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A B S T R A C T

A comprehensive study on the influence of planar fourth-order fiber orientation tensors on effective linear
elastic stiffnesses predicted by orientation averaging mean field homogenization is given. Fiber orientation
states of sheet molding compound (SMC) are identified to be in most cases approximately planar. In the planar
case, all possible fourth-order fiber orientation tensors are given by a minimal invariant set of structurally
differing planar fourth-order fiber orientation tensors. This set defines a three-dimensional body and forms the
basis for a comprehensive study on the influence of a fiber orientation distribution in terms of a fourth-order
tensor on homogenized stiffnesses. The methodology of this study is the main contribution of this work and
can be adopted to analyze the orientation dependence of any quantity which is a function of a planar fourth-
order fiber orientation tensor. At specific points inside the set of planar fiber orientation tensors, effective
stiffnesses are calculated with selected mean field homogenization schemes. These schemes are based on
orientation averaging of transversely isotropic elasticity tensors following Advani and Tucker (1987), which
is explicitly recast as linear invariant composition in the fiber orientation tensors of second and fourth order
of Kanatani third kind. A maximum entropy reconstruction of a fiber orientation distribution function based
on leading fiber orientation tensors, enables a new numerical formulation of the Advani and Tucker average
for the special planar case. Polar plots of Young’s modulus and generalized bulk modulus obtained by selected
homogenization schemes are arranged on two-dimensional slices within the body of admissible fiber orientation
tensors, visualizing the influence of the orientation tensor on the stiffness tensor. The orientation-dependence
of the generalized bulk modulus differs significantly between selected homogenizations. Restrictions on the
effective anisotropic material response caused by orthotropy of closure approximations are discussed.
. Introduction

The effective mechanical properties of fiber reinforced composites
ighly depend on the microstructure. The microstructure descriptors
iber volume content and fiber orientation tensors are commonly used
n homogenization techniques for two-phase composites (Buck et al.,
015; Brylka, 2017; Hessman et al., 2021; Schemmann et al., 2018b;
ehrer et al., 2020). Experimental or numerical identification and
ubsequent use of second-order fiber orientation tensors is well es-
ablished in process chains (Görthofer et al., 2019) and commercial
oftware. The use of higher-order fiber orientation tensors or the direct
se of a fiber orientation distribution function, is progressing (Meyer
t al., 2020). Nevertheless, closure approximations, which identify
igher-order orientation information based on assumptions instead of
nformation, are still used in material modeling. For the special case
f linear elasticity, mean field homogenization is popular due to its
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KIT), Germany.

E-mail addresses: julian.bauer@kit.edu (J.K. Bauer), thomas.boehlke@kit.edu (T. Böhlke).

simplicity (Kehrer et al., 2020). A unified formulation of several mean
field approximations is given in Hessman et al. (2021). The influence
of model parameters, the fiber volume content or the aspect ratio
of either the fiber’s shape or the two-point correlation functions, on
the predicted effective mechanical properties obtained by mean field
homogenization, is studied extensively, e.g. in Kehrer et al. (2020),
Buck et al. (2015), Brylka (2017), Hessman et al. (2021), Müller (2016),
Trauth et al. (2021) and Kehrer (2019). However, the influence of
fiber orientation distributions on the effective properties has not been
studied systematically. In this work, the influence of fiber orientation
distributions on the effective properties of long fiber reinforced compos-
ites with large aspect ratios, such as sheet molding compound (SMC),
is studied. Fiber distributions of SMC are identified to be in most cases
approximately planar and therefore correspond to fiber orientation
tensors which are planar as well. A set of all admissible and structurally
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differing planar fiber orientation tensors of fourth order is identified
by Bauer and Böhlke (2021, 2022) within a three-dimensional frame-
work. This set is the basis for a complete study on the influence of the
fiber orientation distribution on the effective mechanical properties for
selected orientation averaging mean field homogenizations within this
work. This complete study is new and of high relevance as it visualizes
all possible effective stiffness tensors which can be obtained for planar
distributions and selected homogenizations. The methodology may be
applied to any other homogenization or any effective quantity, which is
a function of a planar fourth-order fiber orientation tensor. As a side ef-
fect, the limitations of the use of second-order orientation tensors only
are visualized. The developed visualization method may be adopted to
higher-dimensional parameter spaces of fourth-order fiber orientation
tensors with lower symmetry.

This paper starts with definitions of fiber orientation tensors before
orientation states of SMC specimen obtained by computer tomogra-
phy (Pinter et al., 2018; Schöttl et al., 2020) are identified to be
approximately planar. In consequence, the microstructure of SMC can
be parameterized in the three-dimensional space of admissible pla-
nar fourth-order fiber orientation tensors. A parameterization of this
space is obtained in Bauer and Böhlke (2021) and combined with
a minimal parameter set of structurally distinct planar fourth-order
fiber orientation tensors given in Bauer and Böhlke (2022). As the
Advani–Tucker orientation average (Advani and Tucker III, 1987) is an
essential building block of various mean field schemes, but the impli-
cation of its linearity in both the orientation tensor and the averaged
quantity is seldomly addressed explicitly, a reformulation based on
the harmonic decomposition (linear invariant decomposition) is given.
A new numerical variant of the Advani–Tucker orientation average
based on reconstructed FODF following the maximum entropy method,
developed in Müller and Böhlke (2016) and Bauer and Böhlke (2022),
is given and shown to have a good convergence for non-localized
orientation states. In a next step, four mean field homogenization ap-
proximations (Kehrer et al., 2020; Walpole, 1966a,b; Benveniste, 1987)
are reviewed, partially reformulated and investigated. Implementations
are made available at Bauer (2022). The first approximations are
orientation averaging Mori–Tanaka following Benveniste (1987) and
a two step Hashin–Shtrikman homogenization scheme (Kehrer et al.,
2020) both in formulations based on the orientation average follow-
ing Advani and Tucker III (1987). The remaining two approximations
are direct Advani–Tucker orientation averages of either a unidirectional
stiffness or compliance obtained by the Mori–Tanaka (Mori and Tanaka,
1973) approximation. Views on the effective stiffnesses obtained by the
selected schemes are given based on Young’s modulus and generalized
bulk modulus following Böhlke and Brüggemann (2001). Observations
on structural differences of the effective stiffnesses obtained by schemes
averaging stiffness- or compliance-like quantities close this work.

Notation: Symbolic tensor notation is preferred in this paper. Ten-
sors of first order are denoted by bold lowercase letters such as 𝐪, 𝐧,
𝐯, 𝐞. Tensors of second order are denoted by bold uppercase letters
like 𝐍 or 𝐐 and fourth-order tensors are denoted by, e.g., N or D.
Tensors in representations for varying tensor order are represented by,
e.g., D

⟨𝑘⟩, where 𝑘 defines the tensor order. A linear mapping of a
second-order by a fourth-order tensor reads as 𝐀 = C [𝐁]. The scalar
product reads as 𝐀 ⋅ 𝐁. The tensor power, i.e., the 𝑘th dyadic product
of, e.g., a first order tensor 𝐚 is denoted by 𝐚⊗𝑘 yielding, e.g., 𝐚⊗3 =
𝐚 ⊗ 𝐚 ⊗ 𝐚. An orthonormal basis is denoted by

{

𝐞𝑖
}

with 𝐞𝑖 ⋅ 𝐞𝑗 = 𝛿𝑖𝑗
nd the Kronecker delta 𝛿𝑖𝑗 . If a matrix of tensor coefficients is used
n mixed notation, the coefficient matrix is directly followed by the
ensor basis where the first index of the basis corresponds to the rows
f the coefficients matrix, the second one to the columns. Summation
onvention applies, unless otherwise stated. Representations in index
otation always refer to an orthonormal basis. The Rayleigh product
s used to represent an active rotation of a physical quantity and for

first order tensor is defined by 𝐐 ⋆ 𝐧 = 𝑛𝑖𝐐𝐞𝑖. Sets, i.e., collections
2

f quantities, are denoted by calligraphic symbols, e.g.,  and are m
onstructed by curly braces. Inside the curly braces, elements of the
et are given explicitly, or by a generator expression following the pat-
ern {quantity|condition fulfilled inside set}. Although, this work and
elated code is based on Harris et al. (2020) and Meurer et al. (2017),
umbering and indices follow the continuum mechanics convention
tarting at one.

. On the dependence of orientation averaging mean field homog-
nization on planar fourth-order fiber orientation tensors

.1. Sheet molding compound and planar microstructures

Sheet molding compound (SMC) is a material class with a thermoset
olymer matrix enforced by long glass fibers and is of special interest
n this work. Due to the manufacturing process (Böhlke et al., 2019),
omponents made from SMC are shell-shaped, i.e., at each point of the
omponent, the thickness is significantly smaller than the remaining
wo dimensions of the component. As the fiber length exceeds the
omponent thickness, alignment of fibers perpendicular to the local
lane of the shell is limited to local fiber bending. In consequence,
ocal directional measures which describe the orientation of fibers in
MC components are approximately planar. In order to elaborate the
onsequences of this planarity, directional measures are introduced,
losely following a more comprehensive discussion in Bauer and Böhlke
2021, sections 2.1 and 2.2).

A fiber orientation density function (FODF) is an established di-
ectional measure for the orientation of axisymmetric fibers contained
nside a reference volume. Such a reference volume can be interpreted
s a section of a structural component of specified size. The size of the
eference volume influences the directional measurement and repre-
ents a scaling parameter in measurement algorithms, e.g., in Görthofer
t al. (2019, Figure 4) or Schöttl et al. (2020). The FODF

∶ 2 → R, with 2 =
{

𝐧 ∈ R3
| ‖𝐧‖ = 1

}

(1)

t a given position inside a component maps any direction 𝐧, being
art of the two-dimensional surface of a unit sphere in three dimen-
ions 2, onto a scalar value 𝜓 (𝐧). The function 𝜓 (𝐧) is non-negative,
ormalized and symmetric (see Advani and Tucker III, 1987; Bauer
nd Böhlke, 2021; Görthofer et al., 2020; Bauer and Böhlke, 2022).
he FODF contains the complete directional information, which can
e contained in a one-point correlation function, but is usually un-
nown. In contrast, orientation tensors only contain a limited amount
f averaged information but can be obtained by computer tomography
cans or flow simulations (Görthofer et al., 2019) and fit into the tensor
ramework of continuum mechanics. In this work, fiber orientation
ensors of Kanatani (1984) first kind of second 𝐍 and fourth order N
re used and defined by

𝐍 = ∫2
𝜓 (𝐧)𝐧⊗ 𝐧 d𝑛, (2)

= ∫2
𝜓 (𝐧)𝐧⊗ 𝐧⊗ 𝐧⊗ 𝐧 d𝑛. (3)

he fiber orientation tensors represent averaged directional measures
nd are coefficients of a three-dimensional tensorial Fourier series
epresentation of the FODF

(𝐧) = 1
4𝜋

∞
∑

𝑘=0

2𝑘 + 1
2𝑘

(

2𝑘
𝑘

)

dev
(

N
⟨𝑘⟩

)

⋅ 𝐧⊗𝑘 (4)

alled spherical harmonic expansion (Kanatani, 1984, page 154), with
he operator dev(⋅) extracting the deviatoric part, see Spencer (1970).
igher order fiber orientation tensors contain all tensors of lower order
hich implies 𝐍 = N [𝐈] for the tensor orders two and four, with the

dentity on second-order tensors 𝐈 = 𝛿𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 .
In order to define planarity of the directional measures, the basic

roperties of the second-order orientation tensor 𝐍 are briefly sum-
arized following Bauer and Böhlke (2021). As 𝐍 is symmetric and
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positive semi-definite, it can be diagonalized, i.e., pairs of eigenvalues
𝜆𝑖 with 𝜆𝑖 ≥ 0 and orthonormal eigenvectors 𝐯𝑖 for 𝑖 ∈ [1, 2, 3] exist,
such that

𝐍 = 𝑁 (2)
𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 =

3
∑

𝑖=1
𝜆𝑖𝐯𝑖 ⊗ 𝐯𝑖 =

⎡

⎢

⎢

⎣

𝜆1 0 0
𝜆2 0

sym 𝜆3

⎤

⎥

⎥

⎦

𝐯𝑖 ⊗ 𝐯𝑗 (5)

olds with the ordering convention 𝜆3 ≤ 𝜆2 ≤ 𝜆1 and there exists a
otation defined by an orthogonal tensor

= 𝐯𝑖 ⊗ 𝐞𝑖 (6)

apping the arbitrary but fixed basis
{

𝐞𝑖
}

onto the basis
{

𝐯𝑖
}

. A visual
lassification of structurally differing orientation tensors is given by the
o called orientation triangle (Cintra and Tucker III, 1995; Chung and
won, 2002; Goldberg et al., 2017; Köbler et al., 2018). As 𝜆3 = 1−𝜆1−
2 holds due to the normalization of 𝜓 , any second-order orientation
ensor can be represented by a pair

(

𝜆1, 𝜆2
)

, which is connected to a
oint inside the orientation triangle and by a mapping 𝐐 which defines
he orthonormal basis

{

𝐯𝑖
}

spanned by the eigenvectors. This basis is
called orientation coordinate system (Bauer and Böhlke, 2021) and can
be used to define the term planarity for FODF and fiber orientation
tensors. A FODF is planar, if

𝜓(𝐧(𝜑, 𝜃)) = 0 ∀𝜑, ∀ 𝜃 ≠ 𝜋
2

(7)

olds with a unit vector parameterized in two spherical angles in the
rientation coordinate system

(𝜑, 𝜃) = sin(𝜃) cos(𝜑)𝐯1 + sin(𝜃) sin(𝜑)𝐯2 + cos(𝜃)𝐯3. (8)

fiber orientation tensor of arbitrary order is planar if its succes-
ive contraction yields a second-order fiber orientation tensor with
anishing third eigenvalue.

The assumption of the planarity of SMC microstructures is assessed
y inspection of a biaxial tensile specimen made of SMC. Second-order
iber orientation tensors following Eq. (5) at several locations inside
his specimen are obtained by computer tomography following Schöttl
t al. (2020) and are referenced as  CT

SMC. The obtained fiber orientation
ensors are visualized as points inside an orientation triangle in Fig. 1.
he orientation states along the upper right border of the triangle in
ig. 1 represent perfectly planar orientations, as the third eigenvalue
3 = 1 − 𝜆1 − 𝜆2 vanishes. The measured fiber orientation tensors align
ell onto the planar border of the orientation triangle in Fig. 1 and

herefore confirm the planarity assumption. However, the spatial reso-
ution of CT images as well as the choice of algorithm parameters for
he processing of the CT images, influence the planarity of the resulting
iber orientation tensors. Not all fiber orientation tensors obtained for
MC in literature are perfectly planar. As an example, Kehrer et al.
2020, Figure 5) contains non-planar fiber orientation states, obtained
y CT scans, indicating a high spatial resolution of the corresponding
T images combined with small extraction cylinders (see Görthofer
t al., 2019, Figure 4) in the post-processing of the CT images. Visual-
zations of SMC microstructure data obtained by computer tomography
CT) are, e.g., given in Trauth et al. (2021, fig. 2). Artificially generated
MC microstructures can be found in Görthofer et al. (2020, fig. 3b
nd 5). The algorithm, which (Görthofer et al., 2020) used to generate
rtificial microstructures, hints towards the planarity of the resulting
irectional measures. Throughout this work, fiber orientation tensors
f SMC are assumed to be perfectly planar and hence, the dependence
f the mechanical response of shell-like SMC structures on a varying
icrostructure can be investigated based on planar fiber orientation

ensors. In this work, the SMC-specific bundle structure which is,
.g., considered in Schöttl et al. (2021) and Görthofer et al. (2020),
s not taken into account.
3

𝑑

Fig. 1. Orientation triangle visualizing second-order orientation tensors  CT
SMC obtained

by computer tomography (CT) scans at several positions of a SMC specimen. For
reference, the vertices of the orientation triangle are labeled in the legend.

2.2. Planar fourth-order fiber orientation tensors

A parameterization of planar fiber orientation tensors of second
order 𝐍planar is given by

𝐍planar (𝜆1
)

= 𝜆1 𝐯1 ⊗ 𝐯1 +
(

1 − 𝜆1
)

𝐯2 ⊗ 𝐯2

=
⎡

⎢

⎢

⎣

𝜆1 0 0
1 − 𝜆1 0

sym 0

⎤

⎥

⎥

⎦

𝐯𝑖 ⊗ 𝐯𝑗 (9)

in the orientation coordinate system
{

𝐯𝑖
}

which is defined in Eq. (6).
ositive definiteness and normalization of the trace combined with the
rdering convention of the eigenvalues demand the parameter range
∕2 ≤ 𝜆1 ≤ 1. Bauer and Böhlke (2021) discuss that planar fiber

orientation tensors of fourth order only depend on three independent
parameters and derive admissible ranges of these parameters demand-
ing positive semi-definiteness of the orientation tensors. Among the
admissible parameters, Bauer and Böhlke (2022) identify a subset of
parameter combinations which represent all admissible and structurally
distinct planar fourth-order fiber orientation tensors. Following Bauer
and Böhlke (2022), two tensors A and B are structurally distinct if

∄𝐐 ∈ SO(3) with 𝐐 ⋆ A = B (10)

with the special orthogonal group SO(3), which contains all proper rota-
tions. These results are summarized by the parameterization in Eq. (11)
(see Box I) which follows from Bauer and Böhlke (2022, equation (22))
with

𝑅̂(𝜆1) = (𝜆1 − 𝜆21)∕2 (13)

and is represented in Kelvin–Mandel notation (Thomson, 1856; Mandel,
1965; Mehrabadi and Cowin, 1990). This notation is explained in detail
in Appendix A and the basis 𝐁𝐯

𝜉 ⊗ 𝐁𝐯
𝜁 is spanned in the orientation co-

ordinate system
{

𝐯𝑖
}

, i.e., for example the fifth basis vector in Eq. (11)
becomes 𝐁𝐯

5 =
√

2
2

(

𝐯1 ⊗ 𝐯3 + 𝐯3 ⊗ 𝐯1
)

. The parameterization in Eq. (11)
an be combined with the set of parameter combinations which leads
o admissible and distinct Nplanar. This set ̂ planar is given in Eq. (12)
ollowing Bauer and Böhlke (2022, equation (28)). A visualization
f the body of admissible and distinct orientation tensors ̂ planar in
artesian coordinates

̂ = 𝑟̂ sin
(

𝛽
)

, 𝑑 = 𝑟̂ cos
(

𝛽
)

(14)
1 8
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Nplanar (𝜆1, 𝑟̂, 𝛽
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑟̂ sin
(

𝛽
)

− 𝑅̂(𝜆1) + 𝜆1 𝑟̂ sin
(

𝛽
)

+ 𝑅̂(𝜆1) 0 0 0
√

2 𝑟̂ cos
(

𝛽
)

−𝑟̂ sin
(

𝛽
)

− 𝑅̂(𝜆1) + (1 − 𝜆1) 0 0 0 −
√

2 𝑟̂ cos
(

𝛽
)

0 0 0 0

completely symmetric

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝐯
𝜉 ⊗ 𝐁𝐯

𝜁 (11)

̂ planar =
{

Nplanar (𝜆1, 𝑟̂, 𝛽
)

∣ 1
2
< 𝜆1 ≤ 1, 0 ≤ 𝑟̂ ≤ 𝑅̂(𝜆1), −

𝜋
2
≤ 𝛽 ≤ 𝜋

2

}

∪
{

Nplanar (𝜆1, 𝑟̂, 𝛽
)

∣ 𝜆1 =
1
2
, 0 ≤ 𝑟̂ ≤ 1

8
, 𝛽 = −𝜋

2

}

(12)

Box I.
Fig. 2. Visualization of the set of admissible and distinct planar fourth-order fiber ori-
entation tensors ̂ planar in the parameter space

{

𝜆1 , 𝑑1 , 𝑑8
}

using the parameterization
of Nplanar in Eq. (11). A derivation of this space is given in Bauer and Böhlke (2022).

is given in Fig. 2. The data set  CT
SMC of fiber orientation tensors

obtained by CT, which second-order information is visualized in Fig. 1,
is represented in the parameter space ̂ planar in Fig. 3. The data
points are preferably concentrated around the axis of vanishing values
of 𝑑1 and 𝑑8. This observation supports the statement of Hine et al.
(2004), that real fiber orientations preferably scatter around orientation
states with maximum entropy, i.e., those which are approximately
isotropic. Analysis of additional data sets reveals, that the size of the
reference volume associated with each discrete fiber orientation tensor
significantly determines the resulting distribution inside the admissible
region. However, quantitative investigations on the dependence of fiber
orientation states on processing and CT settings is moved to a follow-
up publication. Based on the parameterization Nplanar(𝜆1, 𝑟̂, 𝛽) and the
set ̂ planar, a visualization method, motivated by Bauer and Böhlke
(2022), can be used to study the influence of planar fourth-order
fiber orientation tensors on the mechanical properties predicted by
orientation averaging mean field homogenization techniques.

Although, the planar fiber orientation tensors given in Eqs. (9) and
(11) fit into a two-dimensional framework, e.g., used in Bauer and Böh-
lke (2022), a three-dimensional tensor framework is deployed within
this work, as the mechanical behavior of real materials is defined by
the laws of physics of the three-dimensional world. Boundary condition
into the out-of-plane direction influence the mechanical response of
4

planar structures, see Nordmann et al. (2020).
Fig. 3. Fourth-order orientation tensors  CT
SMC obtained by computer tomography

(CT) scans at several positions of a SMC specimen, represented by points inside the
admissible and distinct planar parameter space ̂ planar. The size of the reference
volume associated with each discrete fiber orientation tensor significantly determines
the resulting distribution inside the admissible region.

2.3. Orientation averages

Orientation averaging mean field homogenization demands analyt-
ical or numerical schemes which yield averages of direction-dependent
tensorial quantities over orientations. Advani and Tucker III (1987)
define the orientation average of a tensorial quantity A by

⟨A ⟩AT = ∫𝑆2
𝜓(𝐧)A(𝐧) d𝑆, (15)

i.e., as a weighted summation with weights defined by the FODF.
Several formulations and approximations of Eq. (15) exist in literature.
An exact formulation given in the original paper (Advani and Tucker III,
1987, equation (28)), frequently used in, e.g., Lielens et al. (1998),
Jack and Smith (2008), Camacho et al. (1990), Brylka (2017), Kehrer
et al. (2020), Hessman et al. (2021) is labeled ⟨⋅ ⟩ATN in this work. This
formulation is given directly in terms of fiber orientation tensors of
second and fourth order Kanatani (1984) first kind, and in its original
formulation is restricted to transversely isotropic elasticity tensors H =
𝐻𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙, i.e., stiffness or compliance-like quantities with
major and both minor symmetries which may be specified in index
notation by 𝐻𝑖𝑗𝑘𝑙 = 𝐻𝑗𝑖𝑘𝑙 = 𝐻𝑖𝑗𝑙𝑘. However, the original formulation
in Advani and Tucker III (1987), which is repeated in slightly vary-

ing notation in, e.g., Kehrer et al. (2020), Brylka (2017) and Heller
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et al., can be extended to transversely isotropic tensors which lack
the major symmetry of an elasticity tensor. Such a generalization is
given in Appendix D based on the formulation introduced in the next
section. The explicit formulation of ⟨⋅ ⟩ATN in orientation tensors is
simple and efficient, but complicates adaption of empirical fiber dam-
age (Schemmann et al., 2018b) or incorporation of direction-dependent
fiber length distributions (Brylka, 2017). A reformulation based on the
harmonic decomposition (Rychlewski, 2000; Forte and Vianello, 1996;
Olive et al., 2018; Böhlke and Brüggemann, 2001) explicitly revealing
the structure of the scheme is given in the next section.

2.3.1. Reformulation of the explicit Advani–Tucker orientation average
A transversely isotropic elasticity tensor is completely defined by

five independent parameters and a direction, i.e., a normal vector 𝐪,
and can be written as Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, 𝐪

)

following Eq. (B.3)
in Appendix B. The orientation average ⟨⋅ ⟩ATN of a transversely
isotropic elasticity tensor is independent of 𝐪 and given by

⟨Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, 𝐪
)

⟩ATN (N)

= ℎ1 P1 + ℎ2 P2

+ ℎ3 J3
[

dev(𝐍)
]

+ ℎ4 J4
[

dev(𝐍)
]

+ ℎ5 dev(N) (16)

with the irreducible parts of N

dev(𝐍) = 𝐍 − 𝐍iso (17)

dev(N) = N − 6
7

sym (dev(𝐍)⊗ 𝐈) − Niso (18)

nd the isotropic parts of the second- and fourth-order fiber orientation
ensors of Kanatani (1984) first kind

iso = 1
3
𝐈, Niso = 7

35
sym (𝐈⊗ 𝐈) (19)

following Bauer and Böhlke (2021). The isotropic sixth order tensors J3
nd J4 are defined in Eqs. (B.6) and (B.7). The operator sym(⋅) extracts
he totally symmetric part following Spencer (1970) and the operator
ev(⋅) extracts the deviatoric part also discussed in Spencer (1970).
inearity of the harmonic decomposition in Eq. (16) implies that the
rientation average following Advani and Tucker III (1987) is linear in
oth Ctransv and N. This implication might be obvious to some authors,
s the only source of orientation dependent structural information is
. However, the original formulation in Advani and Tucker III (1987)
oes not directly reveal, that the isotropic part of the averaged elasticity
ensor is unaffected, as one would expect from a physical point of view.
n addition, the first and second deviatoric parts of the orientation av-
rage in Eq. (16), i.e., ℎ3 dev(𝐍) and ℎ4 dev(𝐍), only differ by a scaling
actor and share the tensor structure of dev(𝐍). As N is completely

symmetric, its first and second deviatoric parts coincide, see Bauer
and Böhlke (2021). As the manual derivation of Eq. (16) is lengthy,
listing 1 combined with code in Bauer (2022) is used to validate the
representation of the orientation average. Any material model which
contains the Advani–Tucker orientation average, implicitly contains a
linearity assumption of at least an intermediate quantity in the fiber
orientation or fabric tensor. For reference, some authors (Schemmann
et al., 2018a,b; Karl et al., 2021) explicitly postulate linearity of an
effective stiffness or viscosity in fiber orientation or fabric tensors.
In contrast, a material model of a porous, anisotropic, linear elastic
material being non-linear in a fabric tensor is given in Cowin (1985).

2.3.2. Direct numerical integration and the adaptive scheme based on
angular central Gaussian distributions

Direct numerical integration of Eq. (15) requires both a given
FODF and a large number of integration points on the two-dimensional
area of integration 𝑆2, but leads to insufficient accuracy despite high
numerical effort, especially in the case of strongly localized FODF.
This performance and accuracy issue motivates a recently developed
numerical scheme (Goldberg et al., 2017) denoted by ⟨⋅ ⟩ATGOS which
5

is based on a special class of FODF basis functions called angular central
Gaussian. Although, this scheme is not used within this work, it is
shortly introduced as a comparison. The scheme ⟨⋅ ⟩ATGOS leads to an
approximation resulting in a weighted summation of the quantity of
interest pointing into a number of 𝑁GOS discrete directions

⟨A ⟩AT ≈ ⟨A ⟩ATGOS (𝐍) =
𝑁GOS
∑

𝑖
𝑤GOS
𝑖 (𝐍)A(𝐧𝑖) (20)

ith the weights being a function of the second-order fiber orientation
ensor. The weights can be pre-calculated and stored in efficient look-up
tructures. Implementation details are given for the three-dimensional
ase in Goldberg et al. (2017) and Hessman et al. (2021) and for the
wo-dimensional case in Görthofer et al. (2020). This formulation yields
easonable accuracy even for localized FODF with a limited number of
ntegration points (Goldberg et al., 2017), e.g., 𝑁GOS = 434 in Hessman
t al. (2021). Due to the structure in Eq. (20), any direction-dependent
uantity can be averaged and the weights may be modeled for empirical
imulation of damage. However, the orientation average ⟨⋅ ⟩ATGOS is
olely based on the directional information contained within a second-
rder orientation tensor, which is limited to two scalars describing the
alf axes of an ellipsoid combined with the definition of a coordinate
ystem.

.3.3. Orientation average by reconstructed planar FODF based on a max-
mum entropy method

A maximum entropy FODF reconstruction for planar fiber orien-
ations developed by Bauer and Böhlke (2022) based on Müller and
öhlke (2016), can be combined with any numerical integration on 𝑆1

eading to an approximation of the Advani–Tucker orientation average,
hich shares the simple structure of ⟨A ⟩ATGOS, uses fourth-order fiber
rientation tensor information and makes use of the reduced dimen-
ion of planar fiber orientation tensors. However, as this scheme uses
irect numerical integration on 𝑆1, it leads to insufficient accuracy for
ocalized fiber orientation states. Fortunately, the localized orientation
tates are known through analysis of the admissible region ̂ planar

n Bauer and Böhlke (2022) and can be captured in implementations.
ollowing Bauer and Böhlke (2022), for any admissible non-localized
iber orientation tensor of fourth-order, a planar FODF, 𝜓̂ME(𝜑,Nplanar)

parameterized in one spherical angle defined in Eq. (8) with 0 ≤ 𝜑 < 2𝜋
an be identified. This leads to an approximation of the Advani–Tucker
verage in Eq. (15) for the planar case by

⟨A ⟩AT(Nplanar) ≈ ⟨A ⟩ME(Nplanar)

= ∫

2𝜋

0
𝜓̂ME(𝜑, Nplanar)𝐐(𝜑) ⋆ A d𝜑

≈ 2𝜋
𝑁ME
∑

𝑖=1
𝑤𝑖 𝜓̂

ME(𝜑𝑖, Nplanar)𝐐(𝜑𝑖) ⋆ A

= 2𝜋
𝑁ME
∑

𝑖=1
𝑤ME
𝑖 (Nplanar)𝐐(𝜑𝑖) ⋆ A (21)

with a rotation around the 𝐯3 axis 𝐐, evaluated at specified angles
which are defined by any numerical integration scheme on 𝑆1 with
weights 𝑤𝑖. Within this work, numerical integration on 𝑆1 with homo-
geneous weights 𝑤𝑖 = 1∕𝑁ME and equidistant angles 𝑤𝑖 = 2𝜋 𝑖∕𝑁ME

following Krylov and Stroud (2006) is used. The weights of the numer-
ical integration scheme might be combined with the direction specific
value of the FODF in Eq. (21). The accuracy of the average ⟨⋅ ⟩ME is
ssessed by averaging of moment tensors, as

⟨𝐧⊗4
⟩AT(Nplanar) = Nplanar ≈ ⟨𝐧⊗4

⟩ME(Nplanar) (22)

as to hold. The assessment is done for all fourth-order fiber orientation
ensors specified in Table G.2 except for the unidirectional case notated
s  planar

selected, as this localized orientation state is insufficiently handled
y the numerical integration. The deviation is quantified by

max(𝑁ME) = max
planar

‖ ⟨𝐧⊗4
⟩ME(𝑁ME,N) − N‖

‖N‖
(23)
N ∈ selected
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Fig. 4. Influence of the number of integration points on the deviation of ⟨𝐧⊗4
⟩ME from

⟨𝐧⊗4
⟩ATN with 𝛥max defined in Eq. (23).

nd given for varying order of the numerical integration 𝑁ME in Fig. 4.
he target precision of 10−7 is reached. Studying the convergence of
he numerical averaging scheme by averaging a specific, randomly
hosen, elasticity tensor instead of the moment tensor in Eq. (23),
ollowing Hessman et al. (2021), leads to similar convergence.

.4. Orientation averaging mean field homogenization

Sheet molding compound is a two-phase composite with glass fibers
mbedded irregularly in a thermoset polymer matrix. For isothermal
pplications, isotropic linear elasticity states a reasonable assumption
or both the fiber and the matrix behavior, see Kehrer et al. (2020). In
onsequence, the local stress–strain relation inside the fiber and matrix
hase at position 𝐱 is

(𝐱) = Cf [𝜺(𝐱)] ∀ 𝐱 ∈ f (24)

(𝐱) = Cm [𝜺(𝐱)] ∀ 𝐱 ∈ m (25)

ith parts of the representative volume element (RVE) occupied by the
ibers f and the matrix m, respectively. The stiffness of a fiber is
enoted by Cf and Cm represents the stiffness of the matrix. Isotropy
mplies that Cf and Cm in Eqs. (24) and (25) do not depend on the
patial orientation and are given by

Cf = 3𝐾f P1 + 2𝐺f P2 (26)

m = 3𝐾m P1 + 2𝐺m P2 (27)

ith the first and second isotropic projectors P1 and P2 respectively
nd bulk and shear modulus denoted by 𝐾 and 𝐺. Throughout this
ork, material parameters are adopted from Kehrer et al. (2020, Table
) and listed in Table 1. Two one-point characteristics describing the
icrostructure of a RVE at a material point inside a SMC-component

re considered. The first characteristic is the volume fraction of the
ibers 𝑐f, which implies the volume fraction of the matrix 𝑐m = 1 − 𝑐f.
he second characteristic is a fourth-order fiber orientation tensor N. In
he absence of any non-linearities, such as cracks, the effective elastic
tiffness C̄ of the RVE exists and is of interest. The effective stiffness
aps effective strains 𝜺̄ = ⟨𝜺(𝐱) ⟩ onto effective stresses 𝝈̄ = ⟨𝝈(𝐱) ⟩ by

̄ = C̄[𝜺̄]. (28)

he operator ⟨⋅ ⟩ takes the volume average of a spatially varying field
uantity, e.g., 𝝈(𝐱), inside the RVE. Four mean field approximations
re briefly reviewed and examined for given material parameters and
6

ariable fiber orientation tensors.
Table 1
Material parameters of the SMC constituents glass fiber and neat matrix (UPPH,
i.e., unsaturated polyester–polyurethane hybrid) adopted from Kehrer et al. (2020,
Table 2) citing additional references. Bulk and shear modulus are derived from Young’s
modulus and Poisson’s ratio. The volume fractions of the fiber and matrix phases are
𝑐p = 0.256 and 𝑐p = 0.744.

Young’s modulus Poisson’s ratio Bulk modulus Shear modulus

Fibers 73.0GPa 0.22 43.45GPa 29.92GPa
Matrix 3.4GPa 0.385 4.93GPa 1.23GPa

2.4.1. Two-step Hashin–Shtrikman
A two-step Hashin–Shtrikman scheme for fiber reinforced compos-

ites following Kehrer et al. (2020), based on Walpole (1966a,b, 1969)
and proposed by Fernández and Böhlke (2019) is used to study the
influence of a fourth-order orientation tensor on the effective stiffness.
Detailed derivations of the Hashin–Shtrikman bounds, based on a vari-
ational principle, are given in Walpole (1966a) and Fernández and
Böhlke (2019). In this work only the resulting equations are of interest.
Under the assumption of phase-wise constant stress polarizations, the
Green’s function of a material without long-range order and ellipsoidal
two-point statistics, is constant (Fernández and Böhlke, 2019, section
2.2). This constant Green’s function is represented by the Hill’s (Hill,
1965) polarization tensor P and reflects the ellipsoidal symmetry of the
wo-point statistics. Under these assumptions, the effective stiffness of
material made up of 𝑛 phases with stiffnesses

{

C𝑖
}

for 𝑖 ∈ [1,… , 𝑛] is
iven as a function of a comparison stiffness C0 by

̄ HSW (

C0, P
(

C0, 𝑎
)

,
{

C𝑖
}

, ⟨ ⟨⋅ ⟩ ⟩
)

= C0 − P−1 +
[

⟨ ⟨W
(

C0, P, C𝑖
)

⟩ ⟩

] −1 (29)

ith
(

C0, P, C𝑖
)

=
[

P−1 + C𝑖 − C0
] −1 (30)

nd with P
(

C0, 𝑎
)

depending on the symmetry of the two point statis-
ics. For simplicity, the dependence of P upon the two point statistic

is represented by an aspect ratio 𝑎 with 1∕2 ≤ 𝑎 ≤ ∞ reaching from
he isotropic case P0 (C0

)

= P
(

C0, 1∕2
)

to the limiting unidirectional
ase PUD (

C0
)

= P
(

C0, ∞
)

. This restriction of P from generally ellip-
soidal shapes to spheroidal shapes is common in the context of fiber
reinforced composites. The operator ⟨ ⟨⋅ ⟩ ⟩ takes the average over the
RVE. Alternative formulations of the Hashin–Shtrikman scheme exist,
e.g., in Willis (1977, 1981) and remarks on the different formulations
are given in Fernández and Böhlke (2019). The formulation in Eq. (29)
is not directly applicable to singular, i.e., non-invertible, polarization
tensors. However, Walpole (1969, page 238) proposes a dual scheme
which can be used to evaluate Eq. (29) for singular polarization tensors,
e.g., PUD. If the comparison material with stiffness C0 is selected,
such that the stiffnesses of all phases are smaller (larger) than C0,
e.g., using first order bounds, Eq. (29) yields a lower (upper) Hashin–
Shtrikman bound. As SMC is a two-phase composite, for any choice of
the comparison stiffness C0 in between Cm and Cf, Eq. (29) gives an
admissible effective stiffness in between the Hashin–Shtrikman bounds.
Following Kehrer et al. (2020, equation (24)), a comparison stiffness as
a function of an interpolation parameter 𝑘 is introduced by

Ĉ0 (𝑘) = [1 − 𝑘]Cm + 𝑘Cf (31)

with 0 ≤ 𝑘 ≤ 1. With this notation, the scheme of Kehrer et al. (2020)
is reformulated as a generic two-step Hashin–Shtrikman scheme. In a
first step, the effective stiffness of an artificially pseudo grain C̄UD is
calculated by

C̄UD (

𝑘1, 𝑐f, Cf, Cm
)

= C̄HSW
(

C0 = Ĉ0
(

𝑘1
)

, P = PUD (

C0
)

,

{

C𝑖
}

=
{

Cf, Cm
}

, ⟨ ⟨⋅ ⟩ ⟩ = ⟨⋅ ⟩
(

𝑐f
)

)

. (32)
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This pseudo grain contains unidirectional fibers with a volume content
which is equal to the volume content of the fibers in the overall
two-phase composite 𝑐f. To be explicit, the operator ⟨⋅ ⟩ in Eq. (32)
applied to W

(

C0, P, C𝑖
)

with 𝑖 ∈ [m, f] reads as ⟨W
(

… , C𝑖
)

⟩ =
mW

(

… , Cm
)

+ 𝑐fW
(

… , Cf
)

, with the abbreviation ‘‘...’’ for additional
unction arguments. The stiffness C̄UD obtained by Eq. (32) is trans-
ersely isotropic. As the Hill polarization P in Eqs. (30) and (32) reflects
he shape of the two-point statistics, the specific choice of PUD for a sin-
le grain implies a laminate-like two-point statistic. It should be noted,
hat the inclusion shape is not specified. However, specification of the
wo-point statistic is not independent of the inclusion shape. In the
econd step, the stiffness obtained in step one is orientation averaged
ased on the Hashin–Shtrikman scheme in Eq. (29), where the average
ver the RVE ⟨ ⟨⋅ ⟩ ⟩ is transferred into an average over orientations.
he operator ⟨⋅ ⟩ATN defined in Eq. (16) represents a commonly used
Lielens et al., 1998; Jack and Smith, 2008; Camacho et al., 1990)
verage over orientations, based on a fourth-order fiber orientation
ensor N, following Advani and Tucker III (1987). As the pseudo grain
s artificial, the two-point statistics in the second step are assumed to
e isotropic and are therefore reflected by the Hill polarization tensor
or spherical inclusions P0. This leads to the approximation C̄HSW2 of
he effective overall stiffness with

̄ HSW2 (𝑘1, 𝑘2, N, 𝑐f, Cf, Cm
)

= C̄HSW
(

C0 = Ĉ0
(

𝑘2
)

, (33)

P = P0 (C0
)

,
{

C𝑖
}

=
{

C̄UD (

𝑘1, …
)}

, ⟨ ⟨⋅ ⟩ ⟩ = ⟨⋅ ⟩ATN (N)
)

.

The connection to the formulas in Kehrer et al. (2020) is given in
Appendix E. The formulation of ⟨⋅ ⟩ATN in Eq. (16) shows the linearity
of the orientation average in both arguments.

For the special case of planar fourth-order orientation information,
i.e., Nplanar and a given transversely isotropic pseudo grain stiffness
C̄UD, the structure of the effective stiffness is given analytically. Starting
from a given transversely isotropic stiffness C̄UD obtained in a first
homogenization step, e.g., following Eq. (32), the second homogeniza-
tion step in Eq. (33) for the special case of a planar orientation tensor
Nplanar, is of interest. Omitting functional dependencies, the expansion
of Eq. (29) reads as

C̄HSW = C0 −
[

P0] −1 +G (34)

with

G =
[

⟨

[[

P0] −1 + C̄UD − C0
] −1

⟩ATN
] −1

=
[

⟨A−1
⟩ATN

] −1 =
[

⟨B ⟩ATN
] −1 = [E] −1. (35)

The Hill polarization P0 is isotropic and its inverse is given by
[

P0] −1 = ℎP0-
1 P1 + ℎP0-

2 P2 (36)

with

ℎP0-
1 = ℎ01 + 2ℎ02, ℎP0-

2 =
5
2ℎ

0
2
[

ℎ01 + 2ℎ02
]

ℎ01 + 3ℎ02
(37)

and ℎ01 = 3𝐾0, ℎ02 = 2𝐺0 and the bulk and shear modulus of the isotropic
comparison material 𝐾0 and 𝐺0. As both the Hill polarization and
the stiffness of the comparison material are isotropic, the intermediate
quantity A in Eq. (35) inherits the transversely isotropic symmetry
from the unidirectional stiffness CUD. With the short hand notation of a
transversely isotropic elasticity tensor defined in Eq. (B.13) the tensor
A is given by

A =
⌊

ℎ1, ℎ2, ℎ3, ℎ4, ℎ5,𝐪 = 𝐯1
⌋

(38)

with

ℎ1 = ℎP0-
1 − ℎ01 + ℎ

UD
1 , ℎ2 = ℎP0-

2 − ℎ02 + ℎ
UD
2 , (39)

ℎ3 = ℎUD
3 , ℎ4 = ℎUD

4 , ℎ5 = ℎUD
5 (40)
7

based on

C̄UD =
⌊

ℎUD
1 , ℎUD

2 , ℎUD
3 , ℎUD

4 , ℎUD
5 ,𝐪 = 𝐯1

⌋

. (41)

As the orientation of the pseudo grain stiffness is arbitrary, without loss
of generality, 𝐪 = 𝐯1 holds in Eqs. (38) and (41). The inversion of a
transversely isotropic stiffness is discussed in, e.g., (Lubarda and Chen,
2008, Eq. (31)), and leads to a transversely isotropic compliance

B = A−1 =
⌊

ℎB
1 , ℎ

B
2 , ℎ

B
3 , ℎ

B
4 , ℎ

B
5 ,𝐪 = 𝐯1

⌋

(42)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵11 𝐵12 𝐵12 0 0 0
𝐵22 𝐵23 0 0 0

𝐵22 0 0 0
𝐵22 − 𝐵23 0 0

sym 2𝐵55 0
2𝐵55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁

with ℎB
𝑖 for 𝑖 ∈ {1, 2, 3, 4, 5} given in Appendix F in Eqs. (F.1)

o (F.7). The general correspondence of stiffness and compliance is
iscussed in Rychlewski (1984). Simpler representations of a trans-
ersely isotropic compliance (Lubarda and Chen, 2008; Cowin and
an Buskirk, 1986; Vannucci, 2018), e.g., in tensor components or
ngineering notation, exist. However, Eqs. (F.1) to (F.7) show the
nteraction of the harmonic coefficients ℎ𝑖 with 𝑖 ∈ {1, 2, 3, 4, 5} during
he tensor inversion. Each coefficient of B is a function of all five
oefficients of A. Taking the orientation average (Advani and Tucker III,
987) of B, e.g., using Eq. (16), leads to

= ⟨B ⟩ATN (43)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸11 𝐸12 𝐸13 0 0 𝐸16
𝐸22 𝐸23 0 0 −𝐸16

𝐸33 0 0 0
𝐸44 0 0

sym 𝐸55 0
𝐸66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁 .

he tensor components in Eq. (43) are specified in Eqs. (F.8) to (F.17)
n Appendix F. The inversion of E leads to

= [E] −1 (44)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺11 𝐺12 𝐺13 0 0 𝐺16
𝐺22 𝐺23 0 0 𝐺26

𝐺33 0 0 𝐺36
𝐺44 0 0

sym 𝐺55 0
𝐺66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁

with tensor components given in Eqs. (F.18) to (F.31) in Appendix F.
Eqs. (F.18) to (F.31) combined with Eqs. (F.8) to (F.17) show that
the effective stiffness C̄HSW is nonlinear in the parameters of the fiber
orientation tensor 𝜆1, 𝑑1, 𝑑8. In addition, the structure of C̄HSW and
G differs from that of the intermediate quantity E, as the tensor
component 𝐺36 in Eq. (44) does not vanish, although 𝐸36 in Eq. (43)
does vanish. C̄HSW inherits the structure from G.

2.4.2. Orientation averaging Mori–Tanaka following (Benveniste, 1987)
Various aspects of the orientation averaging Mori–Tanaka approxi-

mation are discussed in Brylka (2017), Weng (1990) and Qiu and Weng
(1990). Nevertheless, a comprehensive summary of the basic equations
for the special case of homogeneous fiber lengths, i.e., an isotropic fiber
length distribution, is given hereafter. The RVE is denoted by  and any
point inside the RVE is identifiable by a position 𝐱 ∈ . Introducing a
field of strain localization tensors A(𝐱) mapping the effective strain of
the RVE, 𝜺̄, onto the local strain 𝜺(𝐱) with

𝜺(𝐱) = A(𝐱)[𝜺̄] (45)

yields an exact representation of the effective stiffness by

̄
C = ⟨C(𝐱)A(𝐱) ⟩ (46)
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𝝈̄ = ⟨𝝈(𝐱) ⟩ = ⟨C(𝐱)[𝜺(𝐱)] ⟩ = ⟨C(𝐱)A(𝐱)[𝜺̄] ⟩ = ⟨C(𝐱)A(𝐱) ⟩[𝜺̄]. (47)

If the exact strain localization field A(𝐱) for an RVE is known, the
effective stiffness C̄ is given by Eq. (46). The volume average of Eq. (46)
implies ⟨A(𝐱) ⟩ = Is with Is being the identity acting on the space of
symmetric second-order tensors. An exact decomposition of the volume
average over the RVE into volume averages over the different phases
in the special case of a two phase composite yields

⟨A ⟩ = Is = 𝑐m ⟨A ⟩m + 𝑐f ⟨A ⟩f (48)

with the volume fraction 𝑐𝛼 of phase 𝛼 ∈ [f,m] and therefore

⟨A ⟩m = 1
𝑐m

[

Is − 𝑐f ⟨A ⟩f
]

. (49)

or a two-phase material with piece-wise constant stiffnesses, Eq. (46)
ombined with Eq. (49) leads to
̄ = 𝑐m ⟨C(𝐱)A(𝐱) ⟩m + 𝑐f ⟨C(𝐱)A(𝐱) ⟩f (50)

= 𝑐m Cm ⟨A(𝐱) ⟩m + 𝑐f Cf ⟨A(𝐱) ⟩f (51)

= 𝑐m Cm
1
𝑐m

[

Is − 𝑐f ⟨A ⟩f
]

+ 𝑐f Cf ⟨A(𝐱) ⟩f (52)

= Cm + 𝑐f 𝛥C ⟨A ⟩f (53)

introducing the short hand notation for the material contrast 𝛥C =
Cf − Cm. The strain localization tensor of the Mori–Tanaka approx-
imation (Mori and Tanaka, 1973) for a two-phase composite reads
as

⟨A ⟩f ≈ ⟨A ⟩

MT
f = ASI

f
[

𝑐m Is + 𝑐f ASI
f
] −1 =

[

𝑐m
[

ASI
f
] −1 + 𝑐f Is

] −1 (54)

with the strain localization tensor of the inclusion (fiber) phase in the
single inclusion problem ASI

f (Eshelby, 1957) given by

ASI
f =

[

P
(

Cm, 𝑎
) [

Cf − Cm
]

+ Is
] −1. (55)

The Hill polarization tensor P(Cm, 𝑎) for spheroidal inclusion shapes is
parameterized by an aspect ratio 𝑎. Inserting the approximated strain
localization tensor of Eq. (54) into Eq. (53) leads to the effective
stiffness of the Mori–Tanaka approximation for a two-phase composite

C̄MT (𝑐𝑓 , Cf, Cm, P
)

= Cm + 𝑐f 𝛥C ⟨A ⟩

MT
f . (56)

The Hill polarization P in the single inclusion problem reflects the shape
of the inclusion. A study on the influence of the inclusion shape onto
the effective stiffness is given in Müller (2016). The large aspect ratio
of SMC fibers motivates the use of PUD, e.g., in Kehrer et al. (2020).
Orientation averaging Mori–Tanaka for two-phase composites with
anisotropic constituents and an inclusion phase consisting of aligned or
randomly orientated ellipsoidal particles following Benveniste (1987)
combined with an orientation averaging scheme following Advani and
Tucker III (1987), depicted by ⟨⋅ ⟩ATN, reads as

⟨A ⟩f ≈ ⟨A ⟩

MTOAB
f

(

N, 𝑐f, Cf, Cm
)

(57)
=
[

𝑐m
[

[𝛥C] −1 ⟨𝛥CASI
f ⟩ATN (N)

] −1 + 𝑐f Is
] −1

leading to the Mori–Tanaka orientation averaging approximation fol-
lowing Benveniste (1987) with

C̄MTOAB (N, 𝑐f, Cf, Cm
)

= Cm + 𝑐f 𝛥C ⟨A ⟩

MTOAB
f

(

N, 𝑐f, Cf, Cm
)

. (58)

Orientation averaging Mori–Tanaka following Benveniste (1987) is
used in Brylka (2017) and Schemmann et al. (2018b) and limitations
are discussed in, e.g., (Benveniste et al., 1991). As the orientation aver-
aging scheme ⟨⋅ ⟩ATN in its original formulation is limited to elasticity
tensors, i.e., any tensor C = 𝐶𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 with both minor and
the major symmetries 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗 , but strain localization
tensors may lack the main symmetry, an intermediate elasticity tensor
𝛥CASI

f =
[

P + 𝛥C−1] −1 is averaged in Eq. (57) before the effect of 𝛥C is
removed by 𝛥C−1. This step could be avoided using the generalization
of the orientation average ⟨⋅ ⟩ATN in Appendix D. The unity of all fibers
8

is treated as one phase.
2.4.3. Direct orientation average of a transversely isotropic stiffness
Some authors (Iorga et al., 2008; Schjødt-Thomsen and Pyrz, 2001)

identify the linear orientation average (Advani and Tucker III, 1987)
of transversely isotropic stiffness as an approximation for the effective
stiffness with

C̄MTlinearStiffness (N, …) = ⟨C̄MT (⋯) ⟩ATN (N) (59)

which is based on the Mori–Tanaka approximation in Eq. (56) and is
used in commercial software (Smith, 2019).

2.4.4. Direct orientation average of a transversely isotropic compliance
In analogy to the approximation defined in Eq. (59), another ap-

proximation is given by the orientation average of an unidirectional
compliance obtained by the Mori–Tanaka approximation

C̄MTlinearCompliance (N, …) =
[

⟨

[

C̄MT (⋯)
] −1

⟩ATN (N)
] −1. (60)

2.5. Graphical representation of elasticity tensors

The last building block for the systematic investigation of the de-
pendence of linear elastic effective stiffness tensors on planar fiber
orientation tensors, is a compact, preferably two-dimensional, visual-
ization of effective stiffness tensors. Following Böhlke and Brüggemann
(2001), two scalar functions 𝐸 (C,𝐧) and 𝐾 (C,𝐧), equivalently describe
an anisotropic stiffness C. The direction-dependent Young’s modulus
𝐸 (C,𝐧) defined by

𝐸 (C,𝐧) = 𝜎 (𝐧)
𝜀 (𝐧)

=
[

𝜀 (𝐧)
𝜎 (𝐧)

]

−1 =
[

𝐧⊗2 ⋅ 𝜺 (𝐧)
𝜎 (𝐧)

]

−1

=
[

𝐧⊗2 ⋅ C−1 [𝝈 (𝐧)]
𝜎 (𝐧)

]

−1 =
[

C−1 ⋅ 𝐧⊗4] −1 (61)

represents the ratio of the tensile stress 𝜎 (𝐧) and the tensile strain 𝜀 (𝐧)
during a tensile test in direction 𝐧. The tensile stress caused by a virtual
unidirectional tensile test into direction 𝐧, is related to the stress tensor
𝝈 (𝐧) by 𝝈 (𝐧) = 𝜎 𝐧⊗2 = 𝜎𝐧 ⊗ 𝐧. The tensile strain 𝜺 (𝐧) is obtained
y a projection of the infinitesimal strain tensor 𝜺 onto the direction
, i.e., 𝜀 = 𝜺 ⋅ 𝐧⊗2. Following He and Curnier (1995) and Böhlke and
rüggemann (2001), the generalized bulk modulus 𝐾 (C,𝐧) is defined
y

𝐾 (C,𝐧) =
[

𝐈 ⋅ 𝜺 (𝐧)
𝜎 (𝐧)

]−1
=
[

𝐈 ⋅ C−1 [𝝈 (𝐧)]
𝜎 (𝐧)

]−1

=
[

𝐈 ⋅ C−1 [𝐧⊗2]] −1 (62)

and measures the relative change of volume 𝐈 ⋅ 𝜺 =
[

d𝑉 − d𝑉0
]

∕ d𝑉0
caused by uniaxial tension in direction 𝐧, i.e., 𝝈 = 𝜎 𝐧⊗2. For a given
tiffness C, both 𝐸 (C,𝐧) and 𝐾 (C,𝐧) are functions on the unit sphere.

The influence of Nplanar on the mechanical properties in the 𝐯1−𝐯2-plane
s investigated by

𝐸planar (C, 𝜑) = 𝐸 (C, 𝐧 (𝜑, 𝜃 = 𝜋∕2)) (63)

𝐾planar (C, 𝜑) = 𝐾 (C, 𝐧 (𝜑, 𝜃 = 𝜋∕2)) (64)

with the unit vector 𝐧 (𝜑, 𝜃) specified in Eq. (8). The two quanti-
ties 𝐸planar (C, 𝜑) and 𝐾planar (C, 𝜑) uniquely define the mechanical
response of the effective stiffness in the plane spanned by 𝐯1 and 𝐯2.
Alternative representations of three-dimensional fourth-order tensors
are, e.g., given in Vannucci (2018, p. 62).

2.6. Effective stiffnesses: Polar plots and the dependence on planar fourth-
order fiber orientations

In this section, the building blocks developed in the previous sec-
tions are combined to study the dependence of linear elastic effective
stiffnesses obtained by mean field homogenization on fourth-order
fiber orientation tensors. As the dimensionality of the study is already
high due to the flexible orientation, the material parameters of the

constituents are fixed and specified in Table 1.
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Fig. 5. Definition of representative points in the parameter space ̂ planar of planar fourth-order fiber orientation tensors.
Fig. 6. Definition of representative points in the parameter space ̂ planar of planar fourth-order fiber orientation tensors. Parameters of each point are listed in Table G.2.
Fig. 7. Shared legend for Figs. 8–11.

2.6.1. Visualization setup
The space of admissible and distinct planar fourth-order fiber ori-

entations  planar is discretized by a small number of representative
fiber orientations. Slices through the three-dimensional body  planar

re defined in Figs. 5(a) to 6(b). On each slice, a number of points, each
epresenting a specific fourth-order fiber orientation tensor Nplanar,
re selected. For each point, effective stiffnesses are calculated using
he orientation averaging homogenization schemes listed in Fig. 7
nd described in Section 2.4. The planar properties of each effective
9

tiffness can be visualized by the planar projection of the direction
dependent Young’s modulus and generalized bulk modulus, introduced
in Section 2.5. In consequence, for each point, two sets of polar plots
representing Young’s modulus on the one hand and generalized bulk
modulus on the other hand, are obtained for a selection of homogeniza-
tion schemes. Each set of polar plots is combined into one sub-Figure
which is arranged according to the position of the point inside the
slice of  planar. This way, a graphical representation of the influence
of the fiber orientation on effective stiffnesses is generated. The first
slice, visualized in Fig. 5(a), contains ten points, each representing
one planar orthotropic (Bauer and Böhlke, 2021, equation (84)) fiber
orientation tensor Nplanar(𝜆1, 𝑑1, 𝑑8) with vanishing parameter 𝑑8 de-
fined in Eq. (14). For each point, a polar plot of 𝐸planar (C̄(N), 𝜑

)

is
given in Fig. 8(a) and a polar plot of 𝐾planar (C̄(N), 𝜑

)

is given in
Fig. 8(b). The arrangements of the polar plots in Figs. 8(a) and 8(b)
mimic the position of the points in the overview Fig. 5(a) and the
correspondence is stressed by the color of the thick dashed circles
around the polar plots. The line colors of the polar plots indicate the
mean field approximation which are specified in the shared legend in
Fig. 7. Parameters of each point are given in Table G.2 in Appendix G.

Similar visualizations based on slices in Figs. 5(b) to 6(b) are given

in Figs. 9 to 11. Each of the slices in Figs. 5(b) to 6(b) represents
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Fig. 8. Polar plots for selected N specified in Fig. 5(a) and Table G.2 and mean field approximations specified in the legend in Fig. 7.
Fig. 9. Polar plots for selected N with 𝜆1 = 3∕6 specified in Fig. 5(b) and Table G.2 and mean field approximations specified in the legend in Fig. 7. The order along the path in
Fig. 5(b) is given from left to right.
-

the variety of planar fourth-order fiber orientation tensors for a fixed
second-order fiber orientation tensor, as the parameter 𝜆1 is constant.

The limits of all plots of 𝐸planar are homogeneous and given by 0GPa
and 22GPa. The limits of all plots of 𝐾planar are also homogeneous and
given by 0GPa and 24GPa.

2.6.2. Observations on bounds
In the unidirectional case, visualized in polar plot (10) in Fig. 8(a),

all approximations except C̄HSW2(1, 1) coincide (Weng, 1990). Young’s
modulus 𝐸planar(C, 𝜑) obtained for the approximations C̄MTOAB and
C̄MTlinearStiffness are between the values obtained for C̄HSW2(0, 0) and
C̄HSW2(1, 1), This does not hold for the approximation
C̄MTlinearCompliance. The limiting two-step Hashin–Shtrikman homoge-
nizations are bounds on the energy of the effective material. Both
Youngs’s modulus and the generalized bulk modulus are material char-
acteristics related to uniaxial tensile tests. Motivated by Fig. 8(b)(10),
the complementary energy density (Bertram and Glüge, 2013) induced
by a virtual direction-dependent unidirectional tensile test starting from
a stress-free initial configuration

𝑤⋆(C, 𝜎,𝐧) = 1
2
𝝈(𝜎,𝐧) ⋅ C−1 [𝝈(𝜎,𝐧)] = 1

2
𝜎2 C−1 ⋅ 𝐧⊗4 (65)

is plotted in Fig. H.12 in Appendix H for a unit stress 𝜎 = 1 and for all
views defined in Figs. 5(a) to 6(b). The energies of the approximations
C̄MTOAB and C̄MTlinearStiffness are within the bounds for all inspected ori-
entation tensors whereas the approximation C̄MTlinearCompliance violates
the bounds and therefore is non-physical.

2.6.3. Observations on the shape of the Young’s modulus
The maximum number of extrema of the Young’s modulus 𝐸planar

within the 𝐯1 − 𝐯2-plane is four, as this quantity is obtained by con-
traction of the effective compliance with a fourth-order moment. The
maximum values of the Young’s modulus for all mean field approxi-
mations point into the directions of maximum fiber content, which are
visualized in Bauer and Böhlke (2022). For example, polar plots with
𝛽 = −𝜋∕2, i.e., 𝑑8 = 0 and 𝑑1 ≤ 0, have their maxima aligned with the
axes 𝐯 or 𝐯 , see Figs. 10(a) and 10(b).
10

1 2
2.6.4. Observations on the shape of the generalized bulk modulus
In contrast to the Young’s modulus, the number of maxima of the

generalized bulk modulus 𝐾planar and the resulting shapes are strongly
limited, as the highest moment of 𝐧 which enters 𝐾planar is of second
order, see Böhlke and Brüggemann (2001). The changes in 𝐾planar

for fixed second-order fiber orientation tensor contribution, i.e., fixed
values of 𝜆1, but different fourth-order fiber orientation tensor contri-
bution, i.e., values of 𝑑1 and 𝑑8 defining dev(Nplanar), are marginal for
the selected approximations C̄HSW2(𝑘1, 𝑘2) and C̄MTlinearCompliance. These
three approximations take the orientation average on compliance-like
quantities. In contrast, the influence of both 𝑑1 and 𝑑8 on the remain-
ing approximations C̄MTOAB and C̄MTlinearStiffness is clearly visible. The
latter two approximations take the orientation average on stiffness-like
quantities. For these approximations, increase of 𝑑8 induces a clock-
wise rotation of the 𝐾planar-body whereas increase of 𝑑1 leads to a
stretch of this body. In Fig. 9(b), no stretch is induced by increase of
𝑑1. It is noted, that 𝐸planar and 𝐾planar are obtained by contraction of
the effective compliance. The strong influence of the fourth-order fiber
orientation contribution dev(Nplanar) on the shape of the bulk modulus
for the approximations C̄MTOAB and C̄MTlinearStiffness is subject of further
research.

2.6.5. Implications of closure approximations based on second-order orien-
tation tensors

Closure approximations (Advani and Tucker III, 1990; Han and Im,
1999; Cintra and Tucker III, 1995; Chung and Kwon, 2002; Montgomery
Smith et al., 2011) identify a fourth-order fiber orientation tensor
which corresponds to a given second-order fiber orientation tensor. As
any second-order orientation tensor is orthotropic or has even stronger
material symmetry, closure approximations based on a second-order
orientation tensor lead to orthotropic fourth-order fiber orientation
tensors. In consequence, any virtual process chain which involves a
closure approximation is limited to orthotropic effective stiffnesses. The
planar orthotropic subspace is discretized in Fig. 5(a) and discussed
in Bauer and Böhlke (2021). Among the discrete stiffnesses represented
in Figs. 10 and 11 only the left column, i.e., those stiffnesses labeled
(y2), (y1), (x), (o1), (o2), are orthotropic.
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Fig. 10. Young’s modulus 𝐸planar (C̄ (N) , 𝜑
)

for mean field approximations specified in Fig. 7. The arrangement of the polar plots follows the arrangement of points in the parameter
space of Nplanar in Figs. 6(a) and 6(b).
3. Summary and conclusions

Computer tomography scans combined with knowledge on the va-
riety of fiber orientation tensors and experience in process simulation,
reveal that fiber architectures of sheet molding compound specimen
are approximately planar. The planarity assumption significantly re-
duces the dimensionality of the space of fiber orientation tensors from
eleven to three in the orientation coordinate system (Bauer and Böhlke,
2021). An invariant and redundancy-free parameter set of structurally
differing fiber orientation tensors following Bauer and Böhlke (2022)
states the main building block for investigations on the influence of
fiber orientation tensors on effective mechanical properties.

The orientation average of transversely isotropic elasticity tensors
following Advani and Tucker III (1987) formulated directly in fiber ori-
entation tensors, is explicitly recast as linear invariant composition in
the fiber orientation tensors of second and fourth order Kanatani (1984)
third kind. To the best of the authors knowledge, this essential assump-
tion of the popular orientation average is not mentioned explicitly in
literature. It should be noted, that, e.g., in the field of biomechanics,
material models being non-linear in fabric tensors (Cowin, 1985; Turner
and Cowin, 1987; Biegler and Mehrabadi, 1995; Cowin and Cardoso,
11
2011), are established. Such models are based on isotropic tensor func-
tions, i.e., representation theory. A numerical orientation averaging
scheme restricted to the special class of planar fiber orientations based
on a maximum entropy reconstruction of fiber orientation distribution
functions following Bauer and Böhlke (2022) is proposed. The new
scheme shows fast converges against the exact formulation of Advani
and Tucker III (1987) for non-localized fiber orientation tensors which
are dominant in sufficiently large fiber arrangements.

Four mean field homogenization approximations are reviewed and
investigated. The first two approximations are orientation averaging
Mori–Tanaka following Benveniste (1987) and a two step Hashin–
Shtrikman homogenization scheme (Kehrer et al., 2020) both in for-
mulations based on the Advani–Tucker orientation average (Advani
and Tucker III, 1987). The remaining two approximations are direct
Advani–Tucker orientation averages of either a unidirectional stiff-
ness or compliance obtained by the Mori–Tanaka (Mori and Tanaka,
1973) approximation. Effective stiffnesses obtained by the approxi-
mations, are visualized by two-dimensional polar plots of Young’s
and generalized bulk modulus (Böhlke and Brüggemann, 2001). Plots
are generated for specific points in the three-dimensional body of
structurally differing planar fiber orientation tensors. The developed
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Fig. 11. Generalized bulk modulus 𝐾planar (C̄ (N) , 𝜑
)

for mean field approximations specified in Fig. 7. The arrangement of the polar plots follows the arrangement of points in
the parameter space of Nplanar in Figs. 6(a) and 6(b).
views establish a new methodology for studies and visualizations of the
dependence of material models on planar fourth-order fiber orientation
tensors. Inspection of polar plots of the generalized bulk modulus re-
veals clear structural differences between effective stiffnesses obtained
by mean field schemes taking the orientation average in the stiffness
or compliance domain. Those stiffnesses averaged in the compliance
domain, hardly show a dependence of the generalized bulk modulus
on dev(Nplanar) whereas this dependence is pronounced for stiffnesses
averaged in the stiffness domain. The reason for this observation and
the physical interpretation of the pronounced dependence is subject of
further research. Lack of fourth-order contribution to the generalized
bulk modulus (Böhlke and Brüggemann, 2001) restricts the possible
shapes of its contour plots. Bauer and Böhlke (2022, Figure 7) visu-
alize reconstructions of fiber orientation distribution functions based
on leading fiber orientation tensors up to fourth order. The resulting
plots visualize the direct connection between the causing orientation
measure and the effected mechanical behavior, e.g., visualized by the
effective Young’s modulus in Fig. 10.

The main conclusions of this work are:

• Fiber orientations of sheet molding compound are approximately
planar, leading to a reduction of the independent components of
fourth-order fiber orientation tensors from eleven to three in the
orientation coordinate system.
12
• An invariant and redundancy-free set of structurally differing
fiber orientation tensors of fourth order can be used to inves-
tigate the dependence of effective material properties on fiber
orientation tensors.

• The orientation average of an elasticity tensor based on an fiber
orientation tensor following Advani and Tucker III (1987) is linear
in both the elasticity tensor and the fourth-order fiber orientation
tensor.

• A new numerical formulation of the Advani–Tucker orientation
average in fiber orientation tensors (Advani and Tucker III, 1987)
for the special class of planar fiber orientations is proposed based
on a maximum entropy reconstruction of fiber orientation distri-
bution functions following Bauer and Böhlke (2022).

• The orientation dependence of the generalized bulk modulus dif-
fers significantly for homogenizations which take the orientation
average in the stiffness domain and those which take the average
in the compliance domain. In contrast, the direction of maxima of
the orientation-dependent Young’s modulus is homogeneous for
both groups of homogenizations and the difference on the size of
the Youngs’s modulus is barely influenced by the fiber orientation
tensor.

• The orientation dependence of the effective anisotropic material
response, e.g., described by orientation-dependent Young’s and
generalized bulk modulus, is restricted. Restrictions are caused
by the limited averaged information given by fourth-order fiber
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orientation tensors and due to the constraints of linear elastic-
ity. Possible directional dependencies of the elastic response for
Advani–Tucker averaged two-phase materials of isotropic con-
stituents and planar orientation measures are comprehensively
presented. This presentation is complete and it’s methodology
states the main contribution of this work. The methodology can be
used to express the orientation dependence of any quantity which
is a function of planar fiber orientation tensors up to fourth order.

• Orthotropy of closure approximations, which are based on
second-order fiber orientation tensors, is shown to be a major
restriction on the effective anisotropic material response.

he methodology developed for the low-dimensional subspace of pla-
ar fourth-order fiber orientation tensors may be applied to subspaces
f fiber orientation tensors with less symmetry.

bbreviations

FODF Fiber orientation distribution function
SMC Sheet molding compound
CT Computer tomography
RVE Representative volume element
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Appendix A. Kelvin–Mandel notation and completely symmetric
tensors of fourth order

This appendix directly follows (Bauer and Böhlke, 2021, 2022) for
the current work to be self-contained. Kelvin–Mandel notation, explic-
itly introduced in Mandel (1965), originating from Thomson (1856),
discussed in Mehrabadi and Cowin (1990), Cowin and Mehrabadi
(1992) and Böhlke (2001) and also known as normalized Voigt no-
tation, enables compact two-dimensional representations of fourth-
order tensors with at least minor symmetry. A fourth-order tensor
A = 𝐴𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 is minor symmetric if it has both minor
symmetries, i.e., 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘 holds. Introducing base tensors
n an arbitrary Cartesian basis {𝐞𝑖} by

1 = 𝒆1 ⊗ 𝒆1, 𝑩4 =

√

2
2

[

𝒆2 ⊗ 𝒆3 + 𝒆3 ⊗ 𝒆2
]

,

2 = 𝒆2 ⊗ 𝒆2, 𝑩5 =

√

2
2

[

𝒆1 ⊗ 𝒆3 + 𝒆3 ⊗ 𝒆1
]

, (A.1)

3 = 𝒆3 ⊗ 𝒆3, 𝑩6 =

√

2
2

[

𝒆2 ⊗ 𝒆1 + 𝒆1 ⊗ 𝒆2
]

,

ny minor symmetric tensor A is represented by a six by six matrix of
oefficients 𝐴𝜉𝜁

= 𝐴𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 = 𝐴𝜉𝜁 𝐁𝜉 ⊗ 𝐁𝜁 (A.2)

ith 𝜉 and 𝜁 summing from 1 to 6. Complete (index) symmetry of a
tensor N implies the structure

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁 (4)
11 𝑁 (4)

12 𝑁 (4)
13

√

2𝑁 (4)
14

√

2𝑁 (4)
15

√

2𝑁 (4)
16

𝑁 (4)
22 𝑁 (4)

23

√

2𝑁 (4)
24

√

2𝑁 (4)
25

√

2𝑁 (4)
26

𝑁 (4)
33

√

2𝑁 (4)
34

√

2𝑁 (4)
35

√

2𝑁 (4)
36

2𝑁 (4)
23 2𝑁 (4)

36 2𝑁 (4)
25

major symmetric 2𝑁 (4)
13 2𝑁 (4)

14

2𝑁 (4)
12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁 .

(A.3)

s complete symmetry implies major symmetry, the coefficient matrix
n Eq. (A.3) is symmetric. In Eq. (A.3) indices of redundant tensor
oefficients are colored. The redundancy implies that six coefficients
n the upper left quadrant and nine coefficients in the upper right
uadrant of the coefficients in Kelvin–Mandel representation define
completely symmetric tensor. This motivates a short hand notation

completely symmetric”, see, e.g. Eq. (11).

ppendix B. Harmonic decomposition of transversely isotropic
lasticity tensors

Following Spencer (1982), Lubarda and Chen (2008) and Walpole
1969), any transversely isotropic elasticity tensor can be parameter-
zed by five scalars and a direction 𝐪. For any choice of a non-unique
rthonormal coordinate system 𝐦𝑖 with 𝐦1 = 𝐪, there exists a mapping

̂ (𝐪) = 𝐦𝑖 ⊗ 𝐞𝑖 (B.1)

and enables the following representation of a transversely isotropic
stiffness

Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, 𝐪
)

= 𝐐̂ (𝐪) ⋆

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶11 𝐶12 𝐶12 0 0 0
𝐶22 𝐶23 0 0 0

𝐶22 0 0 0
𝐶22 − 𝐶23 0 0

sym 2𝐶55 0
2𝐶55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B.2)
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J

f

= ℎ1 P1 + ℎ2 P2 + 𝐐̂ (𝐪) ⋆
[

ℎ3 J3
[

𝐅transvx] + ℎ4 J4
[

𝐅transvx] + ℎ5 Ftransvx]

(B.3)

with transversely isotropic structure tensors (Olive et al., 2018; Müller
and Böhlke, 2016; Bauer and Böhlke, 2021)

𝐅transvx = dev
(

𝐍UD) = 2
3

⎡

⎢

⎢

⎣

1 0 0
− 1∕2 0

sym −1∕2

⎤

⎥

⎥

⎦

𝐞𝑖 ⊗ 𝐞𝑗 (B.4)

Ftransvx = dev
(

NUD) = 1
35

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

8 −4 −4 0 0 0
3 1 0 0 0

3 0 0 0

completely symmetric

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁

(B.5)

nd isotropic sixth order tensors

3 =
[

𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑚𝛿𝑗𝑛
]

𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛 (B.6)

4 =
1
8
[

𝛿𝑖𝑛𝛿𝑗𝑘𝛿𝑙𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑙𝛿𝑘𝑚 + 𝛿𝑖𝑚𝛿𝑗𝑘𝛿𝑙𝑛 + 𝛿𝑖𝑚𝛿𝑗𝑙𝛿𝑘𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛

+𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑛𝛿𝑘𝑚
]

𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛. (B.7)

he scaling factors 2∕3 and 1∕35 of the structure tensors in Eqs. (B.4)
nd (B.5) do not lead to a norm of value one. This is in contrast
o formulations in, e.g., Fernández and Böhlke (2019, Eq. (75)), but
eads to a direct connection to unidirectional fiber orientation tensors
UD = 𝐯1 ⊗ 𝐯1 and NUD = 𝐁𝐯

1 ⊗ 𝐁𝐯
1 and compact expressions for ℎ𝑖

ith 𝑖 ∈ {1, 2, 3, 4, 5} in Eq. (B.3) which are related to the tensor
omponents in Eq. (B.2) by

1 = 3𝐾 = 1
3
[

𝐶11 + 4𝐶12 + 2𝐶22 + 2𝐶23
]

(B.8)

ℎ2 = 2𝐺 = 1
15

[

2𝐶11 − 4𝐶12 + 7𝐶22 − 5𝐶23 + 12𝐶55
]

(B.9)

ℎ3 =
1
7
[

𝐶11 + 5𝐶12 + 𝐶22 − 7𝐶23 − 4𝐶55
]

(B.10)

ℎ4 =
1
14

[

2𝐶11 − 4𝐶12 − 5𝐶22 + 7𝐶23 + 6𝐶55
]

(B.11)

ℎ5 =
1
35

[

𝐶11 − 2𝐶12 + 𝐶22 − 4𝐶55
]

(B.12)

with the bulk modulus 𝐾 and the shear modulus 𝐺. Eqs. (B.1) to (B.3)
otivate a short hand notation for a transversely isotropic elasticity

ensor using
⌊

⋅
⌋

with

transv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, 𝐪
)

=
⌊

ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, 𝐪
⌋

. (B.13)

Following Rychlewski (2000), Eq. (B.3) represents the classical linear
invariant decomposition of a transversely isotropic elasticity tensor
into irreducible parts. The classical linear invariant decomposition is
one out of an infinite number of possible linear invariant decomposi-
tions (Forte and Vianello, 1996; Rychlewski, 2000). Any non-classical
linear invariant decomposition leads to a representation of Ctransv

which differs from Eq. (B.3) by the set of isotropic tensors J3, J4 and
the values of the corresponding coefficients ℎ3 and ℎ4.

Appendix C. Reformulation of the Advani–Tucker orientation av-
erage

Listing 1 contains symbolic tensor manipulation code to validate
the representation of the Advani–Tucker orientation average in the
formulation given in Eq. (16) and which is based on the classical linear
invariant decomposition (Rychlewski, 2000).
14

J

ppendix D. Advani–Tucker orientation average of minor sym-
etric tensors

A generic transversely isotropic fourth-order tensor, which has both
inor symmetries but lacks major symmetry, i.e., 𝐻𝑖𝑗𝑘𝑙 = 𝐻𝑖𝑗𝑙𝑘 = 𝐻𝑗𝑖𝑘𝑙

ut 𝐻𝑖𝑗𝑘𝑙 ≠ 𝐻𝑘𝑙𝑖𝑗 with Htransv = 𝐻𝑖𝑗𝑘𝑙𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙, depends on a
direction 𝐪 and six scalars, see Schröder and Gross (2004) and Brannon
(2018). For any choice of a non-unique orthonormal coordinate system
𝐦𝑖 with 𝐦1 = 𝐪, there exists a mapping
̂̂𝐐 (𝐪) = 𝐦𝑖 ⊗ 𝐞𝑖, (D.1)

which enables the following representation of a transversely isotropic
minor symmetric fourth-order tensor lacking the major symmetry

Htransv (𝐻11, 𝐻22, 𝐻12, 𝐻21, 𝐻23, 𝐻55, 𝐪
)

= ̂̂𝐐 (𝐪) ⋆

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐻11 𝐻12 𝐻12 0 0 0
𝐻21 𝐻22 𝐻23 0 0 0
𝐻21 𝐻23 𝐻22 0 0 0
0 0 0 𝐻22 −𝐻23 0 0
0 0 0 0 2𝐻55 0
0 0 0 0 0 2𝐻55

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐁𝜉 ⊗ 𝐁𝜁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(D.2)

In other words, if the transversely isotropic axis is aligned with the
𝐞1-axis of the coordinate system underlying the Kelvin–Mandel basis
𝐁𝜉 ⊗ 𝐁𝜁 in Eq. (D.2), the matrix representation of Kelvin–Mandel
components has the simplified structure shown in Eq. (D.2). Compared
to the representation of Ctransv in Eq. (B.2), lack of the major symmetry
of Htransv results in one additional independent tensor component
in Eq. (D.2). In order to extend the reformulation of the Advani–
Tucker orientation average in Eq. (16) to tensors which lack the major
symmetry, harmonic decomposition (Forte and Vianello, 1996; Rych-
lewski, 2000) of such tensors is investigated following Fernández and
Böhlke (2019, Section 2.4) and Lobos et al. (2017, Appendix A). Lack of
major symmetry of a minor symmetric fourth-order tensor, potentially
adds three additional subspaces of orders one, two and three, to the
subspaces of its harmonic decomposition. If the decomposed quantity is
major symmetric, the contributions of these three additional subspaces
are zero (Lobos et al., 2017, Section 2.4). It is easy to show, that no
non-vanishing first-order tensor 𝐚 fulfills

𝐐 ⋆ 𝐚 = 𝐚 ∀ 𝐐 ∈  transv (D.3)

with the transversely isotropic symmetry group  transv. Following Bran-
non (2018), the same holds for harmonic tensors of third order. In
consequence, the additional degree of freedom of Htransv in Eq. (D.2)
compared to Ctransv in Eq. (B.2) corresponds to the additional subspace
of second order in the harmonic decomposition of minor symmetric
fourth-order tensors which lack major symmetry. As the symmetry
group of a tensor is the intersection of the symmetry groups of its har-
monic parts (Forte and Vianello, 1996), transversely isotropy of Htransv

demands that this subspace is also transversely isotropic, making it one-
dimensional and being a multiple of a structure tensor 𝐅transvx defined
in Eq. (B.4). Consequently, Htransv can be represented by extending
Eq. (B.3) to

Htransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, 𝐪
)

= ℎ1 P1 + ℎ2 P2 (D.4)

+ ̂̂𝐐 (𝐪) ⋆
[

ℎ3 J3
[

𝐅transvx]

+ ℎ4 J4
[

𝐅transvx] + ℎ5 Ftransvx

+ℎ6 J6
[

𝐅transvx]]

ith 𝐅transvx, Ftransvx, J3 and J4 defined in Eqs. (B.4) to (B.7) and with
he isotropic sixth-order tensor

6 =
[

−𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑚𝛿𝑘𝑙
]

𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛 (D.5)

ollowing Fernández and Böhlke (2019), acting as
6 [𝐇] = −𝐈⊗𝐇 +𝐇⊗ 𝐈. (D.6)
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Listing 1: Validation of the orientation average following Advani and Tucker III (1987) given in Eq. (16) ⊵
1 import sympy as sp
2 import symbolic as sb
3
4
5 D2 = sb.fabric_tensor.dev2_by_la0_la1()
6 D4 = sb.fabric_tensor.dev4_triclinic_by_d()
7 N4 = sb.special.combine_to_N4(D2=D2, D4=sb.tensorr(D4))
8
9 # eq. (88) Transvsely isotropic stiffness

10 stiffness = sb.material_symmetry.transversely_isotropic_x_minimal_harmonic_normalized(
11 normalization= " structure_tensor_multiplicity "
12 )
13
14 print( " Orientation tensor fourth-order Kanatani first kind =\n " , N4)
15 print( " Transversely isotropic stiffness =\n " , stiffness)
16
17 averager = sb.orientation_average.AdvaniTucker(N4=N4)
18 average = averager.average(stiffness)
19
20 decomposer_Rych = sb.elasticity.Rychlewski2000()
21 decomposition = decomposer_Rych.decompose_classical_harmonic(
22 stiffness=sb.tensorr(average)
23 )[ " parts " ]
24
25
26 def test_equality(A, B):
27 return sp.simplify(A) == sp.simplify(B)
28
29
30 assert test_equality(decomposition[ " h1 " ], sb.abc.h1)
31 assert test_equality(decomposition[ " h2 " ], sb.abc.h2)
32 assert test_equality(decomposition[ " H1 " ], D2 ∗ sb.abc.h3)
33 assert test_equality(decomposition[ " H2 " ], D2 ∗ sb.abc.h4)
34 assert test_equality(sb.mandel(decomposition[ " H " ]), D4 ∗ sb.abc.h5) �

he connection between ℎ𝑖 for 𝑖 ∈ [1, 2, 3, 4, 5] and components 𝐻𝑖𝑗

n Eq. (D.2) follows the pattern in Eqs. (B.8) to (B.12) combined with

6 =
1
2
(

𝐻12 −𝐻21
)

. (D.7)

Based on the representation of Htransv in Eq. (D.4), the Advani–
Tucker (Advani and Tucker III, 1987) orientation average given in
Eq. (16) can be extended to minor symmetric fourth-order tensors
which lack the major symmetry, leading to

⟨Htransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, 𝐪
)

⟩ATN (N) = ℎ1 P1 + ℎ2 P2 (D.8)
+ ℎ3 J3

[

dev(𝐍)
]

+ ℎ4 J4
[

dev(𝐍)
]

+ ℎ5 dev(N)
+ ℎ6 J6

[

dev(𝐍)
]

with dev(𝐍), dev(N) defined in Eqs. (17) and (18). An alternative
representation closely following the original formulation of Advani–
Tucker (Advani and Tucker III, 1987) is given by
(

⟨Htransv
⟩ATN

)

𝑖𝑗𝑘𝑙 = 𝑏1𝑁
(4)
𝑖𝑗𝑘𝑙 (D.9)

+ 𝑏2𝑁𝑖𝑗 𝛿𝑘𝑙 + 𝑏6𝑁𝑘𝑙 𝛿𝑖𝑗
+ 𝑏3

(

𝑁𝑖𝑗 𝛿𝑗𝑙 +𝑁𝑖𝑙 𝛿𝑗𝑘 +𝑁𝑗𝑙 𝛿𝑖𝑘 +𝑁𝑗𝑘 𝛿𝑖𝑙
)

+ 𝑏4 𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝑏5
(

𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘
)

with component representations in an arbitrary coordinate system

N = 𝑁 (4)
𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 (D.10)

𝐍 = 𝑁𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 . (D.11)

The coefficients 𝑏𝑖 for 𝑖 ∈ [1, 2, 3, 4, 5, 6] are defined by

𝑏1 = 𝐻1111 +𝐻2222 −𝐻1122 −𝐻2211 − 4𝐻1212 (D.12)

𝑏2 = 𝐻1122 −𝐻2233 (D.13)

𝑏3 = 𝐻1212 +
1
2
(

𝐻2233 −𝐻2222
)

(D.14)
15

𝑏4 = 𝐻2233 (D.15)
𝑏5 = 𝐻2222 −𝐻2233 (D.16)

𝑏6 = 𝐻2211 −𝐻2233 (D.17)

based on tensor components of Htransv = 𝐻𝑖𝑗𝑘𝑙 𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 in
a coordinate system with 𝐞1 aligned along the transversely isotropic
axis of Htransv, i.e., the tensor components 𝐻𝑖𝑗𝑘𝑙 are directly related to
the Kelvin–Mandel components 𝐻𝑖𝑗 in Eq. (D.2). If the quantity to be
averaged is major symmetric, the coefficients in Eqs. (D.12) to (D.17)
coincide with those for the original formulation (Advani and Tucker III,
1987), e.g., given in Brylka (2017, Eq. (2.89)) or (Kehrer et al., 2020,
Eq. (27)).

Appendix E. Connection to notation in Kehrer et al. (2020)

The two-step scheme in Eqs. (32) and (33) simplifies to the one
proposed in Kehrer et al. (2020), if 𝑘1 = 0 or 𝑘1 = 1 and 𝑘2 = 𝑘.
Eqs. (E.1) and (E.2) connect the notation of this work on the left hand
side and the notation of Kehrer et al. (2020) on the right hand by

C̄HSW2 (𝑘1 = 0, 𝑘2 = 𝑘, …
)

=̂ C̄HS- (𝑘) , (E.1)

C̄HSW2 (𝑘1 = 1, 𝑘2 = 𝑘, …
)

=̂ C̄HS+ (𝑘) . (E.2)

Appendix F. Component representations of tensor inversions

Explicit representations of components after matrix inversion
in Eq. (42) are given by

ℎB
1 = 3

(

105ℎ2 + 140ℎ4 + 36ℎ5
)

∕𝑏1 (F.1)
ℎB
2 = 105

(

33075ℎ1ℎ22 + 22050ℎ1ℎ2ℎ4 + 5670ℎ1ℎ2ℎ5 − 17640ℎ1ℎ24
− 3780ℎ1ℎ4ℎ5 − 864ℎ1ℎ25 − 52920ℎ2ℎ23 − 141120ℎ2ℎ3ℎ4
− 94080ℎ2ℎ24 + 17640ℎ23ℎ4 + 4536ℎ23ℎ5 + 47040ℎ3ℎ24
+12096ℎ3ℎ4ℎ5 + 31360ℎ34 + 8064ℎ24ℎ5

)

∕
(

𝑏1𝑏2
)

(F.2)
ℎB
3 = 45

(

102900ℎ1ℎ2ℎ4 + 98000ℎ1ℎ24 − 2520ℎ1ℎ4ℎ5 − 3600ℎ1ℎ25
− 77175ℎ2ℎ − 102900ℎ2ℎ − 44100ℎ ℎ2 − 66150ℎ ℎ ℎ
2 3 2 4 2 3 2 3 4
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𝐸
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𝐸

𝐸

Table G.2
Parameter combinations leading to selected fourth-order fiber orientation tensors, which are used to generate polar plots in
Figs. 8, 9, 10 and 11. The corresponding parameterization Nplanar(𝜆1 , 𝑟̂, 𝛽) is defined in Eq. (11). Numerical values of the
Lagrange multipliers (𝐿, 𝑓1 , 𝑓2 , 𝑔1 , 𝑔2) specifying 𝜓̂ME(𝜑𝑖 , Nplanar) following Bauer and Böhlke (2022, equation (71)) are given
with absolute values smaller than 10−5 = 1E−5 set to zero.

Figures 𝜆1 𝛽 𝑟̂ 𝐿 𝑓1 𝑓2 𝑔1 𝑔2
8(a)(1), 8(b)(1) 1∕2 𝜋∕2 9∕80 4.42E0 0 0 −5.30E0 0
8(a)(2), 8(b)(2) 2∕3 𝜋∕2 1∕10 6.43E0 −7.69E0 0 −6.12E0 0
8(a)(3), 8(b)(3) 5∕6 𝜋∕2 1∕16 1.66E1 −2.46E1 0 −9.77E0 0
8(a)(4), 8(b)(4) 1∕2 0 0 8.38E−1 0 0 0 0
8(a)(5), 8(b)(5) 2∕3 0 0 9.56E−1 −6.67E−1 0 1.20E−1 0
8(a)(6), 8(b)(6) 5∕6 0 0 1.45E0 −1.34E0 0 6.49E−1 0
8(a)(7), 8(b)(7) 1∕2 −𝜋∕2 9∕80 4.42E0 0 0 5.30E0 0
8(a)(8), 8(b)(8) 2∕3 −𝜋∕2 1∕10 5.01E0 −3.63E−1 0 5.89E0 0
8(a)(9), 8(b)(9) 5∕6 −𝜋∕2 1∕16 8.26E0 −8.34E−1 0 9.13E0 0
8(a)(10), 8(b)(10) 1 0 0 1.81E3 −5.51E0 1.03E1 1.81E3 −5.18E0

9(a)(x), 9(b)(x), 1∕2 0 0 8.38E−1 0 0 0 0
9(a)(o1), 9(b)(o1), 1∕2 −𝜋∕2 1∕16 1.15E0 0 0 1.16E0 0
9(a)(o2), 9(b)(o2), 1∕2 −𝜋∕2 9∕80 4.42E0 0 0 5.30E0 0

10(a)(x), 11(a)(x) 2∕3 0 0 9.56E−1 −6.67E−1 0 1.20E−1 0
10(a)(o1), 11(a)(o1) 2∕3 −𝜋∕2 1∕18 1.30E0 −4.54E−1 0 1.30E0 0
10(a)(o2), 11(a)(o2) 2∕3 −𝜋∕2 1∕10 5.01E0 −3.63E−1 0 5.89E0 0
10(a)(c1), 11(a)(c1) 2∕3 −𝜋∕4 1∕18 1.31E0 −5.86E−1 3.36E−1 9.53E−1 −8.36E−1

10(a)(c2), 11(a)(c2) 2∕3 −𝜋∕4 1∕10 5.20E0 −1.39E0 2.51E0 4.22E0 −4.15E0

10(a)(m1), 11(a)(m1) 2∕3 0 1∕18 1.32E0 −9.01E−1 4.71E−1 1.20E−1 −1.19E0

10(a)(m2), 11(a)(m2) 2∕3 0 1∕10 5.69E0 −3.93E0 3.60E0 8.21E−2 −5.99E0

10(a)(g1), 11(a)(g1) 2∕3 𝜋∕4 1∕18 1.33E0 −1.21E0 3.30E−1 −7.18E−1 −8.40E−1

10(a)(g2), 11(a)(g2) 2∕3 𝜋∕4 1∕10 6.21E0 −6.56E0 2.59E0 −4.26E0 −4.35E0

10(a)(y1), 11(a)(y1) 2∕3 𝜋∕2 1∕18 1.33E0 −1.33E0 0 −1.07E0 0
10(a)(y2), 11(a)(y2) 2∕3 𝜋∕2 1∕10 6.43E0 −7.69E0 0 −6.12E0 0

10(b)(x), 11(b)(x) 5∕6 0 0 1.45E0 −1.34E0 0 6.49E−1 0
10(b)(o1), 11(b)(o1) 5∕6 −𝜋∕2 5∕144 2.00E0 −9.88E−1 0 1.96E0 0
10(b)(o2), 11(b)(o2) 5∕6 −𝜋∕2 1∕16 8.26E0 −8.34E−1 0 9.13E0 0
10(b)(c1), 11(b)(c1) 5∕6 −𝜋∕4 5∕144 2.04E0 −1.29E0 9.33E−1 1.59E0 −9.71E−1

10(b)(c2), 11(b)(c2) 5∕6 −𝜋∕4 1∕16 9.37E0 −4.00E0 7.92E0 6.69E0 −6.27E0

10(b)(m1), 11(b)(m1) 5∕6 0 5∕144 2.07E0 −1.93E0 1.25E0 6.77E−1 −1.36E0

10(b)(m2), 11(b)(m2) 5∕6 0 1∕16 1.23E1 −1.20E1 1.17E1 5.68E−1 −9.41E0

10(b)(g1), 11(b)(g1) 5∕6 𝜋∕4 5∕144 1.95E0 −2.37E0 7.97E−1 −1.91E−1 −9.20E−1

10(b)(g2), 11(b)(g2) 5∕6 𝜋∕4 1∕16 1.55E1 −2.09E1 8.87E0 −6.48E0 −7.31E0

10(b)(y1), 11(b)(y1) 5∕6 𝜋∕2 5∕144 1.86E0 −2.47E0 0 −5.16E−1 0
10(b)(y2), 11(b)(y2) 5∕6 𝜋∕2 1∕16 1.66E1 −2.46E1 0 −9.77E0 0
i

𝐺

𝐺

𝐺

+ 13230ℎ2ℎ3ℎ5 − 9800ℎ2ℎ24 + 17640ℎ2ℎ4ℎ5 − 117600ℎ23ℎ4
+ 22680ℎ23ℎ5 − 245000ℎ3ℎ24 + 34020ℎ3ℎ4ℎ5 + 1008ℎ3ℎ25
− 117600ℎ34 + 5040ℎ24ℎ5 + 1344ℎ4ℎ25

)

∕
(

𝑏1𝑏2
)

(F.3)
ℎB
4 = −225

(

15435ℎ1ℎ2ℎ4 + 14700ℎ1ℎ24 − 378ℎ1ℎ4ℎ5 − 540ℎ1ℎ25
− 6615ℎ2ℎ23 − 17640ℎ2ℎ3ℎ4 − 11760ℎ2ℎ24 − 17640ℎ23ℎ4 + 3402ℎ23ℎ5

− 47040ℎ3ℎ24 + 9072ℎ3ℎ4ℎ5 − 31360ℎ34 + 6048ℎ24ℎ5
)

∕
(

𝑏1𝑏2
)

(F.4)
ℎB
5 = −1575

(

2205ℎ1ℎ2ℎ5 − 5880ℎ1ℎ24 − 2730ℎ1ℎ4ℎ5 + 216ℎ1ℎ25
− 6615ℎ2ℎ23 − 17640ℎ2ℎ3ℎ4 − 11760ℎ2ℎ24 + 13230ℎ23ℎ4 − 1008ℎ23ℎ5

+ 35280ℎ3ℎ24 − 2688ℎ3ℎ4ℎ5 + 23520ℎ34 − 1792ℎ24ℎ5
)

∕
(

𝑏1𝑏2
)

(F.5)

𝑏1 = 315ℎ1ℎ2 + 420ℎ1ℎ4 + 108ℎ1ℎ5 − 630ℎ23 − 1680ℎ3ℎ4 − 1120ℎ24 (F.6)

𝑏2 =
(

105ℎ2 − 140ℎ4 + 6ℎ5
) (

105ℎ2 + 70ℎ4 − 24ℎ5
)

(F.7)

after orientation averaging in Eq. (43) by

𝐸11 = − 1
35

[

35𝐵11𝑑1 − 35𝐵11𝜆1 + 4𝐵11 − 70𝐵12𝑑1 − 8𝐵12 + 35𝐵22𝑑1

+ 35𝐵22𝜆1 − 31𝐵22 − 140𝐵55𝑑1 − 16𝐵55
]

(F.8)

12 =
1
35

[

35𝐵11𝑑1 + 4𝐵11 − 70𝐵12𝑑1 + 27𝐵12 + 35𝐵22𝑑1 + 4𝐵22

− 140𝐵55𝑑1 − 16𝐵55
]

(F.9)

13 = 𝐵12𝜆1 − 𝐵23𝜆1 + 𝐵23 (F.10)

16 =
√

2𝑑8
(

𝐵11 − 2𝐵12 + 𝐵22 − 4𝐵55
)

(F.11)

22 = − 1
35

[

35𝐵11𝑑1 + 35𝐵11𝜆1 − 31𝐵11 − 70𝐵12𝑑1 − 8𝐵12 + 35𝐵22𝑑1

− 35𝐵 𝜆 + 4𝐵 − 140𝐵 𝑑 − 16𝐵
]

(F.12)
16

22 1 22 55 1 55
𝐸23 = −𝐵12𝜆1 + 𝐵12 + 𝐵23𝜆1 (F.13)

𝐸33 = 𝐵22 (F.14)

𝐸44 = 𝐵22𝜆1 − 𝐵23𝜆1 − 2𝐵55𝜆1 + 2𝐵55 (F.15)

𝐸55 = −𝐵22𝜆1 + 𝐵22 + 𝐵23𝜆1 − 𝐵23 + 2𝐵55𝜆1 (F.16)

𝐸66 =
2
35

[

35𝐵11𝑑1 + 4𝐵11 − 70𝐵12𝑑1 − 8𝐵12 + 35𝐵22𝑑1 + 4𝐵22

− 140𝐵55𝑑1 + 19𝐵55
]

(F.17)

with 𝑑1 = 𝑑1+ ̂𝑅(𝜆1)−
4
35 (see Bauer and Böhlke, 2022) and after matrix

nversion in Eq. (44) by

11 =
𝐸2
16𝐸33 − 𝐸22𝐸33𝐸66 + 𝐸2

23𝐸66

𝑏
(F.18)

𝐺12 =
𝐸12𝐸33𝐸66 − 𝐸13𝐸23𝐸66 + 𝐸2

16𝐸33

𝑏
(F.19)

𝐺13 = −
𝐸12𝐸23𝐸66 + 𝐸13𝐸2

16 − 𝐸13𝐸22𝐸66 + 𝐸2
16𝐸23

𝑏
(F.20)

16 =
𝐸16

(

𝐸12𝐸33 − 𝐸13𝐸23 + 𝐸22𝐸33 − 𝐸2
23
)

𝑏
(F.21)

𝐺22 = −
𝐸11𝐸33𝐸66 − 𝐸2

13𝐸66 − 𝐸2
16𝐸33

𝑏
(F.22)

𝐺23 =
𝐸11𝐸23𝐸66 − 𝐸12𝐸13𝐸66 − 𝐸13𝐸2

16 − 𝐸
2
16𝐸23

𝑏
(F.23)

𝐺26 = −
𝐸16

(

𝐸11𝐸33 + 𝐸12𝐸33 − 𝐸2
13 − 𝐸13𝐸23

)

𝑏
(F.24)

=
𝐸11𝐸2

16 − 𝐸11𝐸22𝐸66 + 𝐸2
12𝐸66 + 2𝐸12𝐸2

16 + 𝐸
2
16𝐸22 (F.25)
33 𝑏
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Fig. H.12. Effective complementary elastic energy 𝑤⋆(C, 𝜎 = 1 MPa,𝐧) due to uniaxial tension in varying direction defined in Eq. (65) for mean field approximations specified in
Fig. 7.
𝐺36 =
𝐸16

(

𝐸11𝐸23 − 𝐸12𝐸13 + 𝐸12𝐸23 − 𝐸13𝐸22
)

𝑏
(F.26)

𝐺44 =
1
𝐸44

(F.27)

𝐺55 =
1
𝐸55

(F.28)
17
𝐺66 = −
𝐸11𝐸22𝐸33 − 𝐸11𝐸2

23 − 𝐸
2
12𝐸33 + 2𝐸12𝐸13𝐸23 − 𝐸2

13𝐸22

𝑏
(F.29)

𝑏 = 𝐸11𝐸
2
16𝐸33 − 𝐸11𝐸22𝐸33𝐸66 + 𝐸11𝐸

2
23𝐸66 + 𝐸2

12𝐸33𝐸66 (F.30)
− 2𝐸12𝐸13𝐸23𝐸66 + 2𝐸12𝐸

2
16𝐸33 − 𝐸2

13𝐸
2
16 + 𝐸

2
13𝐸22𝐸66

− 2𝐸13𝐸
2
16𝐸23 + 𝐸2

16𝐸22𝐸33 − 𝐸2
16𝐸

2
23 (F.31)
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Appendix G. Parameter sets in polar plots

Table G.2 lists parameter combinations of all fiber orientation ten-
sors utilized in this work. In addition, Table G.2 contains Lagrange
multipliers of the reconstructed fiber orientation distributions.

Appendix H. Effective complementary elastic energy density

Effective complementary elastic energy density due to uniaxial ten-
sion with unit stress 𝜎 = 1MPa defined in Eq. (65) for mean field
omogenizations listed in Fig. 7 are given in Figs. H.12(a) to H.12(d).
he bounds of the contour plots in Figs. H.12(a) to H.12(d) are homo-
eneous and given by 0MJ∕m3 and 0.1MJ∕m3.
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