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It has been argued that a particular type of quantum-vacuum variable q can provide a solution to the main
cosmological constant problem and possibly also give a cold-dark-matter component. We now show that
the same q field may suggest a new interpretation of the big bang, namely as a quantum phase transition
between topologically inequivalent vacua. These two vacua are characterized by the equilibrium values
q ¼ �q0, and there is a kink-type solution qðtÞ interpolating between q ¼ −q0 for t → −∞ and q ¼ þq0
for t → ∞, with conformal symmetry for q ¼ 0 at t ¼ 0.
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I. INTRODUCTION

Several years ago, we have proposed a condensed-
matter-inspired approach to the cosmological constant
problem [1]. Our approach goes under the name of q
theory [2–6] and we present a brief review in Appendix A.
This “q” is a microscopic (high-energy) variable of the
quantum vacuum and its macroscopic (low-energy) equa-
tions are Lorenz invariant and governed by thermodynam-
ics. Later, we have also realized that rapid oscillations of
the q field can act as a cold-dark-matter component [7–10].
Now, we will discuss a third possible application of the q

field, namely as an effective regulator of the big bang
singularity. As q is the variable that describes the deep
quantum vacuum, all coupling constants of the Standard
Model, as well as the gravitational coupling constantG, are
functions of q. An appropriate functional dependence GðqÞ
may actually lead to a kink-type behavior qðtÞ of the
vacuum variable and a corresponding bounce-type behav-
ior of the cosmic scale factor aðtÞ. Our scenario replaces
the big bang singularity [11] of the Friedmann cosmology
by a topological quantum phase transition (see, e.g.,

Refs. [12–15] for four complementary reviews on the
physics of quantum phase transitions).
Topological matter [16,17] and the topological quantum

vacuum are characterized by topological quantum numbers,
such as the Chern number, which is typically an integer. For
a continuous variation of the parameters of the system, the
topological vacuum can experience a topological quantum
phase transition with a change in the value of the topo-
logical invariant. As an integer invariant cannot vary
continuously, the intermediate state of a topological tran-
sition may have special properties. For example, if a
discrete or continuous symmetry is broken in the vacua
on both sides of the transition, then this symmetry can be
restored in the intermediate state. In particular, if the
transition takes place between two fully gapped (massive)
vacua, then the intermediate state is gapless (massless) [15].
In our scenario, the “big bang” represents such a specific
intermediate state between two vacua with nontrivial
topology. Here, the intermediate state is the trivial vacuum
in which gravity is absent (i.e., 1=G ¼ 0, so that there is no
Einstein-Hilbert term in the action) and the conformal
symmetry is restored.
In this reinterpretation of the “big bang,” the metric is

kept unchanged in the standard Robertson-Walker form
(unlike the different metric used in Refs. [18–21]; see
Ref. [22] for a review which also contains the original
references of Friedmann and others). In fact, the result of
the present paper improves upon an earlier kink-bounce
solution [23], which had a completely ad hoc underlying
theory. Here, the underlying theory has a direct physical
motivation, as will become clear in the following.
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II. ANOMALY-TYPE TERM

The standard topological Θ term in the action has the
following form:

SΘ ¼ −
1

4π
ϵαβγδ

Z
d4xΘFαβFγδ: ð2:1Þ

Here, there is a 2-form curvature F ¼ dA from a 1-form
gauge field A. Natural units with ℏ ¼ c ¼ 1 are used
throughout. In topological vacua, such as topological
insulators [16], Θ is determined by a (quantized) topologi-
cal invariant. This topological invariant is, in fact, given by
the second Chern number expressed in terms of the Green’s
functions as an integral over the Brillouin zone of the
crystalline topological insulator; see, e.g., Ref. [24].
The topological vacuum may also contain higher-form

gauge fields [25,26]. In the present paper, we focus on a
3-form gauge field [27–29], for which the topological term
reads [25]

Sϕ ¼ −
1

2π

Z
ϕdAð3Þ; ð2:2Þ

with a dimensionless (pseudo)scalar field ϕ (here, and in
the following, we put “pseudo” in parentheses, as we do not
know the microscopic origin of the 3-form gauge field and
its transformation properties). The main reason for con-
sidering topological vacua with a 3-form gauge field is that,
as emphasized by Hawking [28], in particular, the 3-form
gauge field can perhaps solve the cosmological constant
problem.
In our approach [2,3], the parameterΘ or ϕ plays the role

of a dimensionless chemical potential μ and (2.2) becomes

Sμ ¼ −
1

24
ϵαβγδ

Z
d4xμFαβγδ: ð2:3Þ

Using the proper normalization of the 3-form, we can
choose μ ¼ �1. In principle, we may consider Θ and μ as a
dimensionless (pseudo)scalar field χ with periodicity
χ ¼ χ þ 2π. But, here, we consider this (pseudo)scalar μ
as a constant, because it is the constant of motion of the
dynamics. Simultaneously, μ may serve as a topological
invariant, which changes abruptly in the topological quan-
tum phase transition across the “big bang.”

III. VACUUM VARIABLE

The vacuum variable q can be written in terms of the
4-form field strength by the following expression:

Fαβγδ ¼ qeϵαβγδ; ð3:1Þ

where e is the tetrad determinant and ϵαβγδ the completely
antisymmetric Levi-Civita symbol normalized to unity. The
(pseudo)scalar q has a mass dimension of 4, while μ is

dimensionless. Remark that this vacuum variable q differs
from the one used in our previous papers [3,5] and
Appendix A 3 here, where the vacuum variable has a mass
dimension of 2.
The term (2.3) now has the form

Sμ ¼ −
Z

d4xeμq: ð3:2Þ

Precisely this term −μq enters the Einstein gravitational
equation and cancels the vacuum energy density ϵðqÞ in
equilibrium for q ¼ q0, where ½dϵ=dq�q¼q0

¼ μ. The
thermodynamic (macroscopic) vacuum energy,

ρVðqÞ≡ ϵðqÞ − μq; ð3:3Þ

enters the Einstein equation as a cosmological-constant
term and self-adjusts to zero in equilibrium [2]. For the
record, this Einstein equation is given by (A10) in
Appendix A 3, where q is denoted F.
Starting from the definition (3.3), we recall the equilib-

rium conditions [2]:

ρVðq0Þ ¼ 0; ð3:4aÞ

ρ0Vðq0Þ ¼ 0; ð3:4bÞ

ρ00Vðq0Þ > 0; ð3:4cÞ

where the prime stands for differentiation with respect to q.
Note that (3.4b) fixes μ to the equilibrium value

μ0 ≡ ϵðqÞ
dq

����
q¼q0

: ð3:5Þ

It remains an outstanding task to find a proper microscopic
realization of q theory that produces the vacuum energy
density ϵðqÞ and the corresponding equilibrium values q0
and μ0, possibly with μ0 appearing as a (quantized)
topological invariant.

IV. QUANTUM PHASE TRANSITION

A. Setup

If μ is a type of topological invariant, then 1=G should
play the same role as the gap in the spectrum of a
topological insulator: μ becomes zero at the transition
between distinct topological vacua. Conformal symmetry
is restored at the transition point. In this approach, the “big
bang” would be represented as a topological quantum
phase transition from the μ ¼ þ1 equilibrium state to the
μ ¼ −1 equilibrium state via the trivial vacuum state with
q ¼ 0 (and μ ¼ 0).
In the trivial vacuum, both gravity and vacuum energy

are absent, and this vacuum obeys conformal symmetry.
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In view of the mass dimension 4 of the q variable and the
proper normalization of Newton’s “constant,” the natural
choice for the dependence of 1=G on q, which is consistent
with conformal symmetry, is as follows:

1

GðqÞ ¼
ffiffiffiffiffiffi
jqj

p
: ð4:1Þ

It appears impossible to obtain an analytic q behavior of
1=GðqÞ without use of an energy scale q0 > 0, an example
being 1=GðqÞ ¼ q2=ðq0Þ3=2. We prefer the Ansatz (4.1),
which is consistent with having conformal symmetry
at q ¼ 0.
For our cosmological discussion, we take the standard

spatially flat Robertson-Walker metric [11],

ds2 ≡ gαβðxÞdxαdxβ ¼ −dt2 þ a2ðtÞδabdxadxb; ð4:2aÞ

aðtÞ ∈ R; ð4:2bÞ

t ∈ ð−∞;∞Þ; xa ∈ ð−∞;∞Þ; ð4:2cÞ

where t is the cosmic time coordinate given by x0 ¼ t and
aðtÞ the cosmic scale factor. The spatial indices a, b in
(4.2a) run over f1; 2; 3g. The generalized Maxwell equa-
tion for the 4-form field strength and the generalized
Einstein equation then give the following equations for
qðtÞ and the Hubble parameter HðtÞ≡ ½daðtÞ=dt�=aðtÞ:

dρV
dq

¼ dðG−1Þ
dq

�
dH
dt

þ 2H2

�
; ð4:3aÞ

ρV ¼ G−1H2 þH
dðG−1Þ

dt
; ð4:3bÞ

where the vacuum energy density ρVðqÞ has been defined in
(3.3). The above equations appear as (A14) and (A15a) in
Appendix A 3, for ρM ¼ PM ¼ 0 [in these equations, q is
denoted by F and the factor 8π=3 there will be absorbed
into GðqÞ here]. It needs to be emphasized that the original
expressions (A9) and (A10) in Appendix A 3 are universal
[2,3], that is, independent of the particular realization of the
conserved variable q.
For a constant gravitational coupling,GðqÞ¼ ð8π=3ÞGN ,

(4.3a) forces the vacuum energy density to be a constant
(assumed to be nonnegative), ρVðqÞ ¼ const ¼ Λ ≥ 0. In
addition, (4.3b) reduces to the standard Friedmann equa-
tion, H2 ¼ ð8π=3ÞGNΛ, with a cosmological constant Λ
and no matter. Equation (4.3b) makes clear that having a
nonconstant gravitational coupling GðqÞ significantly
modifies the structure of the Friedmann equation. This
observation contrasts with what happens for the “regular-
ized” metric of Refs. [18,19], which only changes the H2

term of the Friedmann equation by a multiplicative
Jacobian term, as shown by Eq. (3.3a) of Ref. [18].

B. Vacuum energy

The general behaviour of a self-sustained vacuum does
not depend much on the particular choice of the vacuum
energy density ϵðqÞ in the action. There are only the
following requirements: ϵðqÞ should be zero in the trivial
vacuum (q ¼ 0) and the trivial vacuum should be unstable
towards the equilibrium vacuum (q ¼ q0 ≠ 0). The sim-
plest possible form is

ϵðqÞ
q0

¼ −
3

2

q2

q20
þ 1

2

q4

q40
: ð4:4Þ

Here, q0 > 0 is themagnitude of q in equilibrium, so that the
present Newton “constant” is given by GN ¼ 3=ð8πÞGðq0Þ.
We have also used a particular normalization, so that the
equilibrium vacua have chemical potentials μ ¼ �1, which
are assumed to correspond to topological quantum numbers
of the vacuum. The value of the chemical potential in the
equilibrium vacuum fully determines the coefficients −3=2
and 1=2 in (4.4).
Note that the trivial vacuum with q ¼ 1=G ¼ 0 and the

real vacuum with q ¼ �q0 have the same thermodynamic
vacuum energy: ρVð0Þ ¼ ρVðq0Þ. This agrees with the
multiple-point criticality principle [30–32]. However, as
distinct from the multiple-point criticality principle, one of
these vacua is unstable. Actually, we can also use another
form of ϵðqÞ, in which both vacua are locally stable. In
quantum liquids, our construction corresponds to the coex-
istence of liquid andvapor at a nonzero pressure,while at zero
pressure the gas phase is unstable towards the liquid phase.
Figure 1 shows, for later reference, the vacuum energy

density ρVðqÞ from (3.3) and (4.4) at three different values
of the chemical potential μ [the middle panel shows, in fact,
the Ansatz function ϵðqÞ].

C. Modified big bang

Let us, first, find a solution at small jtj ≪ t0 ∼ q−1=40 , i.e.,
for times shorter than the Planck time. From (4.3) and (4.4),
we obtain for small positive t:

q ¼ q0
t2

t20
; H ¼ q1=20

t2

t0
; G−1 ¼ q1=20

t
t0
; ð4:5aÞ

μ ¼ −1: ð4:5bÞ

For later times, t ≫ t0, the solution will have oscillations
[3], which asymptotically approach the Minkowski vacuum
with jqj ¼ q0.
There are now two possible extensions to negative t. The

first extension is symmetric with respect to time reversal,

q ¼ q0
t2

t20
; H ¼ q1=20

t2

t0
; G−1 ¼ q1=20

jtj
t0
; ð4:6aÞ

μ ¼ −1; ð4:6bÞ

BIG BANG AS A TOPOLOGICAL QUANTUM PHASE … PHYS. REV. D 105, 084066 (2022)

084066-3



and the second extension antisymmetric (see Appendix B
for further details),

q¼ q0
tjtj
t20

; H¼ q1=20

tjtj
t0

; G−1¼ q1=20

jtj
t0
; ð4:7aÞ

μ ¼ −sgnt: ð4:7bÞ

The symmetric case (4.6) does not have topological
stability, since the “big bang” connects two topologically
equivalent vacua (each having μ ¼ −1). The antisymmetric
case (4.7), on the other hand, has the “big bang” (or, more
precisely, the “bounce”) serving as a boundary between
different topological vacua (going, in Fig. 1, from the left
panel, via the middle panel, to the right panel), and this
boundary corresponds to the gapless boundary state of
topological insulators.
In our case, the role of the gap is played by the quantities

q, μ, 1=G, ϵ, and ρV , which are all nullified in this boundary
state. Remark that this behavior of 1=G, in particular, is the
opposite from that of an earlier kink-bounce solution [23],
which had Geff ∼ t2, whereas here it is 1=G that vanishes at
t ¼ 0, as well as all energy densities.

D. Possible physical interpretation

We have presented further analytic and numeric results in
Appendix B. These results give the behavior for a cosmic
time t running over the whole real axis, with an even
solution aðtÞ ≥ 1 having aðtÞ → ∞ for t → �∞ and
að0Þ ¼ 1. The interpretation of this complete solution is,
however, rather subtle. The crucial point is to realize that t
(or its dimensionless counterpart τ) is merely a time
coordinate and not a “physical” time. The “thermody-
namic” time T (pressureless matter perturbations growing
with increasing values of T ) is, most likely, given by jtj. If
we call the t > 0 universe U and the t < 0 universe Ū, then
the solution of Appendix B corresponds to two universes
(or possibly a universe-antiuniverse pair) with local
thermodynamic times:

T U ¼ t; for t > 0; ð4:8aÞ

T Ū ¼ −t; for t < 0: ð4:8bÞ

A brief discussion of the “thermodynamic” time is given
in the last paragraph of Sec. IV of Ref. [21] and a brief
discussion of the two-universes interpretation in the second
point of Sec. 3.2 of Ref. [22]. The scenario of a universe-
antiuniverse pair was first considered in Ref. [33], with a
follow-up paper in Ref. [34]. The strict validity of the
papers [33,34] is, however, rather doubtful, as the Einstein
gravitational equation used may not hold for an infinite
matter energy density and an infinite Kretschmann curva-
ture scalar [18].
So, the physical picture we have is as follows. The “big

bang” is replaced by a topological quantum phase transition
in the vacuum, which corresponds to a “temporal” kink-
type solution of the vacuum variable qðtÞ. (Recall that the
standard kink solution has the scalar field changing in a
spacelike direction.) The center of the kink-type solution
requires the strict absence of matter. Matter may be
generated by the oscillations of the vacuum variable q as
discussed in Appendix B. It may, however, be that the
proper physical interpretation of the solution obtained in
Appendix B is not that of a bouncing cosmology (starting
from t ¼ −∞, passing through a bounce at t ¼ 0, and
proceeding on to t ¼ ∞), but rather that of a creation
process at t ¼ 0, with two more or less equivalent branches:
U for t > 0 and Ū for t < 0.

V. OUTLOOK

The question arises as to the origin of the 3-form gauge
field, which appears to be essential for a proper description
of the quantum vacuum. One possible answer to this
question may come from the discussion in Ref. [35]. It
is shown there that, in order to cancel all quantum
anomalies, we may need, in addition to the fundamental
fermionic and gauge fields, also certain scalars with mass
dimension zero. Our chemical potential μ is conjugate to
the 4-form field strength F (as discussed in Secs. II and III)
and may be an example of such a dimensionless field.

3 2 1 0 1 2 3
q2.5

2
1.5
1

0.5
0

0.5
V 1

3 2 1 0 1 2 3
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2
1.5
1

0.5
0

0.5
V 0

3 2 1 0 1 2 3
q2.5

2
1.5
1

0.5
0

0.5
V 1

FIG. 1. Vacuum energy density ρVðqÞ from (3.3) for three different values of the chemical potential, μ ¼ 1; 0;−1. The ϵðqÞ Ansatz
(4.4) has been used and the scale q0 has been set to unity. According to (3.4), the stable equilibrium value of the vacuum variable is
q ¼ −q0 ¼ −1 for chemical potential μ ¼ 1 and q ¼ q0 ¼ 1 for μ ¼ −1. For chemical potential μ ¼ 0, the equilibrium state q ¼ 0 is
unstable. The left panel refers to one phase of the quantum vacuum (characterized by μ ¼ 1) and the right panel to another phase
(characterized by μ ¼ −1).
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Recall that the (pseudo)scalar q follows from the 4-form
field strength F by the expression (3.1).
On the other hand, if the “big bang” is regular, i.e., fully

determined by the dynamics of q and the metric, then the
chemical potential is a dynamical invariant of these
equations and thus cannot change sign in this regular
“big bang.” Then it would make sense to consider the “big
bang” with an antisymmetric tetrad determinant,
eðtÞ ¼ −eð−tÞ, as discussed in Refs. [33,34,36]. In this
case, qðtÞ can change sign with a fixed value of the
chemical potential. However, this scenario would require
an extra equation for eðtÞ. For that reason, it would seem
preferable to use a theory in which eðtÞ is the order
parameter of the symmetry breaking phase transition, so
that eðtÞ would play the role of the vacuum variable
(cf. Refs. [37–39]).
In the discussion of the previous paragraph, we

have implicitly considered the evolution from t ¼ −∞
to t ¼ þ∞ (or vice versa), but it is also possible that a
universe-antiuniverse pair “starts” at t ¼ 0, as discussed in
Sec. IV D and perhaps in line with remark (ii) in the last
section of Ref. [34]. There is then a creation process at the
coordinate value t ¼ 0, which gives rise to a universe U
with chemical potential μ ¼ −1 (for an appropriate nor-
malization) and an antiuniverse Ū with chemical potential
μ ¼ 1. In fact, there would be an emergent spacetime at
t ¼ 0 with the proper matter fields and constants relevant
to both branches U and Ū, which each would have a
thermodynamic time T as given by (4.8a) and (4.8b),
respectively.
One possible origin for such an emergent spacetime

(both its points and its metric) would be the IIB matrix
model [40–42], with further references in the review [22].
The interest of the IIB matrix model is that it appears to
provide an “existence proof” for the idea of emergent
spacetime and matter, but what new physics really replaces
Friedmann’s big bang singularity remains an open ques-
tion. Perhaps the main result of the present paper provides a
clue, namely that we have obtained a kink-type solution
qðtÞ of the vacuum variable with a vanishing Hubble
parameter H precisely at the central point of the kink-type
solution with q ¼ 0 and conformal symmetry.
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APPENDIX A: BACKGROUND MATERIAL

In this appendix, we provide some background on a
particular condensed-matter-physics approach (q theory) to
the cosmological constant problem (CCP).

1. CCP from the condensed-matter point of view

In condensed matter physics, we know both the infrared
(IR) low-energy limit described by the effective quantum
fields and the ultraviolet (UV) high-energy limit corre-
sponding to the atomic physics, the analog of Planck-scale
quantum gravity. That is why we can explicitly see how the
zero-point energy of the effective quantum fields in the IR
are completely canceled by the UV degrees of freedom in
the ground state of any condensed matter system. This
occurs due the general thermodynamic Gibbs-Duhem
relation, which is applicable to any system, be it the
relativistic quantum vacuum of elementary particle physics
or the nonrelativistic equilibrium states of condensed
matter physics. Such a natural cancellation of the vacuum
energy in the relativistic quantum vacuum is demonstrated
by our q-theory formalism [2].
The interplay of IR and UV physics in condensed matter

systems can be clarified by the example of quantum liquids,
such as liquid 3He and liquid 4He [43]. The ground state of
each liquid may serve as a nonrelativistic analog of the
relativistic quantum vacuum. The stability of the many-
body system is supported by the conservation law for the
atoms of the liquid. The energy of the many-body system is
proportional to the numberN of atoms and to the volume V.
These quantum liquids are self-sustained systems. This
means that, as distinct from gases where equilibrium states
may exist only under external positive pressure, liquids
have a nonzero equilibrium density even in the absence of
an environment.
At the UV scale, the quantum liquid is the many-body

state of N atoms, which are described by the nonrelativistic
many-body Hamiltonian (for simplicity, we consider liquid
4He with spinless atoms):

H ¼ −
ℏ2

2m

XN
i¼1

∂2

∂r2i þ
XN
i¼1

XN
j¼iþ1

Uðri − rjÞ: ðA1Þ

Here,m is the bare mass of the 4He atom andUðri − rjÞ the
pair-interaction potential of the bare atoms i and j.
The Hamiltonian (A1) acts on the many-body wave
function Ψðr1; r2;…; ri;…; rj;…Þ.
In the thermodynamic limit N → ∞, the many-body

physics can be described in the second-quantized form,
where the above Schrödinger many-body Hamiltonian
becomes the Hamiltonian of a quantum field theory:

H̃ ¼ H − μN ¼
Z

dxψ†ðxÞ
�
−
∇2

2m
− μ

�
ψðxÞ

þ 1

2

Z
dxdyUðx − yÞψ†ðxÞψ†ðyÞψðyÞψðxÞ: ðA2Þ

For the 4He liquid, ψðxÞ is a bosonic quantum field, the
annihilation operator of the 4He atoms. Note an important
difference between the atomic many-body Hamiltonian H
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in (A1) and the quantum field theory Hamiltonian H̃ in
(A2). The latter contains, namely, a term with the chemical
potential μ, which is the Lagrange multiplier responsible
for the conservation of particle number N ¼ R

d3rψ†ψ.
In the thermodynamics of liquids, the energy density is a

function of the number density of atoms n ¼ N=V, i.e.,
hHi ¼ ϵðnÞV, while μ is the chemical potential which is
thermodynamically conjugate to n, i.e., μ ¼ dϵ=dn. The
vacuum energy in the quantum field theory of liquids, as
described by (A2), is hH̃i ¼ ρVðnÞV, where the relevant
vacuum energy density is ρVðnÞ ¼ ϵðnÞ − μn. From the
general thermodynamic Gibbs-Duhem relation at zero
temperature, ϵðnÞ ¼ μn − P, follows that, in the ground
state of the liquid, the energy density ρVðnÞ has the
following equation of state:

ρVðnÞ≡ ϵðnÞ − μn ¼ −P: ðA3Þ

This equation of state does not depend on the microscopic
structure of the liquid and on the detailed form of the
function ϵðnÞ, except for the required stability condition
d2ϵ=dn2 > 0 in the equilibrium state. This holds for any
many-body system in the limit N → ∞. Hence, it is not
surprising that the same equation of state ρV ¼ −P is
applicable to the energy density of the relativistic quantum
vacuum, which is the reason why we have used the suffix V
on the energy density ρVðnÞ.
One important property of the liquid is that it is a

self-sustained system: liquids are stable at zero external
pressure, whereas gasses are not. That is why, in the
absence of an external environment, and thus at P ¼ 0,
the relevant energy density in the ground state of the liquid
is exactly zero, ρV ¼ 0. The contribution of ϵðnÞ to ρVðnÞ is
precisely canceled by the contribution −μn without any
fine-tuning. This is a direct consequence of the laws of
thermodynamics. The equilibrium values of n and μ in the
ground state (vacuum) of the liquid are determined by the
following equations:

ϵðn0Þ − μ0n0 ¼ 0; μ0 ¼
dϵ
dn

����
n¼n0

: ðA4Þ

Let us turn to the interplay of the IR and the UV. The
quantity ϵðnÞ is determined by atomic physics, i.e., the
physics of the UV. On the other hand, the quantity ρVðnÞ
belongs to the IR physics, where two UV contributions
cancel each other in full equilibrium. This means that, for
deviations from equilibrium or at nonzero temperature,
the energy density ρV is determined by effective theories in
the IR. The IR physics contains, in particular, bosonic or
fermionic quasiparticles, which represent the analog of
matter on the quantum-vacuum background of the liquid. If
the temperature is nonzero, then these quasiparticles
contribute to the equation of state, making for ρV ≠ 0.
For the case of a linear spectrum of these quasiparticles, the

vacuum energy density is comparable with the free energy
of the quasiparticles, ρV ∝ T4. This situation resembles the
one of our present Universe, where the numerical value of
the vacuum energy density is of the same order of
magnitude as that of the energy density of matter.
Now about divergences in the effective field theory of the

quantum liquids. In the low-energy limit, the quantum
liquids contain fermionic and bosonic quasiparticles in the
background of the quantum vacuum. They play the role of
matter and are described by effective quantum fields. These
fields have the conventional zero-point energies, which
give rise to (negative or positive) divergent contributions to
the vacuum energy. In elementary particle physics, these
divergences require consideration of the UV physics.
But, in quantum liquids, we know the UV (atomic) physics
with its Hamiltonians (A1) and (A2), and we also know
that the nullification of the vacuum energy in full equilib-
rium is protected by thermodynamics. That is why such
divergences are natural but not catastrophic: the UV
degrees of freedom also obey the laws of thermodynamics,
and the divergent terms coming from the emergent fields
are naturally canceled in the equilibrium vacuum by the
atomic (trans-Planckian) degrees of freedom.
The above discussion demonstrates that thermodynamics

is more general than relativistic invariance, which suggests
that the cosmological constant problem can be studied by
using our experience from condensed matter physics.

2. CCP in q theory

Let us, then, apply condensed-matter insights to the
relativistic quantum vacuum. Actually, the only require-
ment of the relativistic vacuum is that it should belong to
the class of self-sustained media. This is what distinguishes
the condensed-matter approach from other possible scenar-
ios for the nullification of the cosmological constant in
full equilibrium. The vacua of this class of self-sustained
systems can be characterized by a particular vacuum
variable, the conserved quantity which we have denoted
by q. This q is similar to the density of atoms n, but q does
not violate the relativistic invariance of the vacuum [2].
The vacuum equation of state in terms of q has the same
form as (A3):

ρVðqÞ ¼ ϵðqÞ − μq ¼ −P; ðA5Þ

where μ is the chemical potential corresponding to the
conservation law obeyed by the vacuum “charge” q.
The expression (A5) is general, as it does not depend on

the exact form of energy density ϵðqÞ, which is determined
by the UV physics, Planckian or trans-Planckian. The field
equation for the q field and the Einstein equation for gravity
interacting with the q field have the general form as given in
Appendix A 3 (where q is denoted F). It is important that
the role of the cosmological “constant” in the Einstein
equation is played by the IR quantity ρVðqÞ, rather than by
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the UV energy density ϵðqÞ, see Eqs. (A10) and (A17)
below, with q denoted by F. This demonstrates that the
Einstein equation belongs to the class of effective theories
emerging in the low-energy corner.
Just as other members of the class of self-sustained

vacua, the relativistic quantum vacuum may exist without
external environment, i.e., at zero external pressure. The
equilibrium values of q and μ in the self-sustained
relativistic vacuum are given by expressions similar to
those in (A4):

ϵðq0Þ − μ0q0 ¼ 0; μ0 ¼
dϵ
dq

����
q¼q0

: ðA6Þ

As these equations do not depend on the underlying
microscopic theory, we can exploit different choices for
the vacuum variable. For example, we can choose as
the vacuum variable the scalar q from the 4-form field
strength [27–29]. This 4-form field was used for the CCP
by Hawking [28], in particular. In Ref. [2], we extended the
Hawking approach beyond the quadratic term, which
allowed us to consider self-sustained quantum vacua. It
is very well possible that the 4-form field not only serves as
a toy model for the vacuum field but that it represents a
genuine fundamental field of the quantum vacuum.
At this point, let us stress the main difference between

the scalar q from the 4-form field strength [see Eq. (A7c)
below, with q denoted by F] and a fundamental scalar field
ϕ. While the fundamental scalar field ϕ, coupled to the
metric, may produce a solution to the CCP, Weinbergs “no-
go theorem” [1] shows that the full nullification of the
vacuum energy in equilibrium needs to be fine-tuned. The
scalar q from the 4-form field strength does not require
fine-tuning. As distinct from the fundamental scalar field ϕ,
the scalar q from the 4-form field strength has the analog of
the chemical potential μ, which is responsible for the
cancellation of the UV terms in (A6). Further details on
the different roles of q and ϕ are given in Sec. 2 of Ref. [6].
Let us mention, that the q-field approach differs from

unimodular gravity, which also generates a constant of
motion [44]. In the realization of q theory in terms of the
4-form field strength, the theory is fully diffeomorphism
invariant. For this thermodynamic approach, the constant of
motion is the chemical potential μ corresponding to the
conserved quantity q. In the equilibrium state of the system,
both the chemical potential μ and the temperature T are
constant.
In principle, the tetrad determinant can also serve as a

type of vacuum variable [37–39]. This would correspond to
the nonlinear extension of unimodular gravity, where the
tetrad determinant (and, thus, the metric determinant) is not
fixed, and all physical quantities are functions of this
variable.

3. Action and field equations of q theory

Here, we recall the main equations from Ref. [3], where
the q-type vacuum variable is denoted F. Indeed, the use of
the notation F in this appendix makes clear that a particular
realization of q is being considered, namely a realization
based on the 4-form field strength Fαβγδ from a 3-form
gauge field Aβγδ (details will be given shortly). The mass
dimension of this particular vacuum variable F is 2,
whereas the vacuum variable q of Secs. III and IV has a
mass dimension of 4.
The starting point is the action as discussed in our

original paper [2], but with Newton’s constant GN replaced
by a gravitational coupling parameter G which is taken to
depend on the state of the vacuum and thus on the vacuum
variable F. The GðFÞ dependence is natural and must, in
principle, occur in the quantum vacuum. Note that this
GðFÞ dependence allows the cosmological “constant” to
change with time, which is otherwise prohibited by the
Bianchi identities and energy-momentum conservation
(this point will be discussed further in the last paragraph
of the present appendix).
For natural units with ℏ ¼ c ¼ 1, the action considered

takes the following form [3]:

S½g;A;ψ � ¼−
Z
R4

d4x
ffiffiffiffiffiffi
−g

p �
R

16πGðFÞþ ϵðFÞþLMðψÞ
�
;

ðA7aÞ

Fαβγδ ≡∇½αAβγδ�; F2 ≡ −
1

24
FαβγδFαβγδ; ðA7bÞ

Fαβγδ ¼Fϵαβγδ
ffiffiffiffiffiffi
−g

p
; Fαβγδ ¼Fϵαβγδ=

ffiffiffiffiffiffi
−g

p
; ðA7cÞ

where a square bracket around spacetime indices denotes
complete antisymmetrization and ∇α is the covariant
derivative. The right-hand side of (A7a) shows only the
functional dependencies on F ¼ F½A; g� and ψ , while
keeping the functional dependence on the metric g implicit.
The field ψ in (A7a) stands for a generic low-energy matter
field with a Lagrange density LM, which is assumed to be
without direct F-field dependence (it is possible to relax
this assumption by changing the low-energy constants in
LM to F-dependent parameters). The metric signature is
taken as ð−þþþÞ.
Using (A7c), the variation of the action (A7a) over the

3-form gauge field A gives the generalized Maxwell
equation in the following form [3]:

∂α

�
dϵðFÞ
dF

þ R
16π

dG−1ðFÞ
dF

�
¼ 0: ðA8Þ

The solution is simply
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dϵðFÞ
dF

þ R
16π

dG−1ðFÞ
dF

¼ μ; ðA9Þ

with an integration constant μ. The constant μ can be
interpreted as a chemical potential corresponding to the
conservation law obeyed by the vacuum “charge” q≡ F;
for further discussion, see Refs. [2,3] and Appendixes A 1
and A 2 here.
Using (A9), the variation of the action (A7a) over the

metric gαβ gives the generalized Einstein equation in the
following form [3]:

1

8πGðFÞ
�
Rαβ−

1

2
Rgαβ

�
þ 1

8π
ð∇α∇βG−1ðFÞ−gαβ□G−1ðFÞÞ

−ðϵðFÞ−μFÞgαβþTM
αβ¼0; ðA10Þ

which will be used in the rest of this appendix.
Equations (A9) and (A10) are universal: they do not

depend on the particular origin of the vacuum field F. The
F field can be replaced by any conserved variable q, as
discussed in Ref. [2] (see also Ref. [6] for a q-field in an
entirely different context, namely that of freely suspended
films). Note that the role of the cosmological constant in the
Einstein gravitational equation (A10) is played by the
vacuum energy density

ρVðFÞ≡ ϵðFÞ − μF: ðA11Þ

This confirms the general equation (A5) for the class of
considered quantum vacua with a conserved vacuum
variable. Recall that ρVðFÞ belongs to the IR physics,
as distinct from ϵðFÞ which is determined by the UV
degrees of freedom. Remark also that, using the definition
(A11), we can write the solved generalized Maxwell
equation (A9) as

dρVðFÞ
dF

þ R
16π

dG−1ðFÞ
dF

¼ 0: ðA12Þ

Turning to cosmology, we use the standard spatially flat
Robertson-Walker metric (4.2) with cosmic scale factor
aðtÞ and the matter energy-momentum tensor of a homo-
geneous perfect fluid with energy density ρMðtÞ and
pressure PMðtÞ. The quantum-vacuum variable is also
assumed to be homogeneous, F ¼ FðtÞ. In addition, we
define the usual Hubble parameter by

HðtÞ≡ 1

aðtÞ
daðtÞ
dt

: ðA13Þ

From the Maxwell-type equation (A12), we then have

3

8π

dG−1ðFÞ
dF

�
dH
dt

þ 2H2

�
¼ dρVðFÞ

dF
; ðA14Þ

and from the Einstein-type equation (A10):

G−1H2 ¼ 8π

3
ρtot −H

dG−1

dt
; ðA15aÞ

G−1
�
2
dH
dt

þ3H2

�
¼−8πPtot−2H

dG−1

dt
−
d2G−1

dt2
;

ðA15bÞ

with total energy density and total pressure

ρtot ≡ ρV þ ρM; Ptot ≡ PV þ PM; ðA16Þ

for the effective vacuum energy density

ρVðFÞ ¼ −PVðFÞ ¼ ϵðFÞ − μF: ðA17Þ

The cosmological equations (A14) and (A15) give
immediately energy conservation of the matter component,

dρM
dt

þ 3HðPM þ ρMÞ ¼ 0; ðA18Þ

as should be the case for a standard matter field ψ [3]. Note,
finally, that multiplication of the cosmological Maxwell-
type equation (A14) by dF=dt gives

dρV
dt

¼ 3

8π

dG−1

dt

�
dH
dt

þ 2H2

�
: ðA19Þ

This last equation shows that the cosmological “constant”
(i.e., the vacuum energy density ρV) can change with
cosmological time t, provided the gravitational coupling
depends on the vacuum variable [G ¼ GðFÞ with
F ¼ FðtÞ]. For completeness, we remark that a variable
ρV can also have other origins, such as vacuum-matter
energy exchange [5] or higher-derivative terms [7].

APPENDIX B: ANALYTIC AND NUMERIC
RESULTS

This appendix is more or less self-contained, but, for a
better understanding, it is advisable to first read the
main text.
We start from the relatively simple theory considered in

Ref. [3] and reviewed in Appendix A 3. The action consists
of three terms. The first action term corresponds to a
potential term ϵðqÞ involving the 4-form field strength
[here, described by a (pseudo)scalar field qðxÞ]. The second
term is the Einstein-Hilbert term with a q-dependent
gravitational coupling parameter GðqÞ. The third term,
finally, is the standard matter action term without further
dependence on q (in principle, the parameters of the matter
action could have a q dependence).
For our cosmological discussion, we take the spatially flat

Robertson-Walker metric (4.2) with a cosmic scale factor
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aðtÞ and a homogeneous-perfect-fluid energy-momentum
tensor for the matter component with energy density ρMðtÞ
and pressure PMðtÞ. The vacuum component is determined
by a homogeneous vacuum variable q ¼ qðtÞ.
Dimensionless variables (q0 ¼ 1) are obtained as

follows:

q → f; G−1 → k; H → h; ðB1aÞ

t → τ; μ → u; ρV;M → rV;M: ðB1bÞ

Then, there are the following dimensionless cosmological
ordinary differential equations (ODEs) [3]:

r0V ¼ k0ð _hþ 2h2Þ; ðB2aÞ

rV þ rM ¼ kh2 þ h_k; ðB2bÞ

_rM þ 3hð1þ wMÞrM ¼ 0; ðB2cÞ

rV ≡ ϵ − uf; ðB2dÞ

where the prime denotes differentiation with respect to f
and the overdot differentiation with respect to τ. The above
ODEs agree with those in Eqs. (4.12abc) of Ref. [3], as we
have absorbed a factor 3=ð8πÞ into k. [It is also obvious that
the dimensionless ODEs (B2a), (B2b), and (B2c) corre-
spond to (A14), (A15a), and (A18) in Appendix A 3
above.] In addition, we have used the dimensionless
Hubble parameter,

hðτÞ ¼ _aðτÞ=aðτÞ; ðB3Þ

obtained from the cosmic scale factor aðτÞ of the spatially
flat Robertson-Walker metric.
Next, make the following Ansätze:

kðfÞ ¼ ððf2Þ1=2Þ1=2 ¼
ffiffiffiffiffiffi
jfj

p
; ðB4aÞ

ϵðfÞ ¼ −
3

2
f2 þ 1

2
f4; ðB4bÞ

uðτÞ ¼
�−1; for τ ≥ 0

1; for τ ≤ 0
: ðB4cÞ

For the record, the Ansätze (B4a), (B4b), and (B4c)
correspond to (4.1), (4.4), and (4.7b) in the main text. In
(B4c), the double valuedness of the chemical potential u at
τ ¼ 0 (or μ at t ¼ 0 for the original quantities) allows for a
solution of the generalized Maxwell equation, as given by
(A8) in Appendix A 3. A further comment on the double
valuedness at τ ¼ 0 will appear below.
For τ ∼ 0, a series-type solution (denoted by a bar) reads

f̄ðτÞ ¼ τjτj
�
1þ 1

3
τ2 þ…

�
; ðB5aÞ

h̄ðτÞ ¼ τjτj
�
1 −

3

2
τ2 −

5

8
τ4 þ…

�
; ðB5bÞ

r̄MðτÞ ¼ jτj
�
0þ 4

5
γτ4 þ…

�
; ðB5cÞ

with coefficients obtained from the ODEs (B2) with
Ansätze (B4) and γ ¼ 0 for the moment (see below for
further discussion). Numerical results for τ > 0 are shown
in Fig. 2.
These functions f̄ and h̄ have a discontinuous

second derivative at τ ¼ 0. The second derivative of f̄,
in particular, appears in the second Friedmann equation
[that equation is given by (A15b) in Appendix A 3].
However, it turns out that the dangerous term f̈ appears
in the combination ð−2τ þ jτjf̈Þ, so that the discontinuity is
removed in this second Friedmann equation for f ¼ f̄ ∼
τjτj at τ ∼ 0: ð−2τ þ jτjd2f̄=dτ2Þ ∼ 0. Physically, this result
is important for energy conservation.
For completeness, we also give the series-type solution

(denoted by a bar) of the cosmic scale factor aðτÞ. From
(B3), (B5b), and the boundary condition að0þÞ ¼ 1, there
are then two types of solutions for āðτÞ, even and odd.
Specifically, we find for τ ∼ 0:

āevenðτÞ¼ 1þ1

3
jτjτ2− 3

10
jτjτ4þ 1

18
τ6−

5

56
jτjτ6þ…;

ðB6aÞ

āoddðτÞ ¼ āevenðτÞ ×
�
1; for τ ≥ 0

−1; for τ ≤ 0
: ðB6bÞ
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FIG. 2. Positive-τ solution of the ODEs (B2) for wM ¼ 1=3 with Ansätze (B4) and boundary conditions at τbcs ¼ 1=100 from (B5)
with γ ¼ 0.
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This last solution, as it stands, is double valued at τ ¼ 0 and
may possibly be relevant for the universe-antiuniverse pair
as discussed in Sec. IV D.
According to (B5a) and (B5b), the big bang is replaced

by a topological quantum phase transition in the vacuum
and matter is perhaps generated by the oscillations of the
vacuum variable f (cf. the left panel of Fig. 2). A possible
term for vacuum-matter energy exchange gives the follow-
ing modified ODEs:

_rV ¼ _kð _hþ 2h2Þ − γh _f2; ðB7aÞ
rV þ rM ¼ kh2 þ h_k; ðB7bÞ

_rM þ 3hð1þ wMÞrM ¼ γh _f2; ðB7cÞ
rV ≡ ϵ − uf; ðB7dÞ

for γ > 0 and τ ≠ 0. In order to arrive at (B7a), we have
multiplied (B2a) by _f and we only consider nonzero values

of τ, forwhichuðτÞ is constant. Now, the series-type solution
(B5c) picks up a nonzero quintic term in r̄M. Numerical
results for τ > 0 and γ ¼ 1=5 are shown in Fig. 3.
This last numerical solution is plotted in Fig. 4 over the

complete τ axis (or rather a finite segment thereof), with an
enlargement of the central region in Fig. 5. The corre-
sponding even solution of the cosmic scale factor aðτÞ is
given in Fig. 6, together with the combination rMa4, which
shows that the matter, after a creation phase, dilutes more or
less in the standard way (now shown over a somewhat
larger τ range).
From Fig. 6 for the even solution, we see that aðτÞ ≥ 1

for all values of τ and there is obviously no geodetic
incompleteness at τ ¼ 0 for the spatially flat Robertson-
Walker metric (4.2). The same conclusion holds for the
odd solution (B6b), as long as bosonic observables are
considered. Recall that geodetic incompleteness is
the defining characteristic of the Friedmann big bang
singularity [11].
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FIG. 3. Same as Fig. 2 but now from the ODEs (B7) with parameters fwM; γg ¼ f1=3; 1=5g.
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FIG. 4. Positive-τ numerical solution from Fig. 3 and the corresponding negative-τ numerical solution from boundary conditions at
τ ¼ −τbcs ¼ −1=100. The series-type solution (B5) is plotted for τ ∈ ½−τbcs; τbcs�, but this is barely visible for the ½−10; 10� range shown
(see Fig. 5 for an enlargement).
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FIG. 5. Solution from Fig. 4 plotted over the central region −4τbcs ≤ τ ≤ 4τbcs.
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