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Abstract—A continuous-wave (CW) high-harmonic 

gyrotron driven by a low-power electron beam is a 
compact radiation source demanded by terahertz 
applications. Its physical feasibility, however, is hampered 
by ohmic losses and mode competition in the gyrotron 
cavity. An ultra-low-loss diamond loading of the cavity can 
give a clue to this problem. This article is concerned with 
theoretical aspects of mode selection and design for a 
gyrotron cavity loaded with coaxial rod made of chemical 
vapor deposition (CVD) diamond. As an example, the 
design of a high-Q diamond-loaded cavity for a third-
harmonic 658-GHz gyrotron powered by a 0.1 A, 15 kV 
electron beam is presented. It is shown that the designed 
cavity enables the gyrotron to produce up to 116 W output 
power in a single oscillating mode. 
 

Index Terms— Gyrotrons, cyclotron harmonics, metal 
cavity, CVD diamond, ohmic losses, starting current 

I. INTRODUCTION 

ROWING interest in dynamic nuclear polarization (DNP) 
enhanced nuclear magnetic resonance (NMR) 

spectroscopy generates the need for high-power and compact 
CW radiation sources operated in the sub-terahertz to terahertz 
frequency band [1]. In this frequency range, the most powerful 
oscillator is the gyrotron capable of producing from watts to 
kilowatts of output power. There are two design 
specifications, which are intended to make the gyrotron 
compact. The first specification is a high harmonic number s  
of the operating TE cavity mode, for which the required 
strength of the external magnetic field 0B  can be lowered by a 

factor of s . This makes it possible to reduce the size of the 
gyrotron magnetic system. The second specification is low 
power of the applied electron beam. It offers a means of 
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reducing the size of an electron gun, power supply, collector, 
cooling and vacuum-pumping systems. In practice, the two 
specifications mentioned above are in conflict [2]. 

The reason is that the way to lower the electron beam power 

b b bP I V  is to reduce either or both the beam voltage bV  and 

current bI . At the same time, because of diffractive and ohmic 

losses in the gyrotron cavity, the operating beam current bI  

has a lower limit stI , which is known as an oscillation 

threshold (or starting current) and which is governed by the 
following law [2], [3]: 
 

 
2

s
st

ms tot

I
L C Q


 , (1) 

 
where 3 2

0 0 0
s

s z     [2], 0 0 0z v c    , 0 0z zv c  , 

c  is the speed of light in vacuum, 0 ,  , 0v , and 0zv  are the 

initial relativistic factor, pitch factor, transverse and axial 
velocities of beam electrons, respectively, L  is the cavity 
interaction length, msC  is the coefficient of beam coupling 

with the s th harmonic TEm,p mode, 

 tot dif ohm dif ohmQ Q Q Q Q  , difQ , and ohmQ  are the total, 

diffractive, and ohmic quality factors of the TEm,p mode, 
respectively. In a conventional-cavity gyrotron, TEm,p mode is 
the eigenmode of an open-ended hollow cylindrical resonator 
with metal wall. 

For fundamental ( 1s  ) modes excited by a weakly-
relativistic electron beam, the relativistic parameter 

2
1 0 0z     is much smaller than unity and vanishes, 

together with the oscillation threshold (1), as the beam voltage 

bV  approaches zero. That is why these modes have favorable 

oscillation conditions in a low- bP  regime, provided that there 

is no drastic degradation of the electron beam pitch factor   
with decreasing bV . This was demonstrated in a number of 

experimental studies [4]-[6].  
In contrast, for high-harmonic ( 2s  ) modes, the 

relativistic parameter s  is large and tends to infinity as 

0bV  . For 15bV   kV and 1.2  , as an example, 

1 0.11  , 2
2 1(5.5)   , 4

3 1(5.5)   . In this case, the 

starting current of the TEm,p mode excited at the second or 
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third cyclotron harmonic is more than 30 or 900 times as high 
as that of fundamental TEm,p mode, provided that msC  is kept 

fixed.  
According to (1), the most efficient way to reduce the 

starting currents of high-harmonic modes is to increase the 
interaction length L  of the gyrotron cavity. The increase of L  
is accompanied by reduced diffractive losses of the cavity. On 
the one hand, this effect is beneficial, since it enhances the 
total quality factor totQ  and thus initiates further decrease of 

the oscillation threshold (1). However, on the other hand, it 

lowers the gyrotron efficiency by a factor of  1 dif ohmQ Q . 

In a conventional gyrotron cavity, difQ  scales as cube of L  

[7], while ohmQ  has an upper limit equal to the ratio of the 

wall radius R  to the skin depth s  [8]. This gives an insight 

into why cavity ohmic losses often constitute more than 80% 
of the power of DNP gyrotrons operated at the second ( 2s  ) 
cyclotron harmonic [9]-[12]. Since the ohmic losses also 
reduce the beam-wave interaction efficiency [13], the net 
(output) efficiency of low- bP  second-harmonic gyrotrons can 

be as low as 1% [10], [11], [14]-[16]. In view of these facts, a 
compact third-harmonic ( 3s  ) gyrotron driven by a low-
power electron beam seems hardly feasible, even in theory. 
This is in contrast to high-harmonic gyro-devices with 
electron beam power equal to hundreds of kilowatts [17]-[22]. 

Moreover, as discussed above, low-harmonic competing 
modes naturally have much lower oscillation thresholds than 
that of the operating mode of a low-voltage high-harmonic 
gyrotron. In such situation, mode competition is a problem of 
great concern and much care must be taken in mode selection 
[23]-[27], especially when 3s   [28]-[31]. This makes the 
design of a third-harmonic gyrotron driven by a low-power 
electron beam even more challenging. 

An alternative way to reduce the oscillation threshold of a 
high-harmonic gyrotron is to load the gyrotron cavity with a 
coaxial rod made of ultra-low-loss diamond [32]. Such a 
diamond-loaded cavity is capable of supporting TE modes 
with high ohmic Q-values. Because of this, the total quality 
factor totQ  and the ratio of diffractive-to-ohmic losses of the 

diamond-loaded cavity can far exceed those of a conventional 
cavity having the same difQ . As a consequence, increase of 

the length L  of the diamond-loaded cavity provides a means 
for marked decrease of the oscillation threshold (1) without 
drastic degradation of gyrotron efficiency. In addition, the 
beam-wave coupling coefficients msC  of high-Q modes can be 

larger than those of TE modes supported by a conventional 
gyrotron cavity [32]. Taken together, the above-listed 
advantages of high-Q diamond-loaded cavities can make them 
particularly suitable for use in low- bP  high-harmonic 

gyrotrons demanded by DNP-NMR spectroscopy.  
However, there are a number of fundamental problems and 

technical challenges that still remain to be addressed before 
the diamond-loaded cavities could be put to practical use. 
Among emerging technical challenges are high-precision 
manufacturing, robust holding and strict alignment of the 
diamond rod, heat removal from the diamond rod, and 
prevention of charging of the diamond rod. At the moment, it 

is an open question whether or not the currently available 
technologies are capable of meeting these challenges. This 
question goes beyond the scope of our present theoretical 
study. 

The crucial fundamental problem is the mode competition, 
which was not considered in [32]. This problem alone can 
negate all potential advantages provided by diamond-loaded 
cavities for low-voltage high-harmonic gyrotrons. Compared 
to conventional cavities, these cavities have a much richer 
spectrum of normal modes. Therefore, a new strategy is 
required to select the appropriate operating mode of a high-
harmonic gyrotron equipped with diamond-loaded cavity. This 
article presents such a strategy, using a third-harmonic 658-
GHz gyrotron powered by a 1.5 kW electron beam as an 
example. 

II. MODE CLASSIFICATION 

First, we give an overview of basic properties of normal 
modes of a metal gyrotron cavity loaded with a coaxial 
dielectric rod [32], [33]. The metal cavity has the wall radius 
R  and conductivity  . The radius and relative complex 
permittivity of the dielectric rod are iR  and 

 1 tanr i    , respectively. In the general case, the 

normal modes of the dielectric-loaded cavity are hybrid modes 
[34], [35]. The exceptions are cutoff TE and TM modes.  

TE modes excited near cutoff frequencies are of prime 
interest for gyrotrons. In the transverse cross-section of the 
gyrotron cavity with coaxial dielectric rod, these modes have 
the following field structure [33]:  

 
    2 expzH k k r i t im       (2) 

    expE ikk k r i t im         

 
where k  is the transverse wavenumber and  k r  is the 

membrane function. In the vacuum region ( iR r R  ), 

k k c    and      m mk r J k r AN k r     , where 

 mJ   and  mN   are the m -th order Bessel and Neumann 

functions, respectively. In the dielectric region, k k   and 

   mk r BJ k r   . 

The unknown constants A  and B  are related by the 
impedance-like boundary conditions at the surfaces r R  and 

ir R  [33], [35]. From these conditions, one obtains 
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where x kR , iy kR , (1 ) 2s sZ i k   is the normalized 

surface impedance of the cavity wall, and  02s    is 

the skin-depth. 



The dispersion relation   0D    can be found by equating 

(3) and (4). This yields 
 

         0v dD D x D y      (5) 

 
where      v dx y     . Solutions of the dispersion 

relation (5) are the complex cutoff frequencies 

  2 1 2c ohmf i Q    of TE modes of a metal cylindrical 

cavity loaded with a coaxial dielectric rod. Fig. 1 shows these 
solutions for low-order TE11,p modes ( 1,2,3...p  ).  

We will try to classify these solutions. In the extreme case 

  0   , the dispersion relation (5) reduces to equations 

  0vD x   and   0dD y  , which have independent solutions 

,m nx x  and ,m ny y  ( 1, 2,3...n  ) and describe two 

uncoupled types of TE modes. These idealized modes will be 
called the vacuum (V) and dielectric (D) modes. The cutoff 
frequencies of Vm,n modes are found from the equations 

,m nx x  and depend only on the radius and conductivity of the 

cylindrical metal cavity (Fig. 1a). In contrast, the Dm,n modes 
satisfy the equations ,m ny y  and are determined only by the 

radius and permittivity of the dielectric rod (Fig. 1b). 
Obviously, ohmic losses of V and D modes are independent of 
the material properties of dielectric rod and cavity wall, 
respectively. 

In actual fact, the coupling of V and D modes is nonzero 
and depends on the function    . It is weak, provided that 

the condition v dD D   holds true. Under this condition, 

the normal TE modes of a cylindrical metal cavity loaded with 
a coaxial dielectric rod can be classified as vacuum-like (VL) 
and dielectric-like (DL) modes. The eigenvalues of VL and 
DL TEm,p modes are close to ,m nx x  and ,m ny y  ( n p ), 

respectively. Strong coupling of these modes is observed in 
the vicinities of simultaneous solutions of equations 

  0vD x   and   0dD y  . In these frequency regions, the 

cutoff frequencies of VL and DL modes undergo the anti-
crossing phenomenon (Fig. 1).  

As can be seen from Fig. 1, a cylindrical metal cavity 
loaded with a coaxial dielectric rod can only support a few DL 
modes, which have the eigenvalues close to the first few 
solutions ,m ny y  of the equation   0dD y  . These modes 

have high ohmic Q-values in a gyrotron cavity loaded with an 
ultra-low-loss dielectric rod. In Fig. 1, the material parameters 
of such a rod correspond to the chemical vapor deposition 
(CVD) diamond with 5.7r   and 5tan 10   [36]-[38]. 

Vacuum-like and dielectric-like TEm,p modes differ in 
coupling with a helical electron beam in the dielectric-loaded 
cavity. In this cavity, the coefficient of beam-wave coupling 
has the following form [33], [39]:  
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where br  is the beam radius, 
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mpP rdr k m r
        is the normalized power 

flow through the transverse cross-section of the dielectric-
loaded cavity. 

Fig. 2 shows the beam-wave coupling coefficients for the 
co-rotating ( 11m  ) VL mode and for the counter-rotating 
( 11m   ) DL mode, which are symbolized by V and D in 
Fig. 1, respectively. In essence, the fundamental difference of 
these coefficients is attributed to the field amplitude A  (see 
(3) and (4)), which satisfies the conditions 1A   and 

1A   for the VL and DL modes, respectively. As a 

consequence, compared to the VL modes, the DL modes have 
larger denominators mpP  in (6) and thus weaker coupling with 

the electron beam in the greater part of the interaction region 
(Fig. 2). Despite this fact, the coefficients msС  for DL modes 

can exceed those for VL modes, if the beam radius br  is 

positioned relatively close to the radius iR  of the dielectric 

loading. This requires the DL modes to be counter-rotating 
( 0m  ) modes. The reason is that the square of the Neumann 

function  m s bN k r   in the numerator of (6) grows rapidly 

with decreasing argument and increasing absolute value 
m s  of the order. That is why the peak beam-wave coupling 

 
 
Fig. 1.  Cutoff frequencies and ohmic Q-values of normal TE11,p

modes of the cylindrical metal cavity loaded with a coaxial diamond 
rod versus the radius ratio Ri / R for (a) R = 1.715 mm and (b) 
Ri = 0.581 mm ( = 2.9107 S/m, r = 5.7, tan = 10-5) 
 



coefficient of the counter-rotating DL mode D is attained for 

b ir R  and far exceeds that of the VL mode V (Fig. 2). 

Moreover, it grows rapidly with increasing number s  of 
cyclotron harmonic. Note that this peak cannot be reached 
because of the finite beam thickness. The beam guiding-center 
radius br  must be larger than i LR r , even if an idealized 

beam with electron Larmor radius Lr  is considered. In the 

following, we will use 2i LR r  as the lower theoretical limit 

of br . 

III. MODE SELECTION AND CAVITY DESIGN 

The ultimate objective is to design a diamond-loaded cavity 
for a third-harmonic gyrotron operated in a high-Q DL mode. 
As discussed above, for strong coupling of such a mode with 
the electron beam, the beam radius br  must be positioned 

sufficiently close to the radius iR  of the diamond rod. It is 

reasonable to expect that, under this requirement, the most 
dangerous competitors in a third-harmonic gyrotron will be 
the first- and second-harmonic DL modes. Therefore, first and 
foremost, it is essential to select the operating DL mode, 
which is well separated from such competitors.  

Fig. 3a shows cutoff frequencies    ,Re 2c m n if c y R  

of the first-, second- and third-harmonic Dm,n modes for 
0.581iR   mm. Among them are several promising 

candidates for the operating mode of a third-harmonic 
gyrotron. However, when deciding on the choice of the 
operating mode, it is important to keep in mind two facts. On 
the one hand, the lower is n m  for a DL mode with the 

eigenvalue ,m ny y , the higher is the ohmic Q-value (Fig. 1). 

On the other hand, the high-Q DL modes with ultra-low ratios 
n m  feature weak coupling (   0   ) with VL modes (see 

the lowest-order DL mode in Fig. 1). Such modes are nearly 
insensitive to the radius R  of the cavity wall. Thus, wall 
profiling cannot be applied to optimize their field structure 
inside the diamond-loaded cavity. This property makes the DL 

modes with ultra-low ratios n m  unattractive as operating 

modes. Using the above line of reasoning, we adopt the DL 
mode with the eigenvalue 11,2y y  ( 11m  , 2n  ) as a good 

candidate for the operating third-harmonic mode. Here we do 
not distinguish between co- and counter-rotating modes, 
which are degenerate in a cold cavity. 

With rare exception, the chosen candidate mode depends 
only slightly on the radius R  of the cavity wall (see Fig. 1b). 
Therefore, the cavity radius can be adjusted to provide the 
maximal frequency separation of the operating DL mode from 
competing VL modes. In such procedure, the emphasis should 
be placed on low-harmonic backward-wave competitors, 
which usually present the main obstacle to operation of high-
harmonic gyrotrons [23], [26], [27], [31], [33], [40]. By this 
means one obtains the radius 1.715R   mm of the main 
section of the designed cavity. For this cavity section loaded 
with a uniform diamond rod of radius 0.581iR   mm, the 

cutoff frequencies of the operating and competing TEm,p 
modes are shown in Fig. 3b. The operating mode is the TE11,5 
mode ( 11m  , 5p  ), which corresponds to the fifth 

solution of the dispersion relation (5) and is symbolized by D 
in Fig. 1. The cutoff frequency and ohmic Q-value of this 
mode are 658 GHz and 95600, respectively. 

In the case v dD D  , the operating DL mode features 

strong coupling with VL modes. This provides a means for 

 
Fig. 2.  Normalized coefficients Cms of beam coupling with co-rotating 
(m = 11) mode V and counter-rotating (m = -11) mode D of the 
diamond-loaded cavity. Here the Larmor radius rL of beam electrons is 
shown for B0 = 8.05 T, Vb = 15 kV, and  = 1.2. 

 
 
Fig. 3.  (a) Cutoff frequencies of the sth harmonic modes for r = 5.7, 
Ri = 0.581 mm, R = 1.715 mm: (a) idealized Dm,n modes of the insert 
and (b) TEm,p modes of the diamond-loaded cavity. 



proper profiling of the metal cavity loaded with a uniform 
diamond rod. Such wall profiling serves to offer minimal 
leakage of the operating mode from the cavity input, small 
conversion of the operating mode to spurious modes and high-
purity transformation of the operating DL mode to the 
outgoing VL TE11,4 mode ( 11m  , 4p  ), which is 

symbolized by O in Fig. 1b. Fig. 4a shows the design of the 
profiled diamond-loaded cavity, which is jointed to a hollow 
output waveguide.  

The coupled-mode approach of [32], [41] was used to 
calculate the amplitudes of the operating near-cutoff mode and 
spurious radial modes. For the length 19L   mm of the main 
cavity section, these amplitudes are shown in Fig. 4b. It should 
be stressed that the spurious far-from-cutoff modes are hybrid 
modes inside the diamond-loaded cavity, but are converted to 
vacuum TE and TM modes in the hollow output waveguide. 
As Fig. 4b suggests, the outgoing mode of the output 
waveguide is nearly a pure vacuum TE11,4 mode. This V mode 
can be extracted from a gyrotron using a standard quasi-
optical output coupler.  

Because of small mode conversion inside the diamond-
loaded cavity, the operating TE11,5 mode can be well 
approximated by a single mode with varying cutoff frequency 

  cf R z  (see Fig. 1b). Results of such single-mode 

approximation (SMA), which is often called Vlasov approach 
[42], are depicted in Fig. 4b for comparison purpose. This 
suggests that the performance of a third-harmonic gyrotron 
with diamond-loaded cavity can be calculated by single-mode 
self-consistent equations known as gyrotron equations [13], 
[43]. 

IV. GYROTRON PERFORMANCE 

As a designed gyrotron we consider a third-harmonic 658-
GHz gyrotron. The tube is equipped with a copper cavity 
loaded with a CVD diamond rod (Fig. 4a) and operates in the 
dielectric-like TE11,5 mode. The cavity wall is assumed to have 
the DC conductivity 72.9 10    S/m, which is equal to half 
of that of ideal OFHC copper. The parameters of the electron 
beam are as follows: beam current 0.1bI   A, beam voltage 

15bV   kV, pitch factor 1.2  . In simulations, the velocity 

spread v   of the beam electrons is assumed to be zero, 

unless otherwise stated. In the following, we will use the 
notation TEm,p mode for one of the TE+m,p and TEm,p  
modes, which has the largest beam-wave coupling coefficient 
(6). 

First, the beam radius is set to 2b i Lr R r   with Lr  equal to 

0.04 mm. For such beam radius, the cavity length L  can be 
optimized to ensure the highest possible output efficiency. 
This gives the optimal cavity length 19L   mm, mentioned in 
Section III. This length is not optimal with respect to 
interaction efficiency because of ohmic losses in the cavity 
[2], [13]. For 19L   mm, the cold diffractive dQ , ohmic 

ohmQ , and total totQ  quality factors of the operating mode are 

equal to 83000, 94400 and 44400, respectively. 
Fig. 5a shows the starting currents of the operating and 

competing modes of the third-harmonic 658-GHz gyrotron 
equipped with the designed diamond-loaded cavity. It can be 
seen that the most dangerous competing modes are the first-
harmonic TE3,2 mode and second-harmonic TE8,3 mode, which 
originate from the idealized D3,1 and D8,1 modes (see Fig. 3a), 
respectively. For the design parameters in hand, however, 
these competitors have sufficiently high starting currents and 
therefore pose no threat to the operating TE11,5 mode, which is 
the only oscillating mode in the range of magnetic fields from 
8.03 to 8.08 T. In this range, the peak output power of the 
third-harmonic 658-GHz gyrotron is 116 W for a beam 
velocity spread 5v    % (Fig. 6a). This peak power 

corresponds to a gyrotron efficiency of 7.7 %. By comparison, 
in [2], an efficiency of 1.6% was theoretically predicted for a 
conventional-cavity third-harmonic 0.4-THz gyrotron driven 
by an electron beam having the same voltage 15bV   kV and 

pitch factor 1.2  , but much higher beam current 3bI   A.  

 
 
Fig. 4.  (a) Structure of the diamond-loaded cavity and (b) amplitudes 
of the normal cavity modes for L = 19 mm, where the same mode 
nomenclature is used as that for normal TE and TM modes of the 
output waveguide. 



In view of finite beam thickness, which is typically smaller 
than a quarter of the operating wavelength [44], it is desirable 
to keep the beam radius br  as far away from the diamond rod 

as possible. Therefore we next increase br  from 2b i Lr R r   

to 3b i Lr R r  . This involves a decrease of the beam-wave 

coupling coefficient msС  for the operating DL mode (Fig. 2). 

To compensate for the decrease of msС , the optimal cavity 

length L  was increased to 25 mm. For this length, the cold 
diffractive dQ , ohmic ohmQ , and total totQ quality factors of 

the diamond-loaded cavity are 176000, 95000 and 61700, 
respectively 

For the modified design parameters of the third-harmonic 
658-GHz gyrotron, the starting currents of the operating and 
competing modes are shown in Fig. 5b. It can be seen that, in 
general, increase of the beam radius has an unfavorable effect 
on the excitation of the operating TE11,5 mode. The reason is 
that, the operating DL mode features a beam-wave coupling 
coefficient (Fig. 2), which tends to decrease more rapidly with 
increasing beam radius than those of competing modes. As a 
result, increase of the beam radius enlarges the number of 
probable competing modes supported by the diamond-loaded 
cavity. Among them the most dangerous is the first-harmonic 
TE3,2 mode, which has now a starting current of about 0.07 A 
and therefore may hinder the operation of the third-harmonic 
658-GHz gyrotron. Unlike the operating TE11,5 mode, this 
mode is a backward-wave mode with high axial index. 

Therefore, in actual conditions, it is subject to strong 
suppression by an electron beam with nonzero velocity spread 
[31]. This is evident from Fig. 6b. It is seen that the competing 
TE3,2 mode is well suppressed by the electron beam, even for a 
low velocity spread 3v    %. Such situation is favorable for 

the near-cutoff operating TE11,5 mode, which is only slightly 
affected by low v  . As a result, for 5v    %, this mode is 

free from any competing modes (Fig. 6b) and can attain 55 W 
of the peak output power with an efficiency of 3.7 % (Fig. 6a).  

V. CONCLUSIONS 

It has been shown that near-cutoff TE modes of a metal 
gyrotron cavity loaded with a coaxial dielectric rod can be 
classified as coupled vacuum-like (VL) and dielectric-like 
(DL) modes. The VL modes have much in common with 
vacuum (V) TE modes of a hollow metal cavity. Unlike the 
VL modes, the DL modes are generally little sensitive to 
radius and material of the cavity wall, since their fields are 
mostly concentrated inside the dielectric rod. For this reason, 
the DL modes feature high ohmic Q-values in a metal cavity 
with dielectric rod made of ultra-low-loss material, such as 
CVD diamond. The beam-wave coupling coefficients of these 
modes exceed those of the VL modes, provided that the beam 
is positioned relatively close to the dielectric rod. More 

 
 
Fig. 5.  Starting currents of the operating TE11,5 mode and competing
TEm,p modes of the third-harmonic 658-GHz gyrotron equipped with 
diamond-loaded cavity for (a) rb = Ri + 2rL, L = 19 mm and (b) 
rb = Ri + 3rL, L = 25 mm. The velocity spread is assumed to be zero. 

 
 
Fig. 6. (a) Output power of the third-harmonic 658-GHz gyrotron 
driven by a 0.1 A, 15 kV electron beam for two designs of the 
diamond-loaded cavity (v = 5 %) and (b) starting currents of the 
operating and competing modes versus the velocity spread v of 
beam electrons for B0 = 8.055 T, rb = Ri + 3rL, L = 25 mm. 



important, the beam coupling coefficients of DL modes 
increase with the number of cyclotron harmonic. An 
appropriate candidate for the operating mode of a third-
harmonic 658-GHz gyrotron has been selected among the 
high-Q DL modes of a diamond-loaded cavity. For this mode, 
the cavity design has been optimized to rarefy the spectrum of 
competing modes and to provide high-purity transformation of 
the operating DL mode to an outgoing V mode of the hollow 
output waveguide. The cavity length has been adjusted to 
maximize the output power of the third-harmonic 658-GHz 
gyrotron powered by 0.1 A, 15 kV electron beam. It has been 
shown that this gyrotron is free from competing modes and 
capable of producing up to 116 W output power with an 
efficiency of 7.7 % for 5 % velocity spread of the beam 
electrons. The obtained efficiency is above the highest 
efficiency 2.8% achieved by existing second-harmonic DNP 
gyrotrons at 526f   GHz, with 0.6bI   A and 15bV   kV 

[12]. Such a benefit of a diamond-loaded cavity could 
compensate for complexity of its use in compact high-
harmonic terahertz gyrotrons demanded by DNP-NMR 
spectroscopy and thus provides impetus to further 
investigation of the proposed concept.  
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