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a b s t r a c t

While most anonymization technology available today is designed for static and small data, the current
picture is of massive volumes of dynamic data arriving at unprecedented velocities. From the stand-
point of anonymization, the most challenging type of dynamic data is data streams. However, while
the majority of proposals deal with publishing either count-based or aggregated statistics about the
underlying stream, little attention has been paid to the problem of continuously publishing the stream
itself with differential privacy guarantees. In this work, we propose an anonymization method that can
publish multiple numerical-attribute, finite microdata streams with high protection as well as high
utility, the latter aspect measured as data distortion, delay and record reordering. Our method, which
relies on the well-known differential pulse-code modulation scheme, adapts techniques originally
intended for hybrid video encoding, to favor and leverage dependencies among the blocks of the
original stream and thereby reduce data distortion. The proposed solution is assessed experimentally
on two of the largest data sets in the scientific community working in data anonymization. Our
extensive empirical evaluation shows the trade-off among privacy protection, data distortion, delay
and record reordering, and demonstrates the suitability of adapting video-compression techniques to
anonymize database streams.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Much of what we touch and work with today automatically
enerates data that someone is disposed to collect and analyze.
he availability of massive amounts of such data – frequently at
he individual level – play a fundamental role in the extraction of
nowledge and decision-making in contexts as varied as business
ompetitiveness, marketing, social relationships, transportation,
ealth and wellbeing, education and politics [1].
Despite the economic and societal good that comes from big-

ata research, raising tensions exist with the perceived risks to
ndividuals’ privacy [2–4]. To deal with these tensions, current
egal frameworks in Europe and other regions limit the collec-
ion, processing and sharing of personally identifiable information
PII). Basically, the controllers of PII have a series of obligations to-
ard the individuals to whom the PII corresponds, which include,
mong others, seeking their consent, guaranteeing them rights to
ccess, rectification and erasure.
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The advent of big data, together with the development of
data science in general and machine learning in particular, has
raised the question of how to leverage those PII-data for sec-
ondary purposes (i.e., other than the purpose at collection time),
since complying with the above-mentioned legal obligations is
extremely difficult in a scenario where a bunch of controllers may
exchange and fuse data. It is precisely in this situation where
anonymization comes into the picture, as the tool that legitimately
allows circumventing the legal restrictions applicable to those
data.

Differential privacy (DP) [5] is one of the most prominent
privacy notions in the field of anonymization. In the interactive
setting, the assumption is that an anonymization mechanism
sits between an analyst submitting queries and the database1
answering them. In the non-interactive scenario, on the other
hand, a protected version of the original database is generated
and released, which allows any entity (not necessarily the data
analyst in question) to perform any analyses on the protected
data, and permits using such data, possibly in combination with
other information, for secondary purposes.

1 Throughout this work, we shall use the terms data set and database
nterchangeably.
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The assumption in most of the current anonymization tech-
nology, however, is that the original database does not change
over time and there is no need to publish it more than once [6].
Nonetheless, in the current context where colossal amounts of
data are generated every single day [7], this is by no means
realistic.

Our work tackles the problem of anonymizing dynamic
atabases with DP guarantees. We focus on the most challenging
ase, data streams, where only new records and record updates
re published at certain release times, data freshness is critical,
nd the order in which the protected data are released mat-
ers. For this type of data, the vast majority of proposals deal
ith publishing either count-based or aggregated statistics about
he underlying dynamic data (e.g., [8,9]). To the best of our
nowledge, only [10] has studied the publication of the database
tself (rather than statistics derived from it) in a context of data
tream. Nonetheless, that work is intended only for data sets
ith a single attribute and does not contemplate record updates,
hich renders the anonymization scheme useless for practical
tream-data based systems.

.1. Contribution and plan of this paper

The main contribution of this paper is an anonymization
ethod that can publish multiple numerical-attribute, finite
atabase streams with DP guarantees through hybrid video en-
oding techniques. The proposed method relies on the signal
ompression scheme differential pulse-code modulation (DPCM),
nd is optimized in a number of different ways to allow record
pdates and to provide high-privacy protection and high-utility
uarantees in terms of data distortion, delay and record
eordering.

Our solution operates with blocks of records, which are input
nto a closed loop consisting of several modules: preprocessing,
nalysis-synthesis, quantization, prediction and encoder control.
n the one hand, the preprocessing, prediction and encoder con-
rol modules work jointly to select a permutation of the records
f the block and a configuration of the prediction module that
inimize the error in predicting the block; the prediction module
an be configured to both leverage statistical dependencies inside
rames (i.e., groups of blocks protected together) and exploit
ependencies among the different frames of the database stream.
n the other hand, the analysis, synthesis and quantization mod-
les operate jointly to choose the transform coding scheme and
he number of transform coefficients that will be protected in
rder to minimize the mean squared error (MSE) incurred in
eleasing the synthesized, protected block (instead of the original
ne).
The proposed solution is evaluated experimentally on two

eal data sets, ‘‘(Very) Large Census’’ and ‘‘Quant Forest’’, which
re two of the largest data sets in the community of statistical
isclosure control. A variety of empirical results shows the trade-
ff among privacy protection, data distortion, delay and record
eordering, and demonstrates the suitability of our approach.

The remainder of this paper is organized as follows. Sec-
ion 2 establishes some preliminaries and reviews the state of art
elevant to this work. Section 3 formally states the problem tack-
ed in this paper. Section 4 describes our approach to generate
P database streams through hybrid video encoding techniques.
ection 5 conducts an experimental evaluation of the proposed
nonymization method. Section 6 discusses previous work on
ifferentially-private transform coding. Finally, conclusions are
rawn in Section 7.
2

2. Preliminaries

2.1. Differential privacy

DP was originally proposed as a privacy model in a interactive
setting to protect the outcomes of queries to a database. In this
setting, the assumption is that an anonymization mechanism
sits between a user submitting queries and a (trusted) database
curator answering them.

Our work focuses on a non-interactive setting, where the cura-
tor releases a protected version of the database, allowing the user
to perform hopefully any analysis on the data without further
interacting with the curator.

Central to DP is the notion of neighbor databases, which can
be interpreted in two different ways. On the one hand, the un-
bounded case assumes one entry is either removed or added. On
the other hand, the bounded notion considers the replacement of
one record by another. An important difference is that the former
case assumes the size n of the database to be publicly known,
whereas the latter assumes this parameter is private. Nonethe-
less, the two notions of neighborhood are very related and mech-
anisms satisfying one can be adapted to meet the other. For the
sake of mathematical simplicity, we use the latter definition.

We shall consider central DP,2 as defined below.

Definition 1 (L1-sensitivity [5]). Let D be the class of possible data
sets. The global sensitivity or L1-sensitivity of a query function
f :D → Rd is defined as

S(f ) = max
x,x′∈D

∥f (x) − f (x′)∥1,

here x, x′ are any two neighbor databases in the sense described
bove.

efinition 2 (ε-Differential Privacy [5]). A randomized mecha-
ism M on a query function f satisfies ε-differential privacy with
⩾ 0 if, for all pairs of neighbor databases x, x′ and for all O ⊆

ange(M),
P{M(f (x)) ∈ O}

P{M(f (x′)) ∈ O}
⩽ exp(ε).

.2. Related work

In this subsection, we review the state of the art relevant to
his work. We first examine the classical approaches to anonymize
tatic data sets, and secondly analyze those proposals aimed to
rotect dynamic data. In both cases, the privacy model assumed
s DP.

.2.1. Histograms versus record masking
Even if DP was initially proposed to limit disclosure risk in

atabase queries, mechanisms to generate DP data sets (i.e., the
o-called non-interactive setting) appeared soon after its incep-
ion. Nonetheless, except for the simplest data domains, publish-
ng useful DP data sets (i.e., data sets that well approximate the
riginal ones) remains a highly challenging task.
There exist two main approaches to generate DP data sets:

istograms and record masking. In the former case, given an orig-
nal data set x, we generate a histogram h through a suitable
artitioning of the data domain. From this point on, we discard x
nd the target of protection is h. Hence, the goal is to publish hε ,
n ε-DP version of h. In the latter case, the aim is to generate xε ,
n ε-DP version of x, that is, an anonymized version of the data
n the original format.

2 It is also called as user-level DP in data streaming applications.
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The histogram approach takes advantage of the low sensitivity
of counting queries over a partition of the data domain [11]. The
naive application of this mechanism, however, becomes problem-
atic as the complexity of the data domain increases. Note that,
for a fixed accuracy, the cardinality of the partition (number of
bins) grows exponentially with the number of attributes, which
may have important effects on the computational cost and the
accuracy of the protected data.

Some mitigation strategies have been proposed to tackle the
issues caused by data dimensionality. In [12], given a partition,
the authors propose an algorithm that minimizes the error for
a given family of counting queries. In [13], data summarization
techniques are utilized to reduce the time and space complexity,
by making time and space proportional to the number of non-
empty cells in the summarized data set. An alternative way
to deal with those issues is to apply dimensionality-reduction
techniques. This is the strategy followed by [14], which models
the dependency between attributes to generate the DP data set
from a set of low-order marginals.

The alternative to generate DP data sets based on record mask-
ing avoids partitioning the data domain. Instead, the data set
is protected by masking the original records. However, masking
each record by adding a Laplace-distributed noise with mag-
nitude proportional to the record sensitivity is not a feasible
solution. Since the purpose of DP is to hide the presence of
any single record, such a naive approach inescapably needs to
introduce too much noise, thereby producing significant utility
damage.

As a result, a wide body of research has investigated how to
reduce the sensitivity of the queries used to generate the DP
data sets. A few examples include [15–17], where microaggrega-
tion [18] is utilized with that purpose. In the cited works, rather
than querying each original record, only the representatives of the
microaggregation clusters are queried. Since a cluster represen-
tative is an aggregation of the records in the cluster, intuitively
its global sensitivity is smaller than that of any single record.
Clearly, the amount of sensitivity reduction depends on how such
representative values are computed.

2.2.2. Differentially private publication of dynamic data
The aforementioned anonymization schemes assume that the

original data set does not change over time and, therefore, that
there is no need to publish them more than once. However, in
the current context of big data, this seems not realistic.

Obviously, a straightforward application of the previous
schemes to the scenario at hand would still be possible. Nonethe-
less, applying those methods independently at each release time,
i.e., without considering correlations between consecutive re-
leases or the dynamics of the data stream, may not be an ap-
propriate approach.

Few recent works have tackled the problem of protecting
dynamic data sets with DP guarantees. Essentially, the privacy
research community has focused on two distinct scenarios. In the
former scenario, all available data or a synopsis thereof (e.g., his-
tograms) are anonymized periodically, although not necessarily
at regular time instants. On the contrary, in the latter scenario,
(i) data items are not republished in multiple versions, i.e., only
new or updated data are protected at a given release time; (ii)
time is critical, in the sense that a new or updated data item must
be anonymized and published within a predefined, short time
frame; and (iii) the order in which the protected data are released
matters. Following the terminology of [19], we shall refer to these
two scenarios respectively as multiple release and data stream.

Distinct technologies have been developed for each case. In the
ultiple-release scenario, [20] studies the problem of publishing
istograms of dynamic data sets. Instead of generating a DP his-
ogram at each release time, the cited work proposes computing
 ‘

3

only new histograms when the update is significant, that is, when
a distance measure between the current histogram and the latest
released histogram exceeds a threshold. The proposed strategy
is independent of how histograms are computed at each release
time, and the goal is to adjust the threshold adaptively based
on data dynamics. The main problem of this proposal is that it
suffers from all the limitations of the static histogram approach
mentioned in Section 2.2.1.

Another proposal for multiple release is [21], which deals with
the publication of histograms as well, but combines sampling [22]
with clustering (i.e., time units with similar trends are grouped)
to improve utility. The proposed solution, however, adopts an
event-level DP approach [23], which protects the presence of
an individual event, i.e., an individual’s contribution to the data
stream at a single time point, rather than their presence or contri-
bution to the entire publication series (also known as user-level
DP).

In the case of data stream, the vast majority of proposals
focus on publishing either count-based or aggregated statistics.
One of those works is [8], which aims to protect count series
(e.g., the daily count of people diagnosed with HIV/AIDS) over
individuals continuously. The proposed scheme provides user-
level DP and assumes the series are generated by an underlying
process from which predictions are made to enhance the accuracy
of the released data. However, a statistical model of the process
needs to be assumed or inferred from public data with similar
patterns, and therefore the anonymization scheme may not be
effective when the actual data deviate from it.

PeGaSus [24] is another proposal that aims to release continu-
ous count-based statistics. Unlike [8], the notion of neighborhood
between databases (and so DP) is modified here to suit streaming
analytics but it is only intended to protect single-data events,
analogously to event-level DP.

A more recent work is OptStream [9], which generates a
sequence of protected data where each term represents a pri-
vate version of the aggregated data (e.g., a count) up to a given
time instant. The proposed solution relies on the w-event frame-
work [25], which extends the definition of DP to protect stream
analytics. However, like PeGaSus, it cannot be applied to release
the database stream itself and, besides, the target of protection
are not individuals’ full contributions to the stream.3

To the best of our knowledge, only [10] has studied the pub-
lication of the database itself (rather than statistics derived from
it) in a context of data stream, which is the focus of this work.
δ-DOCA, as the method is called, adopts a record-masking ap-
proach and provides central ε-DP, which means all contribu-
tions (and not only some consecutive pieces thereof) are pro-
tected. Nonetheless, it is intended only for data sets with a single
attribute and does not contemplate record updates.

3. Problem statement

We shall follow the convention of using uppercase letters
for random variables (r.v.’s), lowercase letters for the particular
values they take on, and bold letters for matrices. Probability
density functions (PDFs) and probability mass functions (PMFs)
are denoted by p and subindexed by the corresponding r.v. We
adopt the same notation for vectors in [26] and use parentheses
to construct column vectors from comma-separated lists.

We study the protection of database streams4 with central
DP guarantees, which means there is a trusted entity (i.e., the

3 w-event privacy does not protect event sequences occurring beyond a time
indow of size w.
4 For brevity, we shall refer occasionally to a database stream simply as

‘stream’’.
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urator) that gathers data continuously from a population and
akes charge of protecting them from the outside world.

There are multiple ways to define DP in such a data streaming
etting, e.g., at the granularity of attributes [27], events [23], win-
ows of events [25], records or individuals. This work assumes
he required protection is at the individual level (also known as
ser-level DP), that is, the curator aims to protect all tuples or
ecords corresponding to any individual in the stream database.

Mathematically, we model database streams as discrete time
ector processes. An original database stream {Si} is defined,
ccordingly, as a sequence of continuously incoming tuples Si =

Ii, Ai1, . . . , Aid), where Ii is an r.v. denoting the identity of the
ubject to whom Si corresponds, and Ai1, . . . , Aid are r.v.’s rep-
resenting d attributes of that subject.5 Throughout this work, we
shall also refer to the tuples of a database stream as records.

In general, the protection of a stream requires some sort of
distortion (e.g., Laplace-noise addition) of the original attribute
values, and therefore implies inevitably some information loss.
We denote by {Sεi } an ε-DP version of the original database stream
{Si}, that is, a sequence of continuously output tuples Sεi =

(Aεi1, . . . , A
ε
id), where identities are removed and Aεi1, . . . , A

ε
id are

suitably distorted versions of the attribute values in the original
tuple corresponding to Sεi .

To quantify how well the distorted attribute values approx-
imate the original ones, we shall use the sum of squared er-
rors (SSE), a measure of distortion frequently employed in the
evaluation of DP mechanisms.

The degree of distortion of the protected attribute values is
one dimension of the information loss incurred by a protection
method. The other dimensions are related to the fact that some,
or all, of the records in the original stream may be delayed
and reordered; obviously, any method for data streams must
buffer incoming tuples before protecting them. Next, we slightly
generalize the delay-constraint definition of [28].

Definition 3 (Delay Constraint). Let M be a protection mecha-
nism that takes as input a database stream {Si} and outputs an
ε-DP stream {Sεi }. For a positive integer δ, M is said to satisfy
the delay constraint δ if, upon receiving any new tuple Si, M has
already output all the protected tuples corresponding to tuples in
{Si} with position less than i − δ + 1.

While delay constraints are common in the context of data
stream, to the best of our knowledge no attempt has been made
to preserve the order of the incoming records. In [10], for exam-
ple, tuples are reordered as much as needed to satisfy maximum
attribute homogeneity for a given delay, ignoring the value of
the information encoded in such order. To make our analysis as
comprehensive as possible, we shall quantify the impact of such
reordering through a reordering cost function.

Unlike [10], we also contemplate tuple updates, meaning there
can be tuples arriving at different time instants that belong to
a same subject but contain different attribute values. In this
work, we require that such updates satisfy the following mild
constraint.

Definition 4 (Tuple-update Constraint). Let {Si} be an original
database stream and T ⊆ {Si} the sequence of all tuples corre-
sponding to a given subject. For a positive integer α, the original
stream satisfies the tuple-update constraint α if, for any subject
and any two consecutive tuples of T , such two tuples differ at
least in α positions in {Si}.

5 Note that the subscript i in Si indexes a tuple within the stream, which
ould be regarded as its timestamp.
4

Informally, Definition 4 tells us that we should expect a lag
etween a tuple and its update, or between two consecutive
pdates. With a mild loss of generality, this work will assume
⩾ δ. Since, by Definition 3, the maximum number of buffered

tuples at any moment is δ, the tuple-update constraint ensures
those two tuples (i.e., a tuple and its update, or two consecutive
updates) will not coincide in the buffer. In real practice, however,
if the condition α ⩾ δ is not met, only the most recent tuple will
e output.
A direct consequence of the fact that tuples can be updated

s the finite length of the protected database stream. Since the
evel of protection ε is necessarily finite, by the sequential com-
osition property of DP [29] the privacy budget will be consumed
ompletely at some time instant. We shall denote by l the target
length of the protected database stream, that is, the number of
incoming records the database curator wishes to protect.

Given all such considerations, the problem tackled in this work
is as follows. We aim to design a DP mechanism suitable for
database streams that, for a given ε and l, achieves serviceable
points of operation in the privacy-utility trade-off, being utility
measured as distortion, delay and reordering.

4. Differentially private continuous publication of data sets via
hybrid video encoding

This section describes our methodology to publish DP database
streams through hybrid video encoding techniques.

In this work, we propose the masking of database streams at
the record level, instead of at the histogram level. We hasten to
tress that carrying out record-level masking (see Section 2.2.1)
nd guaranteeing user-level DP (see Section 3) are two different,
lbeit related, objectives. The former means releasing protected
tream databases of the same format of the original database; and
he latter implies the curator will protect all records belonging to
ny individual in the stream database.
Clearly, masking at the record level is computationally effi-

ient, since the cost is linear with the number of records. How-
ver, plain independent masking of the records in the original
atabase stream may degrade utility severally, as we describe
ext.
For a positive integer r , define the identity function Ir ({Si}) as

the function that returns the attribute values of the rth element
(i.e., record) of {Si}. Since the whole process {Si} can be inter-
preted as the collected answers – except for subjects’ identity – to
the queries Ir ({Si}) for all available elements, an intuitive way to
generate the protected stream Sε1, . . . , S

ε
l with δ = 1 is collecting

an ε/l-DP response to each Ir ({Si}) for r = 1, . . . , l. Since we
allow record updates, it follows from the sequential composition
property that Sε1, . . . , S

ε
l also meets the desired ε-DP requirement.

In short, with this methodology, the protected database stream is
generated by providing a DP response to the queries asking for
the values of all attributes in l records of the original sequence.

Although this record-level perturbation methodology does not
make any assumptions on the uses of the output data, unfortu-
nately it may come at the expense of a huge information loss.
Throughout this paper, we shall assume each attribute j takes on
values in the interval [0,Λj], and denote by Λ the column vector
(Λ1, . . . ,Λd). Since each query Ir refers to a single individual, its
L1-sensitivity is as large as

∑d
k=1Λk, which implies a huge dis-

tortion to attain ε-DP. The result is a database stream Sε1, . . . , S
ε
l

ith very limited utility.
To make record-level masking viable to generate DP data

ets, there is an evident need to reduce the sensitivity of the
uery function/s to be used. In the following subsections, we
hall describe a method that protects, at a time, groups of tuples
onveniently sorted, and exploits statistical dependencies among
eleases.
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Fig. 1. Overview of the proposed scheme to generate DP database streams. Dashed and continuous lines indicate the data at those points are respectively protected
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4.1. Overview

We propose a protection method that relies on hybrid video
coding and DPCM, which are closely related to the concept of
closed-loop predictive quantization. Hybrid video coding is a
combination of three fundamental techniques: transform coding
and two classical prediction modes, namely, intra-prediction and
inter-prediction. The former mode, which operates with a block
partition of a frame or picture, aims to predict transform coef-
ficients or original samples of each block using already coded
samples of neighboring blocks. The latter mode exploits depen-
dencies among the different frames of a video sequence. As we
shall elaborate in this section, the design principle for utilizing
those three techniques is to reduce data distortion by favoring
and leveraging dependencies among the blocks of the stream to
be protected, and by adapting the method parameters to data
dynamics.

In our protection method, the database stream tuples {Si} are
not directly processed, but buffered at a preprocessing module,
where records are appropriately sorted. In particular, as soon asm
records are available at this module, groups of n < m consecutive
records are removed from the buffer and input into the closed
loop successively, i.e., one after another. We shall assume that
m = n b for some integer b > 1, and that groups are processed
in order of their records. Following the terminology of numerous
image and video compression formats, we shall refer to this
processing unit as block. In analogy to video coding, the set of
b of such blocks will be called a frame.

From a notational point of view, note that, while i indexes
ndividual records within the original database stream, j indexes
locks of n records within the closed loop. On the other hand,
ince all modules inside the loop operate at the block level, for
athematical convenience we shall model such blocks as random
atrices of dimension n × d. Hence the notation of Fig. 1.
Essentially, each block Xj is predicted based on the previous

rotected blocks X̃j−1, X̃j−2, . . . , X̃j−π , for some integer π . The
prediction block X̂j is subtracted from the preprocessed input
block Xj, thereby yielding a prediction error Ej = Xj − X̂j. The
block Ej is then transformed, quantized and protected with εj-
P, respectively by the modules analysis and quantization. The
ynthesis module afterward reverses the previous transformation
nd the upshot is a protected and reconstructed block Ẽj for the
rediction error Ej. Then, Ẽj is added to the predictor X̂j, resulting
n the reconstructed output block X̃j. Releasing X̃j in a single batch
yields n consecutive records of the protected database stream
Sε1, . . . , S

ε
l .

The fundamental principle upon which the above methodol-
ogy relies is difference quantization. One simple but important
result that follows from the fact that

Ej = Xj − X̂j,

˜ ˜ ˆ
(1)
Ej = Xj − Xj,

5

is that the overall MSE in releasing X̃j instead of Xj is equal to the
MSE incurred in quantizing Ej. Formally,

E ∥Xj − X̃j∥
2
F = E ∥Ej − Ẽj∥

2
F, (2)

where ∥ · ∥F denotes the Frobenius norm.
When X̂j in (1) is a prediction of Xj based on some information

bout the past of Xj, Eq. (2) is called the fundamental theorem
f predictive quantization [30]. Note, however, that (2) holds for
ny X̂j regardless of whether it is a prediction of Xj or not. When
t is, in the context of image and video compression, algorithms
an be more efficient. In our context of database stream, we shall
how that privacy protection can be provided with less distortion,
rawing an analogy between these two fields.
We have mentioned that the analysis module applies a trans-

ormation on the prediction error block Ej. Although multiple
ransformations are possible, here we use the most popular one
n image and video compression, the discrete cosine transform
DCT), as well as the discrete sine transform (DST) and the dis-
rete Hartley transform (DHT). Apart from variety, the reason for
ur choice is as follows. They are all orthogonal, two-dimensional
eparable and data-independent, and they all exhibit high-energy
ompaction, meaning that information, after being transformed,
ends to be concentrated in a few, low-frequency transform co-
fficients.
As we shall describe in Section 4.3, the quantization module

ill be in charge of selecting which coefficients are retained
nd perturbed with the Laplace mechanism, and which ones
re removed. Regardless of the selection criterion, however, pre-
icting Xj from the reconstructed (and protected) past has two
mmediate advantages. On the one hand, the variance of the error
lock Ej will in principle6 be less than the variance of the original
lock Xj, so that a reduced range of values will be transformed
nd protected. In image coding, predictive quantization (without
ransform coding) has the ability to increase the accuracy of the
uantized values without increasing the number of coding bits.
n our case (where we additionally consider transform coding),
smaller variance of the elements of Ej will intuitively translate

nto a smaller number of high-frequency transform coefficients.
s a result, the same privacy budget εj will be distributed among
ess coefficients, thus yielding less distortion.

On the other hand, predicting Xj from reconstructed blocks
as an evident advantage both in video coding and in database
treams. In the former application, it allows both an encoder and
ecoder to generate the same block X̂j without transmitting any
dditional information from the former to the latter. In our case,
ue to the post-processing property [31] of DP, we shall generate
ach prediction block without consuming any privacy budget.
With the proposed method, we shall therefore be able to

utput εj-DP blocks. At the frame level, since α ⩾ δ ⩾ m > n,

6 As long as the prediction is good enough.
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ach of the blocks of a same frame will contain records belonging
o different subjects.7 The result is that each protected frame will
lso satisfy εj-DP by the parallel composition property of DP [31].

To meet the requirement of protecting l input records, it will
uffice to set εj = εm/l for all j.

4.2. Transform coding

The aim of transform coding is to apply an adequate linear
transformation on each input block, so that the transform coeffi-
cients are much less correlated than the original samples and the
information is more ‘‘compact’’ in the sense of being concentrated
in only a few of the transform coefficients.8 It is important to
note that transform coding exploits only dependencies among
the samples of a single block. For additionally utilizing depen-
dencies among transform blocks and frames, intra-picture and
inter-picture prediction techniques can be used.

Transform codes are popular because they provide an attrac-
tive compromise between computational complexity and perfor-
mance. As mentioned in Section 4.1, we shall use, among others,
the DCT, a data-independent transform that is employed in all
practical video coding schemes. Although there are several DCTs,
the DCT-II is probably the most commonly used form and is
often simply referred to as ‘‘the DCT’’. In addition to the DCT, our
scheme also incorporates the DST-I and the DHT.

For notational simplicity, in this subsection we shall drop the
subindex j of the r.v.’s represented in Fig. 1. In addition, we shall
assume realizations of these variables.

Let an = [anij] denote the n × n transformation matrix of any
of the three transforms employed by the analysis and synthesis
modules. In the case of the DCT, the entries of an are

anij =

⎧⎪⎪⎨⎪⎪⎩
1

√
n
, if i = 1√

2
n
cos

( π
2n
(i − 1) (2j − 1)

)
, if i > 1.

n the case of the DST and DHT, the entries of the corresponding
atrices are respectively

n
ij =

√
2

n + 1
sin
(

π

n + 1
ij
)

nd

n
ij =

√
2
n
cos

(
2π
n

(i − 1)(j − 1) −
π

4

)
.

Recall [32] that, given a matrix x of dimensions n × d, the
orward and inverse transform of a separable, two-dimensional
ransformation is given respectively by

= an x ad
T
, x = an

T
y ad. (3)

Our next result, Lemma 1, derives the global sensitivity of the
transformed coefficients of a separable, two-dimensional trans-
formation, when a prediction block is subtracted from an input
block. The strength of this result lies in that it is not restricted to
the transforms contemplated in this work.

Lemma 1 (Sensitivity of Transform Coefficients). For any i =

, . . . , n, denote by r∗(i) the index that maximizes |anir |. Let x be an
observed block of n ⩾ 2 records and d attributes, x̂ a prediction block,

7 Said otherwise, the sets of subjects protected in those blocks will be
on-overlapping.
8 We emphasize that there is no general theoretical result that states that
ncorrelated quantities can be more efficiently quantized than can correlated
ariables.
 1

6

and e the corresponding error. Denote by fcij the query function that
returns the element (i, j) of the transform block c = an e adT . The
L1-sensitivity of this function is

GS(fcij ) = |ani,r∗(i)|
d∑

k=1

Λk|adjk|.

roof. Consider two neighbor input blocks x and x′, and their
corresponding transformed error blocks c and c′. For any r ∈

1, . . . , n}, denote by xr = (xr1, . . . , xrd) and x′
r = (x′

r1, . . . , x
′

rd)
he respective values of the different record in either input block.
learly, since x̂ does not depend on x or x′, but on previous
econstructed blocks,

− c′
= an (x − x′) ad

T
.

rom (3), simple algebraic manipulation then shows

ij − c ′

ij =

d∑
k=1

anir a
d
jk(xrk − x′

rk). (4)

ccordingly,

S(fcij ) = max
x, x′

|cij − c ′

ij|

= max
xr ,x′r

{
|anir |

⏐⏐⏐⏐⏐
d∑

k=1

adjk(xrk − x′

rk)

⏐⏐⏐⏐⏐
}

(a)
= max

r
|anir | max

xr ,x′r

⏐⏐⏐⏐⏐
d∑

k=1

adjk(xrk − x′

rk)

⏐⏐⏐⏐⏐
(b)
= |ani,r∗(i)|

d∑
k=1

Λk|adjk|,

here

(a) reflects that the maximization of |anri| with respect to all xr
and x′

r depends just on the position index r; and
(b) holds with equality since the components of xr and x′

r can
be chosen so that all terms adkj(xrk − x′

rk) have the same
sign. ■

An important conclusion that follows from Lemma 1 is that
he sensitivity of any coefficient cij (regardless of the particular
ransformation used) depends on the sensitivity of each and every
ttribute, rather than on a single Λk. In other words, there is
o a one-to-one correspondence between the sensitivity of the
ttribute value of a record in x, and that of the transform coef-
icients, which in principle may limit the benefits of transform
oding. Our next result, Corollary 1, shows that this limitation
s, fortunately, compensated in part by an averaging effect of Λ.
efore proceeding, we first prove an interesting property of the
CT transform matrix, used in the corollary.

roposition 1 (Property of the DCT transformation matrix). For any
= 2, . . . , n, any j = 1, . . . , d, and any n ⩾ 2, |anij| ⩾ an1j.

roof. Assume 2j − 1 and 2n are mutually prime. By Bézout’s
dentity, there exist then integers α and β such that

(2j − 1) + β2n = 1. (5)

ote that, for an arbitrary integer k, αk = α + k2n and βk =

− k(2j − 1) satisfy (5), but αk = kn does not. Consequently, we
ay restrict the set to which α belongs to be {1, . . . , n − 1, n +
, . . . , 2n − 1}.
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Fig. 2. (a–c) Relative difference in L1-sensitivity, as defined in (6), among the discrete cosine, sine and Hartley transforms for two block sizes, n = d = 8 (top-row
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Define i = α + 1 if α < n and i = 2n + 1 − α otherwise, and
erify that i ∈ {2, . . . , n} in either case and that (i − 1)(2j − 1) =

1 − β2n for any β ∈ Z. Hence,

anij| =

√
2
n

⏐⏐⏐cos( π
2n

(i − 1)(2j − 1)
)⏐⏐⏐

=

√
2
n

⏐⏐⏐cos(± π

2n
− (βπ )

)⏐⏐⏐
=

√
2
n
cos

( π
2n

)
⩾

1
√
n

= an1j,

by virtue of n ⩾ 2.
Next, assume 2j − 1 and 2n are not coprime integers. Denote

by d their greatest common divisor and verify that d ⩾ 3. Define
i = 2n/d + 1 and check i may take values on {2, . . . , n}. Since
j − 1 = βd for some β ∈ Z, it follows that

cos
( π
2n
(i − 1) (2j − 1)

)⏐⏐⏐ = |cos (βπ)| = 1,

and therefore |anij| > an1j. ■

The following result, Corollary 1, compares the sensitivity of
the coefficients of the DCT, DST and DHT, with that of Ir , the
dentity function used by the naive record-perturbation approach,
hich we described at the beginning of this section. Also, the
orollary shows the low sensitivity of the DCT coefficients of the
irst row.

orollary 1. Let GS(Ir ) denote the L1-sensitivity of Ir , and f ccij the
uery function that returns the element (i, j) of the DCT. For any
= 1, . . . , n and any j = 1, . . . , d,

(i) GS(f cc1j ) ⩽ GS(f ccij ),
(ii) GS(f ) ⩽ 2

√ GS(I ).
cij nd r a

7

Proof. The first claim is immediate from Proposition 1 and
Lemma 1, by noting that

an1j ⩽ |anij| ⩽ |ani,r∗(i)|

or the DCT matrix an. For the same transform and for i ⩾ 2, it
ollows that

S(f ccij ) =

√
2
n

⏐⏐⏐cos( π
2n
(i − 1) (2r∗(i) − 1)

)⏐⏐⏐×(
Λ1
√
d

+

d∑
k=2

Λk

√
2
d

⏐⏐⏐cos( π
2d
(j − 1) (2k − 1)

)⏐⏐⏐)

⩽

√
2
n

√
2
d

d∑
k=1

Λk

=
2

√
nd

GS(Ir ).

In the case of a DST and a DHT, an entirely analogous deriva-
tion leads to GS(f scij ) ⩽ 2GS(Ir )/

√
nd and GS(f hcij ) ⩽ 2GS(Ir )/

(n + 1)(d + 1), respectively. Since GS(f cc1j ) ⩽ GS(f ccij ) from claim
i), we prove the second statement. ■

Corollary 1 tells us that the sensitivity values of the trans-
orm coefficients are significantly lower, compared to that of the
aseline identity function. Specifically, for n = d, GS(fcij ) can be

interpreted roughly as averaging Λ by the number of records
(attributes).

Direct application of Lemma 1 allows us to examine the differ-
ences in terms of sensitivity among the cosine, sine and Hartley
transforms. For ease of comparison, we define the sensitivity
relative difference between transforms σ and ρ as

σρ =

GS(f σcij ) − GS(f ρcij )

min{GS(f σcij ),GS(f
ρ
cij )}

, (6)

here σ , ρ ∈ {c, s, h}. Fig. 2 shows the percentage values of the
uantities rcs, rch and rsh for two square block sizes, namely, n = 8
nd n = 16.
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Several remarks are in order from this figure. First, we observe
that the DST is preferable to the DCT except for roughly two rows,
i = 1 and i = 5 for n = 8, and similarly for n = 16 (Fig. 2(a));
this observation is consistent with the first claim of Corollary 1.
When compared to the DHT, however, the sensitivities of the DST
coefficients are observed to be much larger in odd rows for n = 8.
In contrast, this latter transform exhibits smaller sensitivities in
columns 1, 5, 9 and 11 for n = 16.

In general, the sine and Hartley transforms seem to be more
suitable, as reflected in Fig. 2(d), where for each coefficient we
represent the transformation with the least sensitivity. This is
evident for n = 8, where, for all but 6 coefficients, these trans-
forms outperform the DCT. The case n = 16 is less clear although
it still shows the DHT as the transformation with the largest
number of coefficients with least sensitivity. We would like to
stress that this does not signify the other two transforms are
inappropriate. In fact, the suitability of any transform will hinge
upon the block size, the individual attribute sensitivities Λ, and
more importantly, the specific coefficients to be protected as well
as the ability of the transform to compact energy.

4.3. Quantization

In source coding, lossy systems are characterized by the fact
that the reconstructed signal is not identical to the source signal.
The process that introduces the corresponding loss of information
is called quantization, and the algorithm that performs the quan-
tization process is referred to as quantizer. Although in image and
video coding the information loss is due to analog-to-digital con-
version, in a mild abuse of terminology we refer to quantization
more generally as the process whereby distortion is introduced.
In this subsection, we shall omit the block index j and therefore
subindexes will denote elements of the corresponding matrices.
For simplicity, we shall also drop the subindex of εj.

The purpose of introducing distortion is to satisfy a DP require-
ment. As we shall show next, our quantizer will be designed to
cause the least possible loss of information while meeting this
requirement. Although we shall be looking at the overall MSE in
releasing X̃j (instead of Xj), a typical measure of performance for
the quantizer is the coding gain [30], defined as the ratio

GQ =
E ∥C∥

2
F

E ∥C − C̃∥
2
F

, (7)

which is simply the signal-to-noise (SNR) power ratio achieved
by the quantizer.

Our quantizer aims to appropriately select a subset of trans-
form coefficients of C, protect them through the Laplace mech-
anism, and eliminate the remaining ones. Let t be the number
of retained coefficients, and ε ∈ Rn×d

+ a matrix with the privacy
budget εij assigned to each of them. We consider implicitly that
εij = 0 if the transform coefficient Cij is not selected. On the other
hand, we assume ∥ε∥1 = εQL < ε. Accordingly, the quantization
module outputs

C̃ij =

{
Cij + L

(
0,GS(fcij )/εij

)
, if Cij is selected

0, otherwise,

where L is a zero-mean Laplacian r.v. with scale GS(fcij )/εij.
Quantization therefore incurs two sources of error: first, the

error due to eliminating nd − t coefficients, and secondly, the
noise added to the remaining t coefficients to attain εQL-DP. We
shall refer to these two errors as coefficients-removal and Laplace
errors, respectively.

Clearly, there is a trade-off between such two errors. For a
fixed εQL , if t approaches nd, the coefficients-removal error will
likely be small or even negligible, but the privacy budget will
8

Fig. 3. (a) Zig-zag and (b) diagonal orders for scanning a transform coefficient
matrix with n = d = 4. In this figure, the sequence of matrix indexes specified
by the zig-zag order is O = ((1, 1), (1, 2), (2, 1), . . . , (4, 4)).

need to be distributed among a significant number of coefficients,
thereby causing the Laplace error to be large. The opposite occurs
if t is small compared to nd. The fundamental questions that we
address next are (i) how to choose t; and (ii) given t , which coeffi-
cients of C need to be protected, so that these two decisions cause
the minimum overall distortion. We tackle these two questions in
reverse order.

4.3.1. Selection and protection of transform coefficients
Intuitively, in the choice of transform coefficients, their global

sensitivities as well as the possible values they may take on will
play an important role. Let νij = Pr{Cij > 0}. In video coding, it
is typically advantageous to arrange the transform coefficients Cij
of a block in the order of decreasing probabilities νij. However,
the transform coefficients of a block have to be transmitted in
a certain order that is also known to the decoder. Making this
order data–dependent is clearly inefficient, since it would need
to be conveyed on a per block basis.

Most video coding standards adopt a predefined, signal-
independent approach by leveraging the fact that, in transformed
error blocks, νij usually decreases with increasing frequency in-
dexes i and j. A signal-independent scan in video coding that
approximately arranges the transform coefficient values in the
desired order is the zig-zag scan. This scan, which is illustrated in
Fig. 3(a) for the example of a 4 × 4 block, is used in most video
coding standards. H.265, also known as MPEG-H Part 2 or high
efficiency video coding (HEVC), may operate with the diagonal
scan depicted in Fig. 3(b). The two scans have similar properties
but the latter provides some benefits for certain implementations.

In our case, arranging the coefficients of C according to νij is a
data–dependent operation and, as such, would not satisfy DP. To
cope with this, we follow an approach entirely analogous to that
of video coding and assume the coefficients of C are arranged in
an order defined by a coefficients order O. Accordingly, given such
an order and a number t of coefficients to protect, our quantizer
proceeds just by selecting the first t coefficients in the given
order. Next, we examine how these coefficients are protected.

Denote by ξX̃ (ε,O, t) the MSE incurred in outputting X̃ in-
stead of X, where conveniently we make explicit its dependency
with the assignment of the privacy budget to the t selected
coefficients, and with the parameters specifying which concrete
coefficients are to be protected. Our next result shows that this
error consists in the sum of the MSEs due to the removal of
coefficients and DP protection at the quantizer.

Lemma 2 (Laplace and Coefficients-Removal Errors). Given ε, O and
t, the MSE in releasing X̃ rather than X is

ξX̃ (ε,O, t) = 2
t∑

GS(fcO(k) )
2/ε2O(k) +

nd∑
E C2

O(k).
k=1 k=t+1
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roof. From (2), we know that E ∥X − X̃∥
2
F = E ∥E − Ẽ∥

2
F . On the

other hand,

E ∥E − Ẽ∥
2
F = E tr

(
(E − Ẽ)T(E − Ẽ)

)
= E tr

(
(an

T
(C − C̃)ad)T(an

T
(C − C̃)ad)

)
= E tr

(
ad

T
(C − C̃)Tanan

T
(C − C̃)ad

)
(a)
= E tr

(
ad

T
(C − C̃)T(C − C̃)ad

)
(b)
= E tr

(
(C − C̃)T(C − C̃)adad

T
)

(c)
= E ∥C − C̃∥

2
F,

here

(a) and (c) follow from the orthogonality of an and ad, respec-
tively; and

(b) uses the fact that the trace is invariant under cyclic permu-
tations.

sing the matrix indexes given by O, it follows that

∥C − C̃∥
2
F = E

n∑
i=1

d∑
j=1

(Cij − C̃ij)2

=

nd∑
k=1

E(CO(k) − C̃O(k))2

=

t∑
k=1

E
(
L(0,GS(fcO(k) )/εO(k))

)2
+

nd∑
k=t+1

E C2
O(k).

inally, we derive the expression claimed in the statement by
ecalling that the variance of a Laplacian r.v. of scale parameter b
s 2b2. ■

Lemma 2 provides the MSE incurred by quantization, and
hows that the Laplace and coefficients-removals errors are
trictly increasing and non-increasing with t , respectively. We
xplore next how to distribute the privacy budget among the
elected coefficients so that the total error is minimized.
Denote by ε∗ the optimal assignment of εQL ,

∗
= argmin

ε
εO(k)>0, k=1,...,t∑

k εO(k)=εQL

ξX̃ (ε,O, t). (8)

heorem 1 (Optimal Assignment of εQL ). For any given O and any
∈ {1, . . . , nd}, the optimal assignment ε∗ is

∗

O(i) =
GS(fcO(i) )

2/3∑t
k=1 GS(fcO(k) )2/3

εQL

or i = 1, . . . , t, and the corresponding minimum MSE yields

X̃ (ε
∗,O, t) =

2
ε2QL

(
t∑

k=1

GS(fcO(k) )
2/3

)3

+

nd∑
k=t+1

E C2
O(k).

roof. The proof is organized in two steps. First, we show that
he optimization problem implicit in (8) is convex. Secondly, we
se Karush–Kuhn–Tucker (KKT) conditions to solve the problem.
For notational conciseness, we denote εO(1), . . . , εO(t) by

ε1, . . . , εt , and define

γ = 2GS(f )2 and f (ε ) = γ /ε2.
k cO(k) k k k k

9

To show that the problem is convex, note that, from Lemma 2,

ξX̃ (ε,O, t) −

nd∑
k=t+1

E C2
O(k)

is the sum of strictly convex functions fk, and observe that the
inequality and equality constraint functions are linear and affine.
Since the objective and constraint functions are also differentiable
and Slater’s constraint qualification holds, KKT conditions are
necessary and sufficient conditions for optimality [26, §5]. The
application of these optimality conditions leads to the following
Lagrangian cost,

L =

∑
fk(εk) −

∑
λkεk − µ

(∑
εk − εQL

)
,

and finally to the conditions

f ′

k (εk) + λk − µ = 0 (dual optimality),

λk εk = 0, (complementary slackness),

λk ⩾ 0 (dual feasibility),

εk > 0,
∑
εk = εQL , (primal feasibility).

ince f ′′

k (εk) = 6γk/ε4k > 0, f ′

k is strictly increasing, and, in-
terpreted as a function from (0, εQL ) to f ′

k ((0, εQL )), invertible.
Denote the inverse by f ′

k
−1. Since εk > 0, it follows from the

complementary slackness condition that λk = 0, which, by the
dual optimality condition, implies f ′

k (εk) = µ, or equivalently,
εk = f ′

k
−1(µ).

From the primal equality constraint,
t∑

k=1

f ′

k
−1(µ) =

t∑
k=1

3
√

−2γk/µ = εQL ,

and hence

µ = −
2
ε3QL

(
t∑

k=1

3
√
γk

)3

.

Substituting the above expression for µ into f ′

k
−1(µ) leads to the

xpression of the optimal ε given in the theorem. Then, the MSE
ollows by substituting the solution into ξX̃ (ε,O, t). ■

A couple of remarks follow from Theorem 1. On the one hand,
he optimal assignment of εQL conforms to intuition, as those
coefficients with smaller sensitivities are assigned smaller εO(i).
n the other hand, we observe that the MSE due to the Laplace
rror is proportional to the inverse of the square of εQL . This
eans, for example, that increasing εQL from 1 to 2 implies a

eduction by 75 percent in MSE.

.3.2. Choice of t and transform
For a given transform and O, the trade-off between the Laplace

nd the coefficients-removal errors is determined by t . In Fig. 4,
e provide an example of this trade-off in the case of (i) a
2 × 13 input block X corresponding to the first 32 records of
he ‘‘Census’’ data set [33]; (ii) the DCT; (iii) a zig-zag order, and
iv) no prediction.

In this particular example we show that there exists a value of
minimizing the sum of the two errors above for the DCT. This
ubsection aims to compute, in a DP manner, this value of t and
he transform σ ∈ {c, s, h} that jointly minimize such total error.9
ince this computation is a data–dependent operation, we resort
o the exponential mechanism [34] of DP. Henceforth, we shall

9 Note that minimizing E ∥X− X̃∥
2
F implies maximizing the coding gain of the

quantizer, since E ∥C − C̃∥
2

= E ∥X − X̃∥
2 from the proof of Lemma 2.
F F
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Fig. 4. (a) Trade-off between the Laplace-noise error and the coefficients-
emoval error, and (b) minimum MSE due to quantization. Each black point
n (a) corresponds to one of the 33 × 14 possible values of t for which the
aplace-noise error is minimized. These points constitute the optimal trade-off.
he points in gray, on the other hand, reflect a non-optimal assignment of ε.
n (b), we observe that t = 2 minimizes the minimum MSE. In this example,
QL = 1 and Λ is the maximum value of each attribute within the block.

enote the optimal values of those two parameters by t∗ and σ ∗.
or notational compactness, we shall use κ to refer to the tuple
f quantization parameters (O, t, σ ).
The exponential mechanism requires designing a proper scor-

ng function. To investigate the impact of this design decision on
ur quantizer, we consider a parametrized family ωθ of such func-
ions, where θ denotes the exponent of both the Laplace-noise
nd the coefficients-removal errors in ξX̃ (ε

∗, κ).
Intuitively, the purpose of using these error-based functions is

or the exponential mechanism to favor values of t and σ causing
ess MSE. Let T and Σ be the r.v.’s modeling the response of
his mechanism, and εQE the desired level of protection of said
echanism. Ideally, we would like the joint PMF pTΣ to be as

arge as possible for T = t∗ and Σ = σ ∗, and as small as
ossible for the rest of values. Since pTΣ (t, σ ; θ ) is proportional
o εQE ωθ (c, κ)/GS(ωθ (c, κ)), one might be tempted to choose
θ ≫ 1. However, this may not be an appropriate choice since
the sensitivity of the corresponding function is likely to increase
accordingly.

For conciseness, our analysis only contemplates the cases θ =

/2 and θ = 1, and for simplicity the scoring functions oper-
ate with current observed values rather than expected values.
Accordingly, the respective scoring functions are

ω1/2(c, κ) = −

√
2

εQL

(
t∑

k=1

GS(f σcO(k)
)2/3

)3/2

−

√ nd∑
k=t+1

c2O(k),

nd

1(c, κ) = −ξX̃ (ε
∗, κ).

Our next result computes upper bounds on the sensitivities of
hese two functions. Before proceeding, however, we introduce
ome notation. Denote by Λ a matrix of dimension n × d with
ll rows being ΛT, and by fc the query function that returns all
lements of the transform block c. Accordingly, define

¯ = argmax
σ∈{c,s,h}

∥GS(f σc )∥F.

urthermore, the absolute value function, when applied to a
atrix, will denote the element-wise absolute value of such
atrix.

emma 3 (Sensitivities of ω1/2 and ω1). Under the assumptions of
emma 1, and for a given prediction block x̂, the L1-sensitivities of
he scoring functions ω and ω satisfy
1/2 1

10
(i) GS(ω1/2(c, κ)) ⩽ ∥GS(f σ̄c )∥F,
(ii) GS(ω1(c, κ)) < 2∥GS(f σ̄c )∥F

√∑
ij max{Λj − x̂ij, x̂ij}2.

roof. Let x and x′ be two neighboring input blocks, and c and
′ their corresponding transformed error blocks. For any r ∈

{1, . . . , n}, denote by xr = (xr1, . . . , xrd) and x′
r = (x′

r1, . . . , x
′

rd)
the respective values of the different record in either input block.

Let O be any order. For k ∈ {1, . . . , nd}, let O(k, 1) and
O(k, 2) denote the first and the second index of O, respectively.
Accordingly, define

JO(k)(xr , x′

r ) =

d∑
l=1

anO(k,1),r a
d
O(k,2),l(xrl − x′

rl),

where an and ad are transformation matrices of dimensions n×n
and d × d, as specified in (3).

From the definition of L1-sensitivity, we have that

GS(ω1/2(c, κ)) = max
x,x′,κ

⏐⏐⏐⏐⏐⏐
√ nd∑

k=t+1

c2O(k) −

√ nd∑
k=t+1

c ′2
O(k)

⏐⏐⏐⏐⏐⏐
⩽ max

x,x′,κ

√ nd∑
k=t+1

(cO(k) − c ′

O(k))2 (9)

=

√max
xr ,x′r ,κ

nd∑
k=t+1

JO(k)(xr , x′
r )2 (10)

⩽

√max
κ

nd∑
k=t+1

max
xr ,x′r

JO(k)(xr , x′
r )2 (11)

=

√max
κ

nd∑
k=t+1

(
max
xr ,x′r

⏐⏐JO(k)(xr , x′
r )
⏐⏐)2

(12)

=

√max
κ

nd∑
k=t+1

GS(f σcO(k)
)2, (13)

where (9) follows from the reverse triangle inequality and does
not depend on x̂; (10) results from (4) and from the strict mono-
tonicity of the square root function; (11) follows from the fact
that the maximum of a sum is at most the sum of maxima;
(12) holds since the squaring function preserves the order of
nonnegative numbers; (13) follows from Lemma 1; and from (13)
we immediately verify claim (i) in the lemma, as it is maximized
for t = 0 (and hence for any O) and σ = σ̄ .

To prove the second claim, we use ∥c∥2
2,t to denote∑nd

k=t+1 c
2
O(k), and ∥c′

∥
2
2,t analogously. Note that this notation

uses the Euclidean norm instead of the Frobenius norm since we
interpret c and c′ as vectors, indexed by O.

That being said, observe that

∥c∥2
2,t − ∥c′

∥
2
2,t

⏐⏐ =
⏐⏐ ∥c∥2,t − ∥c′

∥2,t
⏐⏐ (∥c∥2,t + ∥c′

∥2,t
)
,

and that

max
x,y

{g(x, y)h(x, y)} ⩽ max
x,y

g(x, y)max
x,y

h(x, y)

or any x, y and any positive real-valued functions g, h. Accord-
ngly, it follows that

S(ω1(c, κ)) ⩽ max
x,x′,κ

⏐⏐ ∥c∥2,t − ∥c′
∥2,t

⏐⏐×
× max

x,x′,κ
∥c∥2,t + ∥c′

∥2,t .
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e know from claim (i) that the maximum on the left-hand side
s upper bounded by ∥GS(f σ̄c )∥F. On the other hand, we have that

ax
x,x′,κ

∥c∥2,t + ∥c′
∥2,t = max

x,x′,σ
∥c∥2 + ∥c′

∥2

= max
x,x′

∥x − x̂∥F + ∥x′
− x̂∥F, (14)

here (14) follows from the orthogonality of the three trans-
orms under consideration. To complete the proof, note that each
ummand in (14) is maximized for either xij = Λj or xij = 0,
depending on the largest absolute difference between xij and x̂ij.
he strict inequality in claim (ii) is due to the fact that x and x′

ust differ in one record. ■

Several conclusions follow from Lemma 3. First, and most
vident, the upper bounds on the sensitivities of ω1/2 and ω1
o not depend on O. The reason lies in that the bounds are
aximized for t = 0, which means all terms GS(f σcO(k)

)2 in (13)
ust be added up. Likewise, the upper bound on the sensitivity
f ω1/2 does not hinge on x̂ either, as the difference cO(k) − c ′

O(k)
n (9) does not. However, this is not the case for θ = 1, which
equires that the prediction module share x̂ with the quantization
odule.
In this latter case, we can observe the straightforward effect

hat prediction may have on the obtained bound. Specifically, it
s immediate to verify that
1
4
∥Λ∥

2
F ⩽

∑
ij

max{Λj − x̂ij, x̂ij}2 ⩽ ∥Λ∥
2
F,

which indicates that, to reduce the sensitivity bound of ω1 and
hus obtain more accurate results from the exponential mecha-
ism, the predictions x̂ = 0 (right inequality) and x̂ = x − Λ/2

(left inequality) represent worst and best-case scenarios. We note
that this latter prediction simply reduces the domain of each
attribute to be [0,Λj/2].

Another interesting conclusion is that the sensitivity results
are valid for any set of orthogonal, separable, two-dimensional
transforms, which extends the scope of our selection algorithm
to include the vast majority of transform-coding techniques.

Finally, we observe that squaring the error terms in ω1/2

(i.e., moving from θ = 1/2 to θ = 1) has a significant impact
on L1-sensitivity. While the resulting function may yield larger
scores for (t∗, σ ∗) (which may help the exponential mechanism
choose the optimal number of coefficients and transform), we
note its sensitivity may in the worst case become 2∥Λ∥F times
larger than that of ω1/2, which may lose out the benefits of such
an exponentiation.

Despite this latter observation, we would like to stress that
determining which function will cause the least distortion is not
possible a priori, since one would need to know c in advance.
The appropriateness of ω1/2 and ω1 will therefore depend on the
actual data. Fig. 5 reflects this situation by comparing the PMFs
pTΣ (θ ) for θ = 1/2 and θ = 1, and for two different input
blocks. In Figs. 5(a,b), the smaller dispersion of θ = 1 and the
fact that EpTΣ (1)[T |σ ] is close to t∗ for all σ , makes this function
more suitable. In Figs. 5(c,d), however, θ = 1/2 seems to be more
appropriate: the PMF exhibits a smaller dispersion than θ = 1,
and it attains its maximum value exactly at t∗ = 2 for the three
transforms.

The joint operation of the modules analysis, quantization and
synthesis is summarized in Algorithm 1. The interaction among
the three modules is reflected in lines 5 and 14, where quantiza-
tion decides on the transform to be used by the transform-coding
modules. Since quantization also requires the prediction block to
compute GS(ω1(c, κ)), the algorithm is input X and X̂, rather than
just E.
11
Fig. 5. PMF pTΣ (θ ) of the exponential mechanism for θ = 1/2 and θ = 1. We
have used the zig-zag order, εQL = εQE = 1, and x̂ = 0. The input data are
n 8 × 8 block corresponding to the last 8 records and first 8 attributes of
he ‘‘Census’’ data set (a,b); and a 48 × 13 block corresponding to the last
8 records and all attributes of the same data set (c,d). The pairs (t, σ ) that
inimize ξX̃ (ε

∗, κ) are (1, c) for the former block and (2, h) for the latter.

Algorithm 1: Transform coding and quantization.

Input: An input block X; a prediction block X̂; a
coefficients order O; the respective privacy
parameters εQL and εQE of the Laplace and the
exponential mechanisms; the scoring-function
parameter θ

Output: A protected error block Ẽ satisfying (εQL + εQE )-DP
1 Compute ωθ (C, κ) for the given order, all t = 0 . . . , nd and

all σ ∈ {c, s, h}

2 Calculate the upper bounds10 on the L1-sensitivity of
ωθ (C, κ) from Lemma 3

3 Calculate pTΣ (θ ), being pTΣ (t, σ ; θ ) proportional to
exp

(
εQE ωθ (c, κ)/2GS(ωθ (c, κ))

)
4 Generate a random draw (T ,Σ) from pTΣ (θ )
5 Compute C as the Σ transform of E
6 From Theorem 1, compute ε∗ for the selected Σ transform

so that
∑

k ε
∗

O(k) = εQL

7 for k = 1, . . . , T do
8 Generate a random draw L from a zero-mean Laplace

distribution and scale GS(f ΣcO(k)
)/ε∗

O(k)

9 Set C̃O(k) = CO(k) + L
0 end
1 for k = T + 1, . . . , nd do
2 Set C̃O(k) = 0
3 end
4 Compute Ẽ as the inverse Σ transform of C̃
5 return Ẽ.

Returning to the notation of block subindexes, we also note
that a decision must be made with regard to the distribution
of the privacy budget εj available for each block and frame. In
Algorithm 1 we make no assumption, apart from the fact that the
budget devoted to the Laplace and to the exponential mechanism
must satisfy εQL + εQE ⩽ εj.

4.4. Prediction

Transform coding is a simple albeit efficient technique for
utilizing statistical dependencies among the records within a
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ingle transform block. For additionally exploiting dependencies
mong transform blocks within a same or different frame, image
nd video coding rely on prediction techniques.
In video compression, there exist two classical prediction

odes, intra-prediction and inter-prediction. In the former mode,
he transform coefficients or original samples of a transform
lock are predicted using already coded samples of neighboring
locks. That is to say, intra-prediction only leverages statisti-
al dependencies inside frames. However, as video sequences
sually contain significant temporal redundancies, the additional
xploitation of dependencies among the different frames of a
ideo sequence can notably enhance coding efficiency. This later
pproach is referred to as inter-prediction.
In this work, we propose a hybrid video coding scheme to

rotect database streams, meaning that the protection algorithm
s a hybrid of three fundamental techniques, namely, transform
oding for dependencies within blocks, and the two prediction
odes above. However, unlike video compression, these modes
ill be applied in a more general sense: we shall allow both

ntra-prediction and inter-prediction to generate X̂ from recon-
tructed blocks of the same frame and from reconstructed blocks
f different frames.
Intuitively, the better the future of an input block (modeled

s a vector process) is predicted from its past output blocks and
he more redundancy the input block contains, the less new in-
ormation is contributed by each successive block of the database
tream [35]; for a fixed privacy budget, if less information needs
o be protected, less distortion is introduced.

Next we recover the subindex notation for blocks. A mea-
ure of prediction performance is the closed-loop prediction gain
atio [30], which is defined as

clp =
E ∥Xj∥

2
F

E ∥Ej∥
2
F
. (15)

From (2), (7), and (15), the overall SNR power ratio of the DPCM
system can be expressed as

SNRsys =
E ∥Xj∥

2
F

E ∥Xj − X̃j∥
2
F

= Gclp GQ. (16)

We shall adopt the most commonly used criterion for the
ptimality of a predictor [30,36], the minimization of the denom-
nator of (15), which implies the minimization of the variance and
he mean of the prediction error.

We shall denote by Φ the set of modes and types of prediction
f the video coding standards available to the module at hand.
ccordingly, each φ ∈ Φ will represent a unique configuration
f the prediction module, e.g., the intra-mode of H.264 with
orizontal prediction, the latter being the prediction type.
We shall consider spatial prediction modes,11 which operate

ith original samples, in contrast to those that estimate X̂ from
ransform coefficients. Formally,
ˆ j = f (X̃j−1, X̃j−2, . . . , X̃j−π ),

here the function f is chosen adequately to generate a good esti-
ate of X̂j from the π past values of the reproduced process {Sεi }.
lthough a variety of ‘‘standard’’ functions will be considered
or intra-prediction in our evaluation (a couple of examples are
hown in Fig. 6), we shall only contemplate block matching [37]
s inter-prediction technique. In our case, when applying block
atching we will be selecting the reconstructed block that mini-
izes the denominator of (16). The reason for restricting to block
atching is that we expect small inter-frame redundancies, in
ontrast to video sequences.

10 The bounds of Lemma 3 are for θ = 1/2 and θ = 1.
11 Predictions in the sample domain have the advantage that predictor blocks
an be generated for arbitrary prediction directions [35].
12
Fig. 6. Vertical intra-prediction modes of the standards H.263 (left) and
H.264/MPEG-4 AVC (right). The former estimates X̂j from the column averages of
the previously reproduced block X̂j−1 . The latter uses directly adjacent samples
of already protected blocks.

4.5. Preprocessing

Recall that a permutation matrix is a square (0, 1)-matrix in
which each row and each column has exactly one entry of 1 and
zeros elsewhere. Let Ψ denote the set of permutation matrices.
For any ψ ∈ Ψ , notice that the product ψX is a permutation of
the rows of X.

Informally speaking, the goal of the preprocessing module is
to find a permutation of the rows of X that helps the predictor
generate a better prediction X̂ of X. Since the actual X̂ is not
available to the preprocessing module at the time when it is to
permute X, the module will be devised to find the permutation
that minimizes the prediction error for all φ ∈ Φ . We shall see
in Section 4.6 that this operation is conducted jointly with the
encoder-control module.

The minimization of the prediction error, however, is not
without constraints, since the cost of permuting must be kept to
an acceptable level. In this work, we quantify this cost with the
Spearman’s footrule distance [38],12 given by

F (ψ) = ∥(ψ − in)(1, . . . , n)∥1,

which measures the total element-wise displacement from the
original order, denoted by the identity matrix in.

Formally, for a given set Φ of prediction modes and types, the
preprocessing module is designed to compute the solution to the
optimization problem

min
φ∈Φ
ψ∈Ψ

∥ψX − X̂(φ)∥2
F subject to F (ψ) ⩽ cR, (17)

which describes the optimal trade-off between prediction error
on the one hand, and on the other permutation or reordering cost.
Intuitively, the larger the maximum acceptable cost, the smaller
the prediction error and vice versa.

Let v,w ∈ Rn×d and z ∈ R be the parameters of an assign-
ment problem with side constraints (APSC) [39].13 Recall that the
formulation of an APSC in standard form is given by

min
ψ∈Ψ

∑
ij

vijψij subject to
∑
ij

wijψij ⩽ z. (18)

Our next results shows the equivalence of the problems (17) and
(18).

12 The Spearman’s footrule is the most popular metric to evaluate distances
between permutations.
13 The problem has also been investigated in [40] where it is referred to as
the resource constraint minimum weight assignment problem.
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emma 4. For a fixed φ, the optimization problem (17) is an APSC.

roof. For brevity, we write X̂ instead of X̂(φ). Recall that the
robenius inner product of two matrices a, b ∈ Rn×d is defined as
a, b⟩F = tr

(
aTb

)
and induces the corresponding Frobenius norm

∥a∥F =
√

⟨a, a⟩F. Accordingly, we have that

ψX − X̂∥
2
F = ∥ψX∥

2
F + ∥X̂∥

2
F − 2⟨X̂,ψX⟩F

= tr
(
XTψTψX

)
+ ∥X̂∥

2
F − 2⟨X̂,ψX⟩F

= ∥X∥
2
F + ∥X̂∥

2
F − 2⟨X̂,ψX⟩F (19)

= ∥X∥
2
F + ∥X̂∥

2
F − 2 tr

(
ψXX̂T

)
, (20)

where (19) is due to the orthogonality of the permutation matri-
ces, and (20) follows from the invariance of the trace under cyclic
permutations.

Eq. (20) implies that minimizing ∥ψX − X̂∥
2
F for a given φ

is equivalent to the problem of finding the permutation of the
rows of XX̂T that maximizes the trace. The equivalence of prob-
lems (17) and (18) in terms of their objective functions is verified
immediately by noting that (i) the objective function of Eq. (18)
can be recast as the trace of ψvT and (ii) a problem in which
the objective function is to be maximized can be converted into
a minimization problem just by multiplying v by −1. To check
the equivalence of the inequality constraint functions simply
observe that F (ψ) = tr(wψ) for wij = |i − j|. This completes the
proof. ■

The strength of recasting (17) as an APSC lies in that it allows
us to resort to efficient methods [39,40] to compute the optimal
permutation ψ∗. This is of a great practical relevance as an APSC
is NP-complete and our scheme must satisfy the delay constraint
δ, as specified in Definition 3.

4.5.1. Extreme regions of the trade-off plane
Even though powerful methods are available to compute ψ∗,

the fact that (17) is a minimization over all φ ∈ Φ means we need
to solve an APSC for each available prediction mode and type,
and each input block. This imposes an important computational
burden on the preprocessing module and may compromise the
fulfillment of the delay constraint δ. In the special cases when
the system is designed to operate at the extreme regions of the
trade-off, we may alleviate this burden as described below.

Low Prediction Error. It can be shown [41] that

max
ψ∈Ψ

F (ψ) =

⌊
n2

2

⌋
. (21)

This result implies that if we accept permutation costs larger than
or equal to ⌊n

2
/2⌋, then the optimization problem (17) becomes an

unconstrained linear assignment problem. Optimization problems
of this kind can be solved in polynomial time O(n4) with the
13
original Hungarian algorithm and more efficiently with a bunch
of algorithms that achieve O(n3). We refer the reader to [42] for
urther details on this topic.

Low Reordering Cost. In the case when there are stringent,
ight constraints on the permutation cost, intuitively the feasible
et of (17) will mostly include permutations of nearby records.
e contemplate two strategies, S1 and S2, that exploit this fact

or the sake of computational efficiency.
Recall that an assignment problem can be regarded as a

inimum weight perfect matching problem. S1 decomposes the
locks to be matched (i.e., X and X̂) into blocks of smaller
izes, and finds the matching of each of those sub-blocks. More
pecifically, it computes the solution of r optimization problems
f the form (17), where X and X̂ are now replaced with Xi and

ˆ i and denote sub-blocks of size n/r × d containing the records
n(i−1)

r +1, . . . , n i
r of X and X̂, respectively. Naturally,

∑
i c

i
R = cR.

The strategy S2, on the other hand, tackles the original prob-
lem with a weight matrix that prevents the matching of records
belonging to different sub-blocks. Specifically, we consider the
matrix

wij =

{
|i − j|, if k−1

r n < i, j ⩽ k
r n for k = 1, . . . , r

∞, otherwise,

which produces the same effect as S1, but without having to split
cR up into the r sub-problems. This is precisely the reason why the
minimum prediction error attained by S1 will never be smaller
than that achieved by S2, and also the reason why S1 may be
more efficient than S2.

Fig. 7 shows the performance of S1 and S2, expressed in rela-
tive terms with respect to the original optimization problem (17).
We generated 100 instances of X and X̂ completely at random
and computed the average runtime and prediction error for d =

16, n = 8, 16, 24, 32 and r = 2. Since we are assuming low
reordering costs, the performance was assessed for values of cR
up to 1/5 of the maximum F (ψ) (see Eq. (21)).

The results show that the proposed strategies may reduce the
computational burden significantly, with the highest reduction
being an 80% for n = 24 and cR ≃ 33. As for the differences
between the two strategies, we note that S2 performed better
than S1 in terms of runtime for n = 8, while the opposite was
observed for n = 24, 32. An important consideration is that both
S1 and S2 may exhibit, for certain values of n and cR, larger
runtimes than those required to compute (17).

The results also seem to indicate that the price to pay is rel-
atively small. In our experiments, the minimum error value was
observed to be just 9% larger than that attained by the original
problem. In short, although these results obviously depend on the
data and thus we cannot draw conclusions on whether which
strategy is more appropriate for a given data, with them we
show the potential benefits of operating at the region of low
permutation costs.
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.6. Encoder control

Coding efficiency describes the ability of a video codec to trade-
ff bit rate and reconstruction quality [43]. In video applications
ne typically wants the best possible reconstruction quality for a
iven available bit rate.
A multitude of parameters including coding modes and intra-

rediction modes have to be selected on a per-block or per-
rame basis. These selections determine the coding efficiency of a
enerated bitstream and are referred to as encoder control.
A larger set of coding and prediction modes is only advanta-

eous in video coding if the reduction in bit rate that results from
he improved prediction and transform coding outweighs the
dditional bit rate required for transmitting the selected modes to
he decoder. In the case of database streams, we have an entirely
nalogous trade-off. Since such a selection is a data–dependent
peration, re-distributing a fixed privacy budget to allow one
ore DP algorithm only makes sense if a larger set of prediction
odes and types can effectively reduce the overall distortion.
We design the encoder control to decide, on a per block ba-

is, the prediction mode (i.e., intra or inter) and the specific
rediction type to be used (e.g., average vertical, horizontal). Con-
istently with the optimality criterion of the predictor module, we
efine the scoring function

(x, x̂) = −∥x − x̂(φ)∥2
F = −∥e∥2

F .

ur next results computes the sensitivity of this function, which
e shall use to design the exponential mechanism selecting the
pecific prediction mode and type.

emma 5 (Sensitivity of the Scoring Function for the Selection of the
Encoding Parameters). The L1-sensitivity of the scoring function κ
s GS(κ(x, x̂(φ))) = ∥Λ∥

2
2.

roof. Let x and x′ be two neighboring input blocks, and xr =

xr1, . . . , xrd) and x′
r = (x′

r1, . . . , x
′

rd) the records in which the
wo input blocks differ respectively. Direct application of the
efinition of L1-sensitivity leads to

S(κ(x, x̂(φ))) = max
x, x′
x̂,φ

⏐⏐⏐⏐⏐⏐
∑
ij

(xij − x̂ij(φ))2 − (x′

ij − x̂ij(φ))2

⏐⏐⏐⏐⏐⏐ .
ote that each of the summands above is maximized when

ˆij(φ) = x′

ij, and that the minimum achievable value of each
ummand is zero. Accordingly,

S(κ(x, x̂(φ))) = max
x, x′

⏐⏐⏐⏐⏐⏐
∑
ij

(xij − x′

ij)
2

⏐⏐⏐⏐⏐⏐
= max

xr , x′r

⏐⏐⏐⏐⏐⏐
d∑

j=1

(xrj − x′

rj)
2

⏐⏐⏐⏐⏐⏐ ,
where clearly the maximum is attained at the extreme values of
xr and x′

r . ■

Algorithm 2 shows how the modules preprocessing, encoder
control and prediction interact to select, in a DP manner, a per-
mutation ψ and a configuration φ that minimize the prediction
error. Specifically, the predictor estimates X̂ for all possible con-
figurations in line 1. All prediction blocks are then sent to the
preprocessing module, which computes the permutations min-
imizing each of these blocks, as specified in (17) (lines 2 to
4). Lastly, the encoder control decides on the configuration of
the predictor and the corresponding optimal permutation (line
5), which are conveyed to the predictor and the preprocessing
modules, respectively.
14
Algorithm 2: Preprocessing, encoder control and predic-
tion.

Input: An input block X; the reconstructed blocks
X̃j−1, X̃j−2, . . . , X̃j−π ; the privacy parameter εE of
the exponential mechanism; the maximum
desirable permutation cost cR

Output: A permutation ψ and a prediction configuration
φ satisfying both εE-DP

1 Compute X̂(φ) for all φ ∈ Φ

2 forall φ ∈ Φ such that X̂(φ) has a least a non-constant
column do

3 Compute ∥E(φ)∥2
F as (17) and denote the minimizer by

φ(ψ)
4 end
5 Select φ(ψ) with probability proportional to

exp
(
−εE∥E(φ)∥2

F/2∥Λ∥
2
2

)
6 return φ(ψ).

Theorem 2 (Level of Protection of a Frame). The proposed DPCM-
based protection method, described in Algorithms 1 and 2, provides
ε-DP frames, with ε = εQL + εQE + εE .

roof. Algorithm 1 first uses the exponential mechanism, and
hen the Laplace mechanism on the same data block. Therefore,
y the sequential composition property, (εQL +εQE )-DP is satisfied.
n the other hand, Algorithm 2 uses the exponential mechanism
n the very same block of data with privacy parameter εE . Con-
equently, the execution of both algorithms on a block satisfies
εQL + εQE + εE)-DP. Furthermore, since each block of a frame
ontains records belonging to different subjects, frames satisfy
he claimed protection by the parallel composition property. ■

. Experimental evaluation

In this section, we evaluate experimentally the protection
ethod proposed in Section 4. The aim of this section is to show

hat our approach, which builds on hybrid video encoding tech-
iques to enhance data utility, may in fact diminish the amount of
oise required to attain ε-DP. The empirical analysis provided in
his section has been conducted in its entirety with Matlab 2019b,
n a Ryzen 7 1800X at 4 GHz.

.1. Data sets

To try to capture the voluminous and continuous character-
stics of database streams, our experiments are targeted toward
arge data sets.

Our experimental evaluation will use two standardized data
ets, known as ‘‘(Very) Large Census’’ and ‘‘Quant Forest’’, which
re two of the largest data sets in the community of statistical dis-
losure control. For brevity, we shall refer to them as vlCensus
nd forest, respectively.
The former data set contains 149642 records and has 13 nu-

erical attributes. It was previously documented and used in [44,
5], and has been chosen to adhere to the de facto convention in
he area as well as for its large number of records.

The latter has 581012 records and is based on the Forest
CoverType data set available at the UCI KDD data reposi-
ory [46]. Exactly as in [45,47], we selected just the real-valued
ttributes, which reduced the number from 54 to 10, and for com-
utational reasons we took the first 150000 records. In our analy-
is, all attributes have been treated as quasi-identifiers and there-
ore all them have been the target of protection (see Table 1).
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a

Table 1
Overview of the data sets used in our experiments.
Data set # of records # of attributes

(Very) Large census [44,45] 149642 13

Quant forest [45–47] 150000 10

Fig. 8. Quantity ∥GS(f σ̄c )∥F for different block sizes and for the three transforms
under study. From the figure, we note that this quantity does not vary
significantly with the block size.

5.2. Baseline method

As we mentioned in Section 2.2.2, only [10] has tackled the
problem of publishing DP database streams in a continuous
manner. However, since that work is limited to single-attribute
databases, evaluating this protection method against ours is
meaningless.

Consequently, we cannot but compare our solution just with
the baseline approach described at the beginning of Section 4. The
plain Laplace noise (PLN), as we shall call it, will add Laplace noise
directly to the incoming records, without introducing delay nor
reordering them. Although it is a rather naive strategy, it is in fact
a common practice [15–17,48] in the field of data anonymization
and will allow us to assess the benefits of our method and derive
worst-case bounds on distortion.

5.3. Configuration parameters

Next, we specify the range of configuration parameters used
in our experiments.

5.3.1. Coefficients order
As explained in Section 4.3.1, scans are designed following

the empirical evidence that Pr{Cij > 0} is typically decreasing
with i and j. In our experiments we use the zig-zag scan and the
diagonal orders shown in Fig. 3.

5.3.2. Intra-prediction functions
We use the intra-prediction functions specified in the video

coding standards H.262 | MPEG-2 Video [49], H.263 [50] and
MPEG-4 AVC [51]. This includes DC, horizontal, vertical and di-
agonal predictions types.

5.3.3. Block sizes
In real practice, d will be given by the database stream to

be protected, and thus is fixed, whereas n is a parameter of the
scheme and needs to be chosen appropriately.

In Fig. 8, we have computed the quantity ∥GS(f σ̄c )∥F for differ-
ent block sizes. This quantity is central to compute the sensitivi-
ties of the scoring functions θ = 1/2 and θ = 1, and therefore to
choose t and σ ; hence its importance.
15
The results have been obtained for Λ = 1, which is equivalent
to dividing each attribute value by its maximum value and es-
sentially indicate that the specific value of n will not have a large
impact on the sensitivity of either scoring function. The number
of attributes, however, does have a greater effect on ∥GS(f σ̄c )∥F,
nd appears to be roughly linear with d.
It is worth emphasizing that the transforms shown for each

block size are the ones maximizing the quantity at hand. In other
words, they are the worst choice, among the three transforms
under study, in terms of data distortion. However, as Fig. 8 shows,
the differences in terms of ∥GS(f σ̄c )∥F among the DCT, DST and
DHT are small.

Although n does not seem to have an impact on the sensitiv-
ities of the scoring functions θ = 1/2 and θ = 1, it does pose
various trade-offs in our DPCM scheme. For example, the larger
n, the larger the number of transformed coefficients, and the more
Laplacian noise will be added to each of them, but the larger
the coding efficiency of transform coding14 Likewise, the smaller
n, the less permutations will be available for the preprocessing
module, and therefore the worse the prediction X̂ of X. In order to
capture the effect of n on the proposed scheme, our experiments
will be conducted for block lengths of 8, 16, 32 and 48 records.

5.3.4. Preprocessing
In those cases when the processing module is to operate at

the extreme regions of the prediction-reordering trade-off, we
shall use the strategies described in Section 4.5.1 to alleviate the
computational burden on the module. In the low-reordering case,
we shall employ S1 for n = 8, 16 and S2 for n = 32, 48. In any
case, we shall set a timeout of 2 s for the computation of either
the original problem (17) or the strategies S1 and S2.

5.4. Distortion metric and privacy parameters

We use the SSE to evaluate the impact on distortion caused
by anonymization. The SSE is a measure of overall information
loss that is frequently employed in the evaluation of statistical
disclosure control methods.

On the other hand, we shall conduct our series of experiments
for levels of privacy protection in the interval ε ∈ [1, 3], which
cover the usual range of values observed in the literature [15–
17,52,53]. In this regard, we shall set εQL = εQE = εE =

εj/3.
Lastly, note that the sensitivity values derived in Section 4 are

essentially proportional to the length of the intervals in which
these attributes take values. Since the attributes of our two data
sets are not naturally upper-bounded, we need to delimit the
domain of each attribute. For the sake of comparison, we follow
the methodology described in [15,16,48,54] and upper-bound the
domain of an attribute to be 1.5 times the maximum value of this
attribute in the data set.

5.5. Results

First of all, it should be noted that the series of experiments
shown in the sequel have been conducted for the scoring func-
tions ω1/2 and ω1. However, since the observed differences are
negligible, we just report on the results for one of them, namely,
ω1.

Fig. 9 shows average15 distortion values for ten equally spaced
values of ε within the interval [1, 3]. In our experiments, we set

14 The coding efficiency of transform coding typically increases with the block
size. Nonetheless, the potential gains may become insignificant beyond a certain
block size [35].
15 Given the randomness of the DP mechanisms employed, we used one
hundred repetitions for each combination of system parameters and averaged
all them.
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Fig. 9. Average distortion versus privacy protection for several values of record delay δ, block size n and maximum allowed reordering cost cR in the data set
vlCensus. The baseline approach and the proposed solution are represented with black and colored lines and points, respectively.
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δ = m, which means all records experienced a delay of m records,
that is to say, a frame16; and evaluated the proposed system for
four delay-constraint values (shown in the figure), which account
for roughly 0.5%, 3.65%, 6.82% and 10% of the total length of the
data set. Furthermore, we allowed a reordering cost of half of the
maximum acceptable cost, that is, cR = ⌊n

2
/2⌋/2.

The log-distortion obviously decreases with ε, and does so in
an almost linear way, both in our system (colored lines) and in
the baseline approach (black lines). In any of the four subfigures,
Figs. 9(a–d), we can see that higher delays translate into lower
distortion. This is not because there are more record blocks avail-
able for inter-prediction or block matching, as these parameters
are fixed. This is simply because εj is larger, on account of the
fact that εj = εm/l and m = δ. Also, in the process of decreasing
distortion, the effect of the delay is much more important in our
system than in the baseline approach, essentially because the
latter does not leverage the delay for anything else, other than
increasing εj.

In comparative terms, it may seem that there is not a large
difference in distortion between our solution and the baseline
approach. However, indeed there is: a reduction of 0.3 or 0.4
in log2 SSE in fact represents a relative reduction of 23.11% or
31.95% in SSE. This is what we observe in Fig. 9(d): our approach
yields 32% less distortion that the baseline solution for ε = 3,
n = 48, δ = 14 928 and cR = 576. However, for the smallest
delay value (δ = 720), it appears that larger block sizes do not
diminish distortion too much. It should be noted, though, that the
observed gain margins are despite the low values of εj our system
operates with, going approximately from 0.0048 (when δ = 720
and ε = 1) to 0.2986 (when δ = 14 928 and ε = 3).

For a fixed delay, Fig. 9 shows how the distortion decreases
with the pair (n, cR). This seems to indicate that the coding
efficiency of transform coding increases with n (despite the fact
that we may have potentially more coefficients and thus more
noise added to them) and/or that a greater number of permu-
tations available for the preprocessing module notably improves
the prediction X̂ of X.

Fig. 10 clarifies this latter point. Here we show the distortion
for a fixed delay m = 7 872 and two values of cR, namely, cR = 1
(no reordering allowed) and cR = ⌊n

2
/2⌋ (no constraints on re-

ordering). The results indicate that the gains due to allowing any
reordering are not significant, which suggests that the block size
has a greater impact on distortion. In short, it seems that, out of
the main parameters controlling the trade-off among distortion,
delay, reordering and privacy, n and δ have a greater effect on
distortion than cR —at least in this data set.

Fig. 11 shows the same variables of Fig. 9 but for the data set
forest. In general, we can observe a very similar behavior than
in vlcensus, including the same little impact of reordering on

16 Recall that m is the number of records within a frame.
16
distortion reduction. There are some slight differences, however.
First, the minimum difference in distortion between the baseline
approach and our scheme, which is observed for (δ = 720,
n = 8, cR = 16 and ε = 1), is 0.66%; while in vlcensus
this yields 0.078%. And secondly, the maximum differences in
distortion between our solution and the baseline approach are
observed, analogously as in the data set vlcensus, in Fig. 11(d)
and yield 31%.

Fig. 13 shows the average processing time per block we
recorded in the computation of Figs. 9, 10, 11 and 12. We observe
that the 75th percentile for vlcensus is 0.6038, 0.2495, 0.1039,
0.02456 s respectively for n = 8, 16, 32, 48 and 0.5997, 0.2141,
0.0991, 0.0214 s for forest. We also notice that the processing
ime is slightly greater for the vlcensus data set, which is con-
sistent with its 3 additional numerical attributes. In this regard,
we would like to emphasize that the efficiency of our method for
large-dimensional stream databases (i.e., large d) will depend on
the efficiency of the employed transforms. As a matter of fact,
the computational burden on the analysis and synthesis blocks
represents, on average, the 41% of the time needed to protect a
block. Finally, to illustrate the operation of our anonymization
method, we show in Fig. 14 the input and output blocks of a
fragment of forest with n = 8.

. Previous work on differentially-private transform coding

As described in Sections 5.2 and 2.2.2, the only work that has
ealt with the problem of publishing DP database streams is [10].
onetheless, we could not compare our approach with that
ork experimentally since it just operates with single-attribute
atabases and does not allow record updates.
Although to the best of our knowledge there is just this work,

he conceptual approach presented here, however, shares some
imilarities with two distinct protection methods, [55,56]. Al-
hough none of them are intended for database streams, for the
ake of rigorousness we deem it appropriate to highlight the main
ifferences between those two works and ours.
The former work, [55], aims to answer a fixed number of

ueries over time-series data under DP. To this end, the authors
ropose a protection method called sampling perturbation algo-
ithm (SPA) that perturbs the one-dimensional discrete Fourier
ransform (DFT) of such query answers. In particular, the SPA
hooses the number of such coefficients adaptively with the ex-
onential mechanism by sampling a multidimensional hyperbolic
istribution and then perturbing them. On the other hand, [56]
ims to protect static histograms with DP. The proposed solution,
alled enhanced SPA (ESPA), essentially uses a different scoring
unction in the exponential mechanism of the SPA.

First and foremost, we would like to emphasize that SPA and
SPA are not aimed, nor can be trivially adapted, to database
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Fig. 10. Average distortion versus privacy protection for a fixed delay δ = 7 872, several block sizes n and two allowed reordering costs cR ∈ {1, ⌊n2/2⌋} in the data
et vlCensus. The baseline approach and the proposed solution are represented with black and colored lines and points, respectively.
Fig. 11. Average distortion versus privacy protection for several values of record delay δ, block size n and maximum allowed reordering cost cR in the data set
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Fig. 12. Average distortion versus privacy protection for a fixed delay δ = 7 872, several block sizes n and two allowed reordering costs cR ∈ {1, ⌊n2/2⌋} in the data
et forest. The baseline approach and the proposed solution are represented with black and colored lines and points, respectively.
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Fig. 13. Average processing time per block.

streams.17 Secondly, their fundamental operation relies merely
on a single, one-dimensional transform-coding scheme and the
elimination of certain coefficients; but they do not address the

17 Note that [56] does not even address the case of continuous data.
 a

17
Fig. 14. (a) Input block (n = 8) and (b) the corresponding protected, output
block of a fragment of forest for ε = 2 and cR = 16 during the series of
xperiments conducted in Section 5.5.

roblem through a hybrid video coding approach nor inter-
rets the processing of those coefficients as a quantization step,
or considers prediction, encoding control or data permutations.
hirdly, [55] and [56] capitalize upon the DFT of the original input
ata, whereas our work operates with the two-dimensional DCT,
ST and Hartley transforms of the residual signal. Fourthly, our
pproach distributes the privacy budget among the transformed
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oefficient in an optimal fashion, so as to minimize the MSE.
ifthly, we use a family of parametrized scoring functions in
he exponential mechanism to select not only the number of
ransform coefficients but also the type of transform. Finally,
ur approach leverages the exact sensitivity of those coefficients,
hile SPA and ESPA operate with a sensitivity bound, whose
athematical derivation is flawed.

. Conclusions and future research

With the advent of big-data analytics, complying with cur-
ent data-protection frameworks in Europe and some Western
ountries has become very challenging. Our work focuses on the
nonymization of database streams (a particular class of dynamic
ata), a technique whereby data controllers can legitimately cir-
umvent such legal frameworks.
Among a variety of privacy notions, DP is one of the most pop-

lar among the scientific community working in data anonymiza-
ion. In this work, we have tackled the protection of database
treams with DP in the compelling case when the data controller
ishes to publish those streams, rather than statistics derived

rom them.
We have proposed an anonymization method that can publish

ultiple numerical-attribute, finite database streams with DP
uarantees and provide high protection as well as high utility in
erms of data distortion, delay and record reordering.

The proposed method, which relies on the DPCM compression
cheme, adapts techniques originally intended for hybrid video
ncoding, to favor and leverage dependencies among the blocks
f the stream to be protected. In video coding, the exploitation of
tatistical dependencies can enhance coding efficiency and reduce
he information contributed by image blocks and frames. In our
ontext of database anonymization, we have shown the adapted
echniques can help introduce significantly less distortion.

We have designed our method to operate with blocks of
ecords going through a series of modules analogous to those
f the DPCM scheme, except for the preprocessing module. The
esign of our solution has been optimized in a number of different
ays to minimize the MSE incurred in releasing the synthesized,
rotected block (instead of the original one). With this minimiza-
ion goal in mind, nearly all modules of the proposed method
djust in an automated fashion to the dynamic characteristics of
he incoming database streams. We achieve this adjustment by
perating with blocks of records of limited size, and by ensuring
hat each protected, output block X̃ will minimize the MSE in-
urred in releasing it instead of X. More specifically, our solution
elects, adaptively and on a per block basis, the transform coding
cheme (either DCT, DST or DHT), the number of coefficients to
e protected, the mode (either intra- or inter-prediction) and the
pecific type of prediction within the video standard chosen, and
permutation of the rows of the incoming block. Regarding the

ransform scheme, we hasten to stress that our solution is by no
eans restricted to the three transforms employed in our exper-

mental evaluation, but rather any orthogonal, two-dimensional
eparable transform can be utilized.
Our extensive experimental evaluation demonstrates the suit-

bility of utilizing hybrid video encoding to publish DP database
treams. For the two data sets under study, we have shown
ur method can achieve a relative reduction of 32% and 31%
ess distortion in SSE than the baseline approach for the vl-
ensus and forest data sets, respectively. Remarkably enough,
hese results have been obtained for extremely low values of εj
i.e., for extremely high values of block protection), in the interval
0.0048, 0.2986].

We have also observed that distortion decreases with the
lock size and the maximum acceptable reordering cost, which
18
suggests that the coding efficiency of transform coding increases
with the former parameter and/or that a larger number of permu-
tations at preprocessing module significantly reduces the predic-
tion error. Furthermore, our experimental results seem to con-
firm that the block size and the delay have a greater effect on
distortion than the maximum acceptable reordering cost.

Finally, we would like to remark that our work has performed
masking at the level of record to ensure DP. This implies the
protection method outputs a database of the same format of
the original one. As highlighted in Section 2.2.1, this contrasts
with masking at the histogram level, which implies the output
of the protection method is a perturbed histogram. Given these
two contrasting approaches, one may wonder if combining mul-
tiple knowledge representation (e.g., the very same record and
histogram representations and others) could have a synergistic
effect [57]. An immediate question it raises is that all protected
data must be at the same level of representation, which implies
some transformations will be needed. In the case of combin-
ing record and histogram representations, probably the easiest
way might be sampling from a histogram to generate records.
However, combining representations may prompt some issues,
especially those incurred by the sequential composition property
of DP. If the used knowledge representations handle overlapping
sets of individuals, a fraction of the privacy budget will have
to be consumed by each representation, which may have an
important impact on the utility of the protected data. Finding
an appropriate combination of representations and the optimal
assignment of epsilons is an interesting and necessary avenue for
future research.
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