KIT | KIT-Bibliothek | Impressum | Datenschutz

Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

Chaouqui, F.; Gander, M. J.; Kumbhar, P. M. 1; Vanzan, T.
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000146072
Veröffentlicht am 12.05.2022
Originalveröffentlichung
DOI: 10.1007/s11075-022-01255-5
Scopus
Zitationen: 6
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1017-1398, 1572-9265
KITopen-ID: 1000146072
Erschienen in Numerical Algorithms
Verlag Springer
Band 91
Heft 1
Seiten 81–107
Vorab online veröffentlicht am 22.04.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page