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Abstract
Purpose Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image
analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction
before applying these methods in clinical practice.
Methods In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the
trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to
help make deep learning models transparent.
Results NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis,
i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI
methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can
provide information flow visualization on internal layers of a segmentation CNN.
Conclusion Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be
utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine
of cancer patients. The code of NeuroXAI is publicly accessible at https://github.com/razeineldin/NeuroXAI.
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Introduction

Brain and other nervous system tumors (ONS), including the
glioblastoma (GBM), are among the leading cause of cancer
death in adults [1, 2]. Brain cancer, explicitly malignant and
benign, represents the second major source of cancer-related
deaths in young adults and children [1]. Common treat-
ment options for brain cancer include surgical intervention,
radiotherapy, and chemotherapy [3]. Nevertheless, physi-
cally localizing and resecting pathological targets by surgery
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is almost impossible, owing to the difficulty in visually distin-
guishing brain tumors from surrounding brain parenchyma
[4].

In practice, magnetic resonance imaging (MRI) can help
physicians detect brain tumors by providing soft tissue imag-
ing allowing improved tumor localization and boundary
definition [5]. By varying the weightage of image contrast,
the anatomy of the human brain, blood–brain barrier, and
brain tumor boundaries could be detected and visualized.
Multi-parametric MRI includes native T1-weighted (T1W),
post-contrast T1-weighted (T1Gd), T2-weighted (T2W), and
T2 fluid-attenuated inversion recovery (FLAIR). However,
interpreting these multi-modal images can be highly chal-
lenging for physicians to analyze and provide diagnosis,
make intraoperative decisions in a short time as wrong rem-
edy procedures could lead to patient discomfort physically
and financially [3].

Computer-aided diagnosis systems (CADs) aid in these
cases to detect brain tumors using multimodal MRI scans,
minimizing these inconveniences [6]. CADs are computer
systems that assist radiologists and physicians in the interpre-
tation, analysis, and evaluation ofMRI data comprehensively
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in a short time, e.g., brain tumor segmentation and predicting
histological grades of intracranial neoplasms [7, 8].

Recent developments in the field of artificial intelli-
gence (AI), especially deep learning (DL), have led to a
renewed interest in analyzing brain cancer, its causes, and
its various development phases [9, 10]. In medical appli-
cations, there are typically fewer data samples with higher
complexity compared with other applications. Among the
numerous segmentation techniques, convolutional neural
networks (CNN) have attracted much attention for medical
image understanding tasks like image classification or mul-
timodal tumor segmentation. For instance, U-Net variants
[11, 12],which use symmetric encoder–decoder architecture,
have performed state-of-the-art results for medical image
segmentation. Similarly, several publications have appeared
in recent years for accurate medical classification includ-
ing [8, 13–16]. Hence, employing DL technologies in CADs
could potentially expand physicians’ capabilities assisting
in perioperative evaluation of intracranial pathologies and
enhancing the efficiency of postoperative follow-up [9, 10].

Nevertheless, the introduction of DL techniques in the
clinical environment is still limited due to some restrictions
[17]. The most significant one is that DL strategies consider
only the input images and the output results, without any
transparency of the underlying information flow in the net-
work internal layers. In sensitive applications such as brain
imaging applications, it is crucial to understand the reason
behind the network prediction to ensure that the model pro-
vides the correct estimation. Accordingly, explainable AI
(XAI) has gained a substantial interest to explore the “black
box” DL networks in the medical field [17, 18]. XAI meth-
ods allow researchers, developers, and end-users to obtain
transparent DL models that can describe their decisions to
humans in an understandablemanner. Formedical end-users,
the demand for explainability is increasing to create their
trust in DL techniques and to encourage them to utilize these
systems for assisting the clinical procedures. Moreover, the
EuropeanUnion data protection law, titled General Data Pro-
tection Regulation (GDPR), imposes the explanation as a
requirement for automated learning systems before being
used with patients clinically [19].

Related work

Generally, XAI techniques in medical imaging can
be grouped into perturbation-based or gradient-based
approaches. Perturbation-based methods investigate the net-
work by changing the input features and measuring the
impact on the output estimations by a forward training of
the model. Some examples include LIME [20], SHAP [20],
deconvolution [21], and occlusion [21]. Gradient-based XAI

methods have been widely adopted to provide feature attri-
butionmaps by calculating the partial derivative of the output
predictions through every layer of the neural network with
respect to (w.r.t) the input images. These techniques have
the advantage of being post hoc, meaning that they are
applied after the training phase of the DLmodel avoiding the
accuracy vs explainability trade-off. In addition, they are usu-
ally fast compared with perturbation approaches since their
runtime does not depend on the number of input features.
A number of publications have been reported for back-
propagating approaches such as Vanilla gradient [22], guided
backpropagation [23], integrated gradients [24], guided inte-
grated gradients [25], SmoothGrad [26], Grad-CAM [27],
and guided Grad-CAM [27]. Several XAI methods have
been previously proposed for natural image tasks, while little
attention has been paid to explain brain imaging applica-
tions [18]. For brain cancer classification, Windisch et al.
[28] applied 2D Grad-CAM to generate heatmaps indicating
which areas of the input MRI made the classifier decide on
the category of the existence of a brain tumor. Similarly, 2D
Grad-CAM was used in [29] to evaluate the performance of
three DL models in brain tumor classification. The key lim-
itation of these studies is that experiments were concluded
on 2D MRI slices without investigating the model on 3D
medical applications.

Explainable learning has been applied as well for brain
glioma segmentation [30, 31]. In [30], 2D Grad-CAM was
applied to extract explanations for the deep neural net-
works for brain tumors identification. It suffers from the
same limitations associated with the previous classification
explanation methods of being 2D only. Another approach
was introduced in [31] that extends class activation map-
ping (CAM) [32] by generating 3D heatmaps to visualize
the importance of segmentation output. Despite being highly
class-discriminative, it made a trade-off between the model
complexity and the performance to make CNNs transparent.

In this paper, our main goal is to develop a newNeuroXAI
framework for obtaining 2D and 3D explainable sensitivity
maps to assist clinicians to understand and trust the perfor-
mance of DL algorithms in clinical procedures. Hence, the
contribution of this study has threefold:

1. A new explainability framework, namely NeuroXAI,
is proposed to make the current DL models for brain
imaging research interpretable without any architecture
modification or performance degradation.

2. NeuroXAI included seven state-of-the-art backpropagat-
ing XAI techniques for generating 2D and 3D visual
interpretations of CNN output.

3. A comprehensive evaluation of the proposed frame-
work demonstrated promising explanation results for two
showcases of MRI classification and segmentation of
brain tumors.
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Methods

NeuroXAI

The overall pipeline of NeuroXAI is shown in Fig. 1. It con-
sists of two main parts, which are a deep neural network to
achieve processing tasks of the brain images and an expla-
nation generator. Given brain MRI volumes as input, the
images are forward propagated through the CNN generat-
ing convolutional featuremaps and then through task-specific
computations to obtain the desired output (e.g., category pre-
diction in case of classification and/or tumor segmentation).
Afterward, the network output is presented to medical pro-
fessionals to assess the findings and request an explanation if
necessary. Finally, visual explanation maps are provided by
the explainability part to interpret the results of applied deep
neural networks. This can be achieved using state-of-the-art
XAI methods.

While the utilized explanation methods were primarily
proposed for interpreting deep image classification, our pro-
posed framework provides an adaption approach to medical
image segmentation as well. Further, NeuroXAI converts the
segmentation task into a multi-label classification task. This
is achieved through global average pooling for each class on
the output prediction layer. Therefore, our NeuroXAI offers
state-of-the-art XAI methods for classification and segmen-
tation for both 2D and 3D medical image data.

Vanilla gradient

Vanilla gradient (VG) [22] is the simplest form of visualizing
regions of the image that contributesmost to the classification
output of the neural network. This computes the saliencymap
by making a single backward pass of the activation of the
output class after a forward pass over the network, which
can be defined as computing the VG of the output activation
w.r.t the input image. Let Pc(Im) be the prediction of class
c, computed by the classification layer of the CNN for an
input image XI . The objective of Vanilla gradient is to find
the L2-regularized image, which has the maximum Pc, while
λ is the regularization term:

VG = argmaxcPc
(
X I

)
− λ‖X I ‖22 (1)

Guided backpropagation

An alternative way of calculating the gradient of a particu-
lar output w.r.t the input is by using guided backpropagation
(GBP) [23]. The GBP is a new variant of the deconvolu-
tion approach [21] for visualizing the region of interest of an

image that most activates a given class. SupposeF be the out-
put of a convolutional layer l from L layers in a multi-layer
CNN, and B denotes the resultant image from backpropaga-
tion:

Bl
i =

(
Fl
i > 0

)
.
(
Bl+1
i > 0

)
.Bl+1

i (2)

Bl+1
i = ∂FL

i

∂Fl+1
i

(3)

Integrated gradients

Sundararajan et al. [24] introduced integrated gradients (IG)
tomitigate the saturationproblemof gradient-basedmethods.
Let a function F: Rn → [0, 1] denote a deep neural network
which has XI = γ (α = 1) ∈ Rn as the input image, while
XB = γ (α = 0) ∈ Rn represents the baseline. The baseline is
simply a black image with all values set to zeros. The IG can
be computed by accumulating the gradients at all points on
the straight-line path from the baseline XB to the input image
XI :

IGi (x) =
∫ 1

α=0

∂F(γ (α))

∂γi (α)

∂γi (α)

∂α
dα (4)

Here, i is the feature for the input image, whereas α rep-
resents interpolation constant to perturb image features.

Guided integrated gradients

Kapishnikov et al. [25] proposed guided integrated gradients
(GIG) as an adaption of the attribution path based on the
input image, baseline, and the deep model to be explained.
Similar to IG, the GIG calculates the gradients on the path (c)
which starts at the baseline (XB) and ends at the input being
explained (XI ). However, the GIG path (c) is determined at
every step as opposed to the fixed direction of the IG. This
means that GIG finds a subset of features (S) that have the
least importance among all features toward the input image.
Mathematically,

GIGi

(
XB , X I , F

)
= ∂γ F

i (α)

∂α
=

{
x Ii − x Bi , i f iεS,
0, otherwise.

(5)

S = argmini (Y ) (6)

yi =
{∣∣∣ ∂F(x)

∂xi

∣∣∣, i f iε
{
j |x j �= x Ij

}

∞, otherwise.
(7)
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Fig. 1 Pipeline of the proposed NeuroXAI framework

SmoothGrad

Smilkov et al. [26] presented an improvement for the com-
mon problem of gradient-based methods. SmoothGrad [26]
solved this problem by providing visually sharpened sensi-
tivity maps. It computes the gradient over multiple samples
surrounding the input XI , and the average is calculated after
adding Gaussian noise. More formally,

Mc(X
I ) = 1

n

n∑
1

Mc(X
I + g(0, σ 2)) (8)

where Mc(X I ) is the original sensitivity map, n is the num-
ber of samples, and g(0, σ 2) denotes Gaussian noise with
variance σ 2. In general, Mc(X I ) can be any gradient-based
visualization method, such as explanation methods in the
previous sub-sections.

Grad-CAM

The authors in [27] extended the class activation map-
ping (CAM) visualization technique to a wide variety of
CNNs. The proposed gradient CAM (GCAM) produces
visual explanations without re-training or modifications in
the model architecture. The gradient of any target class c is
first computed, and the activation feature map M of a spe-
cific layer l is globally averaged over the width, height, and
depth dimensions. Then, the class-discriminative heatmap of

GCAM is obtained using a weighted combination of these
activation maps, followed by the ReLU function. Here, αc

l
denotes the neuron importance weights.

GCAMc
l = ReLU (

∑
l

αc
l M

l) (9)

αc
l = 1

N

∑
x

∑
y

∑
z

∂ yc

∂Al
x , y, z

(10)

Guided Grad-CAM

GuidedGCAM(GGCAM)was introduced to provide higher-
resolution visualizations capturing fine-grained details of
the object of interest [27]. GGCAM fuses the point-space
gradient visualization method GBP [23] and the class-
discriminative coarse heatmaps of GCAM through element-
wise multiplication. The estimated saliency map of GCAM
is first upsampled to the input XI spatial resolution using
bilinear interpolation before applying the point-wise multi-
plication with GBP.
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Table 1 List of the added top layers to the standard ResNet-50

Type Output Feature maps

Average Pooling 2D 2 × 2 512

Flatten 2048 1

Dense 256 1

Dropout 256 1

Dense 2 1

Experiments

Data

MRI data from the BraTS challenges 2019 and 2021 [33–36]
have been used in this study for accomplishing the classifi-
cation and segmentation tasks. Each subject has four MRI
sequences including preoperative multimodal MRI scans of
native T1W, Gadolinium T1Gd, T2W, and FLAIR, acquired
frommultiple different institutions.Although themain aimof
the challenge is to compare the best algorithms for segment-
ing the enhancing tumor (ET), the tumor core (TC), and the
whole tumor (WT) regions, the BraTS 2019 dataset also pro-
vides classification labels for gliomas. BraTS 2019 database
comprises 259 cases of high-grade gliomas (HGG) and 76
cases of low-grade gliomas (LGG), which were used for the
first showcase. The second showcase applies the BraTS 2021
database,which contains 1251MRI imageswith ground truth
annotations without any explicit glioma classification.

Since MRI sequences were acquired using multi-
parametric instruments in multi-location centers, input
images are needed to be standardized. A preprocessing stage
has been applied to allMRI scans, specificallymin–max scal-
ing of each MRI modality using z-score normalization, and
image cropping to a spatial resolution of 192 × 224 × 160.
During the training, data augmentation was applied random
flipping, random rotations, intensity transformation, as well
as dynamic patch augmentation cropping size of 128 × 128
× 128 to avoid overfitting problems.

Implementation

For the classification task, we employed a simple classifier
based on a pretrained ResNet [37] because of its accu-
rate classification results. Deep transfer learning was then
adopted to make the model capable of extracting features
from brain MR images. Table 1 summarizes the added top
layers to the ResNet-50 in our experiment. For the segmen-
tation task, an encoder–decoder neural network was utilized,
named 3D DeepSeg [38]. The structure of our network is
shown in Fig. 2.

Both DLmodels were implemented using the TensorFlow
library [39] version 2.4. Adam optimizer [40] was used to
update the weights of the network, with an initial learning
rate of 1e – 3 and 1e – 4 at the very beginning, and the maxi-
mum number of training epochs is set to 150 and 1000, and
batch size of 64 and 5 for the classification and segmentation
networks, respectively. Training the networkswas performed
on a single NVIDIA graphic card (RTX 2080Ti with 11 GB
RAMorRTX3060with 12GBRAM).Explainability experi-
ments were carried out after the training of the original neural
network because of using post hoc XAI methods without
network re-training or architecture modifications. The final
sensitivity maps were generated by our proposed NeuroXAI
framework with the pretrained saved weights for both DL
models.

Results

Showcase I: application to classification

Here, we introduce the application of NeuroXAI to gener-
ate visual explanations for automatic brain glioma grading
using DL. The main objective of this study is to illustrate
the explainability capabilities of our proposed NeuroXAI
framework for assisting clinicians, not to obtain the best
classification results only. However, the applied classifier
achieved a superior accuracy of 98.62%, comparing to the
state-of-the-art methods [8, 13–16] as given in Table 2.

To better understand the deepmodel’s prediction, we used
the DL model to visualize various sensitivity maps using
NeuroXAI as shown in Fig. 3. These 3D feature visualiza-
tions were generated from our model once the training is
complete. Explanation maps by methods in (b-f) highlight
all contributing features. In contrast, CAM heatmaps (g and
h) highlight which regions of the input image are important
for discriminating targeted classes.

Moreover, the visualization maps by pixel-space XAI
methods, such as GBP, IG, and GIG, underlined fine-
grained details in the input MRI image, but not being
class-distinctive. In contrast, localization approaches like
GCAM, are highly class-distinctive providing a smooth acti-
vation map. Notably, combining GBP with GCAM yielded
better-localized visualizations with high resolution. Smooth-
Grad provided the best overall feature maps highlighting the
main discriminative parts of the input FLAIR image so as
to make the glioma grading. In contrast, VG provided noisy
visualization maps compared with other methods due to the
gradient saturation as reported in [41], making it less reliable
for this application.
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Fig. 2 Overview of the architecture details of 3D CNN for glioma segmentation [38]

Table 2 Comparison of our
proposed classifier and other
deep models in previous studies

Model/ Year Preprocessing Method Accuracy

Ge et al. 2018 [8] Class balancing and tumor masks 2D CNN 90.87%

Ge et al. 2020 [13] Tumor mask enhancement GAN* 88.82%

Mzoughi et al. 2020 [14] Intensity normalization, contrast
enhancement, and cubic B-spline
resizing

3D CNN 96.49%

Ahuja et al. 2020 [15] Data normalization VGG 99.30%

Dixit and Nanda 2021 [16] Grayscale conversion and tumor
segmentation

IWOA-RBNN** 96%

Our classifier Z-score normalization, image
cropping, and transfer learning

ResNet-50 98.62%

*GAN Generative adversarial network
**IWOA-RBNN Improved whale optimization algorithm for radial basis neural network

Showcase II: application to segmentation

In this subsection, a feasible application of NeuroXAI is pro-
vided to interpret deep brain glioma sub-region segmentation
using multimodal MRIs. Table 3 presents the comparison
of the proposed segmentation model with the existing tech-
niques on the BraTS validation dataset. Remarkably, our DL
model has achieved the best dice score coefficient (DSC) of
84.10, 87.33, and 92 for the enhancing tumor, tumor core,
and whole tumor regions, respectively.

Figure 4 shows the qualitative results from different XAI
methods for explaining our glioma segmentation network. It
can be seen that the employed visualization methods gener-
ally clustered their attributions around the segmented brain

tumor. In particular,GCAM,GGCAM,andSmoothGradpro-
vided the least noisy visualizationmapswith the advantage of
GCAM of being class discriminative. GBP generated high-
resolution saliency maps in which the edges of the tumor
sub-regions are highlighted instead of the tumor itself.

Besides, we analyzed each layer output toward the trans-
parency of the black-box segmentation model. This experi-
ment, explicitly network inspection, aims to clarify the flow
of internal information in the neural network andwhether this
is in line with human-level concepts. For network inspection,
GCAMwas utilized since it allows visualizing activations in
any layer of the deep network with respect to the network’s
final output for a particular decision of interest. Figure 5 pro-
vides these explanation maps following the layers from the
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Fig. 3 Comparing different XAI visualizationmethods for brain glioma
classification. Sensitivity maps are presented for HGG cases in the first
four rows, while for LGG cases in the last three rows. Left to right: orig-
inal MRI image, Vanilla gradient, guided backpropagation, integrated

gradients, guided integrated gradients, SmoothGrad, Grad-CAM, and
guided Grad-CAM visualizations. Note that in (b, c, d, e, f), all con-
tributing features are highlighted in white, while in (g, h), red regions
correspond to a high score for the predicted class

input MRI scans to the predicted segmentation map. These
layer-wise importance maps show that the deep network fol-
lows a hierarchical nature similar to the human brain. For
instance, layer 17 shows a neuron learning the initial brain
boundaries, while the fine-grained brain localization was
achieved later in layer 21. Similarly, the tumor was initially
detected in layer 8, but the final precise segmentation was
provided by the output layer.

Moreover, this deep neural network can learn some
explicit concepts, which the CNN was not originally trained
on, as well as implicit concepts from the underlying dataset.
For instance, layer 22 in Fig. 5g seems to be learning the

whole tumor region, as an explicit concept from the ground
truth labeling data. Another example is shown in Fig. 5c for
layer 3 learning the gray and white matter as an implicit con-
cept which is not included in the training annotations.

Discussion

DL has achieved the state-of-the-art in a wide range of med-
ical tasks including medical image processing and analysis.
By employing these AI advances in CADs, medical experts
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Table 3 Comparison of our segmentation model and existing methods on the validation set

Model Preprocessing Method DSC

ET* TC* WT*

DeepSeg (2D) [7] FLAIR MRI, bias correction, data normalization, and transfer learning 2D U-Net – – 84.10

DeepSeg (3D) [38] Z-score normalization and image cropping 3D U-Net 82.50 84.73 90.05

Ilhan et al. 2022
[42]

FLAIR MRI, tumor localization, and histogram equalization U-net – – 0.88

nnU-Net [43] Image cropping, data normalization, image resampling U-Net 79.45 85.24 91.19

CASPIANET + +
[44]

Z-score normalization Attention
U-Net

81.08 87.60 91.20

Our model Z-score normalization, image cropping, on-the-fly data augmentation ResNet-50 84.10 87.33 92

*ET, TC, and WT Enhancing tumor, tumor core, and whole tumor regions

Fig. 4 Comparing different XAI visualizationmethods for brain glioma
segmentation. Left to right: original MRI image, Vanilla gradient,
guided backpropagation, integrated gradients, guided integrated gra-
dients, SmoothGrad, Grad-CAM, guided Grad-CAM, and the manual

truth annotations. Note that in (b, c, d, e, f), all contributing features are
highlighted in white, while in (g, h), red regions correspond to a high
score for the tumor region

such as radiologists and surgeons become capable of detect-
ing and diagnosing brain gliomas with great accuracy and
shorter intervals.Adeepneural network consists of numerous
input, hidden, and output layers containing a large number
of parameters (within millions). In applications increasingly
vital to human healthcare, applying these models has been
limited due to the lack of explainability.

NeuroXAI implements seven different gradient-based
explanation methods, namely VG, GBP, IG, GIG, Smooth-
Grad, GCAM, and GGCAM, helping to make deep neural
networks transparent. Each XAI method is unique and can
be helpful in a different scenario with its inherent advantages
and limitations. For example, VG is simple with the advan-
tage of being supported by conventional machine learning
frameworks such as TensorFlow [39] and PyTorch [45]. This

makes VG applicable to any deep neural network without
architectural modifications. On the other hand, the saliency
maps generated by VG are noisy as well as they suffer from
declining influences of features due to gradient saturation
as reported in previous work [41]. GBP is efficient in terms
of implementation; however, it is limited to CNN models
with ReLU activations and does not provide class-distinctive
visualization maps.

Recently, IG has become popular thanks to the ease of
implementation, no requirement for instrumentation of the
network, and fixed number of calls to the gradient. GIG is
an enhancement to eliminate the false perturbations problem
of IG, but a choice has to be made at every step at the path
frombaseline to input, and thus the direction of the path is not
fixed.AlthoughSmoothGrad canhelp improvevisualizations
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Fig. 5 Visualization of the information flow in the segmentation CNN internal layers. The input MRI sequences are shown in (a). b–d show implicit
concepts for which no ground truth labels are available in addition to explicit concepts e–g with trained labels. L stands for convolutional layer

of the overall true signal with the major drawback of being
non-class discriminative, conversely, GCAM allows inter-
preting any convolutional layer of the CNN by highlighting
the discriminative region and thus can help in understanding
the internal functionality. To eliminate the lower-resolution
heatmaps problem of GCAM, GGCAMwas implemented as
the combination of GBP and GCAM advantages.

These explanation methods and their application to two
common applications for brain imaging analysis tasks,
namely brain glioma grading and glioma localization, have
been examined in detail. For both applications, high-
resolutiongradient-based saliencymaps, includingVG,GBP,
IG, GIG, and SmoothGrad, highlight all contributing fea-
tures, regardless of the selected class, as shown in Figs. 3
and 4. On the other hand, GCAM and GGCAM localize the
most important regions for the network decision. This is con-
sistent with findings in [27] showing that humans can better
understand regions instead of pixels. Besides, network dis-
section, shown in Fig. 5, demonstrates that CNN follows a
systematic approach for detecting the brain gliomas coher-
ent with experts’ knowledge. First, the network learns the
abstract features, such as the brain boundaries in Fig. 5a, and
afterward identifies finely detailed tumor boundaries shown
in Fig. 5c.

Conclusions and outlook

This study presented a new explainability framework, named
NeuroXAI, for assisting the interpretation of the behavior
of DL networks using state-of-the-art visualization attention
maps. NeuroXAI is post hoc and can therefore be applied
to any deep neural models gaining insight into the behavior
of these already trained models. Additionally, our two show-
cases have demonstrated the significance of incorporating
XAI methods in medical image analysis tasks. NeuroXAI
can also support the analysis of CNNs by providing an indi-
vidual activation map for every internal filter. Moreover, our
NeuroXAI results showed the importance ofXAI formedical
imaging tasks to understand DL models to accelerate their
clinical acceptance by medical staff in the field.

Future work will be focused on the quantitative evaluation
of XAI methods to assess the quality of the generated sensi-
tivity maps and study their relationship with the DL accuracy
metrics with additional experiments on multi-modal MRI-
guided neurosurgery. Another main prospect of this research
work is to investigate the possibility of extracting quantitative
features from the explanation methods such as tumor volume
and centroid.
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