth and opti-
cal floating zone are all melt-growth techniques—that is, they belong 
to the same type of phase transition—they are distinguished by the 
contact of the melt with the crucible, by the seeding of the single 
crystal and by thermal gradients, with great influence on crystallin-
ity and impurity content. But even fine details matter. For example, 
the geometry of the reactors, fluctuations in the impurity content 
of the source material, the flow of precursors in the reactor or the 
miscut and pretreatment of substrates in epitaxial growth may have 
detrimental effects. At this point, synthesis is often based on experi-
ence and tricks, which are not readily shared with others. Obviously, 
this makes the development of metadata schemas and ontologies a 
formidable task and—with respect to the four Vs—synthesis struggles 
mainly with variety and veracity.

We started to establish metadata and ontologies following the 
above-mentioned phase transformations. To connect to the other 
experimental disciplines (for example, sample characterization) 
we aim at a common ELN scheme and laboratory information man-
agement system (LIMS) and uniquely identify the samples, as noted 
in the infrastructure section. Thereby, we link the measured physical 
and chemical properties of a specimen to the synthesis workflow. The 
ELN and LIMS data are automatically fed into a prototype repository 
that is now being developed at the Leibniz Institute for Crystal Growth 
(https://ikz-berlin.de/).
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Once a structured database on synthesis has been established, this 
will allow computer-aided development of synthesis recipes to fabri-
cate as yet unknown materials with tailored properties. Moreover, it 
will enable comparison of different synthesis methods for the same 
material in terms of generalized physical and chemical parameters, 
also linking them to theoretical predictions.

FAIR data in experimental disciplines
Experimental materials science is concerned with the characterization 
of the atomic and electronic structures of compounds, as well as with 
determining their electrical, optical, magnetic, thermal or mechanical 
properties. Typically, terabytes (sometimes petabytes) of data from one 
study result in a few plots in a publication. Only FAIR data management 
of all results, both successful and failed, makes experimental studies 
reproducible and obviates the necessity to repeat the experiments for 
a different but related project. In addition, by making all these data 
available to the community, everyone will benefit from statistically 
more reliable quantification of measurement errors and calibrations.

In experimental materials science, the variety of characterization 
methods is very diverse, and each class of methods has its own equip-
ment and workflows for generating data. The diversity in data formats 
specific to vendors, labs, instruments, communities and operators 
presents a substantial challenge with regard to integrating this informa-
tion into a FAIR infrastructure. For the initial period, we concentrate on 

five experimental techniques (see Fig. 4) with very different frontiers in 
terms of the 4V challenges, and largely disjunct and differently struc-
tured communities. These are electron microscopy and spectroscopy, 
angle-resolved photoemission spectroscopy, core-level photoemission 
spectroscopy, optical spectroscopy and atom-probe tomography. 
The amount of generated data ranges from a few kilobytes to terabytes 
per dataset, and the data rates and data structures also differ substan-
tially. With some modern detectors delivering several gigabytes of data 
per second, the volume and velocity challenge is to preprocess, com-
press and evaluate or visualize these data. This becomes a more severe 
velocity issue in time-resolved experiments, for which the duration may 
not even be fixed but being decided during the observation. Disturb-
ingly, overall, we observe a lack of efficient and reliabe recording of 
metadata in a digital form, posing a severe data-veracity challenge.

Analogously to establishing FAIR data in synthesis, a strong focus is 
the customization of inter-operating ELNs and LIMSs, their integration 
into experimental workflows and their direct connection to the data 
repository.

In each of the five selected experimental techniques, activities 
have also started to define domain-specific metadata catalogues 
and ontologies. In some labs (transmission electron microscopy and 
spectroscopy), a first, rudimentary prototype of a NOMAD Oasis has 
recently been installed, with the aim of exploring how it should be 
further developed towards the requirements of the different subdo-
mains. Integration of ELNs into the experimental workflow is at different 
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stages of development, ranging from first implementation concepts 
in atom-probe tomography to a working integration of an ELN data-
base with the data acquisition software in some transmission electron 
microscopy labs. This also includes the tagging of samples with QR 
labels and automated linking of sample IDs with links to experimental 
data and time-stamped notes generated by the data acquisition soft-
ware. Several angle-resolved photoemission spectroscopy groups are 
reorganizing their labs at present, switching from paper lab books to 
ELNs. In this context, we note that, in a joint effort of different labs, we 
were able to make vendors of complex equipment reconsider their 
previously restrictive and closed data-format policies.

FAIR theory and computations
Materials modelling, in particular, including digital twins, is enjoying 
ever-growing attention thanks to a timely combination of hardware 
and algorithmic developments24. The NOMAD Laboratory6 has already 
implemented a materials data infrastructure for quantum-mechanical 
ground-state calculations and ab initio molecular dynamics (see the 
summary in the section on ‘Data-centric materials science’). However, 
materials modelling also requires force fields and particle-based meth-
ods, to capture larger length scales and longer timescales (see Fig. 5). 
The implementation of such multiscale materials data infrastructure 
faces several outstanding challenges25,26. By considering trajectories, 
we need to account for both instantaneous and ensemble properties. 
Also, the heterogeneity of simulation setups, solvers, force fields and 
observables requires an ambitious and coherent strategy to make mul-
tiscale modelling FAIR. The development of metadata for this field has 
only just started.

Another crucial task is the response of matter to external stimuli. 
The physical objects of interest obtained from theory are excitation 

energies and lifetimes, electronic band gaps, dielectric tensors, vari-
ous excitation spectra and ionization potentials, all of which have 
experimental counterparts. The leading methodologies27 comprise 
time-dependent density functional theory, Green function techniques 
and dynamical mean-field theory, implemented in a huge number of 
different computer codes. The predicted FAIRmat infrastructure will 
foster the often incomplete documentation at present and facilitate 
benchmarking and curation of results.

Concerning the four Vs, the area of theory and computation is severely 
affected by variety (that is, the heterogeneity of the meaning of the 
produced data). This refers to the fact that there are many physical 
equations, even more algorithms and yet more approximations that 
are implemented in the numerous, very different software packages. 
Although ab initio computational materials science has largely 
assumed a common nomenclature, for example, for the several hun-
dred exchange-correlation approximations (see, for example, Libxc, 
a library of exchange-correlation and kinetic energy functionals for 
density functional theory; https://tddft.org/programs/libxc/), this is 
not yet the case for force fields, dynamical mean-field theory or calcula-
tions of fluid dynamics, and so on.

Related to the variety challenge is veracity. Note that we differen-
tiate between accuracy and precision; the latter can be checked by 
comparing results from different software that addresses the same 
equations and uses the same approximations. Although for ab initio 
computational materials science the first important steps have been 
made28, for other theoretical approaches, such efforts are still missing. 
Accuracy, in turn, refers to the equations and basic approximations 
(for example, the exchange-correlation functional used or the force 
field). Here, error bars are largely missing so far, but for interoperability 
with experimental results, such error estimates need to be developed. 
Concerning the data volume, for molecular dynamics calculations, it is 
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Fig. 4 | Illustration of five experimental material characterization 
techniques chosen to focus on initially, for the purpose of establishing 
digital FAIR data-management workflows. Optical spectroscopy, 
atom-probe tomography, angle-resolved photoelectron spectroscopy, 

electron microscopy and X-ray photoemission spectroscopy are noted 
explicitly, and the large number of other experimental methods is indicated by 
the empty ‘perspectives’.



hardly possible to store all the information—that is, the detailed time 
evolution of the positions of all the atoms (if these are several thousand 
in number, as in force field studies) or the electronic charge density 
(in ab initio studies). Here, selection and compression strategies will 
be developed.

Making the data revolution happen
Fourteen years after Jim Gray’s explication on data-intensive scien-
tific discovery29, materials science is still dominated by the first three 
research paradigms: experiment, theory and numerical simulations2. 
However, there is now wide consensus that data-centric research and 
the fourth paradigm (data mining, new ways of analysis (largely by AI) 
and visualization) will change, if not revolutionize, the sciences. We 
stress that the fourth paradigm represents a new way of thinking2. 
It complements but does not replace the previous concepts and 
approaches. Implementation of this paradigm not only creates new 
opportunities but also enhances the traditional approaches through 
efficient data exchange, better documentation and a more detailed 
understanding of what other groups are doing. This will open new 
horizons for research in the basic and engineering sciences, reaching 
out to industry and society.

So, let us summarize what we need to make the data revolution hap-
pen in materials science:
•	Hardware for data storage and handling, advanced analytics and 

high-speed networks. The availability of appropriate hardware is the 
basic prerequisite for building the described data infrastructure. We 
also need middleware, for example, for the efficient exchange of data 
that are created in or by different digital environments. In addition, 
efficient, near-real-time data analytics will also require advanced 
hardware, as well as software and hardware co-design.

•	Development and support of software tools. New tools are already 
being invented; for example, for fitting data, removing noise from 
data, learning rules that are behind patterns in data and identifying 
‘statistically exceptional’ data groups16. With such rules, one will also 
identify ‘materials genes’—physical parameters that are related to the 
processes that trigger, facilitate or hinder a certain materials property 
or function. FAIRmat will foster the international coordination of the 
development of such tools in the wider materials science community.

•	The development of ELNs and LIMSs. Such necessary changes of cur-
rent scientific procedures seem minor if one accepts that it is good 
scientific practice to document the experimental (or computational) 
conditions and the results in full detail, so that studies are reproduc-
ible. Thus, data collection (including the comprehensive charac-
terization of the experimental setup) should become as automatic 
as possible. This sounds like an outdated request, but it has not been 
executed properly so far and, for data-centric science, it is essential. 

Unfortunately, for some—maybe many—studies, an immediate reali-
zation is not fully possible and even the first approximation requires 
a ‘phase transition’. Owing to the complexity of the field, there is no 
one-size-fits-all solution.

•	Close collaboration between experts from data science, IT infra-
structure, software engineering and the materials science domain 
as equal partners. In FAIRmat, this will be realized by a centralized hub 
of specialists at the Physics Department of the Humboldt-Universität 
in Berlin.

•	Changing the publication culture and advancing digital libraries. As 
noted above, the basic scientific requirement of reproducibility of 
experimental work is often lacking. This is rooted in the complex-
ity and intricacy of materials synthesis. FAIRmat will change this 
situation. The concept of ‘clean data’—that is, data that are compre-
hensively annotated—is being developed (see ref. 30 and references 
therein). This is much more elaborate than it sounds, and publications 
that ‘just’ present and describe such data comprehensively should be 
appreciated by the community as much as a standard publication in 
a high-impact journal.
Digital libraries have been built and advanced over the past decade, 

and this work continues. Although there have been ample develop-
ments in the field of life sciences, the situation in materials science is 
less advanced. However, it is improving (for example, at https://tib.
eu/ or https://openaire.eu/) and, in this field, metadata catalogues are 
typically too unspecific to allow the identification of suitable datasets 
(for example, for AI analysis).

The German National Research Data Infrastructure project (https://
nfdi.de) promotes all of the points discussed above, with the exception 
of the necessary hardware. Although a national effort, it is obviously 
part of an international activity, and FAIRmat has established respective 
collaborations already. We will support scientists and confirm them in 
their responsible handling of research data, and we will strive to educate 
the next generation of researchers and engineers to actively engage in 
order to achieve these goals in a timely manner.

The field is changing and the research community seems mostly 
convinced about the direction of this change, but it is still mostly in the 
role of an observer. If active scientists don’t sign on, the infrastructure 
will develop without them. Then, in a few years, they will need to accept 
what is there, and it may—unfortunately—not fully serve their needs. 
The consequences of the whole endeavour may be summarized as fol-
lows: the predicted changes brought about by a FAIR data infrastructure 
will not replace scientists, but scientists who use such an infrastructure 
may replace those who don’t.
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