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fficient, safe, and predictable products. Linear Elastic Fracture Mechanics (LEFM) has proven to be capable of
escribing crack propagation in homogeneous materials in 2D [1,2]. An extension to heterogeneous materials is
ossible [3,4], but a general approach which describes complex heterogeneous materials in 3D seems difficult
nd not feasible. An alternative approach is cohesive zone modeling (CZM), introduced by Barenblatt [5] and
ugdale [6], which can be embedded in the finite element method (FEM), using cohesive finite elements. An
verview of CZM can be found in Elices et al. [7]. Since these models demand for conforming meshes, more
dvanced crack paths require cumbersome remeshing methods. In comparison, the generalized/extended finite
lement method (GFEM/XFEM) enriches the solution space of the FEM to handle discontinuous functions [8]. This
liminates the need for conforming meshes and remeshing. However, both CZM and GFEM/XFEM are limited to
escribe complex crack propagation behavior, including nucleation, branching, or the interaction between cracks.
n a domain with sharp interfaces, different regions, e.g., phases or destroyed and unbroken material, occurring in
he case of fracture, are distinctly separated, cf., e.g., Prahs and Böhlke [9], in the context of interface conditions

on a sharp interface. This requires explicit tracking of the interface, which has proven impractical. An alternative
approach to fracture utilizes the phase-field method (PFM), introducing order parameters to allow a smooth transition
between various regions. This results in continuous order parameter fields, often referred as phase fields, and
allows an implicit tracking of the interface on nonconforming meshes, and thus an efficient numerical treatment
of singularities, such as grain boundaries or cracks. Thus, the PFM is widely established to describe the evolution
of microstructures, such as solidification or solid–solid phase transitions, considering different types of physical
aspects, e.g., thermodynamics, chemistry, or mechanics [10–14]. Phase-field approaches to brittle fracture have
been developed in both the physical [15–17] and the mechanic community [18–20]. The latter is based on Griffith’s
theory [21] and the variational formulation of Francfort and Marigo [22] and Francfort and Bourdin et al. [23].
Other more advanced applications, for example, deal with plasticity [24–27] or multiphysics [28–31]. For most
of these models, the material is considered homogeneous. This is a reasonable assumption on macroscopic length
scales. Often, however, failure mechanisms occur at smaller length scales, where many materials are heterogeneous.
Therefore, models that are able to describe fracture of heterogeneous systems are highly desirable.

Most phase-field models describing crack propagation in such systems introduce a varying crack surface energy.
This is achieved either by anisotropy [32,33] or interpolation of the surface energy [34,35]. Schneider et al. [36]
proposed a model that extends the multi-phase field model of Nestler et al. [37], so as to describe crack propagation
in polycrystalline systems. The model takes into account damage due to a phase transition to a common crack
phase. This concept has also been extended to anisotropy [38] and plasticity [39]. A common approach to consider
an interfacial fracture toughness is to lower the crack resistance in the interfacial region. Hansen-Dörr et al. [40,41],
for instance, model a locally varying value based on a virtual phase transition. To account for interfacial effects,
CZM have also been introduced into phase-field crack propagation models [42–45]. Although these models can
describe complex crack propagation in heterogeneous materials, including interfacial effects, and agree with the
LEFM and experiments, they can lead to non-physical behavior as discussed by Henry [46].

The objective of the paper is to introduce a novel multi-crack order parameter (MCOP) phase-field model for
fracture which is able to overcome issues of the established single-crack order parameter (SCOP) approaches for
modeling crack propagation in heterogeneous systems based on the phase-field method. Therefore, some issues of
the SCOP model are illustrated in simple 1D and 2D simulation setups and several advantages of the novel model are
demonstrated. This paper is structured as follows: Section 2 introduces the phase-field crack propagation models for
the homogeneous and heterogeneous case and the corresponding governing equations are derived, while Section 3
gives remarks on the numerical implementation. Followed by a discussion of the numerical results in Section 4
of both heterogeneous models in 1D, two limiting cases for a binary interface in 2D, including a comparison to
analytical solution from the LEFM, and an application to FRP in 2D and 3D are presented.

2. Phase-field crack propagation models

For a material body Ω ∈ Rn n ∈ {1, 2, 3}, in an Euclidean space, the displacement vector u relates the position
vector of a material point regarding the reference and the current configuration. The boundary of the body ∂Ω ∈ Rn−1

consists of a subset ∂ΩD, on which a Dirichlet boundary condition is applied, by prescribing the displacement
vector u = u, while a Neumann boundary condition is imposed on ∂ΩN, for which the stress vector t = t is
specified. For both boundaries, ∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ∅ must apply. In addition, the body contains a
sharp crack surface S .
c
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Fig. 2. Analytical order parameter profile for crack (a) and solid (b), for a corresponding sharp crack and a solid–solid interface at x = 0,
respectively.

et al. [51]. Despite their significance, none of these variants is considered here, in order to reduce the complexity of
the proposed model. However, an extension to most of the established tension–compression splits could be applied
straightforwardly. Applying Eq. (3) and (4) to the functional (2), yields

F[u, φc,∇φc] =
∫
Ω

1
2

h(φc)(C [ε]) · ε +
1
2

Gc

(
ϵc |∇φc|

2
+

1
ϵc

φc
2
)

dv. (6)

alance of linear momentum. Following the approach of Kuhn et al. [19], the minimization of the free energy
unctional (6), with respect to the displacement yields the balance of linear momentum

div(h(φc)σ ) = 0. (7)

volution equation. The evolution equation of the order parameter φc can be described by an Allen–Cahn
quation [52]

ϵcφ̇c = −M
δF
δφc
= −M

(
∂ f (u, φc,∇φc)

∂φc
− div

(
∂ f (u, φc,∇φc)

∂∇φc

))
, (8)

ith a mobility parameter M ≥ 0, ∇φc · n = 0 on ∂Ω and the outer normal vector n on the boundary.

nalytical crack profile. For a one-dimensional stationary crack without mechanical loads, and thus with vanishing
echanical driving force, the evolution equation according to (8) is able to reproduce the correct surface energies

of a sharp interface and lead to the analytical profile [20]

φc(x) = exp
(
−
|x |
ϵc

)
, (9)

hich is displayed in Fig. 2a.

rreversibility condition. Various approaches for the realization of an irreversibility condition for the evolution
quation are listed in the literature: Bourdin et al. [18] used a Dirichlet boundary condition. In contrast, Miehe
t al. [20] introduced a strain history function to realize the irreversibility of crack order parameter. More
ecent approaches use the augmented Lagrangian method [53], a primal–dual-active set [54], a complementarity
ystem [55], or the interior point method [56]. The model introduced above reproduces the correct sharp interface
nergy in the case of the analytical profile (9). Since mechanical loads are considered here, the strain energy
ensity contributes to the evolution equation of the order parameter (8). This leads to a distorted profile, if crack
ealing is prevented completely, and therefore to an error in the represented energy, if the applied load is removed
ompletely. As the objective of this work is to investigate the possibility of different models to reproduce the sharp
nterface energies, the irreversibility is realized by a Dirichlet boundary condition, where the evolution equation is
ot restricted in general, but all fully damaged points remain damaged, using a boundary condition φc = 1, where
point is assumed to be fully damaged by φc ≥ 0.99 using a numerical threshold. This improves the numerical

ehavior and has a negligible effect on the results. Nevertheless, the models presented in the present work could

lso be realized with other approaches to the irreversibility condition, which are listed above.
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F[u] =
N∑
α

∫
Ωα

f α
el (u) dv +

N∑
α

∫
Sα

c

Gα
c da. (13)

In the context of the SCOP model, and thus, in contrast to the functional (1), the strain energy densities f α
el as

well as the critical energy release rates Gα
c are phase-specific, denoted by the phase index α. The energy of each

subdomain is given by an integral of energy densities over Ωα , which can be parametrized using an indicator
function and expanded to Ω . Subsequently, the order parameters of the solid phase field can be used as a smooth
approximation to the indicator function [58,59]. This leads to a linear interpolation of the energy densities with the
solid order parameters φ, cf. for example Nestler et al. [37], yielding

F[u] =
∫
Ω

N∑
α

φα f α
el (u) dv +

∫
Sc

N∑
α

φαGα
c da. (14)

As for the classic homogeneous model, a crack order parameter φc is introduced to describe the damage of the
domain smoothly, and the free energy of a heterogeneous body is given by

F[u, φc,∇φc] =
∫
Ω

h(φc)

N∑
α

φα f α
el +

1
2

N∑
α

φαGα
c

(
ϵc |∇φc|

2
+

1
ϵc

φc
2
)

dv, (15)

f α
el =

1
2
σ α
· εα, σ α

= Cα
[
εα
]
. (16)

n general, the phase-inherent stresses and strains are unknown. To determine an overall material behavior, further
ssumptions have to be made. This is widely investigated in the context of phase-field modeling [60–64]. Recently,
rajapati et al. [38] introduced a model that applies the homogenization scheme proposed by Schneider et al. [63]

n the context of a phase-field fracture model. Nevertheless, for simplicity, a Voigt–Taylor homogenization scheme
s used in this work, assuming equal strains in each phase

εα
= ε ∀α = 1, . . . , N , (17)

cknowledging the limited capabilities of this scheme [13,60]. By applying (17) and (16) to the functional (15) this
yields

F[u, φc,∇φc] =
∫
Ω

1
2

h(φc)

N∑
α

φα(Cα [ε]) · ε +
1
2

N∑
α

φαGα
c

(
ϵc |∇φc|

2
+

1
ϵc

φc
2
)

dv. (18)

ote that the procedure to obtain the evolution equations of the crack order parameter and the balance of linear
omentum is the same as for the classical phase-field crack propagation model in Section 2.1, but now including

nterpolations of the phase-specific stiffnesses and critical energy release rates with the order parameters φα .

.3. Heterogeneous multi-crack order parameter (MCOP) model

rder parameters. As in the previous section, a tuple of order parameters,

φ =
{
φ1, φ2, . . . , φN} ,

N∑
α=1

φα
= 1, (19)

s introduced to parametrize different regions of a heterogeneous body. In addition, a tuple consisting of separate
rack order parameters φα

c ∈ [0, 1], for each solid phase,

φc =
{
φ1

c , φ
2
c , . . . , φ

N
c

}
, (20)

s introduced. Each crack order parameter φα
c tracks the damage of the corresponding solid region α. For φα

c = 1, for
α α
nstance, the complete volume fraction φ is damaged, while other solid regions are not affected by φc , cf. Fig. 3.
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ree energy functional. The MCOP model combines the functional given by Eq. (14), used as the basis for the
COP model, with the individual degradation of the strain energy densities f α

el by means of multiple crack order
arameters according to Eq. (20). In addition, the critical energy release rates Gα

c are also parametrized by the
ndividual crack order parameters. This results in the free energy functional

F
[
u, φc,∇φc

]
=

∫
Ω

N∑
α

φαh
(
φα

c

)
f α
el +

1
2

N∑
α

φαGα
c

(
ϵc
⏐⏐∇φα

c

⏐⏐2 + 1
ϵc

(
φα

c

)2
)

dv, (21)

ith ∇φc =
{
∇φ1

c ,∇φ
2
c , . . . ,∇φ

N
c

}
. The free energy functional for each subdomain Ωα can be identified by

Fα
[
u, φα

c ,∇φα
c

]
=

∫
Ω

φα f α
(
u, φα

c ,∇φα
c

)
dv (22)

=

∫
Ωα

h
(
φα

c

)
f α
el +

1
2

Gα
c

(
ϵc
⏐⏐∇φα

c

⏐⏐2 + 1
ϵc

(
φα

c

)2
)

  
f α(u,φα

c ,∇φα
c )

dv.

ith Eq. (16) and, as in the previous model, the assumption of the Voigt–Taylor scheme (17), the functional for
he whole domain and each subdomain is obtained by

Fα
[
u, φα

c ,∇φα
c

]
=

∫
Ωα

1
2

h
(
φα

c

)
(Cα [ε]) · ε +

1
2

Gα
c

(
ϵc
⏐⏐∇φα

c

⏐⏐2 + 1
ϵc

(
φα

c

)2
)

dv, (23)

F
[
u, φc,∇φc

]
=

∫
Ω

1
2

N∑
α=1

φαh
(
φα

c

)
(Cα [ε]) · ε +

1
2

N∑
α=1

φαGα
c

(
ϵc
⏐⏐∇φα

c

⏐⏐2 + 1
ϵc

(
φα

c

)2
)

dv. (24)

As in the previous models, minimizing the latter functional with respect to the displacements yields the balance of
linear momentum and is therefore omitted here.

Evolution equation. For each crack order parameter an Allen–Cahn equation,

ϵcφ̇
α
c = −Mα δFα

δφα
c
= −Mα

(
∂ f α

(
u, φα

c ,∇φα
c

)
∂φα

c
− div

(
∂ f α

(
u, φα

c ,∇φα
c

)
∂∇φα

c

))
, (25)

ith a mobility Mα
≥ 0 is postulated. These evolution equations are defined on the subdomains Ωα , whereas on the

oundary ∂Ωα a homogeneous Neumann boundary condition with ∇φα
c ·n = 0 applies. In contrast, the boundary Gα ,

esulting from the smooth transition of G (cf. Fig. 3), has to be treated separately. Neither a classical Neumann nor
Dirichlet boundary condition is a reasonable choice. A Neumann boundary condition would enforce a certain

ux across the boundary. For example, a zero flux would result in a crack propagation direction perpendicular
o the boundary. A Dirichlet boundary condition, on the other hand, would constrain the order parameter φα

c and
thus the crack propagation. More complex boundary conditions, such as absorbing boundary conditions, or Robin
type boundary conditions, could constitute more physical boundary conditions. Since these are neither widely used
nor trivial to implement, an alternative approach is proposed: The evolution equation is extended to the whole
domain Ω , but the elastic driving force is restricted to Ωα , and considered to vanish anywhere else. This results
in a continuous calculation of the crack order parameters, not restricted to the inner boundary, each with similar
terms, as in the homogeneous model, but with phase-specific quantities. Outside the subdomain Ωα , the phasefield
is continued in the sense of the exponential profile (9), reproducing the correct sharp interface energy in a diffuse
context. The coupling of these different equations takes place solely through the interpolation of the strain energy
density. In addition, an irreversibility condition for each evolution equation is used: As in Section 2.1, each crack
order parameter is kept damaged by means of the additional constraint φα

c = 1, if φα
c ≥ 0.99.

2.4. Comparison

Classic homogeneous model. Section 2.1 introduced a crack propagation model based on established models from
the literature. Many extensions and modifications to such a model can be found in the literature, which can improve
the model for many applications [39,41,51]. Nevertheless, such extensions are avoided intentionally, reducing
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Table 1
Comparison of the terms in the balance of linear momentum and the evolution equation of the SCOP and MCOP model. ∆· denotes the
Laplacian operator.

SCOP : div

(
h(φc)

N∑
α

φασ α

)
= 0, φ̇c

1
M
=

N∑
α

φαGα
c

(
∆φc −

1
ϵ2

c
φc

)
−

1
ϵc

∂h(φc)

∂φc

N∑
α

φα f α
el

MCOP : div

(
N∑
α

h
(
φα

c

)
φασ α

)
= 0, φ̇α

c
1

Mα
= Gα

c

(
∆φα

c −
1
ϵ2

c
φα

c

)
−

1
ϵc

∂h
(
φα

c

)
∂φα

c
f α
el , ∀α = 1, . . . , N

the complexity, as the model is used as the basis for the introduced heterogeneous SCOP and MCOP models.
In the scope of this work, no implementation of the classical model is conducted. While the limitations of the
classical model are acknowledged, many of the established modifications might also be applied to the novel MCOP
model, while retaining the advantages of this approach. Nevertheless, the classical model could be extended to
heterogeneous systems, e.g. based on element-wise constant material properties in the context of the FEM. On the
other hand, the SCOP model with the limit of a sharp interface would yield the same results.

Single-crack order parameter (SCOP) models. The SCOP model, introduced in Section 2.2, is similar to models
from the literature [13,38,39]. However, there are some differences:

• Schneider et al. [13] introduced the order parameters φα and the crack order parameter φc in the same tuple φ.
Therefore, φc also contributes to the summation condition (11). This results in a model where the phases show
transitions to a common crack phase. In addition, the interpolation function h(φc) must then normalize with
respect to

∑N
α φα , while the crack energy is also considered in the evaluation equation of the phases, and vice

versa.
• Prajapati et al. [38] and Späth et al. [39] used a similar approach as Schneider et al. [13], but the crack

evolution equation is assumed to be independent of the order parameters φα , and is solely used to determine
effective material properties.
• In this work, the order parameters φα and the crack order parameter φc are introduced separately, and the

damage of all phases is represented by φc, but without any phase transitions from these to the crack phase.
This results in a model similar to Prajapati et al. [38] or Späth et al. [39], but without requiring a normalization
of the interpolation function.
• Due to the similarities to established models, the SCOP model is used as a reference model in the following

2D examples.

COP vs MCOP model. Both models introduce a tuple of order parameters for the parametrization of the domain,
hereby accounting for the heterogeneity of the body. The differences between both models are summarized in the
ollowing.

• SCOP model: Only a single crack order parameter is considered. Thus, all regions are equally damaged. Both,
the balance of linear momentum as well as the evolution equation of the crack order parameter are obtained
by minimization of the functional F with respect to the total domain Ω .
• MCOP model: A tuple of crack order parameters is introduced. Thus, the damage of a region is described by its

own order parameter, which allows a more advanced degradation of the strain energy. Moreover, functionals Fα

are introduced on subdomains Ωα . As for the SCOP model, the balance of linear momentum is obtained by the
minimization of the total functional with respect to the total domain. However, the evolution equations of the
crack order parameter are obtained by the minimization of the functionals Fα with respect to the domain Ωα

of the corresponding crack order parameter. Each evolution equation also recovers the classic model, while
maintaining a constant crack surface energy and many of the advantages of this model.

urthermore, the differences in the evolution equations and linear momentum balances are summarized in

able 1.
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. Numerical treatment

nfluence of the crack length parameter ϵc. Regarding phase-field crack models for simulations, it has been
repeatedly shown that the length parameter used to determining the width of the diffuse transition between damaged
material points and undamaged material points has an effect on the simulation results, see [19,20,39], for example.
This is especially true when considering crack initiation processes, for which often ϵc is treated as material property,
cf., e.g. Tanné et al. [65]. Recently, Kumar et al. [66] discussed crack nucleation in the context of phase-field
modeling and promoted an alternative approach for nucleation treatment. If initial cracks exist and the transition
width is compatible with the discretization grid and the domain size, the influence of ϵc is not significant [65,67–69].
This difficulty was extensively studied in [70], and it was concluded that the length parameter should be considered
as a material property that depends on the tensile strength of a material. Tanné et al. [65] derived a possible
solution for the correct determination of the length parameter. However, if the length parameter is considered as a
material property, especially on small length scales, this often leads to difficulties, as the compatibility between
the length parameter, the discretization grid, and the domain size is no longer guaranteed. To eliminate this
sensitivity, Wu et al. [71] introduced an approach for brittle materials. Since the presented model is a completely
new interpretation of the regularized crack problem, the approach by Wu et al.’s is not considered, to reduce
complexity. For a clear presentation of the new model, the disadvantages and the problem of the dependence of
the simulation results on the length parameter are acknowledged but not taken into account. However, improving
of the model towards parameter insensitivity is nevertheless straight forward with the approach published in
Wu et al. [71].

Algorithm 1: Staggered scheme for SCOP
initialize φc
initialize boundary condition
t ← t0
while t < tend do

loop
solve lin. momentum balance // cf. Table 1

solve evolution eq. for φc // cf. Table 1

φc ← φc +∆t φ̇c

adapt mesh
static←

⏐⏐φ̇c
⏐⏐
∞

< ϵφc

if static then
t ← t +∆t
increment boundary condition
break

end
end

nd

Algorithm 2: Staggered scheme for MCOP
initialize φc ∀α = 1, . . . , N
initialize boundary condition
t ← t0
while t < tend do

loop
solve lin. momentum balance // cf. Table 1

for α = 1 to N do
solve evolution eq. for φα

c // cf. Table 1

φα
c ← φα

c +∆t φ̇α
c

end
adapt mesh
static← max

α=1,...,N

⏐⏐φ̇α
c
⏐⏐
∞

< ϵφc

if static then
t ← t +∆t
increment boundary condition
break

end
end

end

Numerical discretization. The proposed models result in a system of partial differential equations, consisting of
the balance of linear momentum and multiple evolution equations for the crack order parameters. In this work the
staggered approach of Miehe et al. [20] is used, which is based on a operator split. Each partial differential equation
is solved by assuming the other fields constant. Together with a time stepping scheme

φn+1
c = φn

c +∆t φ̇c, φα,n+1
c = φα,n

c +∆t φ̇α
c , (26)

and a time step ∆t , this results in linear partial differential equations. The index n denotes the order parameters for
an old time step, while n + 1 denotes the order parameter for a new time step.

In order to ensure a quasi-static crack propagation, the steady state conditions⏐⏐φ̇c
⏐⏐
∞

< ϵφc ,
⏐⏐φ̇α

c

⏐⏐
∞

< ϵφc (27)

are introduced, with the infinity norm |·|∞ and a tolerance parameter ϵφc = 10−4. After solving the individual

equations in each iteration, the condition is evaluated. Only if the condition is fulfilled, the system will progress
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urther in time. As a consequence there is an inner iteration loop, which solves each equation subsequently, until a
teady state is reached, and an outer loop, which can be associated with a physical time and a time-dependent load,
sing boundary conditions. The procedure corresponding to this approach is illustrated as pseudocode in algorithm 1
or the SCOP model and compared to the MCOP model (algorithm 2). The mobilities M and Mα also reduce to

numerical parameters and will not influence the results within a certain reasonable numerical range. In addition, an
exemplary study of the evolution of these staggered systems and their iterations is conducted in Appendix A. In
order to solve the partial differential equations, a FEM approach, based on the C++ finite element library deal.II [72],
is used. In this work, first-order Lagrange finite elements and a second-order Gauss–Legendre quadrature rule for
numerical integration are used. The evolution equations are solved using an implicit time stepping procedure (cf.
Eq. (26)), except for the elastic driving force term, which is considered explicitly in time. Adaptive mesh refinement
(AMR) is used to reduce the computational effort. Especially for the setup chosen in Section 4.2, big domains are
required which are computationally unfeasible on a uniform mesh. In this work a basic AMR strategy is used, and the
reader is referred to, for example, Heister et al. [54] for a more state-of-the-art AMR approach. The strategy of our
current approach uses different criteria for refinement or coarsening for the evolution equation and the equilibrium
of the linear momentum. Based on the gradient of the order parameter or strain energy density and the extent of the
elements, discrete changes are calculated for each element. If certain values are exceeded or undershot, the element
is refined, or coarsened, respectively. In addition, this procedure is explicitly evaluated in time. Despite limitations
of the strategy acknowledged, it enables the computation of bigger domains. Combined with a very conservative
refinement controlled by the values for refinement and coarsening, and frequent execution, the strategy has proven
its robustness. However, this has the disadvantage of low computational optimization compared to more advanced
approaches such as those of Heister et al. [54]. Nevertheless, it provides huge improvements over a uniform mesh.

Residual stiffness. For a FEM approach, an interpolation function h(φs), which will be zero for a fully broken
state, will result in a singular stiffness and an ill-posed problem. This can be avoided by replacing the degradation
function by

h̃ (φc) =

{
h(φc) 1− φc > φth

s ,

h
(
φth

c

)
else,

(28)

with a threshold value φth
s = 10−4. This function will preserve a certain value and even ensures a residual stiffness

ven for completely damaged regions.

. Results

ffective crack order parameters. In order to be able to compare the results of the SCOP and MCOP model,
dditional effective order parameters are introduced. An order parameter φα can be decomposed into an effectively

damaged part φ̃α
c and an effectively undamaged part φ̃α

s :

φα
= φ̃α

c + φ̃α
s . (29)

Each of these parts is defined using the individual crack order parameters of the MCOP model

φ̃α
c = φαφα

c , φ̃α
s = φα

(
1− φα

c

)
. (30)

Also a totally effective crack order parameter is formulated:

φ̃c =

N∑
α=1

φ̃α
c . (31)

Note that these effective quantities describe the damaged and the undamaged fraction with respect to
∑N

α φα
= 1,

which is in contrast to φα
c , which only describes the ratio of damage with respect to φα .

4.1. Steady-state profiles in 1D

To illustrate the difficulties of the heterogeneous SCOP model, steady-state profiles are examined for different

model parameters and compared to the analytical solution. For the sake of simplicity, the system is assumed as
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Fig. 10. Cross-section with the underlying solid interface, along the binary interface of the SCOP and MCOP model, shown in Fig. 9, for
a sharp (a) and diffuse interface (b).

• Due to the interpolation of the individual critical energy release rates Gα
c and the infinitely tough upper region,

no crack can occur there or in the interface region. This constrains the crack propagation in such a way that
the crack is deflected before it reaches the solid interface.
• This interpolation also causes problems as to how the crack grows along the interface. Because the order

parameter in the interface must be zero, this leads to a certain distance of the crack from the interface.
• For the diffuse interface, the high gradients of φc towards the interface combined with the nonconforming mesh

cause numerical issues, leading to numerical artifacts, as shown in the magnification of Fig. 9b. Regarding the
sharp interface, which requires a conforming mesh, these artifacts are not present.

In contrast, the MCOP model exhibits fewer of these difficulties: For the diffuse interface, the crack grows straight
up to the interface, where it performs distinct deflection. The deflection is less pronounced for the sharp interface
due to the loss of the driving force immediately beyond the interface. However, for both the diffuse and sharp
interfaces, the crack continues directly at the edge of the interface, and the crack exhibits the desired analytical
profile of the diffuse interface, as illustrated in Fig. 10.

For a quantitative comparison of the models, the approach of Henry [46] and the analytical analysis of Amestoy
and Leblond [4] are used and briefly introduced, in the following. The stress intensity factors for the crack modes I
and II of the straight crack, i.e., before the deflection of the crack at the interface, result from

KI = Aσ0
√

a, KII = 0. (35)

n contrast, the stress intensity factors can be described by

K̂I = f (θ)KI0, K̂II = g(θ)KI0, (36)

irectly after the kink of the crack path, where f (θ) and g(θ) are given by Amestoy and Leblond [4]. KI0 is the
stress intensity factor right before the kink of the mode I crack. The energy release rates after the kink Ĝ result
from

Ĝ =
K̂ 2

I + K̂ 2
II

E ′
, (37)

while the ratio of Ĝ and the energy release rates before the kink G0 can be expressed using the analytical solution

Ĝ
= f (θ)2

+ g(θ)2, (38)

G0
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Table 2
Material properties (a) and interface width parameters (b) for simulating the fracture of FRP volume elements.

Material Elasticity Fracture

E ν Reference Gc

Thermoset 3.45 GPa 0.38 [74] 100.0 J m−2

Glass fiber 73.0 GPa 0.22 [75] 200.0 J m−2

(a)

Parameter Value

ls 1 µm
ϵc 1.25 µm

(b)

4.3. Application to FRPs

In the previous numerical studies, the same elastic material behavior has been assumed for both regions. But
ealistic systems with a high contrast in crack resistance will most likely also have a high contrast in their elastic
arameters. In this section, a fiber-reinforced polymer (FRP) is chosen to schematically demonstrate the ability of
he novel MCOP model to illustrate crack propagation behavior in the context of a material with heterogeneous
lastic properties. A quantitative analysis of the results is omitted, as this would most likely require an extension
f the model, e.g., a state-of-the-art tension–compression splitting, or accounting for interfacial crack propagation,
hich is beyond the scope of this work.
The matrix consists of a UPPH resin system [76], reinforced by glass fibers. The material parameters for both

aterials are given in Table 2a, while the interfacial widths used are shown in Table 2b. FRPs exhibit a complex
fracture behavior: Either the matrix may fail, the fibers may break, or the material may fail due to the debonding
of the interface. To investigate crack propagation in such a material, volume elements with a certain fiber volume
content, orientation, and periodicity are considered. Boundary conditions, such as normal Neumann or Dirichlet
types, do not account for the periodicity of the domain. Hence a periodic type is chosen: In addition to the periodic
order parameters and displacement fields, a superimposed periodic displacement boundary condition [77] is applied
in such a way that the macroscopic strain of the volume element follows by

ε = ε(t)ex ⊗ ex , (40)

where the normal strain in the x-direction, ε(t), will be increased linearly with time, until the volume element
exhibits a complete failure.

Unidirectional 2D volume elements. First, unidirectional fiber reinforced volume elements are be investigated. This
makes it possible to reduce the system to a 2D system, so as to reduce the computational effort. The square volume
elements with a side length of 100 µm contains fibers with a radius of 4 µm. For different fiber volume fractions v f ,
various realizations will be considered in the following. In Fig. 12, the effective crack φ̃c and the contour lines
of the fibers are presented in a fully broken state. All realizations show an overall crack direction, perpendicular
to the applied load. Thus, the desired and dominant crack opening mode I is reproduced, and the crack paths
tend to become more complex, when using a higher fiber volume fraction, as the fibers become an obstacle for
the crack, which results in an elongation and contortion of the crack path. This is primarily caused by the lower
crack resistance of the matrix. Thus, the crack also often propagates through matrix-dominated regions, but also
between fibers caused by stress concentration. Since the MCOP model does not account for the failure mechanism
of interfacial debonding, this failure mechanism cannot be observed when the crack propagates in fiber dominated
regions. Due to the periodic boundaries, the complete failure of the volume element forces the crack tips to merge.
After the merge, partly ‘dead ends’ can thus be observed in some realizations presented in this work.

Isotropic 3D volume element. In the case of a 3D volume element, the fiber volume content v f = 25% is chosen
with an isotropic orientation distribution. The latter implies that there is no preferential direction in the fiber
distribution. As before, the volume element has a side length of 100 µm, consisting of fibers with a radius of 4 µm
and a length of 80 µm. The volume element was generated using the approach of Schneider et al. [78] and is shown
in Fig. 13(a). As in the 2D case, a macroscopic strain is applied in one direction, in addition to the periodicity, and
s increased linearly over time. The failed domain with the red crack surface is shown in Fig. 13(b). As for the 2D
imulations the crack surface is mainly perpendicular to the load direction and occurs solely in the matrix, but still

hows a quite complex crack path, due to the fiber distribution and the stress concentration that arise from it.
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Fig. A.14. Behavior of the staggered scheme for the artificial sloped interface: (a) Cumulative iterations during the crack growth for the
SCOP and MCOP models. (b) Amount of inner iterations for an exemplary discrete crack propagation step.
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ppendix A. Staggered iterations study

For a numerical investigation of the number of staggered iterations during a crack propagation simulation, the
etup of an artificial sloped interface, cf. Section 4.2, is chosen. For this purpose, the number of iterations is depicted
n Fig. A.14. The cumulative iterations over the crack growth are shown in Fig. A.14a. For this purpose, all inner

staggered iterations are summed up until a discrete crack propagation occurs. Thereby, the SCOP and MCOP models
show similar behavior. The number of iterations is approximately equal. Only near the solid interface the MCOP
requires more iterations. This is most likely due to the implicit transition of the crack from one order parameter to the
other. The overall trend towards fewer iterations, like the change in slope, is likely due to the way the stress boundary
condition is imposed. In addition, Fig. A.14b plots the number of staggered iterations against temporal iterations
for a discrete crack propagation step. Also here, SCOP and MCOP show the similar behavior: After a discrete
crack propagation, the first iterations consist of an increased number of staggered iterations, while subsequently,
the iterations are lower, but increase slightly again to the next discrete crack propagation.

Appendix B. Mesh convergence study

For an investigation of mesh convergence for the artificial sloped interface example (cf. Section 4.2), the SCOP
model and the infinitely hard upper region are chosen. As in this case the highest gradients occur in the solution

fields and can therefore be assumed to be the most challenging problem to discretize. Fig. B.15 shows the results
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Fig. B.15. Mesh convergence study of the SCOP model for the artificial sloped interface: The mesh sizes at the crack tip ∆x are varied.
n addition, the background was also refined and the adaptive mesh refinement parameters were chosen more cautiously (†).

f the SCOP model of Section 4.2. In addition, the mesh size ∆x at the crack tip is varied, where ∆x0 is the size
in of the previous results. Furthermore, the underlying coarse mesh is significantly refined, and the adaptive mesh
refinement parameters are changed to increase the area where ∆x applies, denoted by † in Fig. B.15. Thereby,
none of the results yields large variance, therefore the discretization chosen in this work can be assumed to be
representative.
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