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High-Level Decision Making for Automated
Highway Driving via Behavior Cloning

Lingguang Wang, Carlos Fernandez and Christoph Stiller

Abstract—Automated driving systems need to perform accord-
ing to what human drivers expect in every situation. A different
behavior can be wrongly interpreted by other human drivers and
cause traffic problems, disturbances to other road participants,
or in the worst case, an accident. In this paper, we propose a
behavior cloning concept for learning high-level decisions from
recorded trajectories of real traffic. We summarized and gave a
clear definition of the main features that affect how humans make
driving decisions. Some other approaches rely on complex neural
networks where their decisions are impossible to understand. Due
to the importance of the decision making module, we produce
safe human-like behavior which is transparent to humans and
easy to track. Furthermore, the learned policy is not overfitting
to the limited training data and generalizes well to multi-
lane scenarios with arbitrary speed limits and traffic density,
which is strengthened by the successful application of merging
policy on exiting. Simulation evaluations show that our learned
policy is able to handle the intention uncertainty of surrounding
agents, and provide human-like decisions in the sense of well-
balanced behavior between efficiency, comfort, perceived safety,
and politeness.

Index Terms—Automated driving, decision making, Monte-
Carlo Simulation, behavior cloning, Responsibility-Sensitive-
Safety

I. INTRODUCTION & STATE OF THE ART

AUTONOMOUS driving is a very complex task that was
under research for decades. In the future, all vehicles will

drive without human intervention and V2X communications
will help to improve safety and optimize vehicle decisions
based on precise knowledge of the surroundings. Nowadays,
autonomous vehicles should drive under mixed traffic where
human drivers are often difficult to predict. From human
drivers’ point of view, autonomous vehicles decisions should
be similar to what humans would do but with safety as an
essential requirement for all situations.

There are different approaches addressing the problem of
human-like behavior generation. Many researchers focus on
Reinforcement Learning (RL) trying to achieve intelligent
driving behavior in a highly interactive environment [1], [2].
However, these approaches usually face some challenges. One
is that the learned policy in simulated environments is hardly
transferable to real-world environments. Moreover, designing a
suitable reward function is not straightforward in practice. The
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author’s preferences and personal experience often influence
how they design their reward function. Therefore, proving that
the learned policy is generally human-like is hard. Once the
user wants to choose a different driving style, e.g. weight the
reward terms differently, the policy should be trained from
scratch again. Some recent approaches [3], [4] try to learn the
value distribution instead of the value function and afterwards
add α value in their approach to also tune the policy in real-
time. However, adjusting multiple parameters online is still
intractable.

Inverse Reinforcement Learning (IRL) [5]–[7] try to utilize
the collected human demonstrations for learning a proper re-
ward function, instead of engineering one, where imitating hu-
man driving style becomes possible. One well-known shortage
of these approaches is to apply to high-dimensional problems
with unknown dynamics. Some improved IRL approaches,
e.g. Generative Adversarial Imitation Learning (GAIL) [8] and
Adversarial Inverse Reinforcement Learning (AIRL) [9], are
able to overcome this downside. For Instance, AIRL is able to
learn a reward function and value function simultaneously and
is demonstrated to perform well on high-dimensional tasks.
However, as the learned value function is usually represented
by a neural network to work on high-dimensional input
space, knowing what exactly happened inside the network to
understand why a certain decision is made is still not possible,
since visualizing the data flow of the neural network is still a
remaining challenge.

Almost all present Behavior Cloning (BC) approaches [10],
[11] try to solve the autonomous driving problem end-to-
end. They receive the RGB image of the front view as input
and directly output control commands (acceleration, steering
angle, etc.). The policy can be learned totally offline. With
proper data augmentation, the BC approach can yield state-of-
the-art driving behavior even in limited unseen environments.
However, it still suffers from overfitting and performs badly
in new scenarios with strongly interactive dynamic objects. In
order to generalize enough in the target scenarios, an extremely
huge amount of training data is needed, which should contain
as little bias and variance as possible. Understanding the
learned policy of these approaches is even more intractable
as it covers the perception part as well.

Instead of an end-to-end BC approach, we propose one BC
approach that only replaces the task of high-level decision
making or behavior generation, which is in the middle of the
whole autonomous driving pipeline, between perception stage
and trajectory generation. The policy is highly modular, easy
to parallelize and despite this paper is focused on highway
scenarios, it can generalize to different scenarios.



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 00, NO. 0, MONTH 2000 2

...

action1

actionn

ego

estimate

estimate MC simulation
feature1 

MC simulation

featuren

Logistic 
regression 
function

Quality 
value q1

Quality 
value qn

...
max(qi), 
decision

(risk, utility, 
comfort, ...)

Dataset

Trajectory 
planner, 
controller

Map, 
perception, 
localization

Decision Making PipelineInput

Fig. 1: Proposed decision making pipeline taking a merging scenario as an example.

The proposed decision making approach is presented in
Fig. 1. As the input of our approach, we assume that the
perception of the environment and the precise self-localization
are done by other modules. Thus, the noisy states (location,
velocity, size, etc.) of other traffic participants within certain
sensing ranges are provided. Another important input is the
High-Definition (HD) Map, e.g. lanelet2 [12], where the road
topology and all the traffic rules are embedded. The output of
our module is one high-level decision that is delivered to a
trajectory planner, which connects to a low-level controller to
complete the controlling of the vehicle.

At each decision step, we first generate possible reasonable
high-level action candidates that fit the prior HD maps and
fulfill the current traffic rules. For every action, several feature
values (utility, comfort, risk, etc.) that characterize the action
will be generated. In order to do that, we simulate the
scene forward stochastically, given the uncertain states and
estimation of intentions of surrounding agents, and assuming
the ego vehicle follows the selected action. Performing a large
number of Monte-Carlo (MC) simulations for each action, we
understand how each decision affects the environment and
other road users. Furthermore, how risk and other statistics
change by doing a specific action is inferred.

There are other approaches that model the problem in the
literature. One of the most common ones is POMDP [13],
[14]. They can deal with the uncertainty of surroundings and
strong interaction with the environment as well. They often
utilize Monte-Carlo-Tree-Search to reveal the value function
and solve POMDP. However, reward function engineering and
solving POMDP in real-time are still remaining challenges.
Instead of mapping the whole state space and action into
a quality value with the value function, we try to map the
feature values of each action to one single quality value with
one logistic regression function, that represents how good
the action is, similar to a cost function. By making use of
the recorded trajectory, the ground-truth action that humans
performed in the dataset can be revealed as well. The goal is
to learn the weights of the logistic regression function which
in the end outputs higher values for the human-like action
and lower values for other actions. In this paper, we apply
this approach and learn proper free lane change policy and
merging policy in highway scenarios, thanks to the availability
of the HighD [15], ExitD and Interaction Datasets [16]. In
order to present the performance of our approach, we build
a probabilistic simulator from scratch for highway scenarios

and evaluate the policies there. Statistics show that our learned
policies outperform the baseline policies with a large margin
in most of the metrics.

To the authors’ best knowledge, no work before has in-
vestigated high-level decision-making via behavior cloning.
We summarize the following novelty and contributions of our
approach:

• We systematically summarize and define possible features
that could influence driving decisions, and integrate them
in our framework.

• We estimate the feature values via MC Simulation, where
the states and intention uncertainty of surrounding vehi-
cles and possible reactions are considered.

• We propose one novel framework for learning human-like
driving policy from real data that is able to incorporate
prior knowledge from humans (HD-maps, traffic rules)
and provide high-level decisions for subsequent modules.

• For lane change and merging on multi-lane roads, e.g.
highway, we extend the Responsibility-Sensitive-Safety
(RSS) concept [17] with additional realistic assumptions.

II. BACKEND COMPONENTS FOR POLICY

A. Relevant Features for Decision Making

One previous work [18] already summarizes existing fea-
tures in state of the art. However, they mostly focus on
relevant features for trajectory planning and not for high-level
decision making. Therefore, we have adapted and summarized
all the features in four groups which are specially important
in behavior-level: utility, ride comfort, perceived safety and
politeness. In order to make them comparable with each other,
they are normalized between 0 and 1.

1) Utility: This feature group represents how soon the
driver can reach his desired goal and how possible the desired
maneuver can be accomplished. We summarize three utilities:

• U1: How much progress can be achieved within a certain
time.

• U2: How much time the desired maneuver is needed.
• U3: How possible the desired maneuver can be finished.

U1 can be relevant in all scenarios. For example, high U1

could mean less deviation from the desired velocity of the
driver or the speed limit. In scenarios where certain maneuvers
are clearly defined, U2 and U3 are more interesting. As an
example, in an on-ramp merging scenario, selecting a gap
that requires less merging time (U2) and is more probable to
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success (U3) is usually more important than cutting into the
very first gap that is the fastest option (U1).

In highway scenario, U1 can be formulated as 1− | v
vdes

− 1|
where v denotes the average velocity achieved by a maneuver
or a trajectory and vdes represents the desired velocity of the
driver. We use desired velocity instead of the speed limit
because they often deviate from each other. For instance, the
utility is considered not to be damaged when a driver drives
a low-performance car with 100 kph on a lane with 120 kph
speed limit, as 100 kph could fit best to his vehicle and his
desire. In contrast, sport car drivers might drive close below
punished speed violation limits, which in some countries is
1.1 times the speed limit. Even driving at the speed limit is
considered to damage their utility. Note that for automated
vehicles (ego), the desired velocity should be set within the
legal range.

2) Ride comfort: In trajectory planning, jerk and accel-
eration in longitudinal and lateral direction are often to be
punished in the cost function. However, in behavior generation,
creating plans that are optimal w.r.t. jerk is not necessary.
Therefore we only include longitudinal acceleration C1 and
lateral acceleration C2 in decision making in general sce-
narios. In highway driving conditions that is focused in this
paper, we pay attention particularly to longitudinal comfort
C1 = 1− | al

amax
|, where al is the average absolute longitudinal

acceleration of a maneuver or a trajectory and amax is the
maximumly executable deceleration of the vehicle.

3) Perceived safety: Perceived safety is also treated as
risk and it has several definitions in the state of the art
depending on the scenario where it is applied. For right of
way at intersections, the time that elapses between one vehicle
leaving a conflict zone and another traffic participant entering
this zone [19]. In follow driving condition, space headway
d, time headway tTH and time to collision tTTC are often
utilized for describing how safe the following vehicle is.
Some other works compute risk probabilistically [20], where a
probabilistic prediction of other traffic participants is assumed
to be provided. Given the ego trajectory, the probability of
collision can be computed. These approaches rely on an
upstream prediction of others that is not depending on the
ego vehicle. However, collision probability could also change
depending on the reaction time of each driver. Therefore,
computing real collision probability considering all possible
reactions of the involved agents is almost computationally
intractable.

Instead of labeling events as risky where a final collision
can occur with a certain probability, we count the ones as
risky where harsh reactions of the vehicle are needed to
avoid collision, e.g. emergency brake or an emergency evade,
disregard of whether the evasive reaction helps and whether a
final collision occurs. The margin where the evasive reaction
should be performed is when the RSS safety is broken. The
risk R is then defined to be the probability that a harsh or an
evasive reaction of the ego vehicle is needed to maintain RSS
safety.

4) Politeness: Courtesy during driving is important to im-
prove traffic smoothness and increase safety. An experienced
driver focuses not only on their own benefit but behaves in a

way such that others’ comfort and utility are affected as little
as possible. Polite behaviors can often prevent future risky
events as well, e.g. yield for merging vehicles. We measure
politeness P by looking at the utility U1 and comfort C1 of the
vehicle that is influenced the most by the ego vehicle’s action
where U1,i and C1,i is the first type of utility and comfort of
i-th vehicle. n is the total number of surrounding vehicles.

P1 =
n

min
i=1

U1,i, P2 =
n

min
i=1

C1,i (1)

B. Action Space

At every decision step, the vehicle can choose between
different action candidates. The detailed planning and execu-
tion of the requested maneuver will be done by subsequent
modules. We differentiate the action candidates in free lane
change scenario and merging/exit scenario, where the main
difference is whether a mandatory target lane exists.

1) High-Level action classes: In free lane change scenarios,
we define five semantic actions:

• a1: Keep in the current lane
• a2: Decelerate in the current lane
• a3: Accelerate in the current lane
• a4: Change lane to the left into the current gap
• a5: Change lane to the right into the current gap
In merging and exiting scenarios, the number of possible

actions is variable. We concentrate mainly on the possible gaps
implicitly constructed by the vehicles on the target lane. We
focus at maximumly four vehicles on the target lane which are
longitudinally closest to the ego vehicle and within the sensing
range of the onboard sensors. Therefore the number of actions
is automatically limited to five. Four of them are merging in
front of the target vehicles, and the last one is merging to
the very last gap after the last target vehicle. The merging
actions are assigned with notation agapi where i denotes the
gap number. Our proposed pipeline illustrated in Fig. 1 can
tackle a variable number of candidate actions.

2) Proof-of-concept low-level control with customized IDM:
For a proof-of-concept controlling of the vehicles, the actions
that are used in this paper are decoupled in longitudinal and
lateral directions. They are defined as ai = [alon, vlat] where
alon and vlat denote the longitudinal acceleration and lateral
velocity.

The Intelligent Driver Model (IDM) [21] generates the
longitudinal acceleration v̇IDM which is determined by

v̇IDM = a

(
1−

(
v

vd

)4

−
(
d∗ (v,∆v)

d

)2
)

(2)

where d∗ is the desired distance to the vehicle ahead, which
is defined by

d∗ (v,∆v) = d0 + vTd +
v∆v

2
√
ab

(3)

The parameters to set are: maximum acceleration a, desired
velocity vd, minimum accepted distance d0, desired time gap
Td and desired deceleration b. The output acceleration is a
function of the velocity difference ∆v and the distance to the
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front vehicle d. The action a1 can directly utilize the output of
IDM, while a2 can be realized by reducing vd and increasing
Td and a3 the opposite.

This formula has several drawbacks according to [22], e.g.
the output acceleration can be unlimited which is physically
not realizable. For our application, it is only suitable for
follow driving actions a1, a2 and a3. For other actions where
the ego vehicle should properly cut into the desired gap
constructed by two vehicles, it is not applicable. Sometimes
even both vehicles of the gap can be behind or in front of
the ego vehicle, which results even in negative distances d.
Furthermore, during longitudinal adjustment, a proper distance
to the leading vehicle on the source lane is to be kept as
well, i.e. more than one leading vehicle should be taken into
account. In order to address these issues, we introduce some
modifications from [22] and customize the IDM model. The
modified v̇IDM can be defined by

v̇IDM =a

(
1−

(
v

vd

)4

− n
max
i=1

(
d∗ (v,∆vfi)

g(dfi)

)2

+

(
d∗ (vb,∆vb)

g(db)

)2
) (4)

where g(d) = max{δ, d} is the bounded distance with
δ to be a small number (e.g. 1e−10) to prevent numerical
errors. The ∆vb, ∆vfi , db, dfi are velocity differences and
distances to the following vehicle of the gap and the i-th
leading vehicle. Note that for leading vehicles, the distance dfi
is positive when the vehicle is in front of the ego vehicle. For
the following vehicle, db is positive when it is behind the ego
vehicle. In our case, there are two possible leading vehicles,
one on the target lane and one on the source lane. Finally, the
output longitudinal acceleration will be bounded as well via
alon = min{max{v̇IDM,−a}, a} to the range of [−a, a]. Fig. 2
illustrates two examples of how the customized IDM controls
the ego vehicle to fit into different gaps that are moving with
constant velocity.

The lateral velocity vlat of the actions a1, a2 and a3 are 0
as they do not involve lateral movement. For the other actions,
the non-holonomic kinematics of the autonomous car are taken
into account by constraining vlat via a maximum side slip angle
similar as proposed in [23] where the positive sign of vlat
points to the target lane.

vlat =

{
min{0.17v, 0.8m

s } RSS safe w.r.t. the gap
−min{0.17v, 0.8m

s } else
(5)

The prerequisite for having lateral velocity is the longitu-
dinal RSS safety w.r.t. the leading and following vehicle. The
definition of RSS safety will be explained in the next chapter.
Note that in each action, a fall-back longitudinal reaction is
included. As soon as the RSS safety does not hold, e.g. by
other vehicles cutting in front closely or because the merging
lane is going to end1, the emergency braking aemerg,decel will
overwrite the output of the customized IDM.

1Equivalent to an obstacle with velocity 0m
s standing at the end of merging

lane
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Fig. 2: Longitudinal position x and acceleration alon of the ego vehicle
with the customized IDM. The leader and the follower of the target
gap are moving with constant velocity. (a) The ego vehicle is initially
behind the gap. (b) Ego vehicle is initially in front of the gap.

C. Safety consideration

According to RSS ”common sense” rule 5, the cut-in from
ego vehicle shall not be reck-less, i.e. a lane change or a
merging cannot be performed with an arbitrarily small distance
to the following vehicle in the target lane. Furthermore, during
the lane change process, longitudinal RSS safety to the leading
vehicle on the target lane and on the source lane shall not
be harmed as well. We will first shortly revise the longitudi-
nal RSS safety on a single lane which is comprehensively
discussed in [24]. Afterward, we extend the RSS merging
safety concept introduced in [25] to cover the scenario of
merging into a gap of two vehicles. Finally, we introduce some
additional reasonable assumptions to increase the feasibility of
the RSS safety in reality.

1) Longitudinal RSS safety on a single lane: The basic
RSS safety is defined in a leader-follower setup on a single
lane. It stresses that the follower should keep a minimum safe
distance dsafe to the front vehicle that is related to the current
velocity of both, and some other parameters, such as reaction
time of the follower, maximum deceleration of the leader
amax,decel, minimum deceleration of the follower amin,decel, etc.
It ensures that the follower is guaranteed to not collide with its
predecessor even in some reasonable worst case that is defined
by the assumed parameters. The formulas are not repeated here
but the readers are referred to [17] for details.

2) RSS safety for lane change: The following safety con-
cept to ensure a smooth and not so conservative merging,
which is suitable for lane change as well, is presented in
[25]. The merging vehicle intends to accelerate with some
minimum acceleration amin,accel, unless it already reaches the
speed limit or cannot accelerate due to the front vehicle on
the target and source lane. The prioritized following vehicle
on the target lane reacts by decelerating with asoft,decel after
the merging vehicle is on the target lane plus a usual reaction
time. The merging is considered as safe and not significantly
impeding the prioritized vehicle, when their distance is not less
than dsafe from the merging time to the unlimited future. An
analytical solution of the initially required safe distance dsafe,init
to the prioritized following vehicle can be found in [25] when
the merging vehicle can do a minimum acceleration amin,accel
during the whole time.
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However, when taking the leading vehicle on the target
and source lane into account, an analytical solution might not
exist, since amin,accel of merging vehicle might be disturbed.
In our extension, we utilize numerical simulation to check the
merging safety into a gap. The merging vehicle is assumed to
adjust its speed to the gap via the customized IDM in section
II-B2 instead of constant acceleration. The leading vehicle on
the target lane continues with constant velocity.

In order to see how realistic the safety concept is, we further
examine in the real data how many percent of human drivers
obey this rule. We use HighD and ExitD datasets for this
purpose. By selecting a parameter set asoft,decel = −1.2 m

s2

which is considered as in comfortable range in [26], the
reaction time of the ego vehicle 0.4s (anticipated in [27]) and
the reaction time for other vehicles 0.7s (argued in [28]), the
Table I presents the percentage of safe lane changes in dataset
with different amin,decel and amax,decel.

TABLE I: Percentage of RSS safe lane changes (from 12380 lane
changes in HighD dataset ) and merges (from 4604 on-ramp merges
in ExitD dataset) with certain deceleration parameters. Both datasets
are recorded on German highways. Note that amax,decel ≥ amin,decel is
assumed.

ratio of safe lane changes amax,decel(
m
s2 )

-6 -8 -10 -12

amin,decel(
m
s2 )

-6 0.877 0.875 0.563 0.511
-8 0.886 0.761 0.677
-10 0.889 0.804
-12 0.885

ratio of safe merges amax,decel(
m
s2 )

-6 -8 -10 -12

amin,decel(
m
s2 )

-6 0.928 0.846 0.723 0.662
-8 0.943 0.909 0.860
-10 0.949 0.933
-12 0.955

It can be seen that with the recommended parameter set
amax,decel = −10 m

s2 and amin,decel = −8 m
s2 from [24], only

76.1% of all the lane changes in HighD dataset and 90.9% of
all merges in ExitD dataset are RSS safe. The ratio of unsafe
ones are significantly lower as the recorded accidents quote
(which is 0 in the datasets). This is an indication that this
RSS safety concept for lane change does not match human
consensus somewhere.

3) Extended RSS safety for lane change with additional
assumptions: The large number of violations of RSS safety
in naturalistic traffic is shortly explained in [24]. It is claimed
that an emergency deceleration of the predecessor during a
lane change does not occur without any prior warning, e.g.
the emergency brake of the pre-predecessor. Therefore, if two
predecessors can be observed by the ego vehicle, the amax,decel
of the predecessor can be reduced depending on how far
the pre-predecessor is. In case that the pre-predecessor is
extremely far or does not appear within the sensing range,
the predecessor should not brake maximumly without any
reason. Note that this assumption can only be hold with a
precondition: no other obstacles, e.g. pedestrians or vehicles
from other lanes, can suddenly enter between predecessor and
pre-predecessor until the lane change is complete and all the

vehicles maintain a stable state2. If so, the lane change action
should be aborted immediately.

The authors of [24] suggest to lower the amax,decel of the
predecessor to a fixed value (e.g. −4 m

s2 ) for a short period
of time when the pre-predecessor can be observed. However,
we propose to not assume less than 0.5amax,decel, which is
−5 m

s2 when choosing amax,decel = −10 m
s2 . Note that only 6

of all 107613 trajectories in HighD dataset has higher than
−5 m

s2 deceleration, all for avoiding crash to the front vehicle.
Furthermore, depending on the distance of pre-predecessor,
the possible acceleration of predecessor can vary instead of a
fixed value. Therefore we propose the following safety con-
cept: assuming the pre-predecessor3 brake with amax,decel, the
needed deceleration for the predecessor not colliding with pre-
predecessor is aneed, the predecessor will brake with a′max,decel
which bounds aneed between 0.5amax,decel and amax,decel. The
new safe distance d′safe can be calculated correspondingly.

With the additional assumptions, we check again the safe
lane change ratio in datasets and obtain Table II. The extended
RSS safety yields much fewer violations. With the parameter
set amax,decel = −10m/s2 and amin,decel = −8m/s2, the
safe lane change and merging ratios increase from 76.1% and
90.9% to 92.1% and 97.5% respectively. Despite the extended
RSS safety concept is still less optimistic than most human
drivers, we think is a reasonable balance between safety and
human consensus.

TABLE II: Percentage of RSS safe lane changes with additional
assumption.

ratio of safe lane changes amax,decel(
m
s2 )

-6 -8 -10 -12

amin,decel(
m
s2 )

-6 0.974 0.875 0.796 0.728
-8 0.976 0.921 0.873

-10 0.976 0.944
-12 0.977

ratio of safe merges amax,decel(
m
s2 )

-6 -8 -10 -12

amin,decel(
m
s2 )

-6 0.990 0.945 0.876 0.811
-8 0.993 0.975 0.947

-10 0.995 0.987
-12 0.995

We recommend using the extended RSS safety concept on
scenarios where the precondition of the additional assumptions
can be checked at a low cost (merging and extremely sparse
traffic). For free lane change on multiple lanes, checking the
preconditions against all the neighboring vehicles is almost
intractable and we recommend applying RSS safety concept
described in Section II-C2.

III. BEHAVIOR CLONING APPROACH

A. Features Acquisition via Monte-Carlo Simulation

In previous chapters, we formulated the features that are
relevant to characterize how good an action is in many aspects.
All candidate actions are safe in the sense of our extended
RSS safety for cut-in. At least, autonomous vehicles shall not
be blamed if they obey the RSS safety rule and accidents

2Every vehicle that is involved in the lane change restore their usual RSS
safe distance dsafe

3In case it is out of sensing range, assuming one at the sensing border.
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happen. In this chapter, we explain how the distinct features
can be obtained for each action, e.g. how convenient and risky
merging into a certain gap will be.

Human drivers always have a complete picture of the whole
driving scene in mind, and make decisions that are not optimal
but reasonable considering all the possible evolutions of the
scene. POMDPs try possible actions and simulate the reactions
of the environmental agents by probabilistic driver models, in
order to find the best policy given the state or belief space
and provide online plans. However, they still suffer from
complexity in large multi-agent settings, as the cardinality of
the action and observation space grows exponentially in the
number of agents. Instead of searching online action sequence
that is well optimized, we regard our proposed semantic high-
level action candidates that respect traffic rules and HD maps
as suboptimal options. We claim that in real traffic, it is
more realistic and sufficient to achieve a certain degree of
convenience and safety, rather than to be optimal w.r.t. an
engineered reward function. Therefore, we target the goal
to select one from those suboptimal options. The output is
not a fixed trajectory like open-loop planning approaches but
a homotopy class, which provides online interactive plans
similar to POMDP at a lower computational cost.

The decision is made depending on the features (risk,
utility, comfort, etc.) associated with each action. In order
to acquire those, we try to simulate the environment forward
starting from the current sensed scene, where the ego vehicle
consistently follows one of the actions, the surrounding agents
are sampled from their states (position, velocity, acceleration,
etc.) distributions and will act by sampling from their esti-
mated probabilistic driver models and intention models. We
will explain how the driver models and intention models are
estimated in later chapters. For each action of the ego vehicle,
the simulation will repeat enough times (MC simulation),
where other agents behave randomly in order to reveal possible
future developments. The results of all simulations will be
summarized and averaged as features for each action, such as
how often the ego vehicle is expected to fall back to emergency
braking by trying one certain gap, or how fast the ego vehicle
is expected to drive by changing lane to left.

MC simulations are associated with a maximum simulation
horizon tmax and the features [U1, U2, U3, C1, R, P1, P2] in
Chapter II-A can be approximated. From our simulations, we
obtain numerical values of the defined features and also other
semantic information. On one hand, the feature values are
averaged among all MC simulations following eq. 6 and eq.
7. Note that eq. 6 applies for C∗

1 , P ∗
1 and P ∗

2 as well. On the
other hand, when the action succeed, simulation time tfinish is
recorded and tmax is used in case action has failed.

U∗
1 =

1

n

n∑
i=1

U1,i (6)

U∗
2 =

1

n

n∑
i=1

(
tfinish,i

tmax
) (7)

U∗
3 =

nfinish

n
(8)

R∗ =
nemerg

n
(9)

Besides a ”successful” maneuver, a fall-back or emergency
maneuver can occur as well. The risk R∗ can be approximated
by eq. 9 where nemerg denotes the number of simulations where
the emergency maneuver of ego vehicle is triggered.

The biggest strength of MC simulation is that, unlike
POMDP which usually builds search trees and needs many
computational resources, each of the single MC simulations
is independent of others and thus can be well parallelized in
a multi-core system. In this way, this method can be run in
real-time without problems and can be even more efficient
with customized hardware. The accuracy of the feature ap-
proximation from MC simulation increases with the number
of simulations. We tested the variance of the fall-back rate
of selecting one certain gap in an example merging scenario
related to the number of MC simulations. MC simulations with
100, 500, and 1000 repetitions will produce 0.09, 0.018, and
0.017 variances on the fall-back ratios, and the run-time on
an 8-core laptop with 8 threads are 10ms, 50ms, and 100ms
respectively. We take 500 repetitions as a good balance of
run-time and accuracy.

The precondition of this approach is a well sensed and
estimated probabilistic environment, which is discussed in the
next chapter.

B. Basic Behaviors and Their Estimation

The input for the MC simulation is the perceived and
estimated environment. We formulate several basic behaviors
for highway driving and afterwards introduce the estimation of
each behavior for MC simulation. Note that for all the behavior
models, trucks will have a different parameter set as normal
vehicles, e.g. they behave with less acceleration, are less prone
to yield to merging attempts, and are less possible to perform
lane change.

The basic behaviors that model the environment vehicles
are required to be as simple as possible since the environment
needs to be propagated in a large number of MC simulations.
Too complicated behavior models demand too much compu-
tational resources that could slow down the MC simulation.

1) Follow lane behavior with yielding capability: For car
following, the customized IDM can follow more than one
leading vehicle. However, in usual highway driving, a more
intelligent follow-lane behavior is required, which is able to
behave politely for merging vehicles or other vehicles that
show clear lane change desire (e.g. via indicator), and we call
it extended IDM (E-IDM). As soon as a cut-in desire from
another vehicle is detected, it computes a yielding motivation
value m by a logistic regression function

m =
1

1 + e−θT
Y fY

(10)

with the θY to be the weight vector and fY = [d, tTH, ṫTH]
to be the feature vector, where d denotes the distance between
the ego vehicle and the merging vehicle, tTH = d

vmain
is the

time headway to the merging vehicle and ṫTH =
vmain−vmerge

vmain
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is the changing rate of time headway. vmain and vmerge are
the velocities of the ego vehicle and the merging vehicle.
The logistic regression function is trained with the Interaction
dataset and ExitD dataset where in total 3320 vehicles are
recorded to yield to a merging vehicle and 432 vehicles not.
One threshold value mth = 0.5 is introduced to control
the willingness of yielding. If the vehicle decides to yield
(m > mth), it treats both the merging vehicle and the preceding
vehicle in the current lane as target vehicles.

2) Estimation of E-IDM: For car following, the surrounding
vehicles are assumed to obey the customized IDM model.
Thus, the parameters for the customized IDM model need to
be estimated either from experience or from the perception
and tracking of the surrounding vehicles. If the ego vehicle
intends to cut in or merge, the yielding intention of the relevant
vehicles needs to be estimated as well.

For the customized IDM, we adopt the recommended IDM
parameters estimated from HighD dataset in [29]. In order to
simulate the estimation error, the parameters will be added
with random noise in different repetitions of MC simulations.
For acquiring a more accurate estimation of the parameters,
the long-term observation of each vehicle is utilized as well,
as long as the perception module is capable of. For example,
if an agent is in a stationary car-following scenario longer
than 3s, with an overall velocity variation of less than 1.5 m

s
and a time headway variation of less than 0.2s, we update the
desired time headway with the observed one. Similarly, if a
vehicle keeps its velocity (velocity variation of less than 1.5 m

s )
longer than 3s, where the time headway to the front vehicle
is larger than 3s, it will be used as the desired velocity. This
can help recognize different types of drivers, e.g. drivers who
prefer higher velocity and are not rule-compliant, and who
prefer much lower velocity than the speed limit.

Estimating the yielding intention is similar to computing the
yielding motivation. We use the same logistic function

P (yielding|f̂Y) =
1

1 + e−θ̂T
Y f̂Y

(11)

with a different feature vector f̂Y = [a, d, tTH, ṫTH], where
another feature a is included, which is the acceleration of
the vehicle whose yielding intention is estimated. The other
features stay unchanged. The θ̂Y vector is retrained with the
same data as in training the yielding behavior.

In MC simulation, the vehicle is expected to yield to a merge
or cut-in attempt when P (yielding|f̂Y) is bigger than the same
threshold 0.5, by treating it as one of the target vehicles in its
customized IDM model.

3) Lane change behaviors and estimation of lane change
intention: Vehicles driving on a multi-lane highway might
change lanes to gain efficiency or to bring convenience to
others. The Minimizing Overall Braking Induced by Lane
changes (MOBIL) strategy [30] is used as the basic lane
change behavior. This model makes lane change decisions with
the goal of maximizing the acceleration of all the involved
vehicles. The IDM model is used to compute the accelerations
of surrounding vehicles. Then, a lane change is performed if

ãe − ae + p((ãn − an) + (ão − ao)) > ath (12)

where ae, an and ao are the accelerations of the ego vehicle,
the following vehicle on the target lane, and the following
vehicle on the source lane, if no lane change of the ego vehicle
is performed. Correspondingly, the ones with tildes are their
accelerations if the ego vehicle change lanes. The politeness
factor p is included to control how much the acceleration gains
and losses of other vehicles are valued. The left side of eq. 12
represents the overall acceleration gain again which should be
bigger than a threshold value ath for a lane change. Note that
if lane change is possible both to the left and right, it will be
done in the direction where eq. 12 fulfills and whose again is
higher.

The MOBIL model can be combined with the E-IDM in
order to be able to yield to cut-in attempts, which we call
deterministic extended MOBIL (DE-MOBIL). If the vehicle
has high motivation to yield (m > mth), ae will be computed
regarding the vehicle with cut-in desire as front vehicle. De-
pending on eq. 12, it either does a lane change or decelerates.

In order to estimate the MOBIL model, the parameters p
and ath are calibrated from HighD datasets where 12380 lane
changes are included. The MOBIL model has the highest
accuracy over all the lane changes when p = 0.9 and
ath = 0.5 m/s2. The estimation of DE-MOBIL is separated
into two steps. Firstly, the E-IDM is estimated via the method
in the previous section. In order to better predict and simulate
the scene in MC simulation, the lane change probability of
the vehicles on the main lanes should be estimated at each
simulation step. A probabilistic lane change behavior can
be induced from the DE-MOBIL, which is referred to as
probabilistic extended MOBIL (PE-MOBIL). We define the
net acceleration gain for keeping lane to be ak = 0, and for
changing lane to left and right to be al = again,l − ath and
ar = again,r − ath. The probability mass of each option is

mMOBIL(i) =
eai∑

j∈{k,l,r} e
aj
, for i ∈ {k, l, r} (13)

The estimate of DE-MOBIL is also called probabilistic
extended MOBIL (PE-MOBIL). When using PE-MOBIL only
as a probabilistic policy, the lane change decisions can be
output by sampling from the probability mass mMOBIL(i).
However, when using it as an estimation, the movement of the
vehicle is another important source of information showing
whether it intends to do a lane change, besides estimating
the lane change probability by computing the motivation of
a lane change. We learn another logistic regression model
for computing lane change probability mass mmove using the
movements (signed lateral distance to the centerline dc and the
lateral velocity vlat of the target vehicle) as the features.

Finally, the probabilities from two sources will be combined
by using the Mixing Rule of Evidence Theory [31]

m(i) = w1mMOBIL(i) + w2mmove(i) (14)

with w1 and w2 to be the weighting of two information
sources equally set to 0.5.

4) Merging behavior and its estimation: A heuristic merg-
ing behavior mentioned in [32] is considered. The gap is as-
sumed to move with constant velocity and the merging vehicle
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tries to catch the gap either by accelerating or decelerating
constantly. We call it Closest Gap Merging Policy (CGMP).

The CGMP can be estimated probabilistically as well. First,
the time that is estimated to approach i-th gap is computed to
be ti. The softmax function is again applied to generate the
probability for approaching each gap using eq. 15. Merging
decision will be evaluated tactically with 1s interval in MC
simulation.

P (i) =
e−ti∑n
j=1 e

−tj
, for i ∈ {1, ..., n} (15)

C. Learning Decision via Behavior Cloning

In section III-B, the probabilistic environment is established,
in which vehicles yield and change lanes following our behav-
ior model. They react to changes in their surroundings. For
the autonomous vehicle, the features for trying each action
are obtained from the MC simulations by interacting with
a probabilistic world. However, making decisions from these
features is not straightforward. In order to be understandable
to passengers and other human drivers, autonomous vehicles
should behave as close to human drivers as possible, e.g. they
should not be overly egoistic (weight utility and comfort too
much), overly cautious (weight risk too much) or overly cour-
teous (weight politeness too much). Therefore, the weighting
of each feature should be best learned from trajectories of real
traffic. We pursue a mapping from features of all actions to
the action index, which is similar to a classification problem.
We do not intend to use neural networks for this job, as
we want to explicitly show the weighting for each feature
in different scenarios to better understand the decision and
prevent overfitting the limited data. Therefore, we utilize linear
logistic regression to solve the problem. For each action ai or
agapi , the regression function outputs one quality value qi by

qi =
1

1 + e−θT
P fi

(16)

where θP is the learned weight vector for a policy. fi =
[U∗

1 (ai), U
∗
2 (ai), U

∗
3 (ai), C

∗
1 (ai), R

∗(ai), P
∗
1 (ai), P

∗
2 (ai)]

is the feature vector generated from MC simulation for
action ai. One training data is prepared as a pair of features
[f1, f2, ..., fn] and a label iGT that associates with the ground
truth action humans performed. The goal is to optimize θP
such that the quality value for the ground truth action qiGT

close to 1 and for other actions close to 0. For training, the
cross-entropy loss is applied. During inference, the action
with the highest qi will be selected.

1) Learning merging and lane change behavior: We de-
cide to separate the merging behavior from the lane change
behavior, because humans might weight features differently in
these two scenarios. Obtaining ground-truth action for merging
scenarios is straightforward, as the gap that is accomplished
in the end is assumed to be the ground-truth of the gap that
is initially approached. For lane change, as we already know
whether a lane change occurs in the trajectory, we assume
a lane change decision is made when the lateral velocity is
higher than 0.25m

s to the target direction. This value is larger
than 98.1% of the lateral velocities in trajectories with no lane

TABLE III: Learned weights for merging and lane change behavior.

Utility Comfort Risk Politeness
U∗
1 U∗

2 U∗
3 C∗

1 R∗ P ∗
1 P ∗

2
θmerge 0.5 0.05 -1.0 0.05 -0.7 0.1 0.15
θlc 0.183 0.3 -0.15 0.1 -0.367 1.0 0.25

change. The lane change decision will continue until the ego
vehicle is physically on another lane. For other frames, we
assume the decision to be keeping lane a1.

Note that we first discard the action candidates a2 and a3
during training and include them during inference, because
the trajectories of a1, a2 and a3 are similar, and matching the
recorded trajectories to one of them becomes ambiguous. The
training data is extracted from the datasets tactically with 1s
interval. From HighD and ExitD datasets, we obtain 23154
valid4 training frames for merging scenario and 253331 valid
training frames for lane change (among which 55852 frames
have lane change labels). They are split into 75% training set
and 25% test set. Finally, the weight vectors for merging θmerge
and for lane change θlc are presented in Table III, where the
weights are normalized between -1 and 1.

It is noticeable that human drivers prefer gaps that are prone
to success and have less chance to fall back in merging. In free
lane change, they care more about not impeding other vehicles.

Note that the lanes in ExitD dataset are not straight. There-
fore, we perform our approach in Frenet-Frame w.r.t. the road
centerline of the vehicle that is regarded as ego. Examples
in the later chapters present the capability of our approach
working on different road geometries.

The validation accuracy on the test set is 79.5% for lane
change and 94.4% for merging. One explanation for the rela-
tively higher accuracy for merging is that, in real traffic, human
drivers have higher variance doing lane changes depending on
which type of driver they are, but will usually pursue the first
gap they see on the target lane for merging.

2) Risk bounded merging behavior: For evaluation, we
include another merging behavior where we do not allow
arbitrarily high fall-back rate R∗ (risk). Same as before, the
action with the highest quality value qi is selected, but after
the ones with higher than the risk threshold R∗

th are discarded.
In case of the risk for all actions is higher than R∗

th, merging
to the very last gap becomes the decision. We set the threshold
to be R∗

th = 0.2, which is higher than the risk of 3.9% of all
the merging decisions from humans.

IV. EVALUATION

As highway scenarios are often associated with high veloc-
ities and high risk, it is better to have a thorough evaluation in
simulation before putting the behaviors on a test vehicle. We
developed a flexible and modular simulation environment for
highway scenarios and evaluated our behaviors there. Firstly,
the simulation environment will be shortly explained. Then
we will evaluate the behaviors in some specific challenging
scenarios as well as on massively generated random traffics.

4The first and last two seconds of each trajectory are abandoned as the
vehicle is at the border of the field-of-view of the drone. Frames where no
vehicle is on the target lane for merging are regarded as invalid as well.
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A. Simulation Environment

Some existing simulators (like SUMO [33]) are able to
simulate highway scenarios, but do not support customized
behavior for other agents. BARK [34] is another benchmark
for behavior evaluation, but it is not specifically designed
for highway scenarios, and is not easy to configure for our
purpose. Therefore, we developed our customized simulation
by imitating the concept of BARK. The simulation allows a
manual design of the road network (arbitrary number of main
lanes, merging lanes and exit lanes) with arbitrary parameters
(shape, width, length, speed limit, etc.). On each lane, agents
with any manual designed behaviors (IDM behavior, MOBIL
lane change behavior, learned lane change behavior, CGMP,
learned merging behavior, etc.) with arbitrary parameters (IDM
parameter, RSS parameter, yielding parameter, MOBIL param-
eter, etc.) can be initiated. After running the simulation, each
agent is able to sense its surrounding environment with a pre-
defined range and move with its customized behavior. In this
way, agents with extreme behavior can be simulated, e.g. with
non-realistic IDM parameters where the desired time headway
is only 0.3s or RSS parameter with amax,decel = −0.5 m

s2 . Fur-
thermore, including more than one agent with our learned lane
change or merging policy is possible as well. To best imitate
the real traffic, vehicles on the most right main lane and the
merging lane are partly (30%) initialized as trucks, which have
larger geometry and different behavioral parameters as normal
vehicles. Other vehicles are assumed to be able to perceive
the geometry of the trucks and have a different estimation of
their behavior models. The simulation is equipped with proper
visualization and the history of all the agents can be recalled.
The validity of the simulation is checked visually in a large
part of the scenarios in the datasets before being applied in
our evaluation.

For evaluation, one or two autonomous agents are initialized
with our learned behavior, and the other agents should have
different behaviors depending on the lanes that they locate.
We apply the PE-MOBIL policy for the agents on the main
lanes, and probabilistic CGMP for agents on the merging
lane. Note that the parameters of these non-autonomous agents
in the simulator are randomized and not known to the au-
tonomous agents. The autonomous agents can only estimate
their intention and parameters (explained in Section III-B) and
initiate the MC simulation. In this way, error of estimation is
introduced as estimating the real world.

B. Evaluation for On-Ramp Merging

We compare three policies for merging scenarios: the
CGMP, the learned merging policy (LMP), the risk bounded
merging policy (RBMP).

1) Challenging scenarios: The biggest challenge for merg-
ing in dense traffic is to recognize the cooperative intention
of the vehicles on the other lane and select the proper gap.
We present one example in Fig. 3 where the two blue agents
merge with CGMP, LMP and RBMP respectively. Fig. 3(a)
presents three moments of driving with CGMP. The LMP and
RBMP generate a similar behavior which is shown by Fig.
3(b). As can be seen in Fig. 3(a), the first merging vehicle

TABLE IV: Statistics for merging on random traffic with different
merging policies. (avg. = average).

avg. merging time (s) nfall-back

tHW ∼ U(0.8, 1.4)s
CGMP 8.142 181
LMP 6.212 22

RBMP 6.582 11

tHW ∼ U(1.2, 2.0)s
CGMP 5.314 124
LMP 4.482 19

RBMP 4.591 9

with the CGMP insists on merging in front of the red agent
and finally has to fall back and stop, because it is not able
to estimate the yielding intention of the red agent. However,
with LMP and RBMP, the vehicles are able to finish merging
safely (Fig. 3(b)). By analyzing the feature values of agap1
(merging before the red vehicle) and agap2 (merging after the
red vehicle) with Fig. 3(c), we observe that agap1 is at the
beginning with around 86% success rate U∗

3 and 12% fall-
back rate R∗. However, as the intention of the red vehicle
becomes more clear and the merging lane is closer to the end,
the fall-back rate is increasing. The decision finally switches
to agap2 which is all the time safer.

2) Evaluation on random traffic: We generate 500 random
scenes with two main lanes on the left side and one merging
lane on the right side. The lanes are attached randomly with
one of the three speed limits 60 kph, 80 kph and 100 kph,
which results in different lengths of the merging lane. Random
agents are generated on the main lanes with two different
densities, which are represented by the time headway between
vehicles that follow two uniform distributions U(0.8, 1.4)s and
U(1.2, 2.0)s. To best simulate a real traffic scene, the agents
are attached with randomized size, states, internal parameters
of their behavior model, etc. Two vehicles with 1s time
headway will be initialized on the merging lane with the same
merging policy. For each of the three policies, the evaluation
will be done once through the exact same 500 initial scenes to
make the results comparable. However, how the scene evolves
will be affected by the selected policy. Finally, some statistics
are summarized in Table IV after all 1000 merges.

Apparently, merging in denser traffic leads to more fall-
backs and more merging time. It is also noticeable that the
LMP and RBMP allow significantly faster merging and lead
to much fewer fall-backs than the baseline policy CGMP. By
bounding the risk (RBMP), the merges are slightly slower but
produce fewer fall-backs than LMP. It is difficult to judge
which one between LMP and RBMP is better as it raises the
topic of which level of risk humans accept and how the user
would sacrifice efficiency to feel safer. The authors do not
conclude on that but leave the decisions for users.

C. Evaluation for Highway Exit

We regard the exit behavior as a similar behavior of merg-
ing, where one target lane exists and the lane change intention
is indicated early, such that other vehicles have the chance
to yield and open the gap. Therefore, all the three merging
policies (CGMP, LMP and RBMP) are suitable for exiting and
are evaluated in random traffic as well. However, more than
one merge can be needed if the ego vehicle is on the most left
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Fig. 3: An example of merging scenario where the blue rectangles are merging agents, and others are surrounding agents. (a) Merging agents
follow CGMP. The first one has to fall back by trying merging in front of the red agent. (b) Merging agents follow LMP and RBMP and
finish merging successfully by merging after the red agent. (c) The fall-back rate and success rate of two candidate actions for the first
merging agent in (b) at different time steps.

TABLE V: Statistics for exiting on 1000 random traffics with different
merging policies and starting positions. (avg. = average, acc. =
accomplish).

avg. acc. time (s) nfall-back

200m before exit ends
CGMP 12.145 73
LMP 11.905 37

RBMP 11.935 36

500m before exit ends
CGMP 11.857 24
LMP 11.482 5

RBMP 11.591 3

lane, but the merging policy can be executed subsequently. The
only modification for using LMP and RBMP for exiting is that,
when building the MC simulation, the ego lane is assumed to
end shortly5, and maximumly until the end of the exit opening.
With this heuristic, the ego vehicle will not always pursue the
very first gap that is perceived because it produces a certain
fall-back rate R∗.

The map is built with three main lanes and one exit lane on
the right side. Random vehicles will be generated on the map
with the density of tHW ∼ U(1.2, 1.8)s. We initiate the ego
vehicle on the most left lane at two distances 200m and 500m
before the exit ends, each with 1000 simulations. Note that
the exiting is regarded as accomplished when the ego vehicle
is able to locate at the exit lane before the exit opening ends.
Table V provides the simulation results.

The same pattern as in merging can be observed, that LMP
and RBMP are in general better than CGMP. By bounding
the risk (RBMP), the exits are slightly slower but produce
fewer fall-backs as LMP. The earlier the ego vehicle starts
merging to the right, the less risky the exit will be. Therefore,
it is recommended to start exiting with sufficient reserve if the
route is known beforehand from the map.

D. Evaluation for Free Lane Change

Highway driving is tackled by Adaptive Cruise Control
(ACC) systems since decades, which helps follow the leading
vehicle safely and turn the wheels smoothly. However, the goal
of highway driving should not only be safe follow driving,

5The remaining distance is just enough for the ego vehicle to fully stop
with −2 m

s2

but achieving maximum efficiency while maintaining safety,
which is not a simple task. Lane changes, proper acceleration
and deceleration should be performed at the proper time to
gain efficiency, while preventing potential risky situations and
not affecting others negatively. Evaluations are firstly done on
some challenging scenarios and afterward on random traffic.
Three policies are compared, the E-IDM, the DE-MOBIL and
our learned lane change policy (LLCP).

1) Challenging scenarios: Typical free lane changes are
performed when the ego vehicle desires higher speed but
is blocked by the slow-driving vehicle in front, and at the
same time, the other lanes are free. We do not focus on
this basic scenario but more challenging ones, where some
of them can be covered by MOBIL as well but some not. Fig.
4 illustrates three scenarios where the autonomous vehicles
controlled by the LLCP perform different courteous behavior
to let the merging vehicle cut in easier. In Fig. 4(a), a lane
change to the left is possible by which the velocity of the
ego vehicle is damaged at least. In scenarios where a lane
change is not possible (Fig. 4(b) and Fig. 4(c)), it performs
either a deceleration a2 or an acceleration a3 depending on the
situations to allow a smoother merging. The DE-MOBIL can
perform a deceleration or a lane change as well depending on
the overall acceleration gain, assuming the merging desire are
known to the ego vehicles. However, the drawbacks of DE-
MOBIL are obvious. Firstly, it can not perform acceleration
when needed. Furthermore, it focuses only on a few vehicles
of the traffic but ignores others that can potentially influence
the MOBIL set-up.

We further evaluated the LLCP on some other challenging
scenarios which the E-IDM and DE-MOBIL can not tackle at
the conceptual level. In Fig. 5(a), the ego vehicle with LLCP
does a lane change to the left a4 to prevent a potentially risky
situation where the vehicle behind the truck might suddenly
perform an overtake without prior indication. The probability
of this happening is not low as the vehicle is approaching the
truck with high relative velocity. We perform MC simulations
for keeping lane a1 and changing lane to left a4 for the current
moment. The R∗ and U∗

1 of a1 are 0.11 and 0.79, but a4
produces 0 and 0.86 respectively and is therefore safer and
faster. Without receiving an explicit lane change indication
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Fig. 4: The autonomous agent (blue rectangles) with LLCP performs
different courteous behavior (represented by green arrows) to enable
a smoother merging of other merging vehicles.
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Fig. 5: Two challenging scenarios that can be tackled by LLCP but
not DE-MOBIL. The ego vehicle is shown in blue and others in black.
The velocities are attached to the rectangles. One truck is represented
by a slightly bigger black rectangle.

from the vehicle behind the truck, the DE-MOBIL can not
perform this foresighted behavior. Fig. 5(b) demonstrates
another scenario where the ego vehicle is blocked by a slow
driving vehicle in front. Another slow-moving vehicle exits
on the left lane as well which makes a lane change to the left
not beneficial. The DE-MOBIL will output a lane change to
the right where the ego vehicle is not blocked by any other
vehicles. However, this is a potentially risky decision as two
merging vehicles on the merging lane could finish merging
at any time. If so, the right lane becomes crowded and the
ego vehicle needs to brake more. The MC simulation outputs
R∗(a5) = 0.34, U∗

1 (a5) = 0.68 for changing lane to right a5
and R∗(a2) = 0, U∗

1 (a2) = 0.77 for deceleration a2. As a
result, a2 is a better option according to LLCP.

2) Evaluation on random traffic: We evaluate the three
policies in random simulated traffics as well. There are some
differences to the random traffics for merging policies. The
map contains three main lanes and one merging lane. Two
vehicles will be initiated on the merging lane driving with
probabilistic CGMP. On the main lanes, vehicles will be
generated with random time headway tHW ∼ U(1.4, 2.2)s.

Only one of the vehicles on the main lanes is randomly
defined as an autonomous vehicle and drives with the LLCP,
which will be substituted by E-IDM and DE-MOBIL for the
same initial scene. In total 1500 scenes are generated and will
be simulated twice. In the first round, all the vehicles have
recommended parameters with small randomness. The second
round is more challenging, where 20% of the vehicles are
assigned with inappropriate IDM and RSS parameters (desired
time headway Td = 0.3s and the maximum deceleration of
others amax,decel = −0.5 m

s2 ), which results in close-to-crash
lane changes and merges. If so, the vehicle behind has to
execute an emergency brake (fall-back).

Table VI presents statistical results. In total, LLCP generates
much less lane changes than DE-MOBIL, but still provides
overall higher U1, C1, P1 and P2. If we consider lateral
acceleration in comfort measure as well, LLCP will be even
more comfortable and stable. Another noticeable highlight
of the LLCP is that it produces significantly safer driving
behavior with much fewer fall-backs. In the first round where
others drive safely, the E-IDM has reasonable 0 fall-backs
because others do not do unsafe lane change in front of the
autonomous vehicle. However, the DE-MOBIL has strangely
11 fall-backs. We reproduced the simulations and discovered
the reason. At the time where the ego vehicle tends to change
lane to another lane, another vehicle on the third lane starts a
lane change towards the same lane as well. The lane changes
from both vehicles are initially safe, but as soon as they
appear on the target lane at the same time, the one behind
becomes unsafe if they are too close, which results in an
emergency brake. In this case, it is ambiguous which vehicle
to blame. Note that for our free lane change evaluation, we
apply the RSS safety rule without extension in Section II-C2
as recommended. However, this edge case is not covered by it
and could initiate further investigations, but is not the scope of
this paper. However, our LLCP can prevent this risky situation
and has 0 fall-backs, because it recognizes the lane change
intention of others and can abort their lane change in the early
stage. In the second round with aggressive vehicles, it appears
that even keeping lane can be sometimes risky as well, because
unsafe cut-ins from others can not be prevented. However,
with our LLCP, the vehicle can change to other safer lanes or
decelerate a2 as soon as the intention of the aggressive cut-ins
is recognized.

V. CONCLUSIONS AND OUTLOOK

In this work, we proposed a behavior cloning concept for
learning high-level decisions from recorded trajectories of
real traffic, unlike most previous works that focus on end-
to-end behavior cloning for controlling. We summarized and
gave a clear definition of the main features that affect how
humans make driving decisions. The features are acquired
via MC simulation, which receives the uncertain states and
estimates of the driver models from surrounding agents as
inputs. Two important goals of this work are on one side
producing human-like behavior, on the other side making
the decision understandable and transparent to humans. Thus,
we adopt one logistic function to output the final decision
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TABLE VI: Statistics for evaluation on random traffic with different lane change policies. (avg. = average)

number of lane changes nfall-back avg. U1 of ego avg. C1 of ego avg. P1 avg. P2

0% of agressive vehicles
E-IDM 0 0 0.901 0.828 0.683 0.422

DE-MOBIL 1220 11 0.905 0.809 0.684 0.426
LLCP 158 0 0.911 0.831 0.687 0.429

20% of agressive vehicles
E-IDM 0 26 0.896 0.815 0.69 0.417

DE-MOBIL 1288 23 0.901 0.799 0.691 0.417
LLCP 199 6 0.907 0.818 0.693 0.425

and recover the weights of all features using the real data.
The validation accuracy using the test data shows a human-
close decision. On the other side, tracing back the decision
is not complicated. At undesired decisions, developers can
either check the MC simulations to see whether the estimated
environment and resulting features make sense, or inspect
the logistic function to examine whether the weighting is
inappropriate. Furthermore, the learned policy is not overfitting
to the limited training data but generalizes to multi-lane
scenarios with arbitrary speed limits and traffic density, which
is strengthened by the successful application of merging policy
on exiting. Evaluation results from simulated random traffic
demonstrate the superiority of our approach over the rule-
based baseline policies, e.g. an overall better performance
on safety, efficiency and politeness, even in scenarios with
abnormal driving behavior from other vehicles.

Another highlight of this approach is that the design of the
pipeline is highly modular. The estimation of the environment
can be substituted by other prediction modules that are able to
estimate the behavior of other agents given the ego vehicle’s
action. As the output of our module is the high-level decision,
i.e. the gap to merge, any low-level trajectory planner can be
adopted since the constraints for the planner are clearly given.

For lane change and merging, we extend the RSS safety con-
cept with additional assumptions and evaluate the feasibility of
this safety rule in real traffic data. The fewer violations show
that the proposed rule is not overly cautious. Therefore, we
propose to integrate these assumptions as additional common
sense into the RSS safety concept.

Due to the limited length of this paper, we did not compre-
hensively evaluate on how the weighting of each feature affects
the driving style. Changing the weighting around the learned
values is expected to affect the driving style, e.g. pursue faster
gap but more prone to fall-back by weighting the utility more
and the risk less. After having a thorough understanding of
the weighting, the possibility of providing several pre-defined
driving styles or even tuning them online can be provided to
the user for different preferences. Furthermore, we would like
to implement another leaning-based approach, e.g. RL-based,
and compare with our approach.

In the future, we plan to apply the same concept for inner-
city scenarios and generate high-level decisions according to
the same features. More uncertainties should be taken into
account, e.g. uncertain decision of vehicle crossing intersection
or doing a turn, uncertain existence of objects in occlusion,
etc. Furthermore, edge cases for RSS safety concept need to
be exhaustively analyzed and it needs to be extended to cover
the inner-city scenarios as well, which is already discussed
by some previous works, e.g. [35]. The final goal is to

generate high-level decisions for traversing intersections, zebra
crossing, etc. efficiently, safely, and when needed politely.
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