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Material matters: predicting the core hardness
variance in industrialized case hardening of 18CrNi8

Vorhersage der Kernhartenvarianz von industriell
einsatzgehartetem 18CrNi8

Y. Lingelbach’, T. Waldenmaier?, L. Hagymasi', R. Mikut®, V. Schulze*

To explain the variance in core hardness of 18CrNi8 nozzle bodies after industrial
heat treatment, several data sources, including steel melt composition, sensor
process data, and measurement errors, of five years are aggregated. In order to
predict hardness variations caused by alloy composition, traditional physical mod-
els by Maynier are compared with data-driven machine learning models, which
show no advantage due to low data variability. Neither method can fully explain
the visible drifts, which are better tracked by an alternative (i.e., filter model) that
uses past measurements. Machine learning on features from heat treatment is not
successful in predicting hardness change, presumably because the process is too
stable. Finally, a large part of the variance is caused by the HV 1 measurement
error.

Keywords: Case hardening / Alloy elements / Prediction / Machine learning / Data
driven / Variance / Hardness / Industrial process

Um die Varianz der Kernharte von Dlsenkdrpern aus 18CrNi8 nach einer industri-
ellen Warmebehandlung zu erklaren, werden mehrere Datenquellen, darunter die
Werkstoffzusammensetzung der Stahlschmelze, die Prozessdaten der Sensoren
sowie die Messfehler, der vergangenen finf Jahren kombiniert und analysiert. Zur
Vorhersage von Hartednderungen, die durch die Werkstoffzusammensetzung ver-
ursacht werden, werden traditionelle physikalische Modelle von Maynier datenge-
triebenen maschinellen Lernmodellen gegenlbergestellt. Keine der beiden Metho-
den kann die sichtbaren Drifts vollstandig erklaren, die durch ein alternatives
Filtermodell, das vergangene Messungen verwendet, besser erfasst werden. Ma-
schinelles Lernen auf Basis von Merkmalen aus der Warmebehandlung ist bei der
Vorhersage der Hartednderung nicht erfolgreich; vermutlich aufgrund der hohen
Prozessstabilitdt und der damit einhergehenden zu geringen Varianz. SchlieB3lich
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wird ein groBer Teil der insgesamt zu beobachtenden Varianz durch die Streuung

der HV 1 Messung verursacht.

Schlisselwérter: Einsatzhartung / Legierungselemente / Vorhersage / Maschinelles
Lernen / Datengetrieben / Varianz / Harte / Industrieller Prozess

1 Introduction

Reducing cost and quality variances in established
heat treatment processes becomes more difficult the
more optimization measures such as increased
batch size and reduced process time have already
been implemented. To quantitatively assess the fac-
tors’ relative contribution to the variance in core
hardness of case hardened nozzle bodies, data from
two production stages and their quality assessment
are analyzed: steel production, case hardening, and
hardness measurement, Figure 1. Over 90 % of the
hardness values measured fall within an interval of
40 HV 1, suggesting that the individual effects may
be difficult to access if their accumulation is lim-
ited to such a narrow range.

To the best of the authors’ knowledge, the con-
catenation and relative influence of the individual
hardness effects of such an industrialized case hard-
ening process have not yet been investigated in the
available literature. Moreover, no real industry-like
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application data were used but mainly data from the
literature or from smaller experiments, which are
elaborated on in the following.

Hardness can be predicted by application of data
driven methods such as supervised learning based
on chemical composition and tensile properties [1,
2]. Additional knowledge about the austenitization
conditions, at least for low alloy steels, makes pre-
dictions even better [2, 3]. The ability to predict
hardness from chemical composition and additional
parameters (e.g., austenitization and tempering
temperatures as well as duration) can be learned by
artificial neural networks when trained on data
available from the literature (i.e., tables in books)
or simulated data [4-8]. On this basis, machine
learning methods may also predict the martensite/
bainite/austenite start temperature or volume frac-
tion of bainite [9-12]. Naturally, sufficiently large
changes in chemical composition also predicts me-
chanical properties such as Charpy toughness, yield
strength and contact fatigue life [13-15].
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Figure 1. Schematic representation of the process chain. Data was collected from steel production (material composition of
the steal melt), to heat treatment (meta data about the furnace, component type, etc.) and hardness measurements. The
resulting core hardness distribution with a standard deviation (SD) of 12 HV 1 stems from ~7000 HV 1 measurements over

5 years.

Bild 1. Schematische Darstellung der Prozesskette. Es wurden Daten von der Stahlherstellung (Materialzusammensetzung
der Stahlschmelze) Gber die Warmebehandlung (Metadaten: Ofen, Bauteiltyp, usw.) bis hin zu den Hartemessungen erfasst.
Die sich daraus ergebende Kernharteverteilung mit einer Standardabweichung (SD) von 12 HV 1 stammt von ~7000 HV 1-

Messungen Uber 5 Jahre.
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In the present paper, the authors investigate
whether these models are also of predictive value
for the very small variations experienced in high
quality steels that must meet strict industry quality
criteria and are monitored over long periods of time
in industrial production. Due to the lack of avail-
able data, publications on hardness predictions
from industrialized heat treatment processes are
rare. Supervised machine learning has been applied
to bainitization with some success using process
parameters as inputs to predict the hardness. How-
ever, these approaches missed to take material
composition into account and failed to use a chro-
nological train test split [16]. Industrial data has not
yet been used for the hardness prediction from case
hardening process, but the heat treatment and its
hardening results have been thoroughly simulated
[17]. Examination of the reproducibility of hard-
ness measurements shows that considerable var-
iance is to be expected due to calibration deviation
of the hardness testing machines, the influence of
the specimen preparation as well as diamond abra-
sion [18, 19].

The state of the art for predicting the hardness of
heat-treated steels is capable of accurately describ-
ing individual self-contained stages of the pro-
duction process but has not been applied to in-
dustrial data or to the entire process chain. The
present work fills this gap and investigates the
practicality of hardness prediction in an industrial
setting, taking into account all important factors in
the process chain and their relative significance.

Materialwiss. Werkstofftech. 2022, 53, 576-589

2 Materials and methods
2.1 Process chain and data

The injection nozzle bodies are manufactured from
18CrNi8 (1.5920) case hardening steel supplied by
Stahl Judenburg GmbH to a certified degree of pu-
rity, Table 1.

While nozzle body blank production (not shown
in Figure 1) is a single piece flow, the subsequent
heat treatment consists of 7200 pieces in one batch
(6-layer rag), where layers may contain different
types of nozzle bodies (i.e., slight variation of ge-
ometry). The heat treatment process consists of
three stages: 1. case hardening, that is, carburiza-
tion and quenching in one of three vacuum furna-
ces, 2. cooling in one of two deep freezers, and 3.
passing through one of three tempering furnaces,
all controlled by the same system Prosys by DEM-
IG. Batch paths are variable, that is, after deep
freezer #1 or #2 the batch may go through temper-
ing furnace #1, #2, or #3. For quality assurance, a
defined number of nozzle bodies are tested after
heat treatment. From each batch, two nozzle bodies
with alternating positions are sampled (i.e., compo-
nents from position cl and c4 for batch i, compo-
nents from position f3 and {6 for batch i+ 1), Fig-
ure 2. This information is important, as an
individual nozzle body’s closeness to the door, cen-
ter or quenching funnel is expected to influence its
heat treatment. Each sampled nozzle body is cut
lengthwise, embedded, and polished. An HV 1 in-
dentation is used to evaluate the hardness in Vick-
ers (HV) at various positions and distances from
the surface. This paper focuses on two measure-
ment positions: the core 3 mm away from the sur-
face (Core) and the shaft 0.7 mm away (Shaft 0.7).

Table 1. Upper and lower limits of Robert Bosch GmbH order specification of the weight fractions [wt.—%] of each

alloying element.

Tabelle 1. Obere und untere Grenzwerte der Robert Bosch GmbH Bestellangaben fir die Gewichtsanteile [wt.—%]

der einzelnen Legierungselemente.

Cr Ni C Mn Si Al Mo P S
Upper limit 2.100 2.150 0.220 0.640 0.300 0.040 0.150 0.035 0.035
Lower limit 1.700 1.750 0.130 0.360 - 0.015 - - -
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Loading
direction

Figure 2. Nozzle body batch in form of a 6-layer rag filled
with 7200 pieces, where c¢1, c4 (center), and 3, f6 (front)
mark the sampling points of the test specimens.

Bild 2. Dusenkérpercharge in Form eines 6-lagigen Ge-
stells, das mit 7200 Teilen gefllt ist, wobei c1, c4 (center)
und f3, f6 (front) die Enthahmestellen der Prufkdrper markie-
ren.

Process as well as quality data is stored in an SQL
database for reasons of traceability, quality assur-
ance, and long-term behavior evaluation.

For the present analysis, data was collected from
the beginning of 2015 to the beginning of 2020, in-
cluding the following data sets: chemical composi-
tion of 283 steel melts of 18CrNi8, process data
from 4480 case hardened nozzle body batches, and
the hardness of 6935 HV 1 indentions per measure-
ment position. The number of indentions is smaller
than twice the number of batches, because one
batch may contain different component types and
not all types of specimens can be included in the
analysis due to their different material composition
(e.g., some nozzle body types are made from
X40CrMoV5-1) and geometry. Each component
type has a unique designation (e.g., Al, A2, A3,

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH
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B1, etc.), with the letter indicating the broader fam-
ily-often associated with a particular customer-and
the number indicating a particular characteristic of
that family. Geometry can differ to varying degrees
both between and within component families. The
measurement error was estimated from 4 HV 1 in-
dentions on each of 68 nozzle bodies.

2.2 Calculate and learn hardness from material
composition

2.2.1 Calculation with known models

The influence of chemical composition and austeni-
tization conditions on hardness for low alloy steels
has been presented by Maynier and colleagues at
the Creusot-Loire Laboratory [2, 3] and was re-
viewed by [20]. Depending on the volume fractions
of the microstructure constituents (i.e., %FP =fer-
rite and perlite, %B =bainite, %M =martensite)
and their respective hardness, the total hardness of
the steel is calculated as a weighted sum over the
mixed structures, Equation 1 [20].

UoFP-HVe_p+%B-HVg+%M-HV,
HP = F-P = B M (1)

Due to the good-natured hardening properties of
18CrNi8 and high quenching pressure, even the mi-
crostructure in the core of the nozzle body is pre-
dominantly martensitic, with some bainitic content,
after heat treatment. Therefore, the following equa-
tions can be used to estimate the hardness at the
core, Equations 2 to 5 [20]:

HV;,” +949C + 27Si+
11Mn + 16Cr+ (2)
8Ni+21 - log Vi

log VMlOO % — 981 - (462C + 105Mn+

3
0.5Cr + 0.66Mo + 0.54Ni + 0.00183 - P,) ©)
10g Voo, = 8.76 — (4.04C + 0.96Mn-+

0.58Cr + 0.97Mo + 0.49Ni+ (4)

0.001 - P,)
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Vg = — H323+185C + 3308i + 153Mn+

144Cr + 191Mo + 65Ni+
89 + 53C — 55Ni — 22Mn— &)
log Vi < )

20Cr —33Mo — 10Ni

Where HV,, and HVjy is the hardness calculated
from the relative mass contents of the alloying ele-
ments carbon (C), silicon (Si), manganese (Mn),
chromium (Cr), nickel (Ni), and molybdenum (Mo)
and V [°Ch™'] the cooling rate for martensite at
700 °C, with for example R = M90 % indicating
90 % martensite and 10 % other microstructures.
P, is a parameter including austenitizing time and
temperature.

Equations 1 to 5 were used to estimate the mean
core hardness of nozzle bodies belonging to one
steel melt after heat treatment. In order to do so,
two parameters need to be estimated: The volume
fraction of martensite in Equation 1 and a general
offset that is subtracted from Equation 1 accounting
for tempering. Ferrite and perlite fractions do not
occur during heat treatment. Thus, the remaining
fraction is a mixture of bainite and austenite, where
the hardness influence of the latter may be omitted
due to its minimal share. A first method to find
these parameters is via optimization by dual anneal-
ing using the python package scipy, where the loss
function is the mean squared error (MSE) between
the calculated hardness values per melt and the
mean of the measured hardness belonging to that
melt [21], Equation 6:

1 I
MSE = =% (v, =) ©)

i=1

where y is the observed and y the predicted value.

However, we report prediction results as the root
of the mean squared error (RMSE) to retrieve the
original unit of measurements, that is, hardness in
Vickers with a load of 1kg (HV 1). The volume
fraction of martensite and the remaining micro-
structures can also be estimated via a simulation in
Ansys® using [22].

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH
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2.2.2 Learn with linear regression

Alternatively, the coefficients for hardness pre-
diction from the alloying elements can be de-
termined by linear regression from the available
data itself. That is, assuming that variations in an
alloying element linearly increase or decrease hard-
ness, at least for small variations around the stan-
dard chemical composition of the steel. For com-
pleteness more complex machine learning models
that can map nonlinear relationships such as artifi-
cial neural networks or random forests (similar to
[9, 16, 23, 24]) were also implemented by the au-
thors, but they tend to overfit the data and therefore
provide no additional benefit here. Only if the var-
iations in material composition become sufficiently
large, which does not seem to be the case with our
data set, or if other factors (e.g., influences of heat
treatment) are to be included (section 2.4), can it be
assumed that the relationship is nonlinear. The pa-
rameters of such models are also more difficult to
interpret. Moreover, extra- or and interpolation are
a complicated matter for the more complex ma-
chine learning methods and their performance is
strongly application dependent [25, 26].

2.3 Tracking models

To track the averaged long-term hardness fluctua-
tions y and determine the hardness offset (i.e., the
deviation of the average hardness y) caused by the
specimen’s batch position 4p,, and its component
type Acypmp, the following model based on a first-
order infinite impulse response (IIR) filter is in-
troduced by the authors, consisting of an update
step, and a prediction step, Equations 7, 8:

Yo =a-y, 1+ (1 —a)-

(7
(xn - AP()s,n - AComp,n)
wherea € [0,1]
/}7r1+1 = Yn + AP()S, n+1 + AComp, n+1 (8)
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S,\nJrl = a'ynfl—i_(l_a) :

+A Pos, n+1 + AComp, n+1

where y, [HV] is the average hardness state after
production of batch n, estimated by updating its
predecessor state y,_; with the new measurement
x,. Because the measurement x,, is performed on of
the four test specimen the offsets to the average
caused by their particular batch position 4p,, and
component type Ac,,,, must be corrected for. That
is, the individual offset for position and component
type are subtracted from the measurement x,, to ex-
clude their influence on the state y. Thus, the cur-
rent estimated average hardness y, is a weighted
sum between the previous average hardness state
v,—1 and the measurement of the current batch x,
corrected by test specimen specific position and
type. Given such an average state y, a forecast
y,.; can be made about the hardness of a specific
test specimen from the next batch (i.e, n+1) by
adding the offset cause by its location 4p,, ,,; and
component type Ac,,, »+1 to the current average
hardness y,. The 13 parameters (i.e., a, 4p,, for
four batch positions, and 4,,, for eight compo-
nent types) were optimized by dual annealing.
Thereby, the to-be-minimized loss function was the
mean squared error between the prediction y,,; and
the true measured value x,,,. As a prediction y,
is made for a particular position and component
type it can only be compared to the x,,,; of that par-
ticular position and component. The terms y, and
X, may not be compared as the former is an esti-
mated average hardness of the complete batch and
the latter is a measurement at a particular position
in the batch.

2.4 Feature extraction and machine learning

Parameter fluctuations in the heat treatment proce-
dure may influence the resulting hardness and are
investigated by machine learning (ML) methods. In
this approach, machine learning algorithms attempt
to learn a relationship between input variables, also
called features (e.g., austenitizing temperature),
and a label (e.g., core hardness) for a subset of the

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH
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data (i.e., training set) and then predict the label
from the features for samples they have not yet
seen (i.e., test set). Process features extracted from
each heat treatment are the mean, minimum, max-
imum, standard deviation, and time span of the fol-
lowing process parameters: austenitization temper-
ature and duration, cooling rate during quenching,
deep freezing temperature and duration, as well as
tempering temperature and duration. To evaluate
which kind of modeling approach is best suited for
the hardness prediction from these features, repre-
sentative algorithms from different machine learn-
ing families for regression were trained: linear re-
gression (linear model), multi-layer perceptron with
one hidden layer (artificial neural network), random
forest regressor (ensemble tree), and support vector
regressor (sparse kernel method). A systematic re-
view of machine learning algorithms and predictive
models in general along with their practical appli-
cation is provided in [27] while an in depth mathe-
matical explanation can be found in [28]. For these
algorithms to work accurately, their hyper-
parameters must be adapted to the problem (i.e.,
data set) at hand. This optimization was performed
automatically using Bayesian search [29]. In the
following the search ranges for these parameters
are outlined as well as the value of those hyper-
parameters that differ from their default setting in
the scikit-learn library [30]: linear regression
(none); multi-layer  perceptron  (early_stop-
ping =True, learning_rate = adaptive, hidden_lay-
er_sizes: Int(1,100)); random forest regressor (n_
estimators: Int(10, 300), max_depth: Int(2,15),
min_samples_split: Int(2, 30)) and support vector
regressor (C: Real(le—6, 1e3,'log-uniform’), epsi-
lon: Real(1e—6, 0.99,'log-uniform’)).

The machine learning pipeline always included
a robust scaler as first step and was implemented
by use of the scikit-learn library [30]. Features
were selected either by sequential feature forward
selection or the feature importance attribute of the
random forest while final hyperparameter tuning
was performed manually. This is important, as too
many and/or uninformative features can easily lead
to overfitting, jeopardizing the generalizability of
the prediction to future data sets [31].

Models were trained on 80 % of the data and
tested on 20 %, once divided chronologically and
once randomly. The labels were corrected by the
predictions from the tracking model to ensure that

www.wiley-vch.de/home/muw
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the machine learning algorithms only learn and pre-
dict hardness deviations from the current mean
hardness caused by process fluctuations during heat
treatment. Section 3.3 attempts to predict the hard-
ness of nozzle bodies after heat treatment (i.e., case
hardening, deep freezing, and tempering) from the
measured process parameters using the machine
learning methods mentioned above to explain the
variance possibly caused by process variations
themselves.

3 Results

3.1 Core hardness and material composition over
time

The mean core hardness of the nozzle bodies for
different batch positions as well as their chemical
composition change over time, Figure 3. A dia-
mond replacement in 2018 and a recalibration of
the measurement device also significantly changed
the standard deviation of the measurements from
10.6 HV 1 before 2018 to 8.9 HV 1 after the
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change (standard deviation was calculated after
subtracting the mean hardness of the rolling win-
dow, significance was determined by an F-Test
with p <.01). For this reason, the horizontal stripes
showing the measurement resolution capacity move
closer together after the replacement, Figure 3a. In
the following, we first examine why nozzle bodies
from the two batch positions f3 and f6 are asso-
ciated with different core hardness, and then con-
sider influences related to changes in chemical
composition that appear to be partially responsible
for the long-term variations.

3.1.1 Influence of batch position on microstructure

Upper layer position f6 experiences stronger
quenching than position f3 (i.e., mean cooling rate
between 800 °C and 500 °C for f6 =20 °Cs™' and
f3 =8 °Cs!, as determined by a temperature uni-
formity survey) because it is more exposed to the
quenching gas nitrogen which is first injected from
the furnace ceiling. Thus, nozzle bodies on the up-
per layer show an increased martensite to bainite

b)
20
0.18 A n 10
AR \ | Lo
! Vativs
\/\1/ -10
0171 4 .
— HV Core
2.02 1q)
20
A/
2.00 H \ 10
/ A /\f\
VU\ A I o
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Cr -20
196 1 _ Ly core
2015 2016 2017 2018 2019 2020
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Figure 3. a) Individual measurement results as well as a rolling window with a size of 50 days of the core hardness, b), c)
and d) weight fraction of carbon (C), silicon (Si) and chromium (Cr) in each steel melt as well as mean core hardness of

every nozzle body belonging to that melt.

Bild 3. a) Einzelne Messergebnisse sowie der Mittelwert eines gleitenden Fensters mit einer GréBe von 50 Tagen der Kern-
héarte, b), c) und d) Gewichtsanteil von Kohlenstoff (C), Silizium (Si) und Chrom (Cr) in jeder Stahlschmelze sowie mittlere

Kernharte jedes zu dieser Schmelze gehérenden Dusenkdrpers.
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Figure 4. Microsections of nozzle bodies from batch positions f3 and f6 showing the increased bainitic (dark gray) fraction at

3 in the otherwise martensitic microstructure.

Bild 4. Schiiffbilder der Disenkérper von den Chargenpositionen f3 und f6, die den erhdhten bainitischen Anteil (dunkel-
grau) bei f3 in der ansonsten martensitischen Mikrostruktur zeigen.

ratio and, therefore, greater hardness. We estimated
this ratio for positions f3 and f6 using three differ-
ent methods: (1) a prediction from Ansys® based on
the respective cooling rates, (2) optimizing the re-
spective parameters % M and %B in Maynier’s
equations for the given elemental fractions in the
dataset and trying to predict the respective hard-
ness, and (3) actual microsections from batch posi-
tions f3 and f6. Assuming that the microsection can
be used as a ground truth, the Ansys® simulation
overestimates the bainite content in the core of the
nozzle body slightly at f3, but correctly predicts
some retained austenite (not seen in the micro-
section), Figure 4, Table 2. Maynier’s model can-
not predict any retained austenite as it is not part of

Table 2. Fraction of microstructure constituents of the
nozzle body core from batch positions f3 and 6 in % af-
ter heat treatment. Estimations were done by an Ansys
simulation, optimization of respective parameters in May-
nier’'s equations and actual microsections, Figure 4.

Tabelle 2. Anteil der Gefligebestandteile des Diisenkér-
perkerns der Chargenpositionen f3 und f6 in % nach der
Wéarmebehandlung. Die Abschéatzungen erfolgten durch

eine Ansys-Simulation, Optimierung der entsprechenden
Parameter in den Maynier-Gleichungen und tatsachliche
Mikroschnitte, Bild 4.

Martensite (% M) Bainite (%B) Austenite

f3 f6 f3 f6 f3 f6
Ansys 73 95 26 4 1 1
Maynier 75 99 25 1 - -
Microsection ~85 99 ~15 1 - -

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH

its equations but comes slightly closer to the micro-
section estimation.

3.1.2 Influence of chemical composition on
hardness

Fluctuations in chemical composition are inter-
mittently correlated with the resulting core hard-
ness, most notably for carbon, Figure 3b. Expect-
edly, carbon variation has the highest sensitivity as
reflected in its comparably large coefficient in
Equation 1, but it also shows the smallest fluctua-
tion 0.02 wt.—% compared to 0.03 wt.—% for sili-
con. Lower carbon oscillation after 2018 likely also
reduced the hardness variance for this period. To
support this hypothesis, three approaches were used
to predict mean core hardness from the respective
chemical composition: Maynier’s equations, linear
regression on the whole data set (i.e., training set
equals test set), and with 5-fold cross-validation
(i.e., using four years as training set and predicting
the fifth year).

The both calculations by Maynier’s model
(RMSE =3.88 HV 1, R* =0.49) and the prediction
via linear regression (RMSE =3.77 HV 1,
R’ =0.52) based on the material composition, are
close to the actual measured core hardness, Fig-
ure 5a. Linear regression with cross-validation
(RMSE =4.89 HV 1, R’ =0.20) lags significantly
behind the former two, indicating poor general-
izability, most likely due to the fact that the dia-
mond replacement introduces a concept drift in the
data that the algorithm is not able to handle well. In

www.wiley-vch.de/home/muw
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Figure 5. a) Mean core hardness of heat treated nozzle bodies per steel melt determined by measurement, Maynier’'s mo-
del, and linear regression, b) weights of linear regression (LR) for nozzle bodies from position f3 (lowest quenching rate) and
f6 (highest quenching rate) compared to coefficients in Maynier’s equations (2) for martensite (M) and (5) for bainite (B).

Bild 5. a) Mittlere Kernhérte der warmebehandelten Dusenkdrper pro Stahlschmelze, bestimmt durch Messung, Mayniers
Modell und lineare Regression. b) Gewichte der linearen Regression (LR) fir Disenkérper aus Position f3 (niedrigste Ab-
schreckrate) und 6 (hdchste Abschreckrate) im Vergleich zu den Koeffizienten in Mayniers Gleichungen (2) fir Martensit (M)

und (5) fur Bainit (B).

general, all methods are able to capture the direc-
tion of change (i.e., increasing or decreasing hard-
ness) most of the time but frequently misjudge the
amplitude. Hence, their predictions are not wrong
per se, but about half of the variance (i.e., R* scores
are ~0.5) in measured mean hardness can be ex-
plained by the material composition. When correct-
ing for long term drifts (e.g., changes in the meas-
urement device) by a third order polynomial,
RMSEs can be reduced to 3.0 HV 1 for the first
two methods. The RMSE can be slightly further re-
duced by 0.2 when only learning and predicting the
hardness for a given batch position (e.g., position
f3 and £6).

These results suggest that we may trust the mod-
els sufficiently to use their components for general-
izable interpretation. Seemingly, carbon variation is
responsible for most of the hardness fluctuation, as
can be seen from the coefficients of the linear re-
gression as well as from Maynier’s equation, Fig-
ure 5b. Counterintuitively, the linear regression co-
efficients of position f3 (lowest cooling rate) are
closer to Maynier’s martensite coefficients than
those of the position f6, suggesting that linear re-
gression cannot learn the exact elemental influences
for martensite and bainite from these data (more
complex models provide no solution, as they over-
fit leading to worse predictions on the test set). Co-
efficients of the 5-fold model even switch signs for
manganese and molybdenum. Linear regression
also strongly overestimates the silicon influence be-

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH

cause it is coincidentally correlated with carbon
(r =0.56); possibly due to a specific scrap metal
the steel manufacture uses for the 18CrNi8 pro-
duction. Three points become clear from this analy-
sis: (1) Although fluctuations cannot be predicted
precisely, even miniscule changes in carbon can be
used to explain and are responsible for the observed
core hardness oscillation. Comparing the observed
changes in carbon to the allowed limits in Table 1,
one needs to be aware that much more drastic fluc-
tuations could be possible and lead to severe hard-
ness changes. (2) Industrial datasets may not pro-
vide a good basis for extracting physical properties
because minimal variation and correlated inputs
hinder differentiation between individual factors.
(3) A machine learning approach in this case does
not yield any advantage, because the variety in the
data to learn from is too small. Existing models are
quasi linear and have well established coefficients
and more complicated models are not necessary to
explain the observations.

3.2 Forecasting hardness

Although the offset produced by batch position and
component type is not particularly large, it does not
seem negligible either, Figure 6. Merely using the
mean hardness per category underestimates the in-
fluence of batch position while overshooting the
component type. This is, because different compo-
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Figure 6. Offset in hardness at the core (dark green) and the Shaft 0.7 mm from the surface (light green) due to a) batch
position and b) component type. Offsets were determined by i) filter model (star) and ii) by calculating the mean hardness
(circle) for all nozzle bodies belonging to a given category.

Bild 6. Harteabweichung am Kern (dunkelgriin) und am Schaft 0,7 mm von der Oberflache (hellgrin) aufgrund von a) Char-
genposition und b) Bauteiltyp. Die Offsets wurden bestimmt durch i) das Filtermodell (Stern) und ii) die Berechnung der

mittleren Harte (Kreis) fur alle Disenkdrper, die zur selben Kategorie gehéren.

nents sit at the same batch position over time,
thereby skewing the mean positional influence. On
the other hand, not all components are produced in
the same quantity over time, which means that
components produced in a time with higher carbon
content appear harder, while others are seemingly
less hard. The filter approach solves this problem
by separating the two influences and additionally
corrects for the fluctuation by tracking the base
hardness independent from position and type. The
optimal updating coefficient on the training set
(i.e., data before June 2018) was found to be
a =0.90, while the optimal offsets differ for each
nozzle body type, Figure 6. The remaining results
are calculated on the test set (i.e., data after June
2018).

To estimate how much variance is explained by
the different tracking model parts (Equation §), the
results from five scenarios are compared: using (1)
the complete model (all), (2) setting position and
component offsets to zero (only filter), (3) and (4)
setting either one to zero (without position or com-
ponent), and (5) always predicting the mean of the
label distribution (dummy model), Table 3. About
two-fifths of the variance (i.e., R’,.=0.4 and
R’ =0.44) can be predicted by the models, with
the largest contribution coming from tracking cur-
rent hardness (i.e., mainly fluctuations due to
changes in material composition). Not knowing the
component type does not lead to major losses in
predictability (nozzle body diameter only varies
slightly). Although the position is of some sig-

Table 3. Test set prediction results from tracking model in form of root mean squared error (RMSE) and coefficient of
determination (R?) for different scenarios (i. e., including and excluding batch position and/or component type in predic-

tion).

Tabelle 3. Vorhersageergebnisse des Tracking-Modells fur den Testdatensatz in Form des mittleren quadratischen
Fehlers (RMSE) und des BestimmtheitsmaBes (R?) fiir verschiedene Szenarien (d. h. einschlieBlich und ausschlieBlich
der Chargenposition und/oder des Komponententyps bei der Vorhersage).

All Only filter Without position Without component Dummy model
Core 9.28 9.48 9.48 9.29 12.13
RMSE
Shaft 0.7 8.04 8.88 8.51 8.44 10.72
i Core 0.40 0.370 0.371 0.39 0
R
Shaft 0.7 0.44 0.314 0.369 0.38 0

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH
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nificance (e.g., Rgq: all =0.440 vs. without posi-
tion =0.369), its influence on the overall variance
is still comparatively small. Thus, when comparing
hardness measurements of two batches close in
time, it may be more important to know the speci-
men position and type. Otherwise, material compo-
sition or overall drift may better explain discrep-
ancies, assuming that the hardness measurement
can be trusted, which is often enough only partially
the case.

3.3 Process influence

Since industrialized heat treatment is a tightly con-
trolled process, the measured parameters only vary
by a very small amount and more strongly between
furnaces than between consecutive batches in the
same furnace, Figure 7. It is important to notice
that these values stem from the sensor elements in
the furnace that are also used to control the process.
That means, if a sensor element itself has an offset
to the true temperature (e.g., by calibration or re-
mounting during maintenance) this deviation is not
captured by the feature. Based on these minimal
variance features (described in Section 2.3), none
of the machine learning algorithms were able to
make predictions on the test set with an R* score
significantly different from zero, neither for the
chronological nor the random data split. Overfitting
of the training data was counteracted by reducing
the model size (e.g., less nodes or trees in the arti-
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ficial neural network and random forest). Training
on individual furnaces also did not produce useful
results, nor did correcting for long-term feature
drifts using slow filters. In summary, this means
that, either the process itself does barely contribute
to the overall variance, or we did not or cannot
measure the influencing factors.

3.4 Measurement error

Measuring hardness with a single HV 1 indentation
is prone to considerable scatter, with about one in
five measurements deviating further than 5 HV 1
from the estimated true mean, Figure 8. The RMSE
of 42HV 1 for the Core and 4.7 HV 1 for the
Shaft 0.7 (not significantly different with p =0.055
by F-Test) provide a lower bound for the noise that
is introduced to the overall distribution by the
measurement procedure. It is a lower bound be-
cause the diamond replacement in 2018 resulted in
measurements with less scatter, due to sharper
edges of the indention. Consequently, the measure-
ment optic can detect more precisely. For the meas-
ured hardness values, an increase in the diagonal
length of 0.1 pm already leads to a decrease of
1.5 HV 1, being the most accurate that the optics
can just about distinguish [19]. Measurements used
for error estimation (i.e., four indents per measure-
ment position) were made in 2020. Therefore,
about two fifths of the original distribution contain

+1.0

ot
)

-0.5
Vacuum f.
10l . . . .0. 3,
2015 2016 2017 2018 2019 2020

Date

Figure 7. Features extracted from the three vacuum furnaces scaled around their respective reference value where a) is the
mean austenitizing temperature, and b) is the mean cooling rate between 800 °C and 500 °C. Each dot represents the heat
treatment of one batch.

Bild 7. Aus den drei Vakuumdfen extrahierte Merkmale, skaliert um ihren jeweiligen Referenzwert, wobei a) die mittlere
Austenitisierungstemperatur und b) die mittlere Abkihlungsrate zwischen 800 °C und 500 °C ist. Jeder Punkt steht fur die
Warmebehandlung einer Charge.
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Figure 8. Distribution of the respective deviation from the mean value of four HV 1 indents on a single nozzle body per
measuring position (i.e., core and stem 0.7 mm) for 68 test specimens.

Bild 8. Verteilung der jeweiligen Abweichung vom Mittelwert von vier HV 1-Eindriicken auf einem einzelnen Dusenkérper
pro Messposition (d. h. Kern und Schaft 0,7 mm) fir 68 Priifkdrper.
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Figure 9. Contribution to RMSE and variance of several independent variables to hardness at the core and Shaft 0.7 mm.
Bild 9. Beitrag zum RMSE und zur Varianz verschiedener unabhéngiger Variablen zur Harte im Kern und am Schaft

0,7 mm.

values with an even higher measurement error,
leading to a larger RMSE contribution.

4 Summary

The overall variance of core hardness and shaft 0.7
is due to many factors. Some of which can be pre-
dicted, others only measured. An estimate of their
relative contribution to the variance is based on
their potential as a predictive variable (i.e., increase
or decrease in R’ when the variable is added or re-
moved) and the amount they add to the RMSE,
Figure 9. These estimates should not be taken at
face value, but as a rough estimate and first start
when aiming to reduce variance and estimate how
much can be gained by this step. Influences of
batch position and component type are almost irre-
ducible but small (e.g., although small batch sizes
may increase batch homogeneity, it would be eco-

© 2022 The Authors. Materialwissenschaft und Werkstofftechnik published by Wiley-VCH GmbH

nomically unreasonable). In stable high-volume in-
dustrial case hardening processes, material compo-
sition matters with miniscule changes in carbon
leading to visible variations in the resulting core
hardness. While the mid-term fluctuations could be
readily explained by material composition (i.e.,
Maynier’s model), a tracking approach employing
filters is better suited for prediction of the current
core hardness level, as the model can also follow
drifts from the measurement device as well as make
position and component type specific predictions.
Surface near measuring positions are much less af-
fected by composition of the base material due to
carburization by acetylene during heat treatment.
Probably the largest variance contributor is the HV
1 measurement itself, due to the small indent size.
Using HV 10 measurements is not feasible at the
surface near regions because a defined distance of
the indent to the boundary must not be fallen short
of and changing test load between measurements
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likely introduces operator mistakes. Multiple in-
dentations are a feasible measure but may be eco-
nomically undesirable.
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